Isotopes in Nanoparticles Fundamentals and Applications

edited by Jordi Llop Roig Vanessa Gómez-Vallejo Peter Neil Gibson

Isotopes in Nanoparticles

This page intentionally left blank

Isotopes in Nanoparticles Fundamentals and Applications

edited by Jordi Llop Roig Vanessa Gómez-Vallejo Peter Neil Gibson

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20160308

International Standard Book Number-13: 978-981-4669-09-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

This book is dedicated to Prof. Manuel Martín Lomas, founding director of CIC biomaGUNE. Dr. Llop and Dr. Gómez-Vallejo are grateful for his mentoring and guidance. This page intentionally left blank

Contents

Prej	face				xxi		
1.	Intro Sergi	Introduction Sergio E. Moya					
2.	Inor	ganic N	anoparti	cles	7		
	Rona	Ronald F. Ziolo and Veronica Corral-Flores					
	2.1	Introd	uction		8		
		2.1.1	Nanoma	aterials and Nanoparticles	9		
		2.1.2	Chapter	Scope	9		
		2.1.3	Challen	ges	10		
	2.2	An Ov	An Overview of Inorganic Nanoparticle				
		Synthe	esis		10		
		2.2.1	The Bot	tom-Up Approach: From			
			Small to	Large	10		
		2.2.2	The Top	D-Down Approach: From			
			Large to	Small	11		
		2.2.3	Combin	ed Approaches	12		
	2.3	Synthe	esis of So	me Specific NP Materials	12		
		2.3.1	Metal O	xide NPs	12		
			2.3.1.1	Zinc oxide NPs	13		
			2.3.1.2	Titanium dioxide NPs	14		
			2.3.1.3	Aluminum oxide NPs	15		
			2.3.1.4	Other metal oxide NPs	15		
		2.3.2	Noble M	letal NPs	15		
		2.3.3	Colloida	al Semiconductor Quantum Dots	17		
		2.3.4	Magnet	ic Nanoparticles	18		
	2.4	Non-A	queous,	Microwave-Assist and Other			
		Synthesis Routes		20			

viii Contents

		2.4.1	Nanoparticle Synthesis by	
			Non-Aqueous Routes	20
		2.4.2	Nanoparticle Synthesis by	
			Microwave-Assisted Routes	21
		2.4.3	Microemulsion and Micellar Techniques	22
	2.5	The Re	ole of NP Capping Agents and	
		Functi	lonalization	22
	2.6	INP Aj	oplications and Opportunities	25
		2.6.1	INPs in Potential Medical, Therapeutic	20
	27	C	and Toxicology Applications	20
	2.7	Summ	ary, conclusions, and Outlook	27
3.	Oxid	le and E	Bioceramic Nanoparticles	45
	Veroi	nica Cori	ral-Flores and Ronald F. Ziolo	
	3.1	Introd	luction	46
	3.2	Sol-Ge	el Synthesis	47
	3.3	Sol-Ge	el-Derived Methods	50
		3.3.1	Traditional Sol-Gel Method	50
		3.3.2	Nonaqueous Sol-Gel Method	50
		3.3.3	Pechini Method	51
		3.3.4	Citrate Solution Method	51
		3.3.5	Auto-Combustion Method	51
		3.3.6	Microwave-Assisted Sol-Gel Method	51
		3.3.7	Polyol Method	52
	3.4	Simple	e Metal Oxide Nanoparticles	52
		3.4.1	Nickel Oxide, NiO	52
		3.4.2	Alumina, Al ₂ O ₃ , and Related Oxides	53
		3.4.3	Titanium Dioxide, TiO ₂	53
		3.4.4	Silica, SiO ₂	53
		3.4.5	Other Simple Oxides	54
	3.5	Comp	lex Metal Oxide Nanoparticles	55
		3.5.1	Barium Titanate, BaTiO ₃	55
		3.5.2	Barium Ferrite, $BaFe_{12}O_{19}$, and Substituted	
			Hexaferrites	55

		3.5.3	Spinel F	errites, MFe ₂ O ₄	56
		3.5.4	Bioactiv	e Glass, SiO ₂ -CaO-P ₂ O ₅	56
		3.5.5	Other C	omplex Oxides	57
	3.6	Summ	ary and (Conclusions	58
4.	Grap	ohene,	Carbon N	anotubes, and BCN Nanostructures	69
	Rona	ld F. Zio	lo, Carlos A	. Ávila-Orta, and Layza A. Arizmendi-Galav	iz
	4.1	Introd	luction		70
	4.2	Backg	round an	d Description	71
		4.2.1	Grapher	ne and Graphene Oxide	71
		4.2.2	Grapher	ne Quantum Dots and Carbon Dots	74
		4.2.3	Carbon	Nanotubes	75
			4.2.3.1	Number of walls	76
			4.2.3.2	CNT geometries	76
		4.2.4	BCN Ma	terials	77
	4.3	Synth	esis of the	e Nanostructures	79
		4.3.1	Grapher	ne and Graphene Oxide	79
		4.3.2	Grapher	ne Quantum Dots and Carbon Dots	80
		4.3.3	Carbon	Nanotubes	82
			4.3.3.1	Arc discharge	83
			4.3.3.2	Laser vaporization	83
			4.3.3.3	Vaporization by solar energy	83
			4.3.3.4	Chemical vapor deposition	83
			4.3.3.5	Low-temperature solvothermal	
				synthesis	84
			4.3.3.6	Additional techniques	84
		4.3.4	BCN Ma	terials	84
	4.4	Applic	cations of	the Nanostructures	87
		4.4.1	Grapher	ne and Graphene Oxide	87
		4.4.2	Grapher	ne Quantum Dots and Carbon Dots	90
		4.4.3	Carbon	Nanotubes	90
		4.4.4	BCN Ma	terials	92
	4.5	Summ	ary, Cond	clusions, and Outlook	92

5.	Poly and	vmeric N Applica	Vanoparticles: Description, Synthesis ations	113		
	Erica Locatelli and Mauro Comes Franchini					
	5.1	Introd	Introduction			
		5.1.1	Nanomedicine	113		
		5.1.2	Materials for PNPs	114		
		5.1.3	PNPs: Classification	116		
			5.1.3.1 Micelles	116		
			5.1.3.2 Nanospheres	118		
			5.1.3.3 Liposomes and polymersomes	118		
			5.1.3.4 Nanocapsules	118		
	5.2	Prepa	ration of PNPs	119		
		5.2.1	Nanoprecipitation Technique	119		
		5.2.2	Oil-in-Water Emulsion Technique	121		
		5.2.3	Water-in-Oil-in-Water Double Emulsion			
			Solvent Technique	122		
		5.2.4	PNPs from Natural Polymers: Cross-Linking			
			Methods	124		
		5.2.5	Purification of PNPs	125		
	5.3	Surfac	e Modification of PNPs	126		
		5.3.1	Possibilities beyond Surface Modification	126		
		5.3.2	Reactive Groups	127		
		5.3.3	Activation of Carboxylic Acids	127		
		5.3.4	Radioisotope Incorporation	129		
	5.4	Applic	cations of Radiolabelled PNPs	130		
		5.4.1	Biodistribution	130		
		5.4.2	Diagnosis	132		
	5.5	Conclu	usion	133		
6.	A Bı	rief Ove	rview of Radioactivity	143		
	Vane	essa Góm	ez-Vallejo, Jordi Llop, and Juan Ignacio Lagares			
	6.1	Introd	luction	143		
	6.2	Radio	activity and Radioactive Decay	144		
		6.2.1	The (Radioactive) Atom	144		
		6.2.2	Radioactive Decay Equations	145		

	6.2.3	Modes of	of Radioactive Decay	146
		6.2.3.1	Alpha emission	146
		6.2.3.2	Beta emission	147
		6.2.3.3	Gamma emission	148
		6.2.3.4	Other types of radioactive decay	149
	6.2.4	Radioad	ctivity Units	150
6.3	The Ir	nteraction	n of Radiation with Matter	151
	6.3.1	Interact	tion of Charged Particles	
		with Ma	atter	151
		6.3.1.1	Interaction of α particles	450
		6040	with matter	152
		6.3.1.2	Interaction of β particles with matter	152
	627	Intoract	vion of Photons with Matter	152
	633	Databas	ses for Nuclear Decay and	155
	0.5.5	Radiatio	on Interactions with Matter	154
6.4	A Few	Words o	n Radiation Protection	155
	6.4.1	Magnitu	ides and Units: Definitions	155
	6.4.2	Radiatio	on Protection	157
6.5	Answ	ering the	Three Key Questions	158
	6.5.1	Why Is	It Important to Radiolabel NPs?	158
	6.5.2	Which I	s the Ideal Radionuclide to Use	
		for Labe	elling NPs, and Why?	159
	6.5.3	Do Puta	tive Applications Depend on the	
		Selected	l Radionuclide?	160
6.6	Summ	hary and (Conclusions	161
In vi	<i>ivo</i> Eval	uation of	f Nanoparticle Pharmacokinetics	
by N	Aolecul	ar Imagir	ng: Technical Aspects	163
Juan	-Doming	o Gispert,	José-Raúl Herance,	
and .	Santiago	o Rojas		
7.1	Introd	luction		163
7.2	Nucle	ar Imagir	ng: General Aspects	164
	7.2.1	Radioad	ctive Isotopes	165
	7.2.2	Gamma	-Ray Detection	166
	7.2.3	Image F	Reconstruction	171

7.

