

International Resource Panel

Mineral Resource Governance in the 21st Century

GEARING EXTRACTIVE INDUSTRIES TOWARDS SUSTAINABLE DEVELOPMENT

ACKNOWLEDGEMENTS

Lead Authors

Elias T. Ayuk, Antonio M. Pedro, and Paul Ekins

Contributing Authors

Julius Gature, Ben Milligan, Bruno Oberle, Patrice Christmann, Saleem Ali, S. Vijay Kumar, Stefan Bringezu, Jean Acquatella, Ludovic Bernaudat, Christina Bodouroglou, Sharon Brooks, Elisabeth Buergi Bonanomi, Jessica Clement, Nina Collins, Kenneth Davis, Aidan Davy, Katie Dawkins, Anne Dom, Farnaz Eslamishoar, Daniel Franks, Tamas Hamor, David Jensen, Kuntala Lahiri-Dutt, Inga Petersen, Andreas R.D. Sanders, Philip Nuss, and Lucia Mancini.

This report was written under the auspices of the International Resource Panel (IRP) of the United Nations Environment Programme.

Special thanks are extended to Julius Gatune and and Ben Milligan who were involved in the actual collation of the various contributions and writing of the report, as well as to Patrice Christmann and Bruno Oberle for their substantive contributions to the report.

The report benefited from many contributions as follows: The report benefited from many contributions as follows: Chapter 2 (Patrice Christmann, Daniel Franks, Julius Gatune); Chapter 3 (Kuntala Lahiri-Dutt, Nina Collins, S. Vijay Kumar, Kenneth Davis, Ludovic Bernaudat); Chapter 4 (Patrice Christmann, Julius Gatune); Chapter 5 (Saleem H. Ali, Anne Dom, Julius Gatune, Andreas R.D. Sanders, Sharon Brooks, Katie Dawkins); Chapter 6 (Julius Gatune, Kuntala Lahiri-Dutt); Chapter 7 (Julius Gatune, Ben Milligan, Antonio Pedro, Paul Ekins, David Jensen and Inga Petersen); Chapter 8 (Antonio Pedro, Julius Gatune), Chapter 9 (Aidan Davy, Elisabeth Buergi Bonanomi, Tamas Hamor), Chapter 10 (Elias T. Ayuk, Antonio Pedro, Paul Ekins, Bruno Oberle, Christina Bodouroglou, Ben Milligan, Saleem Ali, Farnaz Eslamishoar, Jessica Clement), Chapter 11 (Ben Milligan, S. Vijay Kumar, Jean Acquatella, Stefan Bringezu, Christina Bodouroglou), and Chapter 12 (Ben Milligan, Paul Ekins, Antonio Pedro, Elias T. Ayuk, Patrice Christmann, Vijay Kumar).

We are very grateful to the Peer-review coordinator, Erinç Yeldan, and reviewers who provided valuable comments to the report: Anna Elizabeth Bastida (University of Dundee), Anthony Bebbington (Melbourne University), Raimund Bleischwitz (University College London), Isabella Chirchir (Ministry of Mines and Energy of Namibia), Peter Eigen (African Progress Panel), Jeff Geipel (Engineers Without Borders Canada), Damien Giurco (University of Technology Sydney), Holger Grundel (Levin Sources), Meiyu Guo (Hong Kong Baptist University), Karen Hanghoj (EIT Raw Materials), Patrick Heller (Natural Resource Governance Institute), Anwarul Hoda (Indian Council for Research on International Economic Relations), Michel Jebrak (University of Quebec), Gavin Mudd (Royal Melbourne Institute of Technology), Edmund Nickless (formerly: The Geological Society of London), Anna Nguno (Ministry of Mines and Energy of Namibia), Jennifer Rietbergen-McCracken (Responsible Mining Foundation), Paulo de Sa (formerly: World Bank), Neena Singh (ERM India), and Sun Yongping (Hubei University of Economics).

The support provided by the following institutions that employ the IRP members who co-authored the report is gratefully acknowledged: United Nations University Institute for Natural Resources in Africa, United Nations Economic Commission for Africa, University College London, École polytechnique fédérale de Lausanne, Delaware University, The Energy and Resources institute, and Kassel University.

Special thanks to Janez Potočnik and Izabella Teixeira, Co-chairs of the IRP for their dedication and commitment, as well as to all members of the IRP and its Steering Committee for their constructive comments.

The Secretariat of the International Resource Panel provided essential coordination and support, especially Peder Jensen, Christina Bodouroglou and Kirsten Virginia Glenn.

The full report should be cited as: IRP (2020). Mineral Resource Governance in the 21st Century: Gearing extractive industries towards sustainable development. Ayuk, E. T., Pedro, A. M., Ekins, P., Gatune, J., Milligan, B., Oberle B., Christmann, P., Ali, S., Kumar, S. V, Bringezu, S., Acquatella, J., Bernaudat, L., Bodouroglou, C., Brooks, S., Buergi Bonanomi, E., Clement, J., Collins, N., Davis, K., Davy, A., Dawkins, K., Dom, A., Eslamishoar, F., Franks, D., Hamor, T., Jensen, D., Lahiri-Dutt, K., Petersen, I., Sanders, A. R. D. A Report by the International Resource Panel. United Nations Environment Programme, Nairobi, Kenya.

Design and layout: Ana Carrasco

Printed by: UNESCO

Photo cover: Aerial view of an open iron mine. Credit: apomares © Getty images

Copyright © United Nations Environment Programme, 2020

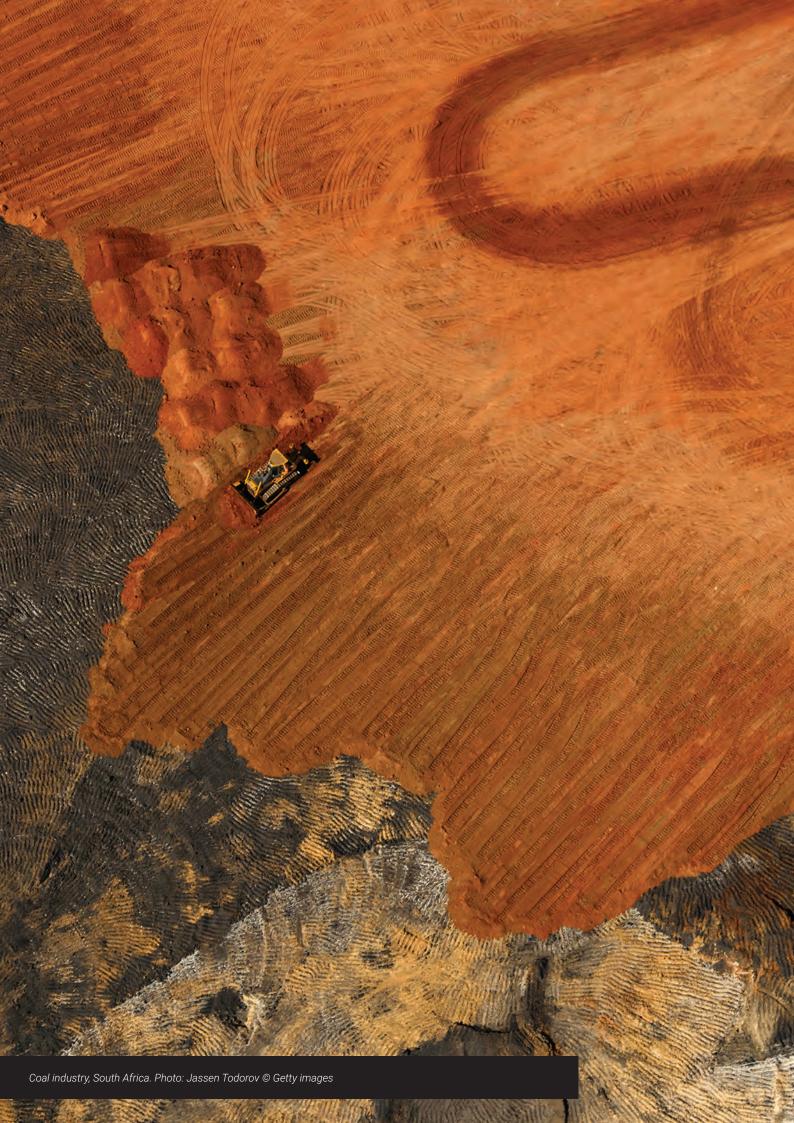
This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made.

United Nations Environment Programme would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.

Disclaimer

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the stated policy of the United Nations Environment Programme, nor does citing of trade names or commercial processes constitute endorsement.

Job No.: DTI/2277/PA


ISBN: 978-92-807-3779-0

MINERAL RESOURCE GOVERNANCE IN THE 21ST CENTURY

GEARING EXTRACTIVE INDUSTRIES TOWARDS SUSTAINABLE DEVELOPMENT

FOREWORD

Well-managed income from extractive resources presents tremendous opportunities for supporting sustainable and inclusive development –particularly for low- and middle-income countries whose economies rely heavily on natural resources. In addition to generating government revenues, extractive projects can create jobs, build infrastructure and transfer technologies.

Yet natural resource extraction and use is not always done wisely, bringing a host of problems. As this report by the International Resource Panel shows, extractive operations can cause extensive and lasting damage.

Aside from such environmental disasters, resource rich nations face other issues when trying to use wealth from their natural resources to drive sustainable development. Volatility in commodity prices, limited national capacities, weak links to the rest of the economy, corruption and social unrest all undermine the transformative potential of extractive activities.

