
Phenomena associated with the adhesion interaction 

of surfaces have been a critical aspect of micro- and 

nanosystem development and performance since the fi rst 

MicroElectroMechanicalSystems(MEMS) were fabricated. 

These phenomena are ubiquitous in nature and are present 

in all systems, however MEMS devices are particularly 

sensitive to their effects owing to their small size and 

limited actuation force that can be generated. 

Extension of MEMS technology concepts to the nanoscale 

and development of NanoElectroMechanicalSystems

(NEMS) will result in systems even more strongly 

infl uenced by surface forces.

The book is divided into fi ve parts as follows: 

Part 1: Understanding Through Continuum Theory; 

Part 2: Computer Simulation of Interfaces; 

Part 3: Adhesion and Friction Measurements; 

Part 4: Adhesion in Practical Applications; and

Part 5: Adhesion Mitigation Strategies.

This compilation constitutes the fi rst book on this 

extremely important topic in the burgeoning fi eld of 

MEMS/NEMS. It is obvious from the topics covered in 

this book that bountiful information is contained here 

covering understanding of surface forces and adhesion 

as well as novel ways to mitigate adhesion in MEMS/NEMS.

This book should be of great interest to anyone engaged 

in the wonderful and fascinating fi eld of MEMS/NEMS, 

as it captures the current R&D activity.
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Preface

Interfacial interactions between components play a crucial role in the manufac-
ture and performance of MEMS/NEMS devices. This is ascribed to the very large
surface-to-volume ratio in such components and, concomitantly, surface/interface
phenomena become dominant in controlling the fate of such devices.

Adhesion is an interesting phenomenon. Depending on the situation/application,
adhesion may be desideratum and in other situations, it can be an anathema. In the
case of MEMS/NEMS devices, static adhesion between components (also known
as ‘stiction’) is something to be avoided for the proper functioning of the de-
vice. Avoidance of adhesion constitutes the field of ‘abhesion’ which in a sense
is ‘negative adhesion’. In order to achieve abhesion, a plethora of techniques and
materials have been developed to mitigate adhesion problems in a wide range of
MEMS/NEMS products.

Even a cursory look at the literature will evince that currently there is tremen-
dous R&D activity encompassing many facets (including adhesion) pertaining to
MEMS/NEMS products and all signals indicate it will not only continue unabated,
but will assume an accelerated pace. The current research emphasis is on the fol-
lowing topics: unraveling interfacial interactions and factors influencing such inter-
actions; ramifications of these interactions in the functioning of devices/structures;
developing novel or ameliorating the existing techniques for surface modification to
attain desired surface characteristics; and development of various ways to mitigate
adhesion problems.

In light of the tremendous relevance of interfacial interactions — and thus ad-
hesion — and flurry of R&D activity in this burgeoning field of MEMS/NEMS
products, we decided to make this book available as a single and easily accessi-
ble source of comprehensive information. This book is based on the Special Issue
of the Journal of Adhesion Science and Technology (JAST) Vol. 24, Nos 15–16
(2010). The papers as published in the above-mentioned Issue have been grouped
in a logical fashion in this book.

This book containing a total of 21 papers (reflecting overviews and original re-
search) and covering many aspects of adhesion in MEMS/NEMS is divided into
five parts as follows: Part 1: Understanding Through Continuum Theory; Part 2:

Adhesion Aspects in MEMS/NEMS
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x Preface

Computer Simulation of Interfaces; Part 3: Adhesion and Friction Measurements;
Part 4: Adhesion in Practical Applications; and Part 5: Adhesion Mitigation Strate-
gies. Topics covered include: numerical analysis of contact mechanics; equilibrium
vapor adsorption and capillary force; contribution of fractal parameters to adhe-
sion; effects of contacting surfaces on MEMS device reliability; adhesion model
for micromanipulation; computer simulation of interfaces; vapor phase lubrica-
tion in MEMS; atomistic factors governing adhesion; adhesion and friction aspects
at the nanoscale; friction of self-assembled monolayers (SAMs); interfacial adhe-
sion and its implications in MEMS/NEMS technology; adhesion in MEMS/NEMS
applications; molecular mobility and interface dynamics in organic NEMS; vari-
ous adhesion mitigation techniques in MEMS/NEMS; superhydrophobic surfaces;
plasma modification of polymer surfaces and its relevance in biomedical microde-
vices.

It is quite patent from the topics covered that many different aspects of adhesion
in MEMS/NEMS are accorded due coverage in this book; concomitantly, this book
represents a comprehensive treatise on this fascinating, mushrooming and techno-
logically highly important field. Also we would like to point out that this book
containing a wealth of information is the first book on the topic of adhesion in
MEMS/NEMS. Moreover, we hope this book would serve as a fountainhead for
new research ideas and new application vistas will emerge as the performance and
durability/robustness of MEMS/NEMS are further enhanced.

This book should be of interest to both neophytes (as a gateway to this field) and
veteran researchers as a commentary on the current research activity being carried
out by luminaries in this field. An in-depth understanding of adhesion phenomena
and development of more effective adhesion mitigation strategies would be a big
step in the future of MEMS/NEMS technology.
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Numerical Analysis of Contact Mechanics between
a Spherical Slider and a Flat Disk with Low Roughness

Considering Lennard–Jones Surface Forces

Kyosuke Ono ∗

Mechanical Engineering Research Laboratory, Hitachi Ltd., Kirihara-cho 1, Fujisawa-shi,
Kanagawa-ken 252-8588, Japan

Abstract
Although analytical and numerical analyses of the contact mechanics of a completely smooth sphere–flat
contact have been done, the analysis of a realistic sphere–flat contact with a surface roughness whose mean
height planes have a spacing greater than the atomic equilibrium distance has not been done thoroughly. This
paper is a fundamental study of the elastic contact mechanics due to Lennard–Jones (LJ) intermolecular
surface forces between a spherical slider and a flat disk with low roughness whose height is larger than
equilibrium distance z0. First, neglecting the effect of the attractive force at contacting asperities, adhesion
contact characteristics of a 2-mm-radius glass slider with a magnetic disk are presented in relation to the
asperity spacing σ between mean height planes. Results showed that the contact behavior at a small asperity
spacing of ∼0.5 nm cannot be predicted either by the Johnson–Kendall–Roberts or Derjaguin–Muller–
Toporov theories. Second, contact characteristics of a 1-µm-radius sphere on a flat disk are presented to
examine how LJ attractive force at contacting asperities can be evaluated. It was found that the adhesion
force of contacting asperity is a function of separation in general, but it becomes almost constant when
σ = ∼z0. A simple equation to evaluate the LJ attractive pressure of contacting asperities is presented
for the rough contact analysis. Third, numerical calculation methods for a sphere–flat contact including
LJ attractive forces between the mating mean height planes and contacting asperities are presented. Then,
adhesion characteristics of a 2-mm-radius glass slider and magnetic disk are calculated and compared with
the previous experimental results of dynamic contact test. It is shown that the calculated LJ adhesion force
is much smaller than the experimental adhesion force, justifying that the adhesion force observed at the
separation of contact is caused by meniscus force rather than by vdW force.