xii Contents

		7.2.4	Attenua	tion Correction	172
		7.2.5	Image Q	Quantification	173
		7.2.6	The Par	tial Volume Effect	175
	7.3	Nanop	oarticle P	harmacokinetics Using SPECT	
		and PI	ET		176
	7.4	Summ	ary and (Conclusion	178
8.	Radi ⁶⁷ Ga	iolabell , ⁸⁹ Zr, a	ing of NP Ind ⁶⁴ Cu	Ps Using Radiometals: ^{99m} Tc, ⁶⁸ Ga,	183
	Isabe	el García	Martín, Je	ns Frigell, Jordi Llop, and Marco Marradi	
	8.1	Introd	luction		183
	8.2	Synthe	esis of Ra	diometal-Labelled	
		Nanop	oarticles		184
		8.2.1	Bifuncti	onal Chelators	185
		8.2.2	^{99m} Tc-L	abelled Nanoparticles	189
			8.2.2.1	Introduction	189
			8.2.2.2	Production and purification of ^{99m} Tc	189
			8.2.2.3	Basic Concepts of	
				^{99m} Tc-Chemistry	191
			8.2.2.4	Labelling NPs with ^{99m} Tc	193
		8.2.3	⁶⁸ Ga-La	belled Nanoparticles	197
			8.2.3.1	Introduction	197
			8.2.3.2	Production of ⁶⁸ Ga	198
			8.2.3.3	Purification of ⁶⁸ Ga	201
			8.2.3.4	Labelling NPs with ⁶⁸ Ga	202
		8.2.4	⁶⁷ Ga-La	belled Nanoparticles	205
			8.2.4.1	Introduction	205
			8.2.4.2	Production and Purification	
				of ⁶⁷ Ga	206
			8.2.4.3	Labelling NPs with ⁶⁷ Ga	206
		8.2.5	Cu-64 L	abelled Nanoparticles	208
			8.2.5.1	Introduction	208
			8.2.5.2	Production and purification of ⁶⁴ Cu	209

			8.2.5.3	Labelling NPs with ⁶⁴ Cu	209
		8.2.6	Zr-89 La	abelled Nanoparticles	215
			8.2.6.1	Introduction	215
			8.2.6.2	Production and purification of ⁸⁹ Zr	215
			8.2.6.3	Labelling NPs with ⁸⁹ Zr	218
	8.3	Summ	ary and (Conclusions	220
9.	Radi Radi	olabelli ohalog	ing of Na ens, ¹³ N,	noparticles Using and ¹¹ C	231
	Jordi . and M	Llop, Va Iarco M	nessa Góm arradi	ez-Vallejo, Isabel García Martín,	
	9.1	Introd	uction		231
	9.2	Synthe	esis of Na	noparticles Labelled with	
		Radiol	nalogens		232
		9.2.1	¹⁸ F-Labe	elled Nanoparticles	232
			9.2.1.1	Introduction	232
			9.2.1.2	Production and purification of ¹⁸ F	232
			9.2.1.3	Radiolabelling of nanoparticles with ¹⁸ F	235
		9.2.2	Radioio	dinated Nanoparticles	242
			9.2.2.1	Introduction	242
			9.2.2.2	Production of 123 I, 124 I, 125 I, and 131 I	243
			9.2.2.3	Labelling NPs with radioiodine	246
	9.3	¹³ N- ai	nd ¹¹ C-La	belled Nanoparticles	251
		9.3.1	Introdu	ction	251
		9.3.2	Product	ion of ¹³ N and ¹¹ C	251
		9.3.3	Radiolal	belling of Nanoparticles	
			with ¹¹ C	and ¹³ N	253
	9.4	Summ	ary and (Conclusions	255
10.	Radi	olabelli	ing of Lip	osomes	261
	Unai and P	Cossío, V Peter Lav	'anessa Gó verman	mez-Vallejo, Jordi Llop,	
	10.1	Intro	duction		261
	10.2	Radio	olabelling	of Liposomes by the	
		Redu	ction Me	thod	265

	10.3	Radiola	belling of Liposomes by Passive	
		Encapsı	llation	266
	10.4	Radiola	belling of Liposomes by Remote Loading	269
		10.4.1	Remote Loading with Lipophilic Chelators	270
		10.4.2	Remote Loading Using Ionophores	273
		10.4.3	Remote Loading by pH Gradient	274
		10.4.4	"Passive" Remote Loading	275
	10.5	Radiola Lipids	belling of Liposomes Using Pre-Labelled	276
	10.6	Radiola	belling of Liposomes Using Bifunctional	
		Chelator	rs	278
		10.6.1	Incorporation of the Chelator during	
			Preparation of Liposomes	279
		10.6.2	Pre-Labelling of the Bifunctional Chelator	281
	10.7	Conclus	ions and Outlook	281
11.	Direct	Ion-Bea	m Activation of Nanoparticles	287
	Neil Gi	bson, Uwe	Holzwarth, Federica Simonelli,	
	and Gi	ulio Cotog	no	
	11.1	Introdu	ction	287
	11.2	Direct N	lanoparticle Activation	289
		11.2.1	Reasons for Direct Activation	289
		11.2.2	Types of Direct Activation	290
		11.2.3	Pros and Cons of Direct Ion-Beam	
			Activation	293
		11.2.4	Requirements on Tracing Isotopes	295
	11.3	Practica	ll Considerations	297
		11.3.1	Nanoparticle-Specific Issues	297
		11.3.2	Maximising Yield	300
		11.3.3	Minimising Thermal Damage	303
		11.3.4	Calculation of Radiation Damage	307
	11.4	Case Stu	ıdies	308
		11.4.1	Titania Nanoparticles	308
		11.4.2	Magnetite Nanoparticles	309
		11.4.3	Ceria Nanoparticles	310

		11.4.4	Carbon-E	Based Nanoparticles	311
	11.5	Conclus	sions		311
12.	Neut	ron Activ	ation of N	anoparticles	315
	Giulio and N	Cotogno, I eil Gibson	Federica Sin	nonelli, Uwe Holzwarth,	
	12.1	Introdu	ction		315
	12.2	Activati	ion Metho	ls and Practical	
		Conside	erations		319
		12.2.1	Research	Reactors	319
		12.2.2	Accelerat	cor-Driven Neutron Sources	320
	12.3	Case Stu	udies		323
		12.3.1	General (Considerations	323
		12.3.2	Reactor I	rradiated Cobalt Nanoparticles	325
		12.3.3	ARC Irra	liated Gold Nanoparticle	
			Suspensi	ons	326
		12.3.4	Medical I	Nanoparticles	328
	12.4	Summa	ry and Co	nclusions	329
13.	7-Ber	yllium-R	ecoil-Labe	lling of Nanoparticles	335
13.	7-Ber Uwe H	r yllium-R Iolzwarth,	ecoil-Labe Neil Gibson	lling of Nanoparticles , Matteo Dalmiglio,	335
13.	7-Ber Uwe H and Ja	yllium-R Iolzwarth, In Kozemp	ecoil-Labe Neil Gibson Pel	lling of Nanoparticles , Matteo Dalmiglio,	335
13.	7-Ber Uwe H and Ja 13.1	r yllium-R Iolzwarth, In Kozemp Introdu	ecoil-Labe Neil Gibson el Iction	lling of Nanoparticles , Matteo Dalmiglio,	335 335
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2	r yllium-R Iolzwarth, In Kozemp Introdu Selectic	ecoil-Labe Neil Gibson el action on of the Li	lling of Nanoparticles , <i>Matteo Dalmiglio,</i> thium Compound	335 335 337
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	r yllium-R Iolzwarth, In Kozemp Introdu Selectic Optimis	ecoil-Labe Neil Gibson el action on of the Li sation of Ir	lling of Nanoparticles , <i>Matteo Dalmiglio,</i> 	335 335 337 338
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, In Kozemp Introdu Selectic Optimis 13.3.1	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime	lling of Nanoparticles , <i>Matteo Dalmiglio,</i> athium Compound rradiation Conditions ental Objectives	335 335 337 338
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime and Cons	lling of Nanoparticles , <i>Matteo Dalmiglio,</i> Thium Compound Tradiation Conditions Ental Objectives Traints	335 335 337 338 338
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, In Kozemp Introdu Selectic Optimis 13.3.1 13.3.2	ecoil-Labe Neil Gibson el on of the Li sation of Ir Experime and Cons Proton E	Iling of Nanoparticles , <i>Matteo Dalmiglio,</i> athium Compound rradiation Conditions ental Objectives atraints nergy	 335 337 338 338 338 339
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3	ecoil-Labe Neil Gibson el action on of the La sation of In Experime and Cons Proton E Expected	Iling of Nanoparticles , <i>Matteo Dalmiglio</i> , thium Compound tradiation Conditions ental Objectives traints nergy ¹⁷ Be Activity	 335 337 338 338 339 341
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4	ecoil-Labe Neil Gibson el action on of the La sation of Ir Experime and Cons Proton E Expected Expected	Iling of Nanoparticles <i>, Matteo Dalmiglio,</i> Ithium Compound rradiation Conditions ental Objectives traints nergy ¹⁷ Be Activity ¹⁷ Be-labelling Yield	 335 337 338 338 339 341 342
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime and Cons Proton E Expected Expected Practical	Iling of Nanoparticles , <i>Matteo Dalmiglio</i> , thium Compound tradiation Conditions ental Objectives traints nergy ¹⁷ Be Activity ¹⁷ Be-labelling Yield Considerations	 335 337 338 338 339 341 342 345
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime and Cons Proton E Expected Expected Practical 13.3.5.1	Iling of Nanoparticles , <i>Matteo Dalmiglio</i> , thium Compound tradiation Conditions ental Objectives traints nergy ⁷ Be Activity ⁷ Be-labelling Yield Considerations Over filling the target	 335 337 338 338 339 341 342 345 345
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime and Cons Proton E Expected Expected Practical 13.3.5.1 13.3.5.2	lling of Nanoparticles , Matteo Dalmiglio, thium Compound rradiation Conditions ental Objectives traints nergy ⁷ Be Activity ⁷ Be-labelling Yield Considerations Over filling the target Homogenising the powder	 335 337 338 338 339 341 342 345 345
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the La sation of In Experime and Cons Proton E Expected Practical 13.3.5.1 13.3.5.2	Iling of Nanoparticles <i>, Matteo Dalmiglio,</i> thium Compound tradiation Conditions ental Objectives traints nergy ⁷ Be Activity ⁷ Be-labelling Yield Considerations Over filling the target Homogenising the powder mixture	 335 337 338 338 339 341 342 345 345 346
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the La sation of Ir Experime and Cons Proton E Expected Practical 13.3.5.1 13.3.5.2 13.3.5.3	Iling of Nanoparticles , Matteo Dalmiglio, Athium Compound radiation Conditions ental Objectives traints nergy ⁷ Be Activity ⁷ Be-labelling Yield Considerations Over filling the target Homogenising the powder mixture Separation and recovery	 335 337 338 338 339 341 342 345 345 346
13.	7-Ber <i>Uwe H</i> <i>and Ja</i> 13.1 13.2 13.3	yllium-R lolzwarth, in Kozemp Introdu Selectic Optimis 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	ecoil-Labe Neil Gibson el action on of the Li sation of In Experime and Cons Proton E Expected Practical 13.3.5.1 13.3.5.2 13.3.5.3	lling of Nanoparticles , Matteo Dalmiglio, thium Compound radiation Conditions ental Objectives traints nergy ⁷ Be Activity ⁷ Be-labelling Yield Considerations Over filling the target Homogenising the powder mixture Separation and recovery of nanoparticles	 335 337 338 339 341 342 345 345 346 346