This report shows that good governance is key to managing environmental and social impacts, and unlocking the sector's potential as a catalyst of sustainable growth and development. Many of today's wealthiest countries were built on the back of natural resources. A modern example of a developing country making wise use of resources can be seen in Botswana, which has deployed its diamond deposits to promote broad-based development. Significant efforts have been made to develop instruments to address governance gaps in the extractive sector. But we need broader and more collaborative governance for the industry to become an enabler of sustainable development. This report sets out principles and policy options that can help consolidate existing instruments, strike fairer deals, promote an equal share of benefits and ensure the protection of nature and people's lives.

I encourage everyone involved in the extractive sector to read this report, apply its recommendations and become part of the movement to create a better future for everyone.

> Joyce Msuya Deputy Executive Director UN Environment Programme

PREFACE

Extraction of mineral resources has risen markedly in recent decades and will continue to grow to serve the needs of a growing, more affluent and increasingly urban population. Greater resource efficiency and circularity need to be prioritized around the globe to reduce demand for virgin materials, as current trends of resource extraction and processing cause environmental impacts that would exceed the planetary boundaries (GRO 2019). Especially high-income countries must strive for absolute decoupling of virgin resource use from economic growth. Developing countries need to relatively decouple growth from resource use, but will continue to grow demand for virgin resources to develop their basic infrastructure. Therefore, despite decoupling, resource extraction will continue to grow until necessary infrastructures are in place and resource circularity is effective globally. The global transition towards clean energy production will accentuate this pattern as renewable energy sources require much greater amounts of metals, both of the common and rare types, than energy production from fossil fuels.

The future demand outlook for metals and minerals presents notable opportunities for countries endowed with these resources to harness their extractive wealth to advance economic development and human well-being. Nonetheless, for a majority of resource-rich developing countries, mining, oil or gas exploitation has not translated into broad-based economic, human and social development. This is partly owing to the 'enclave' nature of the extractive industry, with few links to the local economy, in most of the developing world. Moreover, the industry is disruptive and can lead to severe environmental degradation and disruption of social fabric, in some cases, even unleashing political dynamics that result in the deterioration of governance and serious conflicts.

In response, mining companies have in the past two decades increasingly sought to secure acceptance of their activities by local communities and other stakeholders, build public trust and prevent social conflict. Such attempts to earn a 'Social License to Operate' are important in recognizing the need for mining companies to bear responsibility for the negative social implications of their practices, and have resulted in an explosion of soft regulation aimed at addressing the adverse consequences of mining. Notwithstanding, the agenda of the social license framework depicts industry's pragmatic, minimum response to business risk arising from public opposition and social conflict. In addition, the report's review of close to 90 existing international instruments governing the mining sector concludes that they tend to present piecemeal efforts and, importantly, often fail to be implemented at the national level.

The report thereby calls for moving beyond the established paradigm of the 'Social License to Operate', towards a new governance reference point that enables public, private and other relevant actors in the extractive sector to make decisions compatible with the 2030 Agenda's vision of sustainable development. The new governance framework put forward in the report is referred to as the 'Sustainable Development License to Operate' which extends the Social License to Operate in several important ways. It is relevant to all actors in the extractive sector, and its implementation is a shared responsibility by 'host' and 'home' countries along the extractive value chain. Importantly, it addresses a broader subject matter integrating all pillars - people, planet, prosperity, peace and partnership - of sustainable development, and sets out principles, policy options and good practices for enhancing the extractive sector's contribution to achieving the Sustainable Development Goals. At national level, the International Resource Panel suggests that countries adopt a Strategic Development Plan with proposed actions by different stakeholders pertaining both to the mining sector as well as other sectors impacted by or impacting on mining, and mapped against the Sustainable Development Goals. The Plan could entail a mining law enshrining the principles of consultation, transparency and reporting, recognising the rights of local populations, and setting performance standards. It should also facilitate the creation of three core public institutions – an Environment Directorate, a Mining Directorate and a Geological Survey – to promote and regulate the development of mines and metals industries.

At the international level, the Panel discusses the creation of an International Minerals Agency, or the signing of an international agreement, to, inter alia, coordinate and share data on economic geology, mineral demand needs, and promote transparency on impacts and benefits. It is hoped that the UN Environment Assembly, the Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development, and wider ongoing UN processes focused on reviewing progress towards the 2030 Agenda for Sustainable Development could serve as fora for negotiating an international consensus regarding the specific policy options and programmes for the implementation of the new global governance framework for the extractive sector set forth in this report.

Janez Potoçnik Co-Chair International Resource Panel

Izabella Teixeira Co-Chair International Resource Panel

EXECUTIVE SUMMARY

THE MINERAL RESOURCE GOVERNANCE TODAY: THE IMPERATIVE FOR CHANGE

There is a growing recognition that the extractive sector, if well-managed, can play a positive role in promoting broad-based development and structural transformation of economies. In the context of the current global development agenda, the sector has direct links to a large number of the 17 Sustainable Development Goals (SDGs) - specifically those relating to poverty eradication, decent work and economic growth, clean water and sanitation, life on land, sustainable and affordable energy, climate action, industry and infrastructure, as well as peace and justice. Mining generates significant revenue streams through taxes, royalties and dividends for governments to invest in economic and social development (Goal 1). Mining can help drive economic development and diversification through direct and indirect economic benefits, the development of new technologies and by spurring the construction of new infrastructure for transport, communications, water and energy (Goal 9). It can alter the lives of local communities, offering opportunities for jobs and training, while contributing to economic and social inequities if not appropriately managed (Goal 8). Moreover, mining requires access to land and water, which gives rise to significant and wide-ranging landscape impacts that must be managed responsibly (Goals 6 and 15). Mining activities are also energy- and emissions-intensive in terms of the production and downstream uses of mining products (Goals 7 and 13). Finally, mining can contribute to peaceful societies by avoiding and remedying company-community conflict, respecting human rights (including those of indigenous peoples) and by supporting the representative decision-making of citizens and communities in extractives development (Goal 16) (ibid).

Many of today's wealthiest and most powerful countries were built on the back of significant natural resource endowments and, in some cases, their economies are still largely based on the exploitation of extractive resources. Even among developing countries, this path to prosperity is being repeated in countries such as Botswana that have judiciously used diamond resources to promote broad-based development. Indeed, if managed prudently, mineral wealth presents enormous opportunities for advancing sustainable development -particularly in low-income countries.

In addition to generating vast amounts of government revenue through taxes, royalties and other levies, extractive projects can also yield benefits by, inter alia, fostering the emergence of competitive small and medium-scale enterprises that supply goods and services to the industry; opening up access to modern infrastructure and leveraging it to support a wider range of development objectives and boost productivity in other sectors; and facilitating the transfer of technologies and know-how, thus strengthening local human capital formation (which is the key to structural transformation).

However, mineral resources have attributes that make them difficult to manage and, for most resource-rich developing countries, mining, oil or gas exploitation has not translated into economic, human and social development. The extractive industry in most of the developing world is an enclave with few linkages to the local economy, which means missed opportunities to explore multiplier effects and deliver sustainable development by stimulating the larger economy and thus driving economic transformation. Moreover, the extractive industry is disruptive and can generate long-lasting and negative environmental, social, economic, cultural and political impacts, some of which lead to severe environmental degradation and disruption of the social fabric, while others unleash political dynamics that can compromise governance and bring about serious conflicts.

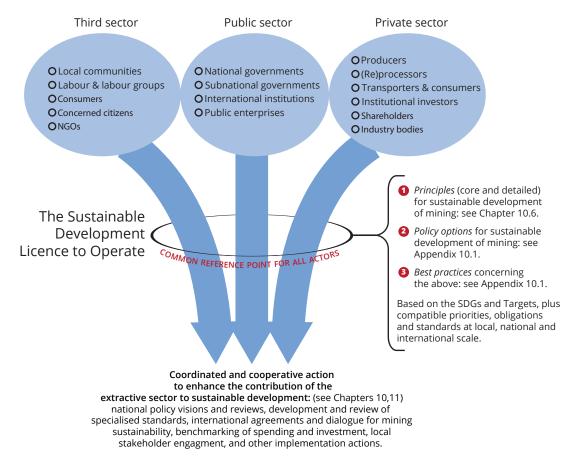
Realizing the full potential of the mining sector as a catalyst for growth and development is therefore fraught with many challenges in mineral-rich developing countries. These include: the unevenly distributed and finite nature of mineral deposits; the volatility of commodity prices that have exposed developing countries to external shocks triggering macro-economic instability; the difficulties of managing large and volatile inflows of foreign capital; information asymmetries and technical complexities of large-scale projects that leave ill-equipped national administrations vulnerable to large multinational companies; conflicting stakeholder interests and lack of consensus between different stakeholders on what constitutes mineralderived value and benefits. All of this potentially leads to social conflict; lack of accountability, transparency and risk of corruption; as well as geopolitical and global power asymmetries.

Furthermore, many mineral resources are traded in commodity exchanges dominated by a few locations in the developed world and a few trading houses - essentially creating a monopoly of sorts. These trading hubs largely coordinate and govern the value chain. They mediate between mineral production and manufacturing processes, and therefore have significant leverage in determining commodity pricing and how the value created is shared between the various actors. As a result of their role, they tend to capture significant rents.