Keywords
Nanotribology, sphere to flat contact mechanics, van der Waals forces, Lennard–Jones intermolecular
forces, roughness effect, head–disk interface
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1. Introduction

Adhesion contact characteristics between a perfectly smooth sphere and a flat
due to intermolecular forces caused by Lennard–Jones potential have been elu-
cidated well by analytical methods [1–4] and numerical calculation methods [5–
7]. However, realistic engineering surfaces have roughness that is larger than the
atomic equilibrium distance, even for magnetic head–disk interfaces. Adhesion
and friction characteristics of nominally flat rough surfaces on the basis of the
Greenwood–Williamson roughness contact model [8] and the Derjaguin–Muller–
Toporov (DMT) adhesion model [2] were studied by Chang et al. [9] and Stanley
et al. [10]. As an extension of these theories, Suh and Polycarpou [11] analyzed ad-
hesion characteristics of rough surface contacts for nominally flat mating surfaces.
In an asperity contact analysis, Lennard–Jones (LJ) surface forces at contacting and
non-contacting asperities were taken into account, but LJ surface force due to mean
height planes was not considered. However, it is natural to consider that LJ surface
force due to mean height planes plays a dominant role when the spacing between
the mean height planes is less than 0.5 nm. In addition, since a current magnetic
head slider has an ellipsoidal surface, contact characteristics between a sphere and
a flat disk should be analyzed. Even in an experimental measurement of contact
characteristics using a simple spherical probe, the probe has a roughness with a
height that is usually larger than the atomic equilibrium distance of ∼0.2 nm [12].
Thus, the adhesion characteristics between the spherical probe and flat disk would
be influenced by the surface roughness. Therefore, contact characteristics between
a sphere and a flat with a small roughness have not yet been studied in the history
of contact mechanics.

In the field of head–disk interfaces, there has been a long-running argument
about whether the attractive force between head and disk is caused by van der
Waals (vdW) force [13–15] or meniscus force [16–18]. Ono and Nakagawa [19,
20] measured the dynamic adhesion force that was applied on the slider when 1-
and 2-mm-radius glass sliders collided with a magnetic disk with a molecularly
thin lubricant layer. They concluded that the adhesion force observed at the instant
of separation after a short contact period of 15–30 µs was caused by the meniscus
force rather than by vdW force. However, there were criticisms that the meniscus
bridge could not be generated quickly enough to have this effect.

One of the motivations of this study was to calculate the vdW attractive force
between a spherical glass slider and a magnetic disk and compare it with the ex-
perimentally measured value. The glass sphere and magnetic disk used for the
experiment had a root-mean-square (rms) roughness heights of ∼0.33 and 0.52 nm,
respectively. Since this is larger than the atomic equilibrium distance, development
of an analytical method for asperity contact mechanics between a sphere and a disk
is needed.

A numerical analysis method is presented for rough surface contact character-
istics between a sphere and a flat, considering not only elastic deformation and
vdW forces of mean height planes of the sphere and disk but also vdW forces of
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contacting asperities. In prior papers on adhesion of contacting rough surfaces [9–
11], adhesion forces of contacting and noncontacting asperities were taken into
account based on the DMT theory [2, 3]. In order to elucidate adhesion force of
a sphere–flat contact with various scales of asperities more rigorously, fundamen-
tal contact characteristics of a 2-mm-radius glass sphere and 1-µm-radius asperity
with a disk assuming a constant spacing between mean height planes due to contact-
ing asperities are investigated using a numerical calculation method. In Section 3,
an analytical model of asperity contact between a sphere and a disk and the as-
sumptions used in this analysis are described. Then, basic equations and numerical
calculation method are explained. In Section 4, contact characteristics between the
2-mm-radius sphere and disk are calculated assuming constant spacing between
mean height planes in the contact area but ignoring vdW forces of the contacting
asperities. In Section 5, to evaluate the adhesion force of contacting asperities of the
rough surface, the contact characteristics between a 1-µm-radius spherical asperity
and a disk are calculated assuming small-scale spacing due to a small-scale asperity
height on the order of atomic equilibrium distance. From this analysis, it is found
that 2πR�γ approximates the attractive force at a contacting asperity when the
small-scale asperity height is close to atomic equilibrium distance. In Section 6, us-
ing this adhesion force of a contacting asperity, an approximated numerical analysis
method of rough surface contact between a sphere and a disk combining asperity
vdW pressure with vdW forces between mean height planes is presented. The con-
tact characteristics for the 2-mm-radius glass slider and magnetic disk are calculated
using asperity parameter values measured in the experiment and compared with ex-
perimental ones. It is shown that the overestimated LJ attractive forces yield an
adhesion force much smaller than the measured values.

2. Nomenclature

A: Hamaker constant (J)

E∗: Composite Young’s modulus of two mating surfaces (Pa)

Fel: Elastic contact force of spherical slider (N)

FLJ: Lennard–Jones attractive force (N)

FLJa: Lennard–Jones attractive force due to contacting asperities (N)

Fex: External force applied to disk surface by slider (N)

R: Radius of curvature of spherical slider (m)

Ra: Radius of curvature of asperity (m)

O-rθz,O-sϕz: Cylindrical coordinate system

Pel: Elastic contact pressure (Pa)
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Pela: Elastic contact pressure due to contacting asperities (Pa)

PLJ: Lennard–Jones attractive pressure due to mean height planes (Pa)

PLJa: Lennard–Jones attractive pressure due to contacting asperities (Pa)

a: Analytical radius of contact area (m)

b(r): Surface contour of spherical slider (m)

d: Separation of spherical slider from mean height of undeformed
disk surface (z-position of tip of spherical slider) (m)

h(r): Spacing between spherical slider and mean height plane of disk
surface (m)

h0: Spacing between tip of spherical slider and mean height plane of
disk surface (m)

rc: Contacting radius between spherical slider and disk (m)

w(r): Deformation distribution of disk (m)

wG(r): Deformation distribution of disk due to a unit force (Green func-
tion) (m/N)

z0: Atomic equilibrium distance (m)

�γ : Change in total surface energy due to contact (J/m2)

σ : Spacing between mating mean height planes due to roughness as-
perities (m)

σa: rms asperity height (m)

ρ: Asperity density of rough surface (m−2)

3. Analytical Model and Numerical Calculation Method

3.1. Analytical Model and Basic Equations

Figure 1 shows the analytical model for asperity contact mechanics analysis of the
spherical slider and flat disk treated in this paper. Since the geometries of the sphere
and the disk are axisymmetrical, cylindrical coordinate system O-rθz, (O-sϕz) is
fixed on the mean height plane of the original disk surface without considering
deformation. The radius of the spherical slider is denoted by R. The z-position of
the tip of the spherical slider is denoted by d , defined as separation. As is common in
asperity contact mechanics, elastic and surface roughness properties of the spherical
slider are included in those of the disk, and the slider is assumed as a smooth, rigid
sphere. The disk has a composite Young’s modulus and a composite roughness. It
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Figure 1. Analytical model of a spherical slider and a flat disk.

is assumed that the mating mean height planes are separated by σ in the contact
region after asperity is compressed due to contacting force.

If we denote the observed position by (r, θ) and applied force position by (s, ϕ),
disk deformation caused by a unit force is given by the following Green function
[21]:

wG(r, s) = 1

πE∗√r2 + s2 − 2rs cos(θ − ϕ)
. (1)

Here, E∗ is the composite Young’s modulus given by

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
, (2)

where E1 and E2 are Young’s moduli, and ν1 and ν2 are Poisson’s ratios of the disk
and the slider, respectively. Lennard–Jones (LJ) pressure acting on the mean height
planes with spacing h(r) is given by

PLJ(h) = A

6πh3

{
1 −

(
z0

h

)6}
. (3)

Here, A is the Hamaker constant and z0 is the atomic equilibrium distance [5].
Note that since z0 is very small compared to the asperity height of the spherical
glass slider and magnetic disk, PLJ is almost equal to vdW pressure, ignoring the
second term inside the braces. Since the z-position of the tip of the spherical slider
is denoted by d , the contour b(r) of the slider surface in the z-direction is written
as

b(r) = d + r2

2R
. (4)

Note that if d < σ , the slider penetrates into the disk through the asperity contact.
If we denote the elastic deformation of the mean height plane of the disk surface by
w(r), the spacing h(r) between the slider and disk is given by

h(r) = b(r) − w(r). (5)
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When the slider does not contact the disk, the disk deformation w(r) is given by

w(r) =
∫ ∫

PLJ(h(s))wG(r, s)s ds d(ϕ − θ). (6)

Under a non-contact condition, disk deformation can be determined by simultane-
ously solving the discretized equations from (1) to (6). Since the spacing h(r) is
altered by deformation w(r), a convergent solution can be obtained through itera-
tion process.