	13.4.1	4.1 Model Substances–Nanodiamonds		
		and Amor	rphous Silica	347
	13.4.2	Character	isation Methods and Results	348
		13.4.2.1	X-ray diffraction	348
		13.4.2.2	Dynamic light scattering and	
			ζ -potential measurements	349
		13.4.2.3	Residual lithium impurities	351
	13.4.3	Other Typ	bes of Nanoparticles	352
13.5	Limitati	ons: Nano	particle Alterations	353
13.6	Conclus	ions		356
Calcul	ation To	ols for Isot	tope Production by	
Beam	Activati	on		361
Pedro A	Arce			
14.1	Introdu	ction		361
14.2	Calculat	ion Tools		362
14.3	Monte C	arlo Codes	5	364
	14.3.1	The Princ	iple	364
	14.3.2	The Physi	cs of MC Codes: Evaluated	
		Databases	S	365
		14.3.2.1	Ion physics	366
		14.3.2.2	Neutron physics	368
14.4	Simulati	ion Examp	les of Irradiation	
	of Nano	particles		370
	14.4.1	Example	1: Simulation of Proton	070
	1440	Irradiatio	n of NPs	370
	14.4.2	Example A	2: Simulation of Neutron	375
14.5	Summai	y and Con	clusions	380
C	:	• • • • • • • • • • •	us of Aluba /Data	
Emitte	esis and er-Labell	ed Nanop	articles	383
Adina l	Elena Star	nciu		
15.1	Introdu	ction		383
15.2	Targetee	d Radionuo	clide Therapy	386
	 13.5 13.6 Calcul Beam Pedro A 14.1 14.2 14.3 14.4 14.5 Synthe Emittee Adina B 15.1 15.2 	13.4.1 13.4.2 13.4.3 13.5 Limitati 13.6 Conclust Calculation Too Beam Activation Pedro Arce 14.1 14.2 Calculat 14.3 Monte C 14.3 14.3 14.3 14.3 14.3 14.4 Simulation of Nanop 14.4.1 14.4.2 14.5 Summar Synthesis and Emitter-Labelle Adina Elena Star 15.1 Introduct 15.2 Targeted	 13.4.1 Model Sul and Amon 13.4.2 Character 13.4.2.1 13.4.2.1 13.4.2.3 13.4.3 Other Typ 13.5 Limitations: Nano) 13.6 Conclusions Calculation Tools for Isof Beam Activation Pedro Arce 14.1 Introduction 14.2 Calculation Tools 14.3 Monte Carlo Codes 14.3.1 The Prince 14.3.2 The Physic Databases 14.3.2.1 14.3.2.2 14.4 Simulation Example of Nanoparticles 14.4.1 Example 3 Irradiation 14.4.2 Example 3 Irradiation 14.5 Summary and Cons Synthesis and Application Emitter-Labelled Nanoparticies Adina Elena Stanciu 15.1 Introduction 	 13.4.1 Model Substances-Nanodiamonds and Amorphous Silica 13.4.2 Characterisation Methods and Results 13.4.2.1 X-ray diffraction 13.4.2.2 Dynamic light scattering and <i>ξ</i>-potential measurements 13.4.2.3 Residual lithium impurities 13.4.3 Other Types of Nanoparticles 13.5 Limitations: Nanoparticle Alterations 13.6 Conclusions Calculation Tools for Isotope Production by Beam Activation Pedro Arce 14.1 Introduction 14.2 Calculation Tools 14.3 Monte Carlo Codes 14.3.1 The Principle 14.3.2 The Physics of MC Codes: Evaluated Databases 14.3.2.1 Ion physics 14.3.2.2 Neutron physics 14.4.2 Example 1: Simulation of Proton Irradiation of NPs 14.4.2 Example 2: Simulation of Proton Irradiation of NPs 14.4.2 Example 2: Simulation of Neutron Irradiation of NPs 14.5 Summary and Conclusions Synthesis and Applications of Alpha/Beta Emitter-Labelled Nanoparticles Adina Elena Stanciu 15.1 Introduction

	15.2.1	How Doe	s Targeted Radionuclide	
		Therapy	Work?	386
	15.2.2	The Effica	acy of Biologically Targeted	
		Radionuc	clide Therapy	388
	15.2.3	Radionuc	clides	391
		15.2.3.1	Considerations when	
			selecting radionuclides	
			for cancer therapy	393
		15.2.3.2	Alpha-emitting radionuclides	395
		15.2.3.3	Beta-emitting radionuclides	397
	15.2.4	Radionuc	clide Carriers for Cancer	
		Therapy		398
		15.2.4.1	Considerations when	
			selecting radionuclide	
			carriers for cancer therapy	398
		15.2.4.2	Antibodies	400
		15.2.4.3	Aptamers	403
		15.2.4.4	Liposomes	404
		15.2.4.5	Microspheres	406
		15.2.4.6	Micelles	407
		15.2.4.7	Dendrimers	407
15.3	Strategi	ies for Rad	iolabelling Nanoparticles	407
15.4	Cancer	Therapy w	vith Radiolabelled Nanoparticles	413
	15.4.1	Alpha De	cay Radionanoparticles	413
	15.4.2	Beta Deca	ay Radionanoparticles	414
15.5	Summa	ry		417
Radio	chemica	l Stability	Studies of Radiolabelled	
Nano	particles			429
Larrai and Jo	itz Gil Icet rdi Llop	a, Vanessa G	ómez-Vallejo, Jacek M. Koziorowski,	
16.1	Introdu	ction		429
	16.1.1	Chemical of Nanop	and Radiochemical Stability articles	429
		-		

16.

xviii Contents

		16.1.2	Determination of the Radiochemical Integrity of NPs: Choosing the Best Strategy	432
	16.2	In vitro	Stability Studies	433
	10.	16.2.1	General Aspects	433
		16.2.2	Centrifugation and Counting	434
		16.2.3	Chromatographic Techniques	437
		16.2.4	Radiochemical Integrity in the	
			Presence of Competitors	441
		16.2.5	Radiochemical Integrity in Blood	443
		16.2.6	Liver Homogenates	444
	16.3	In vivo S	Stability Studies	445
		16.3.1	Assessment of <i>in vivo</i> Radiochemical Integrityby Blood Sampling	445
		16.3.2	In vivo Radiochemical Integrity	
			Analysis: Alternative Methods	447
		16.3.3	Multiple labelling of NPs	448
	16.4	A Word	of Caution	449
	16.5	Summa	ry and Conclusions	449
17.	Labell	ing Nano	oparticles with Non-Radioactive Isotopes	455
	Agnies	zka Dybov	vska, Superb K. Misra, and Eugenia Valsami-Jones	
	17.1	Introdu	ction	455
		17.1.1	Isotopic Composition of the Elements	456
		17.1.2	Applications of Stable Isotopes	457
		1713	Glossary of Terms	458
		17.1.0		
	17.2	Tracing	of Engineered Nanoparticles	460
	17.2	Tracing 17.2.1	of Engineered Nanoparticles Nanoparticle Tracing Approaches: Stable Isotopes vs Other Labelling	460
	17.2	Tracing 17.2.1 17.2.2	of Engineered Nanoparticles Nanoparticle Tracing Approaches: Stable Isotopes vs Other Labelling Techniques Applications of Stable Isotope	460 460
	17.2	Tracing 17.2.1 17.2.2	of Engineered Nanoparticles Nanoparticle Tracing Approaches: Stable Isotopes vs Other Labelling Techniques Applications of Stable Isotope Labelled Nanoparticles in	460 460
	17.2	Tracing 17.2.1 17.2.2	of Engineered Nanoparticles Nanoparticle Tracing Approaches: Stable Isotopes vs Other Labelling Techniques Applications of Stable Isotope Labelled Nanoparticles in Tracing Studies	460 460 463
	17.2	Tracing 17.2.1 17.2.2 Stable Is	of Engineered Nanoparticles Nanoparticle Tracing Approaches: Stable Isotopes vs Other Labelling Techniques Applications of Stable Isotope Labelled Nanoparticles in Tracing Studies sotope Labelling of Nanoparticles	460 460 463 465

	17.3.2	Considerations in Stable Isotope			
		Labelling			
		17.3.2.1	Label purity, i.e. the		
			enrichment level provided	467	
		17.3.2.2	Label detection	467	
		17.3.2.3	Cost of the label	467	
		17.3.2.4	Quantity of the enriched		
			material required	468	
		17.3.2.5	Synthesis method	468	
17.4	Synthesis and Tracing of Isotopically				
	Labelled Nanoparticles				
	17.4.1	The Need for Stable Isotope			
		Labelled	Nanoparticles	468	
	17.4.2	Synthesis of Stable Isotope			
		Labelled	Nanoparticles	471	
	17.4.3	Tracing of Stable Isotope Labelled			
		Nanoparticles			
		17.4.3.1	Tracing using concentrations		
			of enriched stable isotope		
			tracers and low precision	470	
			mass spectrometry	4/3	
		17.4.3.2	Tracing using enriched stable		
			isotope ratios and high	475	
1 7 5	D	CT .	precision mass spectrometry	475	
17.5	Detection of Isotopically Labelled Nanoparticles			4//	
	17.5.1	General Principles			
	17.5.2	Inductively Coupled Plasma Mass			
		Spectrometry Techniques for Solution		470	
		Analysis:	Q-ICP-MS and MC-ICP-MS	4/8	
		17.5.2.1	Principles of operation of	470	
		45500	Q-ICP-MS	479	
		17.5.2.2	Principles of operation of	401	
	4 7 7 0	M		401	
	17.5.3	Mass Spectrometry Techniques for		402	
4	Imaging		1 .	483	
17.6	Summa	ry and Conclusions			