It has long been recognized that governance is key for mitigating the adverse impacts and enhancing the positive economic, social and environmental outcomes of mining. There is already a plethora of domestic, regional and international legal and regulatory frameworks, as well as formal and informal initiatives and instruments (including at company level), which are all aimed at improving governance of the extractive industry for increased economic prosperity and environmental protection. These include many commendable examples such as the Africa Mining Vision, the United Nations Guiding Principles on Business and Human Rights, the Extractive Industry Transparency Initiative (EITI), the Dodd-Frank Act, the Global Reporting Initiative (GRI), the Model Mining Development Agreement, the Initiative for Responsible Mining Assurance, the Natural Resource Charter, the development of indicators to measure resource governance and the wider work of the International Council on Mining and Metals (ICMM).

More specifically, and in order to manage the challenges in the sector and mitigate conflicts at project level, many mining companies have traditionally sought to obtain a "Social License to Operate (SLO)", in other words, the acceptance or approval of extractive operations by those local community stakeholders who are affected by them and those stakeholders who can affect their profitability. In essence, the SLO came about as a process aimed at managing risk of conflict at the local level and reputational damage at the national and international levels. Today, mining companies consider community acceptance to be as crucial as the formal licenses and permits granted by governments.

The fundamental critique of the SLO framework is that it was developed as industry's pragmatic response to business risk. Its agenda is limited to accommodating community demands to the minimum extent necessary to avoid public opposition and social conflict, and the associated costs of reputational damage and operations delays or disruptions. It has been opportunistically used to serve the particular objectives and goals of companies, activists and governments. In essence, SLO defines the minimum of what a mining project can get away with in a particular location.


In general, most of the existing policy frameworks and instruments governing the mining sector represent piecemeal efforts and, importantly, often fail to be implemented at the national level. This means that existing governance approaches and instruments have not succeeded in bringing about a transition away from the 'extractivist' and anthropocentric model prevalent in the developing world, whereby the extractive sector is an enclave with few linkages to the local economy.

The adoption of the SDGs signalled the need to move beyond the concept of the 'social license to operate', which dominated the development discourse in the extractive industry throughout the end of 1990s and mid-2000s. The need for a new governance reference point arose from the limitations, inadequacy or even obsolescence of existing governance instruments (given their sectorial and one-dimensional nature) and from the necessity to translate the complex array of post-2015 global commitments into a manageable set of requirements to be used by decision makers involved in extractive sector governance.

In response to these new imperatives set by the 2030 Agenda for Sustainable Development, there needs to be a shift towards a new multi-level, holistic, integrated and multi-stakeholder governance framework composed of formal and informal arrangements. The framework should encompass governance institutions and mechanisms that act at the international, regional, national, local and project levels, and that are implemented by a range of actors. Such a framework would improve understanding of how mining activities should be regulated and how resource rents could be used to improve economic and human development, at the same time as safeguarding the availability of resources and protecting the natural environment for current and future generations. In doing so, the new framework needs a systemic integrated approach to account for complex inter-linkages and tradeoffs between different natural resources, economic sectors, eco-systems and development priorities and outcomes.

Such new global governance architecture needs to serve ongoing economic development, structural transformation and economic diversification in resource-exporting countries. It should address not only resource security, but also resource efficiency and decoupling of resource use - as well as the environmental impacts from economic growth. To achieve this, sustainable development approaches would need to be based on new metrics where success is measured against a quadruple bottomline: on the strength of economic outcomes, sound environmental management, the respect of social values and aspirations and adherence to the highest standards of governance and transparency.

The new framework is the 'Sustainable Development Licence to Operate' (SDLO). The SDLO builds on the Social Licence to Operate (SLO). It is also designed to improve the net societal benefits of mining, and is not necessarily meant to function as a licence in the compulsory or regulatory sense. However, the proposed SDLO extends the SLO concept in several important ways. It addresses a broader subject matter covering the nexus of all environmental, social and economic concerns that fall within the remit of the SDGs and related targets; it is relevant to all actors in the extractive sector across the public, private and civil society sectors; its implementation is a shared responsibility across nations and

KEY COMPONENTS OF THE SDLO AND ILLUSTRATIVE IMPLEMENTATION ACTIONS

Source: Pedro et al. (2017)

different actors along the minerals value chain; and it sets out not only minimum standards of practice but also a set of internally consistent principles, policy options and good practices for enhancing the extractive sector's contribution to achieving the SDGs. The figure below illustrates the key components of the SDLO and associated possible implementation actions.

COMPLEX ISSUES, INTRICATE DYNAMICS AND MANY OPPORTUNITIES FOR ACTION

Security of Supply

Extractive resources will continue to play a central role in driving the global economy despite moves to decouple economies and increase recycling. Demand will be largely driven by emerging economies as populations and incomes are growing to form a global middle class that is increasingly living in cities. These trends are going to drive demand for infrastructure and durable goods: the key drivers of demand for minerals. As much as the recent commodity boom has waned, demand for minerals is solid and securing supply remains a major concern going forward.

New supply challenges are emerging. The global transition towards carbon-clean energy production technologies will be an important driver of the demand for minerals and metals. Energy production from renewable energy sources requires much higher amounts of metals than energy production from fossil fuels (in terms of the common and rare types). As the fourth industrial revolution unfolds - underpinned by information and communication technologies - demand for new materials is rising (thereby creating new challenges of securing supply).

Artisanal and small-scale mining

Export minerals and large-scale mining receive more attention due to their more direct macroeconomic benefits and concerns over security of supply. However, other extractive activities (especially the artisanal and small-scale mining (ASM) and development minerals sectors) are an important form of livelihood for many marginalized poor people. ASM in particular has increasingly become a source of income for many disadvantaged households. Recent years have seen an unprecedented and widespread shift from agrarian to informal mineral extractive economies. In 2016, the IIED estimated the number of people supported by ASM-related activities to be 100 million to 150 million and growing. Policymakers equating the expansion of largescale mining with 'development' have established an extractive model that favours large corporate operators over the ASM sector. Indeed, ASMs are seen as illegal or operate in the margins of legality having little security of tenure. Attention is increasingly focused on the environmental degradation caused by ASM. This activity needs to be recognized as a distinct sector that requires a totally different approach from a policy and governance perspective. Many of the approaches previously taken with ASM treated it as a subset of large-scale formal mining and did not consider its very specific issues.

Moreover, context-specific legal and policy frameworks for ASM are required, and the importance of ASM must be reflected in international, regional, national and local agendas, policies and plans. The private sector and other stakeholders are urged to implement transparent practices across the supply chains and support ASM integration into local, national, regional and international supply chains. Governments are called upon to create the necessary business-operating environment to accelerate these transitions. The introduction of appropriate technologies, as well as the use of gender-focused instruments, are considered important factors in improving ASM.

Development minerals

Development minerals are those that are mined, processed, manufactured and used domestically in industries such as construction, manufacturing and agriculture. While they are generally low value (compared to export minerals), these minerals are crucial for the domestic economy. They also employ many people and especially women. However, since they are not usually traded and are informally mined and consumed locally (where they are produced), they are not usually given attention by policymakers.

Development mineral issues tend to be subsumed under export minerals. However, there are several factors that make development minerals different from export minerals. While export mineral value chains are highly globalized, development mineral value chains are generally local. Export minerals are traded in global commodity markets that tend to be very volatile. Industrial minerals and construction materials are typically not subject to price volatility and are less exposed to external shocks. Development minerals are well integrated into the local economy as they supply key raw materials for construction and other local industries. Export minerals are very unevenly distributed and thus produced by a few countries. In contrast, development minerals are much more abundant and widely distri-buted.

These differences mean that a distinct governance framework is needed for development minerals. However, the lack of attention for this sector has given rise to unsustainable mining practices. For example, uncontrolled sand extraction is already having environmental and economic consequences. Some of the strategic policy directions needed include: (i) policy and legal recognition of its unique contribution to local, domestic and regional economies and the potential for structural transformation of developing nations (the sector is excluded from many mining acts); (ii) the need for concerted action from all stakeholders to overcome the environmental, social, labour and other challenges facing the sector; (iii) formalization; (iv) extension services (by government and by mining associations); (v) geological data inventories;

(vi) access to finance (especially micro-finance), trade fairs and technology exhibitions; and (vii) simple occupational health and safety (OHS) and environmental standards as part of licensing.

Impacts of mineral extraction on environment and livelihoods

Mineral extraction involves disturbing the environment, and this can disrupt major biodiversity services and associated livelihoods. The frequently severe and enduring impacts of mining activities on the natural environment have been widely reported. For instance, surface mining often cuts back forest and other vegetation cover, removes topsoil and introduces heavy machinery (which can be particularly damaging in fragile environments). Habitat removal can lead to population declines in a number of species. This can in turn alter the structure and function of ecosystems, thereby affecting the provision of a range of ecosystem services (with potential negative impact for female users), including water regulation, pest control, pollination, food provision and protection from storms, floods and coastal erosion. Chemicals and other harmful substances used to process ores can enter waterways and the natural environment when not managed appropriately. There is often an extensive amount of mine waste that can be toxic in nature, posing a significant risk when storage facilities fail to contain the waste.

The trend to-wards mining lower-grade ores increases the potential impacts of extractive activities. Mining lower-grade ores will lead to larger amounts of waste and higher ener-gy and water demands. These demands increase exponentially with declining ore grades. As easily accessible reserves become de-pleted, exploration is moving into more remote and often fragile areas. Deep-sea mining is one example of a new and challenging frontier for mineral extraction, especially with respect to its impacts.