3.2. Numerical Analysis Method for Contact Characteristics

When the separation d decreases, the slider comes in contact with asperities on
the disk surface. If we denote LJ pressure due to contacting asperities and elastic
contact pressure due to contacting asperities by PLJa and Pela, respectively, the disk
deformation is written as

w(r) =
∫ ∫

(PLJ + PLJa − Pela)wG(r, s)s ds d(ϕ − θ). (7)

In this paper, PLJa and Pela are not treated rigorously but are estimated by an ap-
proximation method.

As the separation d decreases further, asperity height is decreased due to the in-
creased contact pressure. However, the asperity becomes too hard to be compressed
due to the increased rigidity of the asperities and deformation of mean height plane
becomes predominant [18]. This compressed asperity height is represented by the
asperity spacing σ between the slider and the disk. This asperity spacing σ is still
larger than z0 in almost all actual cases. If we assume that σ is uniform in the
contact area, the spacing h(r) can satisfy the following inequality:

h(r) = b(r) − w(r) � σ. (8)

When asperity density is not large and σ < 1 nm, PLJa is smaller than PLJ, as will
be shown later. Therefore, at first we ignore PLJa; the effect of PLJa will be taken
into account in Section 6.

When the mating surfaces come in contact with each other with an asperity
spacing σ,Pela is transmitted to the mean height surface resulting in mean surface
deformation. Since the disk deformation is caused by the penetration of the rigid
spherical surface, it will be reasonable to assume that Pel can be given by Hertzian
contact pressure associated with mean plane deformation with contact radius of rc,
as follows:

Pel(r) = pm

{
1 −

(
r

rc

)2}1/2

, pm = 2E∗rc

πR
. (9)

Therefore, disk deformation is given by

w(r) =
∫ ∫

(PLJ − Pel)wG(r, s)s ds d(ϕ − θ). (10)
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The reason for the minus sign on Pel is that elastic contact pressure acts in the
−z direction. Under the contact condition, a solution that simultaneously satisfies
equations (1), (3), (4), (8), (9) and (10) must be obtained.

To perform the integration in equations (6) and (10), wG was expanded into a
Taylor series with respect to k = 2rs/(r2 + s2), and then each expanded term was
integrated by d(ϕ − θ) in the circumferential direction. The number of expanded
terms sufficient to give a precise solution was examined by solving the Hertzian
contact deformation caused by the Hertzian contact pressure, equation (9). Since a
precise Hertzian contact deformation can be obtained using 1000 terms, 2000 terms
of an expanded Taylor series were used for the calculation of the influence coeffi-
cient to save computing time. Integrations in equations (6) and (10) with respect to
radial coordinate were performed numerically by expressing the continuous quan-
tity by N representative points along the radial coordinate.

Figure 2 is a flowchart for numerical calculation. First, the initial separation value
d is assumed. When d > σ , equation (6) is solved. Then, whether or not the disk
deformation can satisfy the non-contact condition is examined. If the disk and slider
do not contact each other, disk deformation and spacing are solved iteratively as a

Figure 2. Flowchart for numerical calculation.
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non-contact problem using equations (1), (3), (4), (5) and (6). When disk deforma-
tion does not satisfy the inequality condition equation (8), the contact area radius
rc that satisfies w(rc) = b(rc) − σ is numerically calculated, letting the disk defor-
mation w be equal to b − σ in the contact region of r � rc. Then, the new disk
deformation w(r) is calculated from equations (9) and (10) using the modified disk
deformation w(r), spacing h(r), and contact radius rc. This calculation procedure
is repeated until a convergent solution is obtained. The convergence of the solution
was determined when the Er value (the ratio of the sum of the absolute values of
the differences of the successive values of wij to the sum of the absolute values of
wij ) was less than a small criterion value of ε. The discretized number of the radial
coordinate is selected as N = 400 although N = 100 is enough for calculation of
Hertzian contact deformation.

As shown in Fig. 2, in order to avoid the divergence of the solution due to the
rapid changes of w and rc, under-relaxation factors α and β are used for updat-
ing deformation w and contact boundary rc in the iterative calculation. Usually,
the criterion of ε = 10−6 was used, but the solution with Er = ∼10−2 was also
considered to be an approximate solution because no clear difference between the
solutions with Er = ∼10−2 and 10−6 was observed in the plots of w and rc.

From the convergent solutions of LJ attractive pressure PLJ and elastic contact
pressure Pel, LJ attractive force FLJ, elastic contact force Fel, and external force
applied to disk Fex were calculated by integration of the associated pressures over
the analytical area as follows:

LJ attractive force FLJ =
N∑
1

PLJ, (11)

Elastic contact force Fel = −
M∑
1

Pel, (12)

External force applied to the disk Fex =
N∑
1

(PLJ − Pel). (13)

Since FLJ and Fex are external forces applied to the disk from the slider, the external
forces applied to the slider from the disk are given by −FLJ and −Fex.

4. Calculated Results for Contact Characteristics Ignoring Asperity LJ
Forces

The parameter values used for the following calculations are listed in Table 1. These
parameter values are the same as those of the 2-mm-radius glass slider and mag-
netic disk used for the dynamic adhesion force measurements [19, 20]. Accurate
values of the Hamaker constant and the atomic equilibrium distance are not known.
A Hamaker constant of A = 10−19 J was used as a standard value although this
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Table 1.
Parameter values used for calculation

Physical parameter Unit Value

Disk Young’s modulus E1 GPa 163
Slider Young’s modulus E2 GPa 83
Disk Poisson ratio ν1 0.3
Slider Poisson ratio ν2 0.21
Slider radius R mm 2
Hamaker constant A J 10−19

Atomic equilibrium distance z0 nm 0.165

may overestimate the value for the head–disk interface. Equilibrium distance of
z0 = 0.165 nm was used since the same value is used as a standard value in the
literature by Israelachvili [22] and Mate [23]. However, the effect of repulsive force
is negligibly small when σ � 0.3 nm. The analytical area radius a was chosen to
satisfy δ (= a2/2R) = 10 nm in Fig. 1.

Figure 3 shows the calculated contact characteristics when separation d is de-
creased from 2 nm to −5 nm in 0.2-nm steps: (a) disk deformation w, (b) LJ
attractive pressure PLJ, (c) elastic contact pressure Pel, (d) LJ attractive force
−FLJ, external force applied to the slider −Fex, and Hertzian contact force Fel
versus separation d , (e) external slider −Fex force versus contact radius rc, and
(f) iteration number IN and the value of −10 log(Er). In this calculation the cri-
terion of convergence was ε = 10−6. We note from Fig. 3(a) that the disk first
deforms upwards (w > 0) slightly due to the LJ attractive pressure while d de-
creases from 2.0 nm to 1.2 nm. But, at d = 1.0 nm, the slider comes in contact
with disk asperities with a height σ = 1.0 nm. As d decreases further from 1 nm,
the slider penetrates into the disk. The reason PLJ is limited to a constant value
at any separation (see Fig. 3(b)) is that spacing h(r) in the contact region is
equal to asperity spacing σ . When σ = 1.0 nm, we note from Fig. 3(b) and 3(c)
that PLJ is in the order of MPa, while Pel is one order larger than PLJ. There-
fore, disk deformation w is close to Hertzian contact deformation. Figure 3(d)
shows that FLJ = 0.25 mN at d = −5 nm and the minimum value of −Fex is
∼−0.03 mN at d = 1.1 nm. The relationship between contact radius rc and exter-
nal force Fex is described by the Johnson–Kendall–Roberts (JKR) theory as r3

c =
3R{(−Fex) + 3π�γR + [6π�γR(−Fex) + (3π�γR)2]1/2})/4E∗, whereas the
relationship is described by the DMT theory as r3

c = 3R{(−Fex) + 2π�γR}/4E∗
[24]. The contact radii given by the JKR and DMT theories are plotted in Fig. 3(e)
for comparison using the relationship between �γ and A, which will be explained
later. The difference between the JKR and DMT theories is small because the LJ
attractive force is small and the present numerical results show values almost in
between the external forces calculated from the JKR and DMT theories. It is seen
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Figure 3. Calculated results for (a) disk deformation w(r), (b) LJ pressure PLJ, (c) elastic contact
pressure Pel, (d) LJ force −FLJ, external force −Fex, and elastic contact force Fel versus separation d ,
(e) contact radius rc versus external force −Fex and (f) iteration number (IN) and numerical error
− log(Er) when d is varied from 2 nm to −5 nm by 0.2 nm (R = 2 mm, σ = 1.0 nm, ε = 10−6).

from Fig. 3(f) that convergent solution with an error of less than 10−6 could be
obtained with an iteration number of less than 100.