18. He	alth and S	Safety Consid	derations for Radiolabelled	402		
INd	Nanoparticles					
Toi an	rsten Reese, d Jordi Llop	Vanessa Góm	ez-Vallejo, Paola Ferreira,			
18	.1 Introc	Introduction				
18.	.2 Desig	Design of a Molecular Imaging Facility				
	18.2.1	l Molecula	r Imaging	495		
	18.2.2	2 Design of Facility	Design of a Pre-Clinical Imaging Facility			
		18.2.2.1	General aspects	495		
		18.2.2.2	The molecular imaging facility at CIC biomaGUNE	497		
18	.3 OHS in	n a Preclinic	al Molecular Imaging Facility:			
	The F	The Four I's Concept				
	18.3.1	l OHS Cons Controlle	siderations in a Radiation d Facility: The First "I"	500		
	18.3.2	2 OHS Cons	OHS Considerations in Areas with			
		Strong M	agnetic Fields: The Second "I"	504		
		18.3.2.1	Static magnetic fields	504		
		18.3.2.2	Liquid nitrogen and helium: The cryogens	505		
		18.3.2.3	Other specific hazards: Precautions	506		
	18.3.3	3 Operation Consider The Third	Operational Health and Safety Considerations in an Animal House: The Third "I"			
	18.3.4	4 Operation Considera The Four	Operational Health and Safety Considerations in Working with NPs: The Fourth "I"			
	183	5 Snecific F	Specific Health Hazards Related to			
	101010	Interdisci	Interdisciplinary Work			
		18.3.5.1	Radiochemistry-nuclear	-40		
			medicine-biology interface	510		
	40.4	18.3.5.2	The MRI–biology interface	510		
	18.4	Summary a	nd Conclusions	511		
Index				513		

Preface

Recent developments in nanoscience have given rise to concerns about the possible negative impact of nanomaterials (NMs) on human health and the environment. On the other hand, the application of nanomaterials in the medical field as drug delivery vehicles, contrast agents, or scaffolds for tissue engineering has grown in parallel with industrial use. NMs are extremely difficult to detect and quantify once distributed in a biological system, and one approach to overcome this problem is to label NMs with (radio)isotopes, enabling ultra-sensitive detection using different techniques.

This unique book is the result of several years of work devoted to labeling nanomaterials for nanosafety and nanomedicine studies. The aim is to share the considerable cumulative experience of the authors by describing the state-of-the-art and future perspectives on the labeling of NMs for toxicological, imaging, and safety studies.

The book is presented in three main parts. The first part (Chapters 1-7) provides a general background to the topic, including synthesis and properties of the most commonly used NMs (Chapters 1-5), a general introduction to radioactivity and the reasons why radiolabeling is required (Chapter 6) and a description of the main imaging techniques that can be used to study radiolabeled NMs in vivo (Chapter 7). The second part of the book (Chapters 8-15) covers the different strategies reported so far for the preparation of radiolabeled NMs using positron and gamma emitters (Chapters 8-14) and the radiolabeling of NMs for therapeutic purposes (Chapter 15). The third part of the book contains three more chapters. Chapter 16 discusses the radiochemical integrity of the radiolabeled NMs, Chapter 17 covers the labeling of NMs using stable isotopes, and Chapter 18 discusses some operational health and safety issues related to the preparation and use of radiolabeled NMs.

The book, which aims to be a comprehensive resource for both the specialist and the non-specialist reader, covers a hot an emerging topic and is intended to become a point of reference for all those working in the field of nanotechnology.

Finally, special acknowledgements go to all authors who contributed to this book. The editors gratefully acknowledge editorial assistance from Nextgenediting (http://www. nextgenediting.com) and the projects MAT2013-48169-R (Spanish Ministry of Economy and Competitiveness) and FP7-NMP-2010-LARGE-4-263307 (European Commission) for financial support.

Jordi Llop Roig

Radiochemistry and Nuclear Imaging Group CIC biomaGUNE San Sebastian, Spain

Vanessa Gómez-Vallejo

Radiochemistry Platform CIC biomaGUNE San Sebastian, Spain

Peter Neil Gibson

Institute for Health and Consumer Protection Joint Research Centre Ispra, Italy

Chapter 1

Introduction

Sergio E. Moya

Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón, 182 San Sebastián, 20009 Guipúzcoa, Spain smoya@cicbiomagune.es

Recent developments and technical advances in nanotechnology and nanosciences have given rise to concerns about the possible negative impact of nanomaterials (NMs) on human health and the environment. The increased use of NMs in everyday products and a number of industrial processes exacerbate this worry. Largescale production of NM-based products and devices is by no means a fantasy, and nanotechnology is already present in myriad household products including textiles, construction materials, electronics, surface coatings, fuels, and solar cells. The application of nanotechnology to the medical field, particularly for the treatment of complex diseases in which conventional medicines lack treatment or diagnostic efficacy, has grown in parallel with industrial use. NMs are rapidly emerging as promising drug delivery vehicles, contrast agents, or scaffolds for tissue engineering.

However, the toxicological evaluation of NMs due to either unintended or deliberate exposure is challenging. NMs are complex and variable, and a lack of long-term studies and technical

Edited by Jordi Llop Roig, Vanessa Gómez-Vallejo, and Peter Neil Gibson

Copyright © 2016 Pan Stanford Publishing Pte. Ltd.

Isotopes in Nanoparticles: Fundamentals and Applications

ISBN 978-981-4669-08-5 (Hardcover), 978-981-4669-09-2 (eBook) www.panstanford.com

limitations in tracking and quantifying NMs in organisms and cells hampers progress.

Studying the translocation and eventual fate of NMs is fundamental to comprehending possible toxicological mechanisms. The toxicological effects of NMs will depend on a number of different factors, such as the organs that the NMs reach and their dose. Fate and translocation studies are particularly important in medical applications of NMs, in which their capacity to target selected organs and subcellular domains needs to be established.

On exposure, NMs can translocate into the body by crossing the epithelial barriers provided by the skin, the gastrointestinal tract, the upper respiratory tract, or the lungs. For medical purposes, NMs may also be administered parenterally or intravenously. Once in the circulatory system, NMs redistribute and must cross an endothelial barrier to translocate into remote tissues or organs. The biokinetics, biodistribution, and tissue and cellular interactions of NMs are complex and are influenced both by the nature of the NMs and their surface functionalisation.

NMs eventually gain access to the inside of the cell. In order to understand the biochemical action(s) of NMs, mechanisms of cellular uptake, intracellular localisation, and intracellular processing need to be characterised.

The intracellular actions of NMs are influenced by their physical state including their aggregation, interaction with biomolecules in different cellular environments, formation of protein/lipid coronas, and dynamics. At the cellular level, NMs can be present as single entities or as aggregates, and the degree of aggregation can change during their residence time in the cell. The aggregation state of NMs affects their interaction with other intracellular molecules (such as proteins, nucleic acids, and lipids) and also their localisation and intracellular trafficking. Moreover, NM aggregation has an impact on their toxicological action and, in cases where the NMs are intended for medical use, the aggregation state and how this varies over time also influences clinical efficacy.

Many of the difficulties in tracing NMs in the cell and body stem from their complexity, the wide variety of different NMs available, and a lack of suitable generalisable techniques. NMs can be broadly classified as organic/polymeric, carbon, inorganic, and hybrid. Organic/polymeric NMs are most frequently used in nanomedicine. Inorganic NMs, such as metal and metal oxide NMs, have highly variable surface to volume ratios and shapes (e.g., spherical, nanorods, nanowires, stars, triangles).

The complex nature of the interactions between NMs and biological molecules, cells, and organisms is strongly related to their surface properties and stability in biological fluids. Organic, self-assembling NMs can easily degrade into their component molecules *in vivo*, while many metal and metal oxides can dissolve to generate ions that negatively affect cellular homeostasis. Metal and metal oxide NMs can also have highly reactive surfaces that interfere with biological reactions by acting as catalysts and/or oxidising/reducing agents. Carbon-based NMs, unless oxidised, do not degrade easily and tend to form large aggregates and fibrillar structures.

To trace NMs at the intracellular and body level and to study their fate and interactions with biomolecules requires a combination of different experimental techniques, the exact details of which depend on the nature of the material and its surface characteristics. It also requires the proper design, engineering, and labelling of the NMs to be traced.

In vivo translocation studies of NMs require sophisticated, and often difficult, techniques. In most scenarios, the NMs are extremely difficult to detect and quantify once distributed in a biological system. One way to overcome this problem is to label NMs with radionuclides, which enables ultra-high sensitivity detection in biological systems using positron emission tomography (PET) or single-photon emission computerised tomography (SPECT), as routinely performed for pharmaceuticals. However, incorporation of radionuclides into NMs is far from trivial and usually requires laborious procedures. To date, different strategies have been developed to incorporate radionuclides into NMs that depend on their chemical composition. One common NM labelling strategy is to attach an appropriate radiolabelled tag to the surface of the NM. Other strategies are based on the incorporation of the radioactive isotope into the NM core without significantly changing its surface properties.

This unique book is the result of several years of work devoted to radiolabelling nanomaterials for nanosafety and nanomedicine studies in a number of European projects. The aim is to share the considerable cumulative experience of the authors by presenting state-of-the-art and future perspectives on the labelling of NMs for toxicological, imaging, and safety studies.

The book can be considered in three main parts. The first (Chapters 1–7) provides the reader with a general background to the topic. Chapters 1–5 cover the synthesis and properties of the most commonly used NMs: metal and metal oxide nanoparticles, carbon-based NMs, and organic nanoparticles. This general description of NMs provides the reader with the basic knowledge necessary to understand the labelling strategies available and the complexities that can be expected when approaching the problem. A large collection of references is provided to facilitate further reading. Chapter 6 provides a general introduction to radioactivity and the reasons why radiolabelling is required, along with some key parameters that must be taken into consideration when selecting the most appropriate isotopes. Chapter 7 provides a description of the main imaging techniques that can be used to investigate radiolabelled NMs *in vivo*.