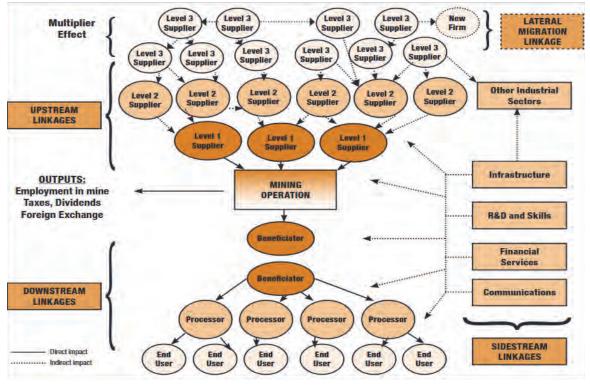
Making sense in a crowded space

Efforts to improve governance have resulted in the launch of a plethora of instruments. However, these have not been able to rise to the challenges involved. The failure to use countries' resource wealth to generate sustainable growth could be seen as the central challenge facing current governance systems. This is being amplified by new additional challenges. Centralized power in the form of national government is being dissipated upwards, downwards and horizontally. New information and communication technologies are leading to increased pressure from informed citizens for a greater say in decisions. The importance of extractive corporations from emerging countries in the global marketplace is growing. As global power has shifted from G8 to G20, the diversity of G20 nations implies a less homogenous approach to issues of natural resource governance.

Some of the challenges with existing instruments include:

- As instruments tend to respond to a particular challenge, many tend to be sectorial and narrow;
- Risk management and security of supply still inform many of the instruments;
- Compliance is expensive. Many instruments tend to be voluntary, which results in low compliance;
- The piecemeal and narrow focus, plus a lack of coordination with other stakeholders, can lead to unintended consequences; and
- They undermine the regulatory role of governments by claiming that voluntary self-regulation is more effective.

THE CASE FOR A NEW GOVERNANCE FRAMEWORK


Towards greater and shared value and benefits

The SDLO is based on an unequivocal recognition of planetary boundaries and the need to align the value and benefits to all stakeholders in host and home countries while delivering a fair share of benefits to everyone. This should support broad development objectives including poverty reduction, economic diversification and structural transformation without harming the environment and disrupting the social fabric of impacted communities.

A holistic and integrated governance framework for the extractive industry should cover the entire value chain of the extractive sector, that is, from licensing of mineral terrains, geological mapping, mineral exploration, mine development, mining, mineral processing and refining, ore transportation, manufacturing of end-use products, to recycling and mine closure.

Translating mineral wealth into lasting economic and social gains requires a broad range of policies to transform mineral resources extraction from an enclave industry by linking it with the wider economy through local content and value addition, among other routes (see below).

How a country benefits from resource extraction crucially depends on the policies adopted throughout the entire policy value chain for extractive resources and on the decisions taken by several key actors in the sector. This is shown in the figure below. For governments, the key challenge here is having the right institutions and capacity to manage the extractive sectors well and invest the resource rents wisely to generate equitable and lasting benefits for all.

LINKAGES IN THE MINERALS INDUSTRY AND THE RELATIONSHIP BETWEEN FIRMS

Source: Lydall (2009).

CONCEPT OF A POLICY VALUE CHAIN

Source: World Bank (2009).

However, decision-making in the extractive sector is a complex global, national, regional and local architecture of relationships among individuals and institutions. Although there is no perfect system of governance, there can nonetheless be an effort to align different interests while respecting the objective limits im¬po¬sed by the physical world and the need for justice and equity that guarantee the an ongoing con¬sensus.

An important feature of the extractive sector is the influential role played by transnational corporations (TNCs), including State-owned enterprises from other countries. Each of these actors pursues a different set of interests. The divergence in expectations between stakeholders has been a key driver of conflict in the extractive industry. Thus, the operationalization of the SDLO framework requires careful consideration of the views and expectations of all the key actors, as well as a recognition of spatial boundaries, power relationships and normative frameworks. These all play out in the mineral value chain. Increasing consumer demand for sustainable products is moving governance challenges to the customer level and to the full product life cycle (disposal/recycling level). What happens after a resource is extracted, processed and transformed into a product, used and finally disposed are therefore now legitimate governance concerns.

In establishing a new governance framework for mining, it is essential to understand the sector within the broader context of a national economy (and its development objectives and strategies). This means managing the potential impacts of mineral resource extraction on other parts of the economy (such as on the artisanal and small-scale mining sector), as well as maximizing linkages between the mining sector and other parts of the economy (including through job creation, local procurement of goods and services, downstream use of mined goods and shared infrastructure). This will require a long-term comprehensive, holistic strategy that goes beyond industry regulation to also include investment in education and training, as well as other policies for creating an enabling environment.

In the case of low-income resource-rich countries, governance strategies need to focus on breaking away from the enclave nature and extractivist model of the mining sector. Countries need to build forward and backward linkages with other socioeconomic sectors, build infrastructure and capacity for greater value addition along the value chain and promote regional partnerships and integration. A range of structural reforms and industrial policies need to be implemented to help achieve structural transformation and economic diversification. Developed countries and the global community need to afford developing countries sufficient policy space to do so, including through reform of the international trade and investment regime that constrains the use of the full range of policy instruments to achieve resource-based industrialization at the local level.

STEPS TO OPERATIONALIZING THE SDLO *Principles and policy options*

The SDLO provides guidance on how to enhance the extractive sector's contribution to sustainable development through a set of principles and policy options, anchored in a clear and explicit recognition of planetary boundaries and the need to decouple natural resource use, environmental and social impacts from economic growth in a projected scenario of increased resource intensity up to 2050. An important element of the SDLO is the recognition that mining activities can impact men

www.unep.org | www.resourcepanel.org

and women in a different manner. Special attention should be paid to the role of women in artisanal and small-scale mining, their growing representation in large-scale mining employment and the adverse environmental and social impacts of mining that can disproportionately affect women. A genderlens therefore needs to be adopted in governing the mining sector in order to maximize its development contribution, whilst also promoting female empowerment and gender equality that are central to achieving the Sustainable Development Goals. A similar need for differentiated analysis and policies may also arise with respect to other marginalized groups such as indigenous peoples.

Overall, the essential principles for the operationalization of the SDLO are:

- SDLO is not a substitute for laws and regulations but makes a strong case for ensuring that the policies, laws and regulations in the extractive sector respond to shared visions and are fully aligned with national development plans and aspirations in a coherent manner. It seeks to standardize contracting laws through a generalized legislative framework that includes standardized forms. It argues for the use of competitive bidding processes in licensing mineral terrains, where relevant.
- As extractive industries place large demands on natural resources (such as land and water) and lead to pollution and environmental destruction, there is a need for a systems-thinking approach that accounts for the nexus between resources so as to steer policy efforts towards integrated natural resource management along the extractive value chain. Government policies need to incorporate environmental protection from the outset, with strategic environmental impact assessments, integrated spatial planning/ landscape planning and natural capital accounting

being crucial elements.

 The SDLO framework seeks to integrate local, national and international governance issues. At the local level, there is a need to move away from charity-driven corporate social responsibility activities to implement inclusive business models in which local communities participate in decisionmaking, their rights are protected and they benefit from extractive activities.

At the *national level*, host governments have a critical role to play, including:

- the award of exploration and ownership rights;
- devising concession agreements that ensure companies operate responsibly;
- mainstreaming strategic environmental assessments;
- o domesticating natural capital accounting;
- adequately incorporating social and environmental assessments in national and local development plans;
- designing effective fiscal regimes;
- ensuring transparency and accountability; and
- channelling extractive rents into national and local public investment.

Home countries also have a key role to play by:

- improving regulation of the activities of trans-national corporations (TNCs); making international investment laws fairer;
- o tackling illicit financial flows;
- o combating commodity price volatility; and
- ensuring a fair deal for host countries (through, inter alia, international transparency and accountability initiatives and the regulation of tax havens).

At the *international level*, policy action is needed to set global standards in a number of areas of the extractive sector – in the form of rules and regulations, voluntary instruments and reporting obligations. These include:

- coordination of policies and instruments and agreement on international standards (for example, on transparency and global codes of conduct);
- o influencing incentives and behaviour;
- o technology transfer; and
- financial regulation (including to regulate the financialization of commodities and to curtail illicit financial flows).
- All groups of stakeholders should participate in decision-making through, inter alia, information exchange, media campaigns and collaboration with institutions such as those with oversight roles. Industry should engage in collaborative social dialogue on each extractive project by formulating an agenda that balances its own commercial needs with societal expectations.
- In order to implement laws and policies governing the extractive sector, transparency is a necessary

but not sufficient prerequisite. Information on contracts and licenses, social and environmental impacts assessments, royalties, tax payments, revenues and expenditures should be easily accessible. Civil society organizations, labour unions, researchers and other stakeholders can also play an important role in analysing data, reporting on findings and thus demanding accountability across all levels.

OPERATIONALIZING THE SDLO

The SDLO should not be considered as a new instrument but rather a framework that: articulates governance issues across the whole extractive value chain, provides a means of organizing existing governance instruments and assigns responsibilities to various parties. The SDLO framework seeks to create a more coherent governance landscape by advocating a concerted consolidation of existing relevant instruments, ensuring sustainable development is the overriding objective, as well as pointing to areas where new instruments might be needed and how a particular instrument will interact with others.

The SDLO is a partnership of the key stakeholders in the extractive value chain to ensure mining is carried out sustainably while meeting the twin goals of sustainable development for exporting countries and security of supply for importing countries. Importantly, it is essential to recognize that there is no 'one-size-fits-all' solution, and very different policy solutions may apply to countries with differing industry characteristics, challenges or stages of economic development. Differentiated governance approaches are needed, for instance, in countries where standards and guidelines can be easily implemented, compared with others with a significant artisanal and small-scale mining sector, or those with high levels of corruption, or that are affected by conflict and war. Governance strategies thus need to be tailored to a particular country's socioeconomic, geopolitical, historical and cultural background.