Figure 4 shows similar calculated contact characteristics when σ = 0.5 nm. The
effect of σ on contact characteristics can be seen from a comparison between Figs 3
and 4. As seen in Fig. 4(f), convergence of the solution under contact conditions be-
comes worse and Er does not decrease to less than ∼10−2 even when the iteration
number increases to 200. This is because the contact boundary does not converge to
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Figure 4. Calculated results for (a) disk deformation w(r), (b) LJ pressure PLJ, (c) elastic contact
pressure Pel, (d) LJ force −FLJ, external force −Fex, and elastic contact force Fel versus separation d ,
(e) contact radius rc versus external force −Fex and (f) iteration number (IN) and numerical error
− log(Er) when d is varied from 2 nm to −5 nm in 0.2 nm steps (R = 2 mm, σ = 0.5 nm, ε = 10−6).

a single value and shows a small cyclic variation. However, even when Er = 10−2,
variations of not only FLJ and Fel, but also of w(r),PLJ and rc are too small to be
visible in the figure. Thus these results are considered to be reliable approximate
solutions.

As seen from Fig. 4(a) and 4(d), disk deforms upwards slightly as in the
same manner as in Fig. 3(a) while d decreases from 2.0 nm to 1.2 nm. Then, at
d = 1.0 nm, the disk surface snaps into contact with the slider. It is noted that the
disk deformation reaches 1 nm at the periphery of contacting area and that the con-
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tact radius abruptly increases as seen in Fig. 4(e). The reason why the contact radius
increases appreciably compared to that from JKR theory is not clear, but is consid-
ered as follows. Since the spacing between mating mean height planes is equal to
asperity height σ = 0.5 nm, repulsive pressure in equation (3) is almost zero and
only elastic contact pressure opposes the attractive pressure in this model. There-
fore, the total attractive pressure is stronger than that from the JKR model for a
smooth spherical surface, where the effect of repulsive pressure inside the contact
area is taken into account. Since PLJ in Fig. 4(b) is 10 times larger than that in
Fig. 3(b) and becomes comparable with Pel in Fig. 4(c) when h = σ = 0.5 nm,
the disk adheres to the slider at the beginning of contact resulting in a large con-
tact radius even at d = 0.5–1.0 nm. Note that the Tabor’s parameter value of μ

(= (R�γ 2/E∗2/z3
0)

1/3) is 1.64 in this case. The minimum value of −Fex is about
−0.3 mN, and rc = 3.7 µm at Fex = 0, as seen from Fig. 4(e).

As seen in Fig. 4(d), as d is decreased, −Fex first decreases slightly and then
decreases abruptly because the disk adheres to the slider at d = ∼1.0 nm. After
reaching the minimum value, −Fex increases due to the increase in elastic contact
force, as seen in Fig. 4(d) and 4(e). Although Fig. 4 shows the calculated results in
the approach process, almost the same characteristics without a visible hysteresis
were obtained in the separation process when d was increased reversely.

Figure 5(a) and 5(b) shows the LJ attractive force FLJ as a function of the min-
imum spacing h0 = b(0) − w(0) at the tip of the spherical slider for σ = 1.0 and
0.5 nm, respectively. For comparison, the vdW force of Fvr (= AR/6h2

0) between a
rigid sphere and a flat disk and the meniscus force of Fm = 4πRγ (γ = 0.022 J/m2)
are shown in these figures. Noting that the separation d is decreased from 2 to
−5 nm in 0.2-nm steps, h0 is slightly smaller than d due to the elastic deforma-
tion under non-contact conditions. However, FLJ is almost equal to Fvr at the same
h0 under the non-contact conditions. This indicates that the attractive pressure in
a small area of the protruded tip of the sphere contributes to the total attractive

Figure 5. FLJ (!), Fvr and Fm versus h0 for (a) σ = 1.0 nm and (b) σ = 0.5 nm.
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force. When h0 decreases to less than 1.0 nm, the disk snaps into contact with the
slider and h0 jumps to σ . Therefore, no jump is observed when σ = 1.0 nm, but
a clear jump of h0 from 1.0 nm to 0.5 nm (=σ ) is observed at d = 1.0 nm when
σ = 0.5 nm. FLJ jumps from the curve of Fvr to a value much larger than Fvr be-
cause of increase in contact area. FLJ becomes larger than the meniscus force Fm
when d < 0.6 nm.

The adhesion force at h0 under contact conditions is approximately evaluated by
summing the LJ force of rigid sphere contact FLJr at h0 (=σ ) and the LJ attractive
force within the contact area. FLJr, including the repulsive term, is obtained by
integrating PLJ in equation (3) over the total surface and written as

FLJr = AR

6h2
0

(
1 − z6

0

4h6
0

)
. (14)

When z0/h0 < 0.5, the second term within braces can be neglected and FLJr = Fvr.
The LJ attractive force within the contact area can be obtained by multiplying the
contact area πr2

c with PLJ(h0). Thus the adhesion force under contact conditions is
approximated by

FLJ∗ = AR

6h2
0

(
1 − z6

0

4h6
0

)
+ Ar2

c

6h3
0

(
1 − z6

0

h6
0

)
. (15)

Here the repulsive term can be ignored when z0/h0 < 0.5. Using the calculated
value of rc and h0 = σ , −FLJ∗ was calculated and plotted in Fig. 4(d) with a dot. It
is clear that FLJ∗ agrees well with FLJ.

To take into account the LJ force at contacting asperities, contact characteristics
between a small sphere and a flat are calculated next to make clear how the attractive
force at contacting asperities is properly evaluated.

5. Evaluation of LJ Attractive Pressure at Contacting Asperities

5.1. LJ Attractive Force between a 1-µm-Radius Sphere and a Flat

In actual cases where asperity density is large and asperity spacing σ is more than
0.5 nm, adhesion characteristics cannot be evaluated well without taking into ac-
count the LJ attractive force of contacting asperities. Since an actual rough surface
has fractal characteristics, it is natural to consider that an asperity has small-scale
asperities whose asperity spacing is of the same order as z0. If we focus on the
smoothest engineering surfaces, such as a magnetic disk, head slider, and silicon
substrate, the rms values of surface roughness are less than 0.5 nm and the mean
asperity radius is near 1 µm. Therefore, the contact characteristics of a 1-µm-radius
asperity with a flat were numerically calculated for various values of asperity spac-
ing and the expression for the asperity attractive force was examined. The analytical
model of asperity contact is similar to that shown in Fig. 1.