The second part of the book covers the different strategies reported so far for the preparation of radiolabelled NMs: Chapter 8 details the radiolabelling of NMs with radiometals; Chapter 9 provides a description of the labelling alternatives when using radiohalogens and the short-lived positron emitters ¹³N and ¹¹C; Chapter 10 covers the different labelling strategies described to date for the preparation of radiolabelled liposomes; Chapters 11–13 cover the preparation of labelled NMs by direct activation (including ion beam activation, neutron activation, and recoil labelling); and Chapter 14 introduces the main calculation tools that can be applied to isotope production by beam activation. Finally, Chapter 15 covers the preparation of radiolabelled NPs for therapeutic purposes.

The third part of the book contains three more chapters. Chapter 16 discusses one of the main issues arising when using radiolabelled NPs for *in vivo* investigations: the radiochemical integrity of the labelled species. Chapter 17 covers the labelling of NMs using stable isotopes while Chapter 18 discusses some operational health and safety issues related to the preparation and use of radiolabelled NMs.

This book aims to be a comprehensive resource for both the specialist and non-specialist reader. The importance of the topic in the context of the safety evaluation of NMs and their assessment in biomedical applications makes this book a point of reference for all those working in the field of nanotechnology, and especially researchers or graduate students developing NPs for potential industrial applications or use in the biomedical arena.

This page intentionally left blank

Chapter 2

Inorganic Nanoparticles

Ronald F. Ziolo^a and Veronica Corral-Flores^{a,b}

^aCentro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna 140, 25294 Saltillo, Coahuila, México ^bPresent address: Department of Physics, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA

rziolo@cs.com

This chapter is intended as an introductory overview of the vast subject of inorganic nanoparticles (INPs), drawing focus on some of the more common synthesis techniques, such as the wet chemistry methods, and on some of the characteristics of inorganic nanoparticles and their applications. A broad brushstroke approach to the subject matter was chosen in the hope of providing researchers in the radiolabeling and tracer fields with a guide to current trends in the synthesis of INPs over the broad landscape and backdrop of nanoscience and nanotechnology. We hope that the material and references presented herein will assist the reader in selecting possible INPs of potential interest and aid in suggesting potentially new opportunities for research and applications in the field of radiolabeled nanoparticles. As many reviews, books,

Edited by Jordi Llop Roig, Vanessa Gómez-Vallejo, and Peter Neil Gibson

Copyright © 2016 Pan Stanford Publishing Pte. Ltd.

Isotopes in Nanoparticles: Fundamentals and Applications

ISBN 978-981-4669-08-5 (Hardcover), 978-981-4669-09-2 (eBook)

and articles as possible were consulted for the preparation of this chapter.

2.1 Introduction

The physics and chemistry of materials at sizes approaching those of atomic dimensions, i.e., of nanostructures and nanoparticles (NPs), are spawning new research strategies and paradigms in physics, chemistry, biology, materials science, and engineering. The unusual nature of such materials was noted in antiquity. Witness. for example, the glazes for early dynasty Chinese porcelain [1] and the unusual optical properties of the Roman Lycurgus cup [2]. During the 70s and 80s of the past century, studies in physics and chemistry started to focus attention on matter, then called ultra-fine particles (or inhomogeneous media when dispersed in a matrix), in the range of ~ 1 to 100 nm that displayed unusual and often unexpected electrical, optical and magnetic properties [3-8]. During the past two decades, inter- and multidisciplinary research has been broadening the scope of that attention to computation, systems, processes, manipulation, sensing, control, and analytical capabilities at the nanoscale [9–12]. These advances are presently fuelling further initiatives and growth in the rapidly growing disciplines of nanoscience and nanotechnology as the convergence of knowledge continues [13, 14]. Combined, research from these disciplines continues to impact discovery, development and change in societally important technology sectors such as electronics and photonics [15-17], telecommunications [18, 19], medicine [20-29], energy [30-32], catalysis [33], manufacturing [34], advanced materials, such as metal-NP plasmonics [35] and self-organizing nanoscale systems [36-38], and the environment [39-42]. Clearly, the nanoscale will provide numerous opportunities and challenges for innovative research and applications in the study and use of radiolabeling and tracer techniques. A "crash course" in nanotechnology is available for those wishing to have an overview [14a], as is the EC co-funded "roadmap" report on nanoparticles 2005 [14b] and a recent overview of nanochemistry [14c].

At the nanoscale, the size of matter is dimensionally smaller than the characteristic length of a number of physical properties. As a consequence, the new and sometimes unexpected properties of the nanoscale materials, as compared with those of the bulk, result from quantum confinement effects. Matter in the nanometer regime also has a high ratio of surface atoms to bulk atoms as the surface-area-to-volume ratio of the matter increases. Consequently, the electronic states of the surface and near-surface atoms become important as does any spill-out of electronic density, for example, outside of a NP. Nanoparticles and nanoscale materials of inorganic, bioceramic, carbon, and organic materials are the subjects of the introductory Chapters 2–5, respectively, and are the kinds of matter that will continue to contribute to the evolution of platforms, scaffolding, hierarchical and integrated structures during the next decades.

2.1.1 Nanomaterials and Nanoparticles

Nanomaterials generally have at least one dimension small enough to experience quantum confinement effects, usually in the size range of 1 to 100 nm. Thus, many materials of different compositions and shapes may be included, such as 3D clusters of atoms, compounds and materials, generally referred to as NPs, 2D sheets of clays, rings, dendrimers, graphenes, and graphene quantum discs, 1D materials, such as rods, tubes, wires, and filaments, and 0D "nanoparticles," such as knots and quantum dots (QDs). Nanoparticles generally contain about 10² to 10⁷ atoms. In the literature, some of the 2D and 1D materials, when small enough, are referred to as NPs, especially when dispersed in a medium.

2.1.2 Chapter Scope

The aim of this chapter is to present a broad overview of INPs by introducing some of the synthesis techniques used to make them, some characteristics, and some representative applications. The discussion is meant to be illustrative rather than exhaustive and in this sense is selective and a bit arbitrary. Hence the reference list includes many books and review articles to which the reader is referred. No attempt is made to be comprehensive or all inclusive given the enormity of the literature and limited space of the chapter. The words synthesis, preparation, and methodology are used interchangeably.

2.1.3 Challenges

The challenges facing anyone wishing to prepare and use nanoparticles are many and depend foremost on the objective of the research or application and on the end use of the nanomaterial. Variables such as particle size, shape, distribution, composition, stoichiometry, phase, homogeneity, topology, and surface attributes, such as functionalization, dispersibility, the presence or absence of dispersing or capping agents, and, in some cases, biocompatibility, all deserve careful consideration as do issues of nanoparticle safety and environmental effects.

2.2 An Overview of Inorganic Nanoparticle Synthesis

Overall, there are three approaches or strategies to synthesizing nanoparticles. They can be synthesized by building the structures from the constituent atoms or molecules, i.e., from the bottom up, or, by breaking down large-scale structures to the nanoscale, i.e., from the top down. The third approach is a combination of the bottom-up and top-down strategies. Each approach can involve different synthesis techniques and even different strategies in execution of the techniques.

2.2.1 The Bottom-Up Approach: From Small to Large

Commonly, the bottom-up approach employs wet chemical or liquid phase techniques as discussed in Section 2.3. These techniques include precipitation, co-precipitation, hydrolysis, solgel, spray pyrolysis, templating, microwave-assist, and electrochemical, sonochemical, and solvothermal methods, and synthesis in microemulsions and supercritical fluids. Many of these techniques are referred to or illustrated in this chapter (see Sections 2.3 to 2.5). A recent overview of wet production methods was presented by Bensebaa [43a].

With a view toward biotechnology applications, Kharissova et al. recently reviewed "green" synthesis techniques for making NPs using natural products such as polyphenols in plant extracts as chelating or reducing agents in a one-step process without the direct addition of surfactants or capping agents [43b]. Besides the liquid-phase techniques used in the bottom-up approach, high-purity nanoparticles can be synthesized using gasphase techniques, which are convenient for continuous processing. Kruis et al. review and evaluate many of the gas-phase techniques such as homogeneous gas phase nucleation, laser, flame, and plasma reactors, sputtering, and aerosols [44]. Surface growth under vacuum conditions using such techniques as chemical vapor deposition, molecular beam epitaxy, electron beam plasma, magnetron sputtering, and laser deposition may be employed to produce nanoparticles in film form and in different matrices. Gas phase and vacuum techniques per se are not discussed further.

2.2.2 The Top-Down Approach: From Large to Small

Breakdown or top-down strategies can involve mechanical processes such as dry and wet grinding, ball milling, mechanical alloying, sonication, and severe plastic deformation. In the early 60s, NASA first prepared highly stable magnetic colloids, now known as ferrofluids, by grinding mixtures of natural magnetite, oleic acid and a hydrocarbon for periods of up to nine months [45]. Today, bottom-up approaches can provide ferrofluids within minutes to hours. Breakdown can also be achieved by laser ablation, especially for noble metal NPs in water and organic solvents where surfactant-stabilizing molecules are not needed [46]. Redel et al. reported a fast, green synthesis of metal oxide NPs using a more traditional approach of metal powder reduction by chemical means. A controlled oxidative dissolution process of micrometer size bare metal powders using aqueous 30% hydrogen peroxide and acetic acid produced high-purity aqueous dispersions of 3-8 nm metal oxide NPs [47]. The method appears to be widely applicable to the synthesis of metal oxide NPs. Although simple and straightforward, these reactions are very exothermic and must be carried out with extreme care and with the use of instant ice-bath cooling and other safety considerations.

In the top-down approach, mechanical alloying is also a viable technique, for example, in preparing mixed nanoscale chalcogenides, and can be used to prepare non-equilibrium phases of nanostructures [48]. Ferrando et al. reviewed metal alloys form theory to applications of alloy clusters and NPs [49]. Severe plastic deformation (SPD) has been employed in recent years for the

production of nanocrystalline particles. Data for several different SPD methods were evaluated to determine the refining efficiency and capabilities of the top-down synthesis methods [50].