The operationalization of the SDLO can be pursued through the following three pathways that are not mutually exclusive:

- a global international agreement that commits countries to a governance framework much like the SDGs commit countries to sustainable development;
- ii. a global platform for continued dialogue and advocacy on cross-cutting issues; and
- iii. regional platforms to engage host and home regions to reconcile issues of sustainable development and security of supply through regional PACTs such as the Africa Mining Vision and the EU Raw Materials Initiative.

TABLE OF **CONTENTS**

PART 1 / MINING TODAY	49
1.1. Chapter synopsis	43
1.0. Introduction	37
1 / INTRODUCTION	37
Acronyms	30
Glossary	28
List of tables	27
List of boxes	26
List of figures	25
Table of Contents	19
Executive Summary	6
Preface	4
Foreword	3

2 / MINING IN	A GLOBAL ECONOMY	51
2.0. Introdu	iction	51
2.1. Minera	ls and metals value chain	53
2.2. Minera	l economics	56
2.3. Industr	ry players	58
2.4. Minera	l production	59
2.5. Produc	tion statistics	61
2.6. Produc	tion distribution	63
2.7. Global	trade in minerals	67
2.8. The im	portance of mining to economies	68
2.9. Develo	pment minerals	73
2.10. Concl	lusion	77
3 / ARTISAN	AL AND SMALL-SCALE MINING	79
3.0. Introdu	iction	79
3.1. Nomer	nclature	80
3.1.1.	ASM regulation	80
3.1.2.	Material extracted by ASM	81
3.2. ASM a	nd the economy	81
3.3. The Dri	ivers of ASM	84
3.3.1.	Rural distress and agrarian crisis driver	84
3.3.2.	Mining sector reform driver	85
3.3.3.	Commodity prices driver	85
3.4. Charac	teristics and issues	85
3.4.1.	Data	85
3.4.2.	Environmental degradation and safety	85

	3.4.3. U	se of technologies	86
	3.4	4. Criminality and illegality	86
	3.4	5. Migration	88
	3.4	6. Access rights/land tenure	88
	3.4	7. Conflicts with large-scale mining	89
	3.4	8. ASM and conflict	90
	3.4	9. Child labour	91
	3.5. Sup	porting ASM	91
	3.6. Upç	rading ASM to better deliver on the SDGs	95
	3.6	1. Increased focus on innovation	95
	3.6	2. Bottom-up approach	95
	3.6	3. Formalization	95
	3.6	4. Formation of associations and cooperatives (self-regulation)	99
	3.6	5. Decentralization	99
	3.6	6. Certification and Fair Trade	99
	3.6	7. Capital and finance (including microfinance)	101
	3.7. Ger	der in ASM	101
	3.8. Cor	clusion	103
4	/ TREND	S IN THE EXTRACTIVE SECTOR TOWARDS 2050	105
	4.0. Intr	oduction	105
	4.1. Rev	iew of supply/demand and criticality assessments	107
	4.1	1. World Economic Forum: Future Availability of Resources (WEF, 2014)	107
	4.1	2. The European Union (EU) Supply Risk Assessment (EU, 2017c)	108
	4.1	3. Yale Study on Materials Criticality (Graedel & Beck, 2015)	108
	4.1	4. British Geological Survey Risk List (BGS, 2015)	109
	4.1	 Critical Metals for Future Sustainable Technologies and their Recycling Potential: United Nations Environment Programme (UNEP, 2009) 	110
	4.1	6. German Fraunhofer Institute for Systems and Innovation Research and the	
		German Mineral Resources Agency	110
	4.1	7. Forecasting demand and supply of key minerals (Christmann, 2017)	111
	4.2. Driv	ers of demand and supply of minerals and metals	116
	4.2	1. Demographics	117
	4.2	2. Economic growth	118
	4.2	3. Regulations/Policy	118
	4.2	4. Governance/Political stability	119
	4.2	5. Geopolitics	119
	4.2	6. Globalization	120
	4.2		121
	4.2	8. Shift towards a circular economy	126
	4.3. Cor	clusion	130
5			
	/ ENVIR	ONMENTAL AND SOCIAL IMPACTS OF MINING	133

5.1.	Extracti	ve industry and the environment	134
	5.1.1.	Freshwater competition and contamination	134
	5.1.2.	Impacts to the marine environment	136
	5.1.3.	Solid waste production	138
	5.1.4.	Air pollution	139
	5.1.5.	Soil erosion and contamination	139
	5.1.7.	Habitat clearance	140
	5.1.8.	Impacts on important areas for biodiversity	143
	5.1.9.	Climate change	143
	5.1.10.	Induced, indirect and cumulative impacts	145
5.2.	The mir	ning industry and society	145
	5.2.1.	Social breakdown	145
	5.2.2.	Human rights	146
	5.2.3.	Conflict	147
	5.2.4.	Health and safety	147
5.3.	Applica	tion of S-LCA to assessing social and environmental impacts	148
	5.3.1.	Social - Life Cycle Assessment (S-LCA)	148
	5.3.2.	Tracking impacts at the corporate level through improved governance	152
5.4.	Conclu	sion	157
Арр	endix 5.	Illustrative example of Social Life-cycle Assessment	157

PART 2 / MINERAL RESOURCE GOVERNANCE TODAY

6 / CHALLENGES OF EXTRACTIVE GOVERNANCE	165
6.0. Introduction	165
6.1. Challenges	165
6.1.1. Complex policy environment:	165
6.1.2. Power asymmetry	166
6.1.3. Political economy dynamics	168
6.1.4. The Centre is losing power	168
6.1.5. Financialization of natural resources	174
6.1.6. International investment law and sovereignty	176
6.1.7. Ilicit financial flows (IFFs) and sustainable development	177
6.1.8. From the formal versus informal dichotomy to an intertwined relationship	179
6.1.9. Climate change and the extractive sector	180
6.1.10. Host country capacity constraints	181
6.1.11. Planning for mine closure	184
6.1.12. The next frontier: governance of the impacts of deep-sea mining and broader	
lessons moving forward	185
6.1.13. An integrated approach to evaluating impacts	187
6.1.14. Gender and extractive industries governance	188
6.2. Conclusion	191

163

7 / CURRENT GOVERNANCE ARCHITECTURE	193
7.0. Introduction	193
7.1. The Governance space	193
7.1.1. Stakeholders in extractive sector governance (Figure 1.1)	193
7.1.2. Spatial boundaries	193
7.1.3. Power relationships	194
7.1.4. Relevant normative frameworks	194
7.2. Value chain governance	196
7.3. Overview of natural resource governance instruments/initiatives	198
7.3.1. Mapping instruments	198
7.3.2. Summary of Instruments	202
7.4. Looking ahead	211
Appendix 7	212
8 / EFFECTIVENESS OF MINERAL RESOURCE GOVERNANCE INSTRUMENTS	215
8.0. Introduction	215
8.1. Effectiveness of MRG instruments	215
8.1.1. Unintended consequences	216
8.1.2. Lack of buy-in	217
8.1.3. Lack of compliance	219
8.1.4. Uneven focus	219
8.1.5. Proliferation of standards	221
8.1.6. Lack of theory of change	222
8.2. Stakeholder engagement	224
8.3. Conclusion	227
9 / PREREQUISITES OF AN EFFECTIVE MINERAL RESOURCE GOVERNANCE	
FRAMEWORK	229
9.0. Introduction	229
9.1. The need for a holistic framework	229
9.2. The need to decouple economic growth from environmental and social impacts	232
9.3. The need to protect human rights	234
9.4. The need for greater engagement of home countries	238
9.5 . The need for responsible business practices	241
9.6. The need for balance between security of supply concerns versus sustainable developmer aspirations	it 245
9.7. The need for data, information and knowledge	247
9.8. Conclusion and way forward	255
PART 3 / MINERAL RESOURCE GOVERNANCE FOR SUSTAINABLE	
DEVELOPMENT	259

10 / TOWARDS A SUSTAINABLE DEVELOPMENT LICENCE TO OPERATE	261
10.0. Introduction	261
10.1. The Social Licence to Operate	262

10.2. Towards a multi-level, holistic and integrated governance framework	265
10.3. Operationalizing SDLO – key design principles and policy options	266
10.4. Operationalizing the SDLO	274
10.4.1. Three pathways	274
10.4.2. Partnership (Holistic Framework)	277
10.5. SDLO and the Sustainable Development Goals (SDGs)	280
10.6. Conclusion	282
Appendix 10. Illustrative policy options for sustainable	
development of mining	283
A10.1. Health and well-being for all	284
A10.2. Growth and innovation	285
A10.3. Better infrastructure	286
A10.4. Ecosystems and biodiversity	287
A10.5. Impacts on other resources	288
A10.6. Engagement and collaboration	289
A10.7. Transparency and accountability	290
A10.8 Policy coherence	291
A10.9 Policy gaps and opportunities	292
11 / IMPLICATIONS AND IMPLEMENTATION OF THE SDLO	299
11.0. Introduction	299
11.1. The SDLO, global governance and the 2030 Agenda for Sustainable Development	299
11.2. Implications for host country governments	300
11.3. Implications for home country governments	306
11.4. Implications for other stakeholders	310
11.4.1. Policymakers	310
11.4.2. Private sector actors	312
11.4.3. Third sector actors	313
11.5. Conclusions	316
12 / SUMMARY AND CONCLUSIONS	321
12.0. Introduction	321
12.1. The challenge of the governance of resource extraction	321
12.2. The potential benefits of resource extraction	322
12.3. The essence and vision of the SDLO	323
12.4. Making the SDLO operational	324
12.4.1. Transparency, accountability and reporting	326
12.4.2. Institutional capacities	327
12.4.3. Skills development	327
12.4.4. Research and innovation	327
12.4.5. Data and knowledge	327
References	335