Figure 6 shows the calculated contact characteristics for σ = 0.25,0.20,0.18,
0.165,0.16 and 0.15 nm when separation d decreases from 0.6 to −0.5 nm in steps
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Figure 6. Contact characteristics of 1-µm-radius sphere and disk for σ = 0.25,0.20,0.18,0.165,0.16
and 0.15 nm (+: σ = 0.25 nm, ×: σ = 0.20 nm, P: σ = 0.18 nm, !: σ = 0.165 nm, 1: σ = 0.16 nm,

: σ = 0.15 nm). (a) FLJ and FLJr versus h0. (b) LJ force −FLJ and elastic contact force Fel versus
separation d . (c) External force −Fex versus separation d . (d) Contact radius rc versus external force
−Fex. (e) Disk deformation w(r). (f) LJ pressure PLJ.

of 0.1 nm: (a) FLJ versus h0, (b) −FLJ and −Fel versus d , (c) −Fex versus d , (d) rc
versus −Fex, (e) disk deformation w, and (f) LJ pressure PLJ. Figure 6(a) is similar
to Fig. 5 but drawn in a linear scale diagram. In Fig. 6(a), the LJ force FLJr for
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a rigid sphere–flat interface given by equation (14) is plotted with a solid line for
comparison. The maximum attractive value, indicated with a dashed line, is given
by FLJr max = AR/8z2

0. It is noted from Fig. 6(a) that FLJ increases with decrease
in h0 along the curve of FLJr in non-contact conditions. But after the contact at
h0 = σ,FLJ increases from FLJr with decrease in d because of the increase in the
contact area when σ > 0.16 nm. In particular, when σ = 0.2 nm, the FLJ increases
to more than 2 µN at d = −0.5 nm, which is four times larger than the FLJr max. The
increase of FLJ with a decrease in d is largest when σ = 0.2 nm. This is because
PLJ inside the contact area, given by equation (3), becomes maximum at h = σ =
31/6z0 = 0.198 nm. Therefore, if the small-scale asperity on a roughness asperity is
larger than z0, attractive force at the contacting asperity should be considered as a
function of separation d .

However, if σ is nearly equal to z0,FLJ has an almost constant value of AR/8z2
0

at any separation as shown in Fig. 6(a) and 6(b). This is because vdW attractive
pressure inside the contact area is cancelled by the repulsive pressure and the total
attractive force is generated only from the attractive pressure in the surrounding
area. This result can also be derived from FLJ∗ in equation (15), by substituting
h0 = z0, the attractive force inside the contact area vanishes and the attractive force
outside the contact area becomes AR/8z2

0.
When σ = 0.15 nm ( ), however, FLJ decreases rapidly with decrease in d after

contact due to repulsive pressure effect as shown in Fig. 6(a) and 6(b). In this case,
sphere and flat do not contact each other, Thus Fel is always zero, and FLJ = Fex,
as seen from comparison between Fig. 6(b) and 6(c).

It is noted from Fig. 6(c) that the relationship of Fex (= FH − FLJ) versus d

is hardly influenced by σ . Particularly, −Fex versus d is almost identical when
σ � z0. This indicates that a variation of FLJ due to σ is compensated with a reversal
variation of Fel, as seen in Fig. 6(b).

In Fig. 6(d), the relationship between contact radius rc and external force −Fex is
compared with those from JKR and DMT theories for three cases of σ = 0.25 (+),
0.165 (!) and 0.15 ( ) nm. It is observed that the calculated results of rc are close
to JKR curve when σ = 0.25 nm, and are in between JKR and DMT curves when
σ = 0.15 nm. However, the numerical results of rc become closer to DMT curve
when σ = 0.165 nm. This is because the total LJ force FLJ is attributable to LJ
pressure outside the contact area as in the DMT model when σ = ∼z0 as stated
above.

Typical disk deformation w(r) and LJ pressure PLJ(r) are illustrated for σ =
0.18 and 0.15 nm in Fig. 6(e) and 6(f), respectively when d is changed from 0.6 nm
to −0.5 nm in steps of 0.1 nm. Although the disk deformation is changed only
slightly by the change of σ,PLJ changes significantly with the change of σ after
the disk surface comes in contact with slider (d � 0.3 nm). When σ = 0.18 nm, the
disk surface contacts the spherical slider with a spacing of h0 = 0.18 nm. Therefore,
PLJ inside the contact area becomes smaller than PLJ in the surrounding area; PLJ
becomes maximum at h = 0.198 nm as explained above. When σ = 0.15 nm, the
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disk surface does not contact the slider because the spacing between the disk and
the slider is larger than asperity height σ and the external force Fex becomes equal
to FLJ.

Accordingly, it can be said that if and only if the small-scale asperity height is
nearly equal to z0,FLJ at a contacting asperity can be expressed approximately as
AR/8z2

0 at any separation. If σ is a little larger than z0,FLJ at a contacting asperity
would increase as separation decreases, as seen in Fig. 6(a) and 6(b). However, if
we evaluate the largest adhesion force that can be observed in Fex at the beginning
and end of asperity contact, the LJ attractive force can be approximated by AR/8z2

0
when σ � 0.25 nm. Moreover, as seen from Fig. 6(c), it is expected that the external
force −Fex calculated from FLJ = AR/8z2

0 for the case of σ = ∼z0 can be used for
a wider range of σ .

On the other hand, using Derjaguin approximation, the attractive force of a
sphere–flat contact has been derived from surface energy and given by

Fa = 2πR�γ, �γ = γ1 + γ2 − γ12, (16)

where γ1 and γ2 are surface energies of the mating surfaces 1 and 2 before con-
tact, and γ12 is that of the contacting surfaces after the contact. Since Fa should be
equal to FLJr in equation (14), we can obtain the general relationship between the
Hamaker constant A and the surface energy difference �γ as follows:

�γ = A

12πσ 2

(
1 − z6

0

4σ 6

)
, (17)

where σ is the effective mean height of small-scale roughness.
When σ � 1.16z0 (= 0.19 nm), the second term is less than 0.1. Thus, if the

surface energy is determined by the pull-off force of sphere–disk contact that is
affected by small-scale roughness, the Hamaker constant is approximately given by

A = 12πσ 2�γ. (18)

When σ � 1.04z0 (= 0.172 nm), and the surface energy is determined from the
pull-off force of sphere–flat contact, the Hamaker constant can be given by

A = 16πz2
0�γ. (19)

When the surface energy is determined from the contact angles of liquids, the liquid
molecules are considered to contact the solid surface at equilibrium distance. Thus,
in this case, equation (19) can be used for the relationship between the surface
energy difference and the Hamaker constant. The plotted curves of the JKR and
DMT theories illustrated in Figs 3, 4 and 6 were calculated using equation (17).

5.2. Comparison between Asperity LJ Pressure PLJa and Mean Height Plane LJ
Pressure PLJ

Next we consider the magnitude of averaged LJ pressure PLJa due to contacting
asperities and compare it with the LJ pressure PLJ due to mean height planes. Ac-
cording to the calculated results described above, if the small-scale asperity spacing
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σ is close to z0, the LJ attractive force is given by AR/8z2
0 at h0 = z0. This maxi-

mum attractive force is considered to be equal to Fa in equation (16) with surface
energy determined from contact angles of test liquids. In this condition, PLJa is
given by

PLJa = 2πRa�γρp, (20)

where Ra, ρ and p are mean asperity radius, asperity density, and probability of
contacting asperity out of the entire asperity density ρ.