2.2.3 Combined Approaches

Cryochemical synthesis techniques illustrate the combination of a top-down and bottom-up strategy where the high temperature vaporization of bulk elements or compounds is followed by condensation of the vapor in cold matrices of inert gases or selected molecular reactants to form NPs consisting of atom clusters [51]. As an example of a process that involves a bottom-up and topdown strategy, Ziolo et al. synthesized magnetic NPs in a polymer matrix, which was used to control the NP size, shape, and distribution of the NPs in the matrix [7]. The polymer nanocomposites were then milled for a few hours in water or alcohols to produce aqueous ferrofluids with shelf lives >30 years [8a-f]. Although no surfactant or stabilizing agents were used in the process, the long-term stability of the aqueous ferrofluids resulted from the polyelectrolytic nature of the oligomers that resulted from the breakdown of the polymer matrix during ball milling. Some discussion of the advantages and disadvantages of bottom-up and top-down methods of syntheses are discussed by Sergeev and Klabunde [52].

2.3 Synthesis of Some Specific NP Materials

2.3.1 Metal Oxide NPs

In a general overview of traditional and emerging synthesis approaches to nanostructured metal oxides, Corr discusses a broad range of synthesis techniques covering many different metal oxides [53]. The techniques include decomposition of precursors, chemical vapor methods, template synthesis, co-precipitation, and microwave-assist to name but a few. In a follow-up article, Corr discusses the characterization of NPs to probe more extensively their structure property relationships and of NP hybrids for synergistic relationships and applications [54]. It is important to note that in some cases, as pointed out by Corr, carefully constructed hybrid nanostructures can promote a synergetic relationship between the composite constituents.

In the case of metal oxides, such as those, for example, of Al, Ti, Fe, Zn, Zr, Sn, alkaline earths, Ce, etc., that are prepared in aqueous solutions by hydrolysis and precipitation, the cations involved in the synthesis often undergo complex and extensive hydrolysis to form a wide variety of hydrolysis products. Baes and Mesmer provide a useful reference for the identity and stability of the many hydrolysis products [55].

2.3.1.1 Zinc oxide NPs

Zinc oxide NPs have received much attention in the literature because of the diversity of their applications, including biological applications, and have been prepared by a variety of techniques [56–75]. Zinc oxide NPs with tunable emission colors and good water stability were synthesized through an ethanol-based precipitation method. The emission colors could be tuned by adjusting the pH of the precipitating solution, Fig 2.1. The ZnO NPs were then encapsulated with silica to form ZnO@silica core–shell NPs, sometimes referred to as nanostructures, as in Chapter 3, to improve the water stability of the ZnO nanoparticles while retaining the fluorescence of the NPs in the core–shell form. The core–shell NPs exhibited low cytotoxicity and were promising in cell-labeling applications [56].

A problem of zinc oxide particles for fluorescent labeling for cellular imaging is their low stability in water. Zhang et al. synthesized ZnO@silica NPs modified with surface hydrophilic amino groups through a three-step silanization process to produce ZnO NPs that are stable in water, phosphate buffer saline, and Roswell Park Memorial Institute (RPMI) cell culture medium 1640. The aqueous solutions showed high quantum yields with blue, green, and yellow emissions and were stable for cell imaging experiments [71]. Zhao et al. reported two facile synthesis routes for the preparation of water-stable ZnO NPs with blue and yellow fluorescence. In one preparation, zinc nitrate and oleic acid were dissolved in triethylene glycol. The mixture was heated to 240°C with stirring and concomitant ester elimination. In the second method, zinc acetate was hydrolyzed in ethanol with KOH at room temperature. The resulting NPs were then stabilized with 3-aminopropyltriethoxysilane, which improved their water stability [69]. High stability of ZnO nanocrystals in the aqueous phase was also reported by Zhang et al. [72].

Figure 2.1 Fluorescence emission of ZnO nanoparticles in ethanol under 365 nm excitation at, from left to right, pH 12, 10, 8, and 6. Reprinted with permission from [56]. Copyright © 2010, American Chemical Society.

ZnO NPs can also be synthesized by the microwave decomposition of zinc acetate using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide, as a green solvent, as shown by Jalal et al. [57]. The resulting ZnO NPs, were then dispersed in glycerol using ammonium citrate to form a ZnO nanofluid that showed antibacterial activity toward *E. coli*.

2.3.1.2 Titanium dioxide NPs

Several methods have been used for the preparation of nanocrystalline titanium dioxide, TiO_2 , which, among other uses, is an important photocatalyst and pigment with many environmental applications. These methods include the sol-gel method discussed in Chapter 3, microemulsion techniques [76, 77] and chemical precipitation by hydrolysis [78]. For the room temperature synthesis of titanium dioxide in the rutile and anomalous pseudobrookite phases, using a microemulsion technique, see Keswani et al. and references therein [76]. Abbas et al. reported the radiolabeling of TiO_2 NPs for radiotracer studies [79]. TiO_2 NPs were prepared in [¹⁸O]H₂O by precipitation under basic conditions using NH_{3(g)} to prevent the incorporation of ¹⁶O, for use in ¹⁸F labeled TiO₂ NPs for bio distribution studies [80].

2.3.1.3 Aluminum oxide NPs

Different phases of aluminum oxide nanoparticles can be synthesized, for example, by sol-gel (see Chapter 3), hydrothermal, sputtering, and laser ablation techniques. Aluminum oxide NPs, for example, were synthesized in water using the latter technique with Al powder as a target and a long-pulsed Nd:YAG laser [81]. Pang et al. synthesized Al_2O_3 NPs using oil-in-water microemulsion techniques to obtain as-prepared NPs about 8 nm in size, which then yielded oxide NPs about 15 nm in size after calcination [82].

A facile and direct precipitation method using aluminum chloride and ammonia gas bubbled in water was used by Pérez-Campana and Llop et al. to prepare ¹⁸O-enriched Al_2O_3 NPs of various sizes that were subsequently converted to ¹⁸F-labeled positron emitting NPs by proton irradiation for *in vivo* bio distribution studies [83, 84].

2.3.1.4 Other metal oxide NPs

Iron oxides NPs are discussed in Section 2.3.4. The sol-gel synthesis of NP metal oxides, such as those of Al, Ti, Si, and Ni, and of mixed metal oxides, such as barium titanate and other complex metal oxides, are discussed in Chapter 3. A brief introduction to the sol-gel process can be found in Wright and Sommerdijk [85].

2.3.2 Noble Metal NPs

The noble metals, particularly those of gold and silver, continue to emerge as key materials in biological imaging, plasmonic sensing, medical therapeutics, and nuclear medicine and appear to offer potential for new opportunities in radiolabeling and tracing research and applications. Aside from biological and medical applications, it is interesting to note that a single 1.63 mm diameter, Epoxy/¹⁹⁸Au tracer-particle bead was successfully tested for its applicability to indicate shed fouling in the stripper section of a fluid-coker [86].

Chen et al. provide a comprehensive discussion of the green synthesis of noble (Au, Ag, Pt, Pd, Ru, Rh) and other metal (Cu, Ni, Co, Mn, Zn, Fe) NPs with microwave irradiation and also consider the role of biocompatible and polymer surfactants for each of the metals [87]. A low-cost, versatile, and reproducible large-scale synthesis of organoamine-protected Au and Ag NPs in the 6–21 and 8–32 nm size range, respectively, was reported by Hiramatsu and Osterloh [88].

Michael Faraday first prepared NP gold sols by reducing $AuCl_4^{-1}$ in a two-phase system with phosphorous in CS_2 [89]. The preparation of Au NPs in water is easily done using chlorauric acid, HAuCl₄, or its salts, and reducing them, for example, with salts of sodium borohydride, metabisulfite, or citrate in the presence of a surfactant or capping agent such as the citrate ion. Frens used this approach with sodium citrate to produce nearly monodisperse gold NPs of different particle sizes of < 200 nm. The approach is limited, however, in that the gold cannot be directly capped with hydrophobic ligands or surfactants [90]. A different approach was used by Lu et al., who reported controlled growth of Au NPs with a narrow size distribution using Au(I) salts, such as AuBr and AuCl, and their relatively low stability in the presence of alkylamines [91]. Au NPs were prepared using AuCl and oleylamine heated in chloroform at 60°C without the need for a reducing agent.

Wilcoxon and colleagues introduced and pioneered a twophase method for the preparation of specific sizes of metal NPs including Au using inverse micelles that allowed for capping by hydrophobic surfactants [92, 93]. Using a modification of this two phase method, Brust et al. prepared 1–3 nm thiol-capped Au NPs in water-toluene by reducing $AuCl_4^-$ with sodium borohydride in the presence of the alkanethiol [94].

As is the case for gold, silver NPs can also be prepared by reduction methods. Monodisperse samples of silver nanocubes, for example, were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinypyrrolidone) [95]. Similarly, Guzman et al. reduced AgNO₃ with hydrazine hydrate to form small silver agglomerates in powder form for antibacterial activity studies. The Ag NPs themselves had diameters of 20–40 nm [96]. Reducing agents obtained from natural sources rich in antioxidants were used by Rodríguez-León et al. to form Ag NPs in the 2–40 nm diameter range. The NPs grow in a single-step method at room temperature with no additional energy input as shown in Fig. 2.2 [97a]. *In vivo* plant biosynthesis of metal NPs has also been studied [97b].

Figure 2.2 Change in color indicating growth of Ag NPs at different reaction times using *R. hymenosepalus* extract; vials (a) through (f) represent increasing concentrations of Ag NPs. Reprinted with permission from [97a]. Copyright © 2013, Springer.

2.3.3 Colloidal Semiconductor Quantum Dots

In one of their most commonly known forms, quantum dots (QDs) are nanocrystals of semiconductor materials that exhibit a sharp density of states due to quantum confinement. Examples of QD nanocrystals include such materials as the noble metals, particularly those of Au, Ag, and Pt, and binary compounds, such as CdS, CdTe, PbS, ZnSe, InAs, and InP, among many other known QD materials. The particles generally are a few nanometers in size, generally <5 nm, but some <10 nm, and are composed of a few hundreds to a few thousands of atoms. In very small size, where the particle radii are smaller than their exciton Bohr radius, QDs have electrical and optical properties that are highly tunable [98].