List of Figures

Figure 1.1.	Generalized representation of mining projects stakeholders	32
Figure 2.1.	Schematic representation of a minerals or metals-dependent value chain	48
Figure 2.2.	Main stages of industrial-scale mining project	50
Figure 2.3.	Density of mines globally (per 50 km x 50 km square at the equator)	57
Figure 2.4.	Brekdown of the value of 2016 global production, by income group of the producing countries	59
Figure 2.6.	Global copper trade	61
Figure 2.7	Mining contribution (direct jobs only) as a percentage of total employment	63
Figure 2.8.	Breakdown of the economic value created and distributed by gold mining companies,	
	in nominal US\$ and as percentages	66
Figure 2.9.	Detailed breakdown, in %, of the in-country payments made by the gold mining companies	
	in nominal million US\$	66
Figure 2.10.	Value added and number of jobs associated with metals (mining, basic manufacture and	
	downstream sectors) in the European Union in 2012	67
Figure 2.11.	Tonnages of minerals and metals produced in 2014	68
Figure 3.1.	Distribution of ASM activities by % of population involved	76
Figure 4.1.	Production of selected common minerals and metals (1926-2013)	106
Figure 4.2.	Growth scenario for the most widely used minerals and metals	108
Figure 4.3.	Share of projected 2050 demand that can be met by current reserves	109
Figure 4.4.	Historical and projected primary demand of copper	109
Figure 4.5.	Photovoltaic cells in development (Oct. 30, 2017 update)	119
Figure 4.6.	Schematic representation of the transition towards circular economy in relation with minerals	
	and metals	121
Figure 4.7.	End-of-life recycling rates of 60 metals	121
Figure 4.8.	Impact of recycling on primary metals demand - 3 per cent/ year demand growth, 30 years	
	use phase - Primary production, year 1 = 100	123
Figure 5.1.	The Samarco tailings dam failure in relation to protected areas and habitats	129
Figure 5.2.	Environmental impacts of deep-sea mining	132
Figure 5.3.	Areas of biodiversity importance containing mines	136
Figure 5.4.	General structure of social life cycle assessment databases	144
Figure 5.5.	Data quality assessment for five criteria	145
Figure 5.6.	Illustration of possible social risk in the EU supply of raw materials.	147
Figure 5.7.	Illustration of possible relative contributions to the social risk of EU aluminium supply	
	and comparison with the production shares	147
Figure 5.8.	Illustration of possible social risk in the mining sector - country comparison	153
Figure 5.9.	Illustration of possible social risk in the mining sector - most developed countries.	153
Figure 7.1.	Supply and value chain in the extractive sector	192
Figure 7.2.	Interaction between private sector actors within global value chains	193
Figure 7.3.	The concept of a policy value chain	193
Figure 7.4.	NRG instruments	199
Figure 7.5.	Analysis by lead stakeholder	201
Figure 7.6.	Analysis by extractive resource covered	201
Figure 7.7.	Regional instruments	202
Figure 7.8.	Instruments by driving motivation	204
Figure 7.9.	Instruments by type and by compliance/participation	205
•	Instruments in relation to others	205
	Instruments by value chain	206
Figure 9.1.	Linkages in the mineral resources sector	226
Figure 9.2.	Key components of extractive sector governance	226
Figure 9.3.	Screenshots of MapX (More information on the MapX website is available at www.mapx.org)	245
	Decision flowchart for determining type of granting method to use	261
	Framework of the Sustainable Development Licence to Operate	269
	Illustrative principles for sustainable development of the extractive sector	273
	Illustrative policy options for sustainable development of the extractive sector	275
	International governance context for SDLO implementation	292 293
	Issues concerning mining and sustainable development.	293
	Structure and uses of the System for Environmental-Economic Accounting	300
	Illustrative examples of SDLO implementation The main stages of the minerals and metals life cycle and their framework conditions	309 318
rigure 12.1.	The main stages of the minerals and metals life cycle and their framework conditions	310

List of Boxes

Box 1.1.	Governance defined	33
Box 1.2.	Leveraging mining for industrialization: African and Latin American approaches	35
Box 2.1.	Trading hubs in the minerals or metals value chain	49
Box 2.2.	A summary of risk factors specific to the minerals and metals industry	52
Box 2.3.	Towards sustainable sand extraction	70
Box 3.1.	Agriculture and ASM	77
Box 3.2.	Minamata Convention & Artisanal and Small-scale Gold Mining (ASGM)	80
Box 3.3.	GEF GOLD Programme	89
Box 3.4.	Formalization of ASM - The Sustainable Artisanal Mining (SAM) Project	91
Box 3.5.	The political economy of ASM	95
Box 4.1.	Globalization - retreat and rearrangement?	115
Box 5.1.	Impacts of seabed mining	131
Box 5.2.	Tailings management	133
Box 5.3.	Biodiversity hotspot: Guinea Sangaredi mine	134
Box 5.4 -	Protecting biodiversity from extractive activities in Europe	135
	Methane management	138
Box 5.6.	Displacement from the Thach Khe iron ore mine	140
Box 5.7.	Information deficits on impacts and conflict escalation	150
Box 6.1.	Improving negotiating capacity – The CONNEX Initiative	161
Box 6.2.	Obtaining a Social Licence to Operate (SLO)	166
Box 6.3.	Scandinavian resource nationalism in the early 20th century	167
Box 6.4.	Before signing International Investment Agreements (IIAs)	171
Box 6.5.	Sovereign Wealth Funds (SWFs)	177
Box 6.6.	Almadén mine closure – an example of good practice	179
Box 7.1.	Multilateral Environmental Agreements (MEAs)	195
Box 8.1.	Transparency – progress but still room for improvement	218
	Challenges for stakeholder participation	222
	The case for intergenerational governance instruments?	227
	The World Summit on Sustainable Development (WSSD) or the Johannesburg Declaration	228
	China's green mining initiative	229
	ILO 169 Convention - Advancing the Rights of Indigenous Peoples	230
	United Nations Guiding Principles for Business and Human Rights	232
	The Responsible Business Initiative in Switzerland	234
	ICMM and Sustainable Development	236
	The case for the UN Guiding Principles on Business and the Environment?	238
	Resource nationalism	239
	EU- Raw Materials Initiative (RMI)	240
	Aarhus Convention: increasing public participation in decision-making	241
	Free, Prior and Informed Consent (FPIC)	242
	MapX case study – Mapping and monitoring the sustainable use of natural resources	243
	Mining and the SDLO: some legal perspectives from India	295
	Latin America experience in 2003-2012 suggests upgrade in mining regimes	297
	Towards a standard protocol for planning and monitoring of mining operations	303
вох 11.4.	Community consent to mining – Bauxite mining and the licence to mine in forest areas inhabited	
	by indigenous communities	306

List of Tables

Table 2.1.	Top producers of iron and copper ore and of refined nickel metal, compiled from various sources	46
Table 2.2.	Minerals and metals industry segmentation	54
Table 2.3.	2016 minerals, metals and mineral fuels production (in million US\$)	56
Table 2.4.	Mineral contribution for top 25 mineral export dependent countries	64
Table 3.1.	Approaches for dealing with ASM	86
Table 3.2.	Obstacles and incentives (strategies) for formalization	92
Table 4.1	Estimates of the share of the 2013 world production of mostly rare metals needed to meet 2035 demand	105
Table 4.2.	Average annual growth rates of selected metals	107
Table 4.3.	Summary of drivers of supply and demand assessments	111
Table 5.1	An example of indicators and data sources used in social LCA	152
Table 7.1.	Dimensions of natural resource governance	188
Table 7.2.	Key NRG instruments mapping dimensions	197
Table 7.3.	Initiatives by sustainable development perspective	198
Table 7.4.	Mapping by lead stakeholder	200
Table 7.5.	Initiatives by extractive resource	202
Table 7.6.	ASM-focused initiatives	203
Table 7.7.	List of Instruments	207
Table 10.1.	Social Licence to Operate vs Sustainable Development Licence to Operate	259
Table 10.2	Stakeholder's responsibilities	270