Since the probability of asperities contacting each other is usually less than 0.5 at
separation d at which the minimum external force is observed, it can be said that PLJ
plays a dominant role if PLJa at p = 1.0 is smaller than PLJ given by equation (3),
i.e.,

2πRa�γρ � A

6πσ 3

{
1 −

(
z0

σ

)6}
. (21)

Since σ in inequality (21) is a large-scale asperity spacing, (z0/σ)6 � 1. In con-
trast, since the small-scale asperity spacing can be considered to be nearly equal
to z0, equation (19) holds. Therefore, by substituting equation (19) into inequal-
ity (21), we can obtain the condition where PLJ plays a dominant role in attractive
pressure compared to PLJa, as follows:

σ �
(

4

3

z2
0

πRaρ

)1/3

. (22)

If we assume that Ra = 1 µm, then σ � 1.05 nm and σ � 0.49 nm for ρ = 10
and 100 µm−2, respectively. Therefore, when the spacing σ of contacting asperities
is less than 0.5 nm, the contact characteristics can be approximately analyzed by
ignoring the LJ attractive force of contacting asperities and the contact mechanics
analysis in Section 4 can be supported.

6. Calculation of Attractive Force of 2-mm Glass Slider Including Asperity
LJ Pressure Effect

If asperity spacing σ is regarded as uniform in the contact area, contact characteris-
tics including LJ pressure due to contacting asperities and mean height planes can
be calculated from equation (7) in the same manner as equation (10) using PLJa
from equation (20). Ono and Nakagawa [20] measured the dynamic external force
when 1- and 2-mm-radius glass spheres bounced on a magnetic disk with a thin
lubricant layer. In experiments with a 2-mm smooth glass slider, a maximum at-
tractive force of about 0.4–0.6 mN was detected at the end of the contact period of
about 30 µs. To test our belief that the meniscus could be generated so rapidly and
that the measured attractive force must, therefore, be a meniscus force, the max-
imum possible LJ attractive force was calculated by an approximated numerical
analysis.
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Before calculating eqaution (7), the statistical asperity contact characteristics of
two flat rough surfaces, including the asperity LJ pressure PLJa of equation (20),
were first calculated following the conventional method similar to [9–11]. In this
analysis, however, PLJa was calculated from the attractive forces of contacting as-
perities given by equation (16). In contrast to the prior method, attractive pressure
from noncontacting asperities was taken into account in the mean height plane LJ
pressure PLJ.

If we denote asperity height by z, mean asperity height by zm, and asperity height
distribution density function by φ(z − zm) in the z-coordinate shown in Fig. 1,
asperity elastic contact pressure Pela, asperity LJ pressure PLJa and real contact
area ratio ARa are, respectively, given by

Pela = 4

3
E∗ρR

1/2
a

∫ ∞

d

(z − d)3/2φ(z)dz, (23)

PLJa = 2πRa�γρ

∫ ∞

d

φ(z)dz, (24)

ARa = πRaρ

∫ ∞

d

(z − d)φ(z)dz. (25)

Here, it is assumed that the asperity height has a Gaussian asperity height distribu-
tion with rms asperity height σa and mean asperity height zm of the form:

φ(z) = 1√
2πσa

exp

(
−(z − zm)2

2σ 2
a

)
. (26)

Table 2 lists the surface roughness parameters for the 2-mm-radius glass slider
and magnetic disk tested [20]. From Table 2, composite rms asperity height is
σa = (σ 2

a1 + σ 2
a2)

0.5 = (0.152 + 0.312)0.5 = 0.344 nm, and composite mean asperity
height zm is 0.56 nm + 0.52 nm = 1.08 nm. The composite asperity radius is given
by Ra = (R−1

a1 + R−1
a2 )−1 = (1.36−1 + 3.06−1)−1 = 0.94 µm. Since it is not easy to

evaluate the equivalent asperity density and probability of asperity contact, various
values of ρ were used for numerical calculation.

Table 2.
Surface roughness of the hemispherical R2 glass slider (scan area = 1 µm × 1 µm) and magnetic disk
(scan area = 5 µm × 5 µm)

Roughness Asperity

Ra Rq (rms) Rp Rms height Mean height Density Mean radius
(nm) (nm) (nm) (nm) (nm) (µm−2) (µm)

R2 slider 0.34 0.33 1.62 0.15 0.56 179 1.36
Disk 0.52 0.67 5.60 0.31 0.52 31.3 3.06
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Figure 7 shows the calculated asperity contact characteristics between the flat
glass slider and magnetic disk: (a) probability density function φ(z) and probabil-
ity p of asperity contact as a function of normalized asperity height (z − zm)/σa,
(b) elastic contact pressure Pela and LJ attractive pressure PLJa versus normalized
separation (d − zm)/σa, (c) real contact area ratio versus (d − zm)/σa, and (d) ex-
ternal pressure Pexa (= Pela − PLJa) versus (d − zm)/σa. Material parameters of the
two mating surfaces are as listed in Table 1. Surface energy �γ is assumed to be
0.06 J/m2 (A = 0.821 × 10−20 J from equation (19)). The effect of asperity density
ρ on contact characteristics is shown in Fig. 7.

As seen in Fig. 7(b) and 7(d), the external pressure Pexa has a minimum negative
value at (d −zm)/σa = ∼1 and becomes positive when (d −zm)/σa < 0. Figure 7(a)
and 7(c) shows that the real contact area ratios are 0.013, 0.04 and 0.073 for ρ =
31.3,100 and 179 µm−2, respectively, at 50% probability of asperity contact. Since

Figure 7. Statistical asperity contact characteristics of a flat rough surface with Gaussian asperity
height distribution. (a) Probability density function φ(z) and probability p of contacting asperities
versus normalized asperity height (z − zm)/σa. (b) Asperity contact pressure Pela (solid) and asperity
LJ pressure PLJa (dashed) versus normalized separation (d −zm)/σa. (c) Real contact area ratio versus
(d − zm)/σa. (d) External pressure Pexa(= Pela − PLJa) versus (d − zm)/σa.
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Figure 8. Contact characteristics of 2-mm-radius glass slider and magnetic disk including the effect of
LJ pressures due to contacting asperities and mean height planes (!: ρ = 0 µm−2, P: ρ = 100 µm−2,
1: ρ = 179 µm−2). (a) LJ force −(FLJ + FLJa) and external force −Fex applied to the slider versus
separation d . (b) Contact radius rc versus external force −Fex.

the real contact area ratio at ρ = 179 µm−2 increases to 0.55 at (d − zm)/σa = −3,
it seems that an asperity density of 179 would be an overestimated value. Since
we are interested in the region of negative external pressure, 50% probability of
asperity contact would be sufficient for estimating the asperity attractive force.

Therefore, for the calculation of equation (7), it is reasonable to consider that
the contact asperity spacing σ is ∼zm (= 1.08 nm) and probability of contacting
asperities p is ∼0.5. When p = 0.5,PLJa values in equation (20) become 5.56,
17.7 and 31.8 MPa for ρ = 31.3,100 and 179 µm−2, respectively. These asperity
LJ pressures were used to calculate asperity contact characteristics with equations
(7), (8) and (9).

Figure 8 shows (a) −(FLJ + FLJa) and −Fex (= −FLJ − FLJa + Fela) versus sep-
aration d and (b) rc versus −Fex for asperity densities of ρ = 0,100 and 179 µm−2.
These solutions have an accuracy of ε = 10−6. As seen in Fig. 8(a), the total at-
tractive force −(FLJ +FLJa) increases with an increase in asperity density and with
a decrease in d , but the minimum negative value of −Fex is not appreciable. In
Fig. 8(b), the minimum values of −Fex are 0.022, 0.05 and 0.151 mN for ρ = 0,100
and 179 µm−2, respectively.