QDs were discovered in glass in the early 80s by Ekimov with an interpretation as to their role in colored glasses [99]. At about the same time, Brus and associates discovered QDs in colloidal liquids and attributed their color to quantum effects [5, 6].

An overview of the various synthesis techniques for colloidal QDs, is presented by Kim et al. [100]. A primer on QDs, including syntheses, was reported by Murphy and Coffer [101]. Drummen has reported on the synthesis of QDs and applications in biomedicine and the life sciences [102]. Bawendi et al. presented a review on the quantum mechanics of QDs [98].

Weiss presented a discussion on the use of organic molecules in the preparation of colloidal quantum dots as tools to control growth, surface structure and redox activity of these materials [103]. Wang et al. provided a direct synthesis of water soluble CdTe: Zn^{2+} QDs that potentially may be applied to the synthesis of other QD chalcogenides [104].

For recent articles on the synthesis, properties, and applications of colloidal QDs, the reader is referred to the Web site of the International Conference, *"30 Years of Colloidal Quantum Dots,"* held in Paris, France, May, 2014 [105].

2.3.4 Magnetic Nanoparticles

Magnetic nanoparticles constitute an important class of nanostructured materials that can be manipulated with handheld magnets or by otherwise applied magnetic fields. Some of the more common magnetic NPs consist of metals such as Fe, Co, Ni, and Gd, their oxides, mixed metal oxides, and alloys. The breadth of their potential in applications at the nano and higher scales is enormous and continually growing with research impacting areas such as multifunctionality, device sophistication and hierarchical magnetic nanostructures.

Applications of magnetic NPs includes areas such as catalysis, biomedicine, drug delivery [21, 106, 107], therapeutics, sensors, MRI contrast agents [107–111], particle imaging, data storage, and environmental remediation, including water filtration [39, 112].

The simpler magnetic NPs are easily synthesized by wet chemical methods [113] and may be used to form, for example, additional nanostructured materials, such as magnetic polymer nanocomposites or the core or shell of bi-functional core-shell nanoparticles.

Some of the most studied magnetic nanoparticles are magnetite, Fe_3O_4 , and maghemite, γ - Fe_2O_3 , which display relatively high saturation magnetization moments [114]. These and other oxides of iron have been prepared by a host of different and reliable methods [113, 115]. Magnetite can be prepared by mixing aqueous solutions of stoichiometric amounts of Fe(II) and Fe(III) salts (such as chlorides, nitrates or sulfates) and simply controlling the pH, temperature and stirring rate. This co-precipitation

method was used early on by Masart [116], for example, to prepare ionically stabilized aqueous ferrofluids. By adjusting the molar ratio of ferrous to ferric ions in aqueous solutions, Osaka et al. synthesized Fe_3O_4 NPs in controlled sizes from 10 to 40 nm potentially suitable for drug delivery systems [106]. Iron oxide particles with mean diameters ranging from 7 to 20 nm were synthesized by Carvalho et al. [117]. A novel and simple nonaqueous route for the preparation of nanocrystalline magnetite was reported by Pinna et al., using the decomposition of ferric acetylacetonate in benzyl alcohol to make particles from 12 to 25 nm in size [118].

The saturation magnetization of magnetic nanoparticles is typically lower than that for the same material in the bulk state. The lower values generally result from magnetically disordered surface states of the NPs with their high surface-area-to-volume ratios and by the presence of attached surface ligands or capping agents [119].

The effect of surface modification with amine and carboxylate groups on the magnetic properties of iron oxide colloids for applications in the biomedical field was reported by Yuan et al. [109]. It was also shown that the composition and magnetic properties of iron oxide NPs can be influenced by the synthesis method and size of the magnetic nanoparticles [117]. The magnetic relaxation of polymer-coated NPs in aqueous solution was reported by Keshavarz et al. [120]. Cao et al. reported the preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy [121]. Glaus reported on the development and analysis of radiolabeled magnetic NPs for positron emission tomography (PET) and magnetic resonance imaging (MRI) [108].

In nanocrystalline form, magnetic NPs generally exhibit superparamagnetism (SPM) above a critical temperature called the blocking temperature. In a practical sense, an ensemble of single domain SPM nanoparticles can be attracted to a magnet where the particles, each with their own magnetic moment, align in a magnetic field. The ensemble, however, possesses no permanent magnetism or magnetic memory above the blocking temperature due to thermal effects that keep the particles randomly oriented [114, 119]. SPM iron oxide NPs, or SPIONs, are emerging as potentially important magnetic nanoplatforms for drug delivery. Wahajuddin and Arora present a practical review of the preparation of SPIONs, their utility as drug delivery vehicles and concerns that need to be addressed before they can be moved from bench top to bedside [21]. A recent book by Stroeve, Milani, and Arbab covers the synthesis, surface engineering, cytotoxicity, and biomedical applications of SPIONs [122].

A facile, one-pot hydrothermal synthesis and surface functionalization of branched polyethyleneimine-coated Fe_3O_4 nanoparticles for biomedical applications was reported by Cai et al. [123]. Suspensions of magnetic nanoparticles with glycopeptide coatings affording high sugar unit density were obtained via ringopening polymerization of *N*-carboxyanhydride, followed by step-glycosylation [124]. Chitosan-coated iron oxide nanoparticles are receiving increased attention for biomedical applications. The chitosan-coated magnetic NPs prepared by Unsoy et al. were found to be non-cytotoxic on cancer cell lines SiHa and HeLa [107].

2.4 Non-Aqueous, Microwave-Assist and Other Synthesis Routes

Most of the wet chemistry methods for the synthesis of INPs use water as a reaction medium. Non-aqueous routes, however, are available that offer equally viable preparations of INPs. Additionally, microwave-assisted reactions are showing great promise for the preparation of INPs in both aqueous and nonaqueous media.

2.4.1 Nanoparticle Synthesis by Non-Aqueous Routes

As in the case of NP synthesis in aqueous routes, syntheses using non-aqueous routes offer ways to control and tailor particle size, shape, and surface attributes, and can be performed at ambient temperatures in common solvents such as alcohols, ketones, and amines, while other methods may require higher temperatures and the use of solvothermal methods up to 250°C.

The reader is referred to the numerous works of Niederberger and associates that report on the synthesis of NPs by non-aqueous routes, some of which are referenced herein [118, 125-142]. These works include reviews on the synthesis, assembly and formation mechanisms of metal oxide nanocrystals [129, 140], and on nonaqueous sol-gel routes to metal oxide NPs [127]. Materials covered in these works include perovskites, such a BaTiO₃, SrTiO₃, and mixed titanates [128], zirconium and titanium dioxides [131, 133], semiconducting metal oxides for gas sensing [132], and the oxides of indium and zinc [137a,b], manganese [137c] and molybdenum [142]. For the preparation of multimetal and doped metal oxide nanocrystals using a benzyl alcohol route, see Pinna et al. and references therein [143]. For an overview of nanoparticles in organic solvents, including synthesis, characterization, reaction mechanisms, assembly, properties, and applications, see Niederberger and Pinna [141]. Recent trends in the synthesis of metal oxide nanoparticles through reverse microemulsions in hydrocarbon media were recently reviewed by Khadzhiev et al. [144]. Surfactantfree non-aqueous synthesis of metal oxide NPs [130a,b] and nanorods and wires [130c] has also been demonstrated.

2.4.2 Nanoparticle Synthesis by Microwave-Assisted Routes

Research in microwave-assisted synthesis of inorganic NPs is progressing rapidly with the area offering many new avenues for exploration. The technique can involve wet and dry syntheses, the bottom-up and top-down approaches, and assists by sonication [145], not only in the breakdown from the macro scale, but also in the breakdown of nanoscale materials to form smaller nanoscale materials. The overall subject of microwave-assisted synthesis of INPs is discussed in a recent book by Horikoshi and Serpone [146].

New opportunities in microwave-assisted synthesis of INPs via liquid phase routes are discussed by Bilecka and Niederberger [136] and more recently by Niederberger for non-aqueous solgel chemistry, the polyol, and benzyl alcohol routes [147a], and for synthesis in ionic liquids [147a,b]. According to Niederberger, microwave chemistry offers unique opportunities that no other synthesis technique can provide [147a]. An overview of nanomaterials prepared by microwave irradiation is given by Baghbanzadeh et al. [148].

22 Inorganic Nanoparticles

Microwave (MW) irradiation can provide rapid decomposition of metal precursors and be extended to produce NPs of various compositions, sizes, and shapes. Herring et al. offered a broad overview of metal oxide NPs synthesized by MW irradiation, including ZnO, TiO₂, CeO₂, transition metal oxides, and metal ferrite nanostructures [149]. Discussions also appear for MW-assisted synthesis of iron oxide NPs [150], metal NPs [87], particularly those of Au, Ag, Pt, and Pd, the solution synthesis of nanomaterials, [151] and different ways of NP synthesis through MW heating [152].

2.4.3 Microemulsion and Micellar Techniques

Microemulsion (ME) and micellar methods continue to provide valuable techniques for the synthesis of inorganic NPs. Studies using these techniques were presented earlier in this chapter [76, 77, 82, 92a,b, 144]. Eastoe et al. reviewed recent advances in NP synthesis with reversed micelles [153]. Microemulsion properties and applications [154], the formation and growth control in the synthesis of NPs in emulsions [155] and microemulsion dynamics and reactions in microemulsions [156] have also appeared. Inorganic micelles as efficient and recyclable micellar catalysts were recently reported by Zhang et al. [157].

2.5 The Role of NP Capping Agents and Functionalization

Various materials, whether in molecular, ionic, oligomeric, or polymeric form, are frequently used in nanoparticle syntheses to control critical aspects of the nanoparticles, such as their composition, phase, size, size distribution, shape, dispersibility, stability, homogeneity, and surface and near-surface chemical and physical properties. When used as such, these materials are known as capping or stabilizing agents, surfactants, ligands, chelates, shells and so on, depending on the literature source. Without the presence of such agents during synthesis, NPs can continue to grow in size and lose their nanoscale size-dependent properties. Although capping agents offer opportunities related to NPs, they also introduce additional complexities to the study and application of NPs.