Glossary

Brownfield exploration	In mineral exploitation, "brownfield exploration" designates exploration in areas near already known mineral deposits and/or exploration for lateral/ in-depth extensions of known deposits.
Construction minerals	Typical construction minerals are aggregates (sand, gravel and crushed natural stone), various brick clays, gypsum and natural ornamental or dimension stone
Dutch Disease	The expression "Dutch disease" describes the various negative impacts on the Dutch economy (inflation, rising value of the local currency (hampering exports) and surging labour costs) that arose as a consequence of the discovery and the rapid development of the Dutch Groningen gas fields in the early 1960s. The expression was coined by the United Kingdom journal "The Economist".
Extractivism	Activities that remove large quantities of natural resources that are not processed in the countries where they are extracted (or where they are processed only to a limited degree), especially for export. The extractivist mode of accumulation refers to the exploitation of raw materials needed primarily to fuel the development and growth of industrialized and emerging nations. It typically generates few benefits for the countries where extraction takes place, due to the resulting limited demand for domestic labour, goods and services; lack of value addition and linkages to the rest of the economy; depletion of finite resources; environmental destruction; and incentives for 'rent-seeking' behaviour that undermine effective and democratic governance.
Exploration	All the activities related to the search for new mineral deposits and the related development activities up to the completed feasibility study.
Feasibility study	A feasibility study is a comprehensive technical and economic study of the selected development option for a mineral project that includes appropriately detailed assessments of applicable modifying factors, together with any other relevant operational factors and detailed financial analysis that are necessary to demonstrate, at the time of reporting, that extraction is reasonably justified (economically mineable). The results of the study may reasonably serve as the basis for a final decision by a proponent or financial institution to proceed with, or finance, the development of the project. The confidence level of the study will be higher than that of a pre-feasibility study.
Geological tocks	Potential, so far undiscovered, mineral concentrations contained in the upper part (Between the surface and +/- 3 km depth) that, pending successful exploration, will supply future needs (especially for metals). Tentative evaluations of geological stocks have been performed for some metals, such as copper.
Greenfield exploration	In mineral exploitation, "greenfield exploration" designates exploration in areas with no known mineral deposits
Home country	This is used to refer to the country wherein the mining company is registered. It is important to note that, with the emergence of the global value chain for minerals and metals, the distinction between home and host country can be blurred.
lost country	This is used to designate the country where the minerals and metals are exploited. The caveat noted above for home country also applies here.
Metallurgy	The science and art of separating metals and metallic minerals from their ores by mechanical and chemical processes; the preparation of metalliferous materials from raw ore (United States Bureau of Mines). Note: biological processes such as bacterial leaching may also be used to recover metals from certain ores. In this report, the use of the term includes closely related refining activities needed to purify the raw metal obtained from the metallurgical process, in order to meet required metal purity standards.
Metals	In most cases, an opaque, lustrous, elemental substance that is a good conductor of heat and electricity. It is also malleable and ductile, possesses high melting and boiling points, and tends to form positive ions in chemical compounds (United States Bureau of Mines). For the sake of simplicity, in this report the expression "metals" includes the metalloids, as these mostly occur as by-products of metals and are recovered during the metallurgy or the refining processing of metallic ores.
Mineral deposits	A geological concentration of minerals of proven economic value.
Mineral reserve	A mineral reserve is the economically mineable part of a mineral resource. It includes diluting materials and allowances for losses, which may occur when the material is mined or extracted and is defined by studies at pre-feasibility or feasibility level that include application of modifying factors. Such studies demonstrate that, at the time of reporting, extraction could reasonably be justified. The public disclosure of a mineral reserve must be demonstrated by a pre-feasibility study or feasibility study.

Mining	The science, technique and business of mineral discovery and exploitation. Strictly speaking, the word denotes underground work aimed at the severance and treatment of ore or associated rock. Practically, it includes opencast work, quarrying, alluvial dredging and combined operations, including surface and underground attack and ore treatment (United States Bureau of Mines).
Ore	An assemblage of minerals from which at least one economically valuable substance, most frequently a metal (copper, gallium, gold, iron or zinc), can be extracted further to chemical and/ or physical processing of the ore (see the terms "ore processing" and "metallurgy". Typically, an ore comprises several minerals ("ore minerals") of which only one, or a few, have an economic value. All other minerals have no economic value.
Ore processing (equivalent to "ore beneficiation" or "ore dressing" frequently found in the literature)	Especially for the production of metals, ore processing tends to be a specific combination of biological and/or chemical and/or physical processes needed to separate the economically valuable ore minerals from the other, valueless minerals present in the ore. This separation results in the production of a concentrate of economic minerals and ore-processing waste that will have to be disposed in the form of tailings (in specifically engineered reservoirs called tailing ponds). In the case of construction materials, such as sand and gravel, processing is frequently limited to some crushing, sorting and washing operations.
Pre-feasibility study	A pre-feasibility study is a comprehensive study of a range of options for the technical and economic viability of a mineral project that has advanced to a stage where a preferred mining method (for underground mining) or the pit configuration (for an open pit) has been established and an effective method of mineral processing has been determined. It includes a financial analysis based on reasonable assumptions on the modifying factors and the evaluation of any other relevant factors that are sufficient for a qualified person, acting reasonably, to determine if all or part of the mineral resource may be converted to a mineral reserve at the time of reporting. A pre-feasibility study is at a lower confidence level than a feasibility study.
Refining	The purification of crude metallic products (United States Bureau of Mines). This activity is closely related to metallurgy, and aims to remove residual impurities contained in metallic melts and to meet market specifications on maximum allowed impurities.
Resource curse	Negative relationship described by several authors between resource abundance and poor economic and/or environmental and/or social performance.
Resource nationalism	Resource nationalism can take multiple forms. Resource nationalism can be defined as anti- competitive behaviour by individual nations, designed to restrict the international supply of a natural resource, for instance to maximize the value-added generated on their territories. It can also be politically driven to exert control over the supply chains depending on specific minerals and metals through financial control of key producing countries, generally in order to develop a competitive advantage or geopolitical leverage. Resource nationalism is frequently expressed by tariff and non-tariff barriers restricting the free trade of minerals or metals. Resource nationalism is likely to have a greater effect on global terms of trade when a natural resource is only produced in a few countries. In these markets, countries can affect global prices for raw materials and have the most to gain from resource nationalism. In these cases, there is potential for the main producers (companies or countries) to act together to manipulate global prices.
Sovereign wealth fund	Resource revenue that is sequestered in a special fund by mineral-rich countries. These special- purpose financial vehicles aim to help ensure proper management of resource revenues. SWFs car have a number of components that may include: a stabilization fund, which captures in excess a pre-determined commodity price (used to project flows for budget purposes) and releases these funds to support the budget when the price falls below the predetermined price; a development fund that captures a portion of the resources flows and puts them in a fund to focus on long-term projects such as infrastructure; and a heritage fund, which captures the resources and saves them for future generations. These funds are long- term investments to be drawn by future generations.
Third sector	Civil society, research institutions, local communities, NGOs, concerned citizens, consumers, workforces and labour groups.

Acronyms

Acronym	Meaning
AC	Aarhaus Convention
ACET	African Center for Economic Transformation
ACP	African, Caribbean and Pacific Group of States
AFP-JIJI	Joint Activities Of The French "Agence France-Press" And The Japanese "JIJI" Press Agencies
AGAM	An Initiative for Good Governance
AKVG	Akwé: Kon Voluntary Guidelines
ALBA	Ahafo Local Business Association
ALP	Newmont Ghana's Ahafo Linkages Program
AMD	Acid Mine Drainage
AMV	Africa Mining Vision
APR	Annual Performance Report
ARM	Alliance for Responsible Mining
ASGM	Artisanal and Small-Scale Gold Mining
ASI	Aluminium Stewardship Initiative
ASM	Artisanal and Small-Scale Mining
ASX	Australian Security Exchange
AUC	African Union Comission
AZE	Alliance Zero Extinction
BANANA	Build Absolutely Nothing Anywhere Near Anything
BBOP	The Business and Biodiversity Offsets Programme (BBOP)
BEPS	Base Erosion and Profit Shifting
BGS	British Geological Survey
BIG-E	Batumi Initiative on Green Economy
BITs	Bilateral Investment Treaties
BMBF	German Federal Ministry of Education and Research
BRICS	Brazil, Russia, India, People's Republic of China and South Africa - Grouping Of States
CAPEX	Capital Expenditure
CASM	Communities and Small-Scale Mining
CBD	Convention on Biological Diversity
СССМС	China Chamber of Commerce of Metals, Minerals and Chemicals Importers and Exporters
CCSI	Columbia Center on Sustainable Investment
CCUWL	Convention Concerning the Use of White Lead in Painting
CERCLA	United States Comprehensive Environmental Responsibility Compensation and Liability Act
CFGS	Conflict-Free Gold Standard
CFLs	Compact Fluorescent Lamps
CFSI-CFS	Conflict Free Sourcing Initiative-Conflict Free Smelter
Chinese DD	Chinese Due Diligence Guidelines for Responsible Mineral Supply Chains
CIL	Coal India Limited
CMVs	Country mining Visions

Acronym	Meaning
СМА	Canada Mining Association
CMN	Commonwealth Mining Network
COCHILCO	Chilean Copper Commission
CONNEX	Strenghtening Assistance for Complex Contract Negotiations (Connex Initiative)
COP	Conference of the Parties
CRAFT	Code of Risk-mitigation for ASM Engaging in Formal Trade
CRAMRA	Convention on The Regulation of Antarctic Mineral Resource Activities
CRIRSCO	Committee for Mineral Reserves International Reporting Standards
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)
CSO	Civil Society Organization
CSR	Corporate Social Responsibility
CSS	Country-Specific Sector
стс	Certified Trading Chains
CWA	Compact With Africa
DAC	Development Assistance Committee Of The OECD
DI	Devonshire Initiative
DDI	Diamond Development Initiative
DDS	Diamond Development Standards
DFID	Department for International Development (United Kingdom)
DoE	United States Department of Energy
DRC	Democratic Republic of Congo
DVC	Downstream Value Chain
ECLAC	United Nations Economic Commission for Latin America and the Caribbean
EEZ	Exclusive Economic Zone
EGRC	Expert Group on Resource Classification
EHS	Environmental Health and Safety
EIAs	Environmental Impact Assessment
EICC	Electronic Industry Citizenship Coalition
EITI	Extractive Industry Transparency Initiative
EICC-ESWG	EICC-Environmental Sustainability Working Group
EIP	European Innovation Partnership on Raw Materials
E-LCA	Environmental Life Cycle Assessment
EMP	Environmental Management Plan
EO	Equitable Origin
EPs	Equator Principles
ETP SMR	European Technology Platform on Sustainable Mineral Resources
EPA	Environmental Protection Agency
EPASL	Sierra Leone's Environmental Protection Agency
EPIFIs	Equator Principles Financial Institutions
EPRP	European Partnership for Responsible Minerals
ERA	European Research Area
ERA-MIN	Research And Innovation Programme on Raw Materials to Foster Circular Economy
ERPM	European Partnership for Responsible Minerals
EU	European Union