Figure 9 shows a comparison between the experimental dynamic indentation
characteristics presented in a previous paper [20] and the calculated external force
applied to the slider. The experimental relationship between force applied to the
slider and displacement was calculated by differentiation and integration of the
slider velocity in the bouncing process that was measured by a digital laser Doppler
vibrometer. Experimental results show a small adhesion force at the beginning of
the contact and a large adhesion force of −0.4 to −0.6 mN at the end of the contact.
It should be noted that these force–displacement characteristics of the slider were
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Figure 9. Comparison between experimental and theoretical indentation characteristics. Experimental
results: lubricant thickness = 2 nm, mobile lubricant thickness = 0.98 nm, and impact velocity =
0.75 mm/s. Theoretical results: ! ρ = 0 µm−2 (PLJa = 0 MPa), P ρ = 100 µm−2 (PLJa = 17.7 MPa),
and 1 ρ = 179 µm−2 (PLJa = 31.8 MPa).

measured for only 30 µs contact time with magnetic disk with a mobile lubricant
thickness of 0.98 nm. In the numerical calculation, the difference between approach
and separation processes was too small to be visible in the figure. The calculated
adhesion force is about 0.15 mN even when ρ = 179 µm−2. Therefore, the small
adhesion force experimentally observed at the beginning of the contact might be
caused by LJ adhesion force. However, the large adhesion force observed at the end
of the contact is not caused by LJ attractive pressure. The meniscus force of lubri-
cant with surface energy γ is given by 2πRγ (1 + cos θ0) where θ0 is the contact
angle of lubricant on the glass slider and γ is the surface energy of the lubricant.
Since γ = 0.022 J/m2 in the experiment, the meniscus force 4πRγ is 0.55 mN
when θ0. = 0 degrees. Therefore, it is natural to consider that the adhesion force
observed at the end of the contact is caused by meniscus formation within a short
contact period of 30 µs.

7. Conclusion

A numerical analysis method is presented for the rough surface contact character-
istics between a sphere and a disk considering not only elastic deformation and
LJ forces between mean height planes of the sphere and disk but also LJ forces
of contacting asperities, and the intermolecular force between the glass slider and
the magnetic disk is evaluated. The effects of LJ forces of contacting asperities
and their elastic deformation and elastic contact force are taken into account. Fun-
damental contact characteristics of a 2-mm-radius glass sphere and a 1-µm-radius
asperity model on the glass slider were calculated by assuming asperity spacing due
to different scale asperity heights. The relationship between the Hamaker constant
and the surface energy is discussed. This analysis suggests that LJ attractive force
at a contacting asperity is given by 2πR�γ at any separation if the spacing be-
tween the contacting asperity and the mating surface is close to atomic equilibrium
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distance. By using this adhesion force for contacting asperities, an approximate nu-
merical analysis method for rough-surface contact between a sphere and a flat disk,
including elastic deformation and LJ pressures of contacting asperities and mean
height planes, is presented. The contact characteristics for the 2-mm-radius glass
slider and magnetic disk are calculated using asperity parameters measured in the
experiment and compared with experimental adhesion force values. It is shown that
the calculated adhesion force is much smaller than the measured adhesion force,
supporting the idea that the adhesion force measured at the end of the contact is
generated from meniscus force rather than from vdW force.
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Abstract
The capillary adhesion force of an asperity of radius R as a function of vapor partial pressure is calculated
using exact and approximate methods assuming a continuum model. The equilibrium between the capillary
meniscus at the asperity and the adsorbate film on the surface is discussed through a disjoining pressure
term. It is found that the two methods agree very well over a wide partial pressure range. Without taking
into account the effect of the adsorbate film, the theoretical calculation results do not show the experimental
partial pressure dependence of the capillary force except near the saturation vapor condition. The experi-
mental capillary force trend with partial pressure can be explained when the presence of the adsorbate film
is included in the calculation.

Keywords
Capillary forces, nanoscale, disjoining pressure, adsorption, equilibrium

1. Introduction

When a liquid meniscus is formed around the contact area of two neighboring sur-
faces, a force is exerted on the contacting surfaces due to the surface tension of the
liquid and the curvature of the meniscus. This is called a capillary force. Capillary
forces play important roles in studies of adhesion between particles and particles to
flat or curved surfaces, adhesion of insects and small animals, particle processing,
friction, etc. Compared to body forces, the relative strength of the capillary force
becomes larger as the size of the object decreases, and, unless avoided, immediately
leads to the “stiction” problem in microelectromechanical systems (MEMS).
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Even if the partial pressure of the vapor in the ambient is lower than its saturation
pressure, a condensed phase can be formed in the narrow gap of two solid surfaces if
the vapor molecule has a strong affinity toward the solid surface. This phenomenon
is called capillary condensation and is explained well by the equilibrium relation-
ship between the Laplace pressure due to the curvature of the condensed liquid
meniscus and the vapor pressure (see Section 2.1). Alcohol vapors have been shown
to be highly efficient to prevent MEMS failure compared to other coating based lu-
brication approaches [1–3], but are expected to form capillaries of the condensed
liquid at the asperity contacts depending on the pressure of the vapor being adsorbed
relative to its saturation vapor pressure (p/psat). Hence, it is critical to understand
alcohol capillarity effects on the adhesion of nano-asperity silicon oxide surfaces.

Atomic force microscopy (AFM) has been used to quantitatively measure the
capillary forces exerted by the liquid meniscus at the nano- and micro-scales, di-
rectly related to MEMS and other applications [4–10]. Figure 1 shows the pull-off
force for silicon oxide surfaces in various alcohol vapor environments measured
with AFM tips mounted on low spring constant cantilevers [10]. Of note in Fig. 1
is that starting at the saturation p/psat, the force increases substantially as p/psat
decreases. There are a number of theoretical models that consider experimentally
observed capillary force trends. In the following paragraphs, the assumptions used
in these theoretical calculations and their validity will be briefly discussed.

One of the most widely used equations to describe the capillary force is Fc =
4πRγ cos θ where R,γ and θ are the radius of the tip (modeled as a sphere), the
liquid surface tension, and the contact angle of the liquid on the solid surface,

Figure 1. Pull-off force measured with atomic force microscopy for clean SiO2 surfaces as a function
of relative partial pressure (p/psat) of ethanol, n-butanol, and n-pentanol [10]. The force is normalized
with 4πRγ (R = AFM tip radius and γ = surface tension of liquid). {Reprinted with permission from
the American Chemical Society.}
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respectively [11, 12]. This equation originates from the Young–Laplace equation
which contains two principal radii of the meniscus (see Section 2.1) through sev-
eral assumptions. One assumption is that the radius of the tip is much larger than the
cross-sectional radius of the liquid meniscus which, in turn, is much larger than the
meridional curvature (external curvature) of the meniscus surface [5, 11–13]. How-
ever, this assumption is not valid especially for the nano-scale relevant to AFM
experiments. He et al. extended this model and derived an equation that does not
require the large contact area assumption [7]. They found that the capillary force
becomes larger than 4πRγ cos θ as the size of the tip decreases. In any case, these
models predict no vapor pressure dependence of the capillary force, which is incon-
sistent with experimental results reported in the literature [4–10].

More elegant models use a circular approximation described by Orr et al. to
calculate the capillary force due to the liquid meniscus without making the afore-
mentioned assumption [14]. In this approximation, the meridional profile of the
meniscus is modeled by an arc of a circle (cross section of a torus). Xiao and Qian
assumed that the meniscus edges met with the tip and substrate surfaces with finite
contact angles and estimated the size of the meniscus using the Kelvin equation at a
given vapor partial pressure [5]. This model shows some vapor pressure dependence
of the capillary force, but the exact shape deviates from the experimental data.

It should be noted that on clean silicon oxide surfaces, the contact angle of water
and short-chain alcohols is near zero (completely wetting). Therefore, assuming
a finite contact angle at the meniscus edge is inappropriate especially for water
and alcohol condensation on hydrophilic surfaces. Bhushan, Butt and other groups
have used the same or similar circular approximation for the case where the contact
angles are zero at both tip and substrate surfaces [15, 16]. In this case, however,
the theoretical predictions are that the capillary force is the same as 4πRγ (since
cos θ = 1 when θ = 0◦) and does not change until the vapor pressure approaches the
saturation pressure, where the capillary force diminishes. This prediction is in sharp
contrast with Fig. 1 as well as with experimental observations previously reported
for silicon oxide surfaces exposed to water and alcohol vapors [4–10, 17].