Acronym	Meaning
EVC	Extractive Value Chain
Fairmined	Alliance for Responsible Mining (ARM)-Fairmined Standard
Fairtrade	Fairtrade Gold and Precious Metals
FATF	Financial Action Task Force
FDI	Foreign Direct Investment
FDI	Foreign Direct Investment
FET	Fair and Equitable Treatment
FIASMEC	Fraser Institute Annual Survey of Mining and Exploration Companies
FORAM	Towards a World Forum on Raw Materials
FPIC	Free, Prior and Informed Consent
FRP	Framework for Responsible Mining
FST	Future Sustainable Technologies
FTAs	Free Trade Agreements
GBAI	The Global Battery Alliance Initiative
GDP	Gross Domestic Product
GEF	Global Environment Facility
GEF-GOLD	Global Opportunities for the Long-term Development of the Artisanal and Small-Scale Gold Mining
	Sector
GHG	Greenhouse Gases
GMI	Green Mining Initiative (GMI)
Green Lead	The Green Lead Initiative
GRI	Global Reporting Initiative
GRO	Global Resources Outlook
GSRM	Guidelines for Social Responsibility in Outbound Mining Investments
HDI	Human Development Index
HEI	Health in the Extractive Industries
HIE	High-Income Economies
HRD	Human Resources Development
HREE	Heavy Rare Earth Elements
IC	Integrated Circuits
ICGLR	International Conference on the Great Lakes Region
ICGLR-RINR	ICGLR – Regional Initiative Against The Illegal Exploitation of Natural Resources
ICMC	International Cyanide Management Code for the Manufacture, Transport, and Use of Cyanide in the Production of Gold
ICMM	International Council on Mining and Metals
ICT	Information Communications Technology
IFC	International Finance Corporation
IFC-GPHJCEI	IFC – 'A Strategic Approach to Early Stakeholder Engagement – A Good Practice Handbook for Junior Companies in the Extractive Industries'
IFC-PS	IFC Performance Standards on Environmental and Social Sustainability
IFFs	Illicit Financial Flows
IFRS	International Financial Reporting Standards for Extractive Sector
IGF-MPF	Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development /Mining
	Policy Framework
IGO	Intergovernmental Organization
IIAS	International Investment Agreements
IIED	International Institute of Environment and Development

Acronym	Meaning
ILO	International Labour Organization
IL0169	ILO169 - Indigenous and Tribal People Convention 1989
IL0176	International Labour Organisation Convention on Mine Safety and Health (1995)
ILOSTAT	United Nations Labour Organisation Department of Statistics
ΙoT	Internet of Things
IPCC	Intergovernmental Panel on Climate Change
IR	Infrared
IRA	Indigenous Rights in the Arctic
IRCI	Integrated Resource Corridors Initiative
IRMA	Initiative for Responsible Mining Assurance
IRP	International Resource Panel
ISA	International Seabed Authority
ISDS	Investor-State Dispute Settlement
ISO	International Standard Organisation
iTSCi	The International Tin Research Institute (ITRI) Tin Supply Chan Initiative
IUCN	International Union for Conservation of Nature
IWM	International Women in Mining
JEMSE	Jujuy Energía Minería Sociedad del Estado
LBMA-RGG	London Bullion Market Association - Responsible Gold Guidance
LCA	Life Cycle Assessment
LCI	Life-Cycle Inventory
LCSA	Life Cycle Sustainability Assessment
LED	Light Emitting Diode
LIE	Low-Income Economies
LMIE	Lower-Middle-Income Economies
LREE	Light Rare Earth Elements
LPRM	Local Procurement Reporting Mechanism
LSM	Large Scale Mining
МСМ	Minamata Convention on Mercury
МСР	Mine Closure Plan
MDAs	Mineral Development Agreements
MEAs	Multilateral Environmental Agreements
MIDAS	Managing Impacts Of Deep Sea Resource Exploitation Project
MInGov	Mining Investment and Governance Review
MMSD	Mining, Minerals and Sustainable Development Project
MNCs	Multinational Corporations
МоМ	Ministry of Mining
МООС	Massive Open Online Courses
MPEPAT	Madrid Protocol on Environmental Protection to the Atlantic Treaty
MPF	Mining Policy Framework
MVM	Mineral Value Management
NBSAPs	National Biodiversity Strategies and Action Plans
NEEI	Non-Energy Extractive Industry
NGO	Non-Governmental Organisation
NIMBY	Not in My Backyard Movement
NOAMI	National Orphaned/Abandoned Mines Initiative
NRC	National Resource Charter

Acronym	Meaning
NRG	Natural Resource Governance
NRGI	Natural Resource Governance Institute
NRRI	Natural Resources Risk Index
ODA	Official Developmnet Assiastance
OECD	Organisation for economic Co-operation and Development
OECD -DD	OECD Due Diligence Guidance for Responsible Supply Chain Management of Minerals for
	Conflict Affected and High-Risk Areas
OECD-Global Forum	Global Forum on Transparency and Exchange of Information for Tax Purposes
OEMs	Original Equipment Manufacturers
OfD	Oil for Development
OHS	Occupational Health and Safety
PACE	Protected Areas and Critical Ecosystems
PDAC e3Plus	Prospectors And Developers Association of Canada
PES	Payment for Ecosystem Services
PGM	Platinum Group Metals
PIDA	Programme for Infrastructure Development in Africa
PMP	Post-Mining Plan
PPA-RMT	Public-Private Alliance for Responsible Minerals Trade
PSILCA	Product Social Impact Life Cycle Assessment
PVC	Policy Value Chain
PWYP	Publish What You Pay
R&D	Research and Development
RCI	Responsible Cobalt Initiative
RDMI	Responsible Mineral Development Initiative
REEs	Rare Earth Elements
RJC	Responsible Jewellery Council
RFID	Radio frequency identification devices
RMC	Responsible Mining of Cobalt
RMDI	Responsible Mineral Development Initiative
RMF-RMI	Responsible Mining Foundation - Responsible Mining Index
RMI	EU Raw Materias Initiative
RRMI	Responsible Raw Materials Initiative
RRT	Resource Rent Tax
RS	Australian Steel Stewardship Forum/ Steel Stewardship Council Ltd
SAM	Sustainable Artisanal Mining Project
SCS	Sustainability Certification Schemes
SDGs	Sustainable Development Goals
SDLO	Sustainable Development Licence to Operate
SEEA	UN System of Environmental-Economic Accounting
SETAC	Society of Environmental Toxicology and Chemistry
SfH	Solutions for Hope initiative
SIA	Social Impact Assessment
S-LCA	Social - Life Cycle Assessment
SLO	Social Licence to Operate
SMED	Smart Mineral Enterprise Development
SMEs	Small and Medium Sized Enterprises
SMMRP	World Bank Sustainable Management of Mineral Resources Project

Acronym	Meaning
SWFs	Sovereign Wealth Funds
SWIA	Sector-Wide Impact Assesment
TAI	The Access Initiative
Тд	Teragram
TMFs	Tailings Management Facilities
TNCs	Trans-national Corporations
TQEM	Total Quality Environmental Management
TQM	Total Quality Management
TSF	Tailing Storage Facilities
TSM	Towards Sustainable Mining
TSX	Toronto Stock Exchange
UMIE	Upper-middle-income Economies
UN	United Nations
UNCLOS	United Nations Convention on the Law of the Sea
UNCTAD	United Nations Conference on Trade and Development
UN-DESA	United Nations Department of Economic and Social Affairs
UNDP	United Nations Development Programme
UNDP-SEMESHD	Sustainable and Equitable Management of the Extractive Sector for Human Development
UNECA	United Nations Economic Commision for Africa
UNECE	United Nations Economic Commission for Europe
UNEP	United Nations Environment Programme
UNEP-WCMC	UNEP World Conservation Monitoring Centre
UNESCO	United Nations Educational, Scientific and Cultural Organisation
UNGIWG	United Nations Geographic Information Working Group
UNFC	United Nations Framework Classification for Resources
UNFCC	United Nations Framework Convention on Climate Change
UNGC	United Nations Global Compact
UNGP	United Nations Guiding Principles on Business and Human Rights
UNIDO	United Nations Industrial Development Organization
UNSDSN	United Nations Sustainable Development Solutions Network
UNU-WIDER	United Nations University World Institute For Development Economics Research
USAID	United States Agency for International Development
USGS	National Minerals Information Center
USGS	United States Geological Survey
VPs	Voluntary Principles on Security and Human Rights Guidelines
WEF	World Economic Forum
WLED	White light emitting diodes
WHO	World Health Organization
WSSD	World Summit on Sustainable Development
XTL	Synthetic Liquid Fuels
WTO	World Trade Organization
WWF	World Wide Fund for Nature
3TG	Tin, Tantalum, Tungsten and Gold