These theories neglect the role of the adsorbate film on the tip and substrate
surfaces. The thickness trend of this film versus vapor pressure is known as an ad-
sorption isotherm, and can be described by a Langmuir, BET or other isotherm
model [18]. As we shall show, incorporating the effect of this film into the theory
explains why the capillary force increases much larger than 4πRγ as p/psat de-
creases from saturation, i.e., below a value of 1. On most high surface energy solid
surfaces (such as oxides and metals), adsorption of water or organic molecules read-
ily occurs from the surrounding gas environments. The thickness of the adsorbate
layer can vary from less than one monolayer to several molecular layers depending
on the partial pressure of the molecule in the gas phase [19–21]. The adsorbed layer
may have different molecular orientation or packing from the bulk liquid [21, 22].
Because both the liquid meniscus and the adsorbed film consist of the same mole-
cules and are in equilibrium with the vapor, the adsorbed film should be considered



28 D. B. Asay et al. / Adhesion Aspects in MEMS/NEMS (2010) 25–44

a continuous film of the condensed phase composing the meniscus. This adsorbate
film then acts as the disjoining layer in the mechanics terminology [23].

The effects of the disjoining layer in capillary force measurements have been dis-
cussed by Mate, White and their colleagues for lubricant films [24, 25]. However,
the vapor pressure of lubricant molecules is extremely low. Therefore, the vapor-
adsorbate equilibrium can be ignored, and the focus of that work was to calculate
the disjoining pressure of the film from the capillary force measured during the
stretching of the meniscus with tips attached to high spring constant cantilevers. In
their experiments, a lubricant layer of a known thickness is applied to a substrate
and the force versus displacement curve of an AFM tip of known radius is mea-
sured. The force measured during the stretching of the lubricant layer is analyzed to
determine the effective meniscus curvature, which is directly related to the Laplace
pressure and hence the disjoining pressure [25].

Wei and Zhao calculated the growth rate of a liquid meniscus in humid envi-
ronments on the substrate and a finite contact angle on the tip surface [26]. They
assumed a disjoining layer only on the substrate and calculated the capillary growth
kinetics by considering vapor-phase diffusion. Their theory qualitatively supported
the experimental results. Asay and Kim recently measured the effect of the vapor-
adsorbate equilibrium on the AFM pull-off force measured in water and alcohol
vapor environments [9, 10]. Their capillary force model uses the circular approx-
imation with zero contact angles and includes the adsorbate films on both tip and
substrate surfaces which are in equilibrium with the vapor. The good agreement be-
tween their model and experimental data obtained for alcohol vapors [10] motivated
the present work. In the case of water, the agreement is poor and the discrepancy is
attributed to the presence of solid-like structured water [9]. Therefore, only alcohol
vapors are considered here.

In this paper, the effects of the adsorbate film (disjoining layer) in equilibrium
with the vapor are considered by using the exact solution of the Young–Laplace
equation for an axisymmetric meniscus (commonly known as a pendular-ring
geometry) [14]. It is compared with the circular approximation using a simple
trigonometric relation to estimate the meridional and axial radii of the meniscus [9,
10]. Both formulations use the adsorption isotherm and the Kelvin equation [10].
A polynomial fit describing the thickness of the adsorbate layer at a given vapor
pressure relative to the saturation pressure, h(p/psat), has been generated to rep-
resent the experimentally determined isotherms of alcohols on clean SiO2 surfaces
[10]. The tip radius is varied in the models from 10 nm to 1 µm, mimicking typical
AFM experiments. Both models show that as p/psat decreases from the saturation,
the capillary force increases and reaches a maximum at p/psat ∼ 0.15. The trend
and magnitude calculated from these methods are in agreement with experimentally
observed behavior for alcohol vapors. It is also confirmed that when the adsorption
isotherm thickness is ignored, the capillary force is fairly insensitive to the alcohol
vapor pressure except near the saturation vapor pressure region where the capillary
force is predicted to diminish sharply.
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2. Theoretical Calculation Details

In Section 2.1, we show that the capillary pressure of the meniscus and the dis-
joining pressure of the adsorbed layer are equal if both are in thermodynamic
equilibrium with the vapor. In Sections 2.2 and 2.3, we derive exact and approx-
imate models for the effect of disjoining pressure on capillary force as a function
of p/psat. The assumptions are that the sphere and substrate are elastically rigid,
and that the disjoining layer forms a continuous film. The disjoining layer is the
adsorbate film which is in equilibrium with the vapor and the capillary meniscus.
The calculation methods and results will be presented and discussed in Section 3,
where they will also be compared to each other as well as to the theory which does
not include the disjoining layer.

2.1. Equivalence of Capillary and Disjoining Pressures

The fundamental equation of capillarity, the Young–Laplace equation, is derived
from a surface curvature argument [18]. Accordingly, a curved liquid–vapor inter-
face supports a pressure difference

�P = γ /re. (1)

This quantity is equal to the capillary pressure. Here, the liquid surface tension is γ

and the effective radius of curvature of the surface is re as defined by

1

re
= 1

ra
+ 1

rm
, (2)

where ra (the azimuthal radius) and rm (the meridional radius) are the principal
radii of curvature of the surface, as shown in Fig. 2(a). These quantities are positive
when the center of the radius is inside the meniscus (ra) and negative when outside
(rm). The liquid is assumed to be isobaric, meaning that re is constant along the
meniscus surface, while ra and rm may vary along the surface.

The Kelvin equation is derived from thermodynamic equations and the Young–
Laplace equation [18]. First, for a reversible process at constant temperature, the
effect of the change in mechanical pressure on the free energy Gf of a substance is

�Gf =
∫

Vm dP, (3)

where Vm is the molar volume of the liquid. Assuming constant molar volume of
the liquid substance Vm, and applying the Young–Laplace equation, equation (1),
we obtain

�Gf = γVm/re. (4)

Thermodynamics relates the free energy of a substance to its vapor pressure. As-
suming the vapor to be ideal,

�Gf = RuT ln(p/psat), (5)



30 D. B. Asay et al. / Adhesion Aspects in MEMS/NEMS (2010) 25–44

Figure 2. (a) Typical geometry considered for a pendular ring or liquid bridge between a sphere and
a flat substrate [30]. {Reprinted with permission from Elsvier.} (b) Modified pendular ring geometry
for a system where the equilibrium adsorbate layers are present on both the sphere and the substrate.
In this modified geometry, D = −2h(p/psat). The interpenetration of the sphere into the surface 2
of (a) does not affect the force because the Laplace–Young solution treats only the capillary force
and not the contact mechanics problem. In this paper, the force is calculated at point 1. Although
individual components (axial surface tension and Laplace pressure) contributing to the capillary force
vary with the position, the total capillary force does not vary with the position because the system is
in mechanical equilibrium.

where Ru is the universal gas constant and T is temperature (K). Equating (4)
and (5), and assuming thermodynamic equilibrium, the Kelvin equation [18] is
found.

rK = γVm

[RuT ln(p/psat)] . (6)

For example, rK = 0.53
ln(p/psat)

nm for water at 300 K. At thermodynamic equilibrium,

re equals the Kelvin radius rK, a negative number for 0 < p/psat < 1.
Also, at thermodynamic equilibrium the disjoining pressure P(h) of the ad-

sorbed layer is related to the partial pressure of the vapor by [11],

υP (h) = kBT ln(p/psat). (7)

Here, h is the equilibrium thickness of the film, υ is the liquid film molecular vol-
ume, kB is Boltzmann’s constant, T is the temperature and p/psat is the relative
vapor pressure. According to Mate [27], the term υP (h) represents the molecular
interaction of the liquid film with the surface relative to that with the bulk liquid,
i.e., the Gibbs free energy per molecule.