Typical capping materials can contain chemical functional groups, such as those found in organic acids, amines, alcohols, and thiols, and various ions, such as the citrate ion, $C_3H_5O(COO)_3^{3-}$. Bonding between the NP and capping agent can involve covalent or coordinate bonds, hydrogen or other secondary bonding, and van der Waals interactions. In a more general sense, the capping agent can be described as being chemisorbed or physisorbed on the NP. The stabilizing forces keeping the NPs from agglomerating in liquid media can be electrostatic and steric in nature. Weiss discussed the varied roles of organic molecules as tools to control the growth, surface structure, and redox activity of colloidal semiconductor quantum dots [103]. Particularly useful approaches to functionalizing NPs with biological molecules are reviewed by Sapsford et al. [158]. This broad review covers nanoparticle bioconjugation chemistries for noble metals, semiconducting quantum dots, metal oxides, transition and post-transition metal NPs, rare earth, alkaline earth, and zirconium, silicon, and germanium NPs. Capping agents and surrounding mediums are also important to consider for the fluorescence aspects of INPs. Philippot and Reiss discussed the synthesis of inorganic NPs for biological fluorescence imaging [159].

It is well known that the capping agents used to stabilize NPs and nanocrystals can dramatically affect their stability and reaction chemistry. However, the nature and associated subtleties of the ligand shell itself, as an integral part of the CNP, are just beginning to be examined in detail and a lot of work is needed in this area. The reader is referred to the particularly relevant theoretical and experimental study by Zherebetskyy et al., who clearly demonstrated the complexity of interactions that occur during the hydroxylation of the surface of PbS nanocrystals capped with oleic acid [160a]. Likewise, Valdez et al. presented a methodology to quantify the nature of the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a non-polar solvent and report three different binding regimes for DDA using NMR spectroscopy [160b]. The relative complexity of the capped nanoparticles (CNPs) is shown for the latter case in Fig. 2.3.

Figure 2.3 Particles of ZnO with associated capping agents. Adapted and reprinted with permission from [160b]. Copyright © 2014, American Chemical Society.

Clearly, the nature of the capping agent and that of the CNP itself is a crucial factor to consider in any studies of NPs and their applications. This is particularly evident, for example, in biological studies where the CNP can react with its medium, such as in the cases of cell culture media, living cells, and *in vivo* and *in vitro* tracing and labeling studies. CNP interactions are also important in the area of nanocatalysis. The removal of capping agents in the case of nanocatalysts was recently reviewed by Niu and Li [161]. In cases where no capping agent is used in the preparation of nanoparticles, such as in laser ablation, the medium itself can act as the stabilizing agent. The reader is referred to the many papers presented at the recent conference, ANGEL 2012, in Paris, France, on laser ablation and NP generation in liquids [46].

The geometry or morphology of the various capping or coating agents used on NPs can also influence the NPs' chemistry and performance. The coatings or capping agents, especially if oligomers or polymers, can vary and form, for example, brushes, close curl coatings, or open coatings. Pandey and associates gave a perspective view on polymer nanoparticle interactions and discuss how new developments in the field, through a concerted approach of theory, experiments and simulations, significantly expands our knowledge on the morphological behavior of such systems [162]. Regarding nanoparticles, their capping agents, and applications in general, we are in concert with what Nui and Li stated in their excellent article on nanocatalysts: "While plenty of attention has been put on their inorganic cores that determine the intrinsic particle properties of nanoparticles, the influence of outside organic shells (e.g., capping agents) is relatively less examined" [161]. The need is clear.

2.6 INP Applications and Opportunities

There now exists an enormous amount of literature on the application and uses of INPs in almost all societally relevant areas of technology. Concomitantly, the focus on nanoparticles in toxicology and the environment continues to grow. Following are a few specific areas that may be of potential interest to researchers in radiolabeling and tracing studies.

Corr discussed some important applications of metal oxide NPs in the areas of sensors, water purification, catalysis, environment, energy, devices, and at the nano-bio interface. The latter is a particularly important area of study for the application of radiolabeling and tracer techniques, since more quantification studies are needed to better understand the complexities of the nano-bio interface [54].

Several books are available that discuss growth and properties of metal oxides and their applications and also of ZnO structures and devices [163]. Recent progress has demonstrated that nanostructured metal chalcogenide (MC) materials, such as metal sulfides, selenides, and tellurides, are promising candidates for advanced energy conversion and storage (ECS) devices. In a recent review, Gao et al. discussed 15 different liquid phase methods for the synthesis of MCs and their modification by other functional nanomaterials, such as carbon-based materials, noble metals, metal oxides, or by the MCs themselves [164]. ECS applications of the MC/modified-MC nanomaterials are then systematically summarized based on the number of successful cases.

A recent review by Zielińska-Jurek, summarized recent advances in the preparation and environmental application of

bimetallic TiO_2 -based photocatalysts using Au, Pt, Ag, and Cu to enhance the photocatalysis of the TiO_2 template [165].

2.6.1 INPs in Potential Medical, Therapeutic and Toxicology Applications

The use of nuclear medicine and radiochemistry procedures continues to undergo rapid expansion with the increased use of imaging technologies, such as PET, MRI, and single photon emission computed tomography (SPECT), and with the advances in contributions from the life sciences in molecular biology, genetics, and proteomics [166]. In a theme issue of *Advanced Drug Delivery Reviews*, eds. Mattoussi and Rotello presented a sampling of what INPs, such as luminescent QDs, magnetic, plasmonic, and upconversion NPs, can provide in medicine and biology, which includes potential scaffolds for diagnostic, therapeutic and imaging agents [24].

As indicated earlier, INPs present potential platforms for drug delivery and therapeutics. Naahidi et al. reviewed the biocompatibility of engineered NPs for drug delivery [25]. Gottstein et al. addressed issues involving the precise quantification of NP internalization in measuring the impact of the physical and chemical properties on the uptake of NPs into targeted cells or into cells responsible for rapid clearance [167]. They addressed the issue of quantification with a mathematical model that integrates data from high-throughput flow cytometry measurements with data from confocal microscopy, as a potentially useful tool in biomedical nanotechnology studies. The method was then applied to measure the impact of surface coatings of vesosomes on their internalization by cells of the reticuloendothelial system.

The role of quantum dots from synthesis to applications in biomedicine and the life sciences is discussed by Drummen et al. [102]. Interest in nanoparticles [20] and QDs [168] for multimodal applications continues to gain momentum because of their potential for accurate and precise assessment of biological signatures. Gibson et al. discussed the radiolabeling of engineered NPs for *in vitro* and *in vivo* tracing applications using cyclotron accelerators [169].

Schütz et al. reviewed NP chemotherapeutic (CP) systems that have been developed for human therapy, considering the

components of the NPs, the therapeutic agents associated with the NPs, and the clinical indications for which the NPs were developed. The NP-CP systems reviewed are those that have been published, approved, and marketed, and that are currently in clinical use [170]. A recent review on the interaction of INPs with the skin barrier was presented by Labouta and Schneider [171]. The review briefly highlighted current applications and behavior of INPs in relation to the skin as well as qualitative and quantitative analysis of INPs present in the skin.

Engineered magnetic NPs for remediation and water treatment was reviewed by Tang and Lo with a focus on the necessity of enhancing the understanding of how these NPs react with contaminants and interact with the surrounding environment during applications [39]. Horie and Fujita discussed the toxicology of metal oxide nanoparticles [172].

The future promise of marine bio-nanotechnology in nanomedicines, foodstuffs, pharmaceuticals, and the fabric industries offers potential areas for radiolabeling research and tracing involving INPs. This topic was recently reviewed by Asmathunisha and Kathiresan [173].

2.7 Summary, Conclusions, and Outlook

In the present chapter, we present an introduction to a broad spectrum of examples that hopefully illustrate the enormous diversity that abounds in the area of nanoparticle research, along with selected examples of the many ways of synthesizing such nanoparticles as a potential guide to our readers.

The synthesis strategies and techniques presented will continue to provide new materials, which, when applied to specific cases, will hopefully lead to better understanding and control of the NP challenges mentioned in Section 2.1.3. For NP radiolabeling and tracer studies, there is not one best synthesis method or approach to making NPs, but rather may depend primarily on the research objective or application and end use of the nanomaterial.

Chemical functionalization of NPs will remain a powerful strategy for controlling the potential energy landscape of these particles, particularly as it relates to the particle-medium interface. The utilization of capping agents needs to shift from qualitative exploration to quantitative investigation, and a lot of work needs to be done on understanding and identifying the specific binding sites associated with nanoparticles.

The entire field of nanoparticle research is undergoing change on a daily basis and at an ever-increasing rate. There is no doubt that the change, growth and development will continue well into the foreseeable future. The possibilities of labeling inorganic nanoparticles appear ready for creative ideas, new strategies, and applications in the many fields presented in the chapter. As labeling techniques in radiochemistry broaden and cyclotron availability increases, through miniaturization and automation, new opportunities, challenges, and needs will emerge.

Acknowledgements

The authors thank Layza Arizmendi-Galaviz, José A. Rodríguez González, and Raquel Ledezma-Rodríguez for help in preparing the manuscript. RFZ acknowledges support from the Air Force Office of Scientific Research, grant FA9550-10-1-0489.

References

- 1. Tite MS, Freestone IC, Bimson M (1984) A technological study of Chinese porcelain of the Yuan dynasty, *Archaeometry*, **26**(2), 139–154.
- 2. Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus Cup—A Roman nanotechnology, *Gold Bull*, **40**(4), 270–277.
- 3. Activities in the mid-1970s in the United States began to appear in corporate research laboratories such as the then AT&T Bell Labs (Brus L and associates), Xerox Webster Research Center (Ziolo RF and associates), Exxon (Abeles B, Cody G and associates), and Eastman Kodak. Interestingly, it wasn't until later in the 20th century that the origin of the optical gain in silver halide photography was discovered to be a nanocluster of silver atoms. For a short review, see Belloni J (2003) Photography: Enhancing sensitivity by silver-halide crystal doping, *Radiat Phys Chem*, **67**, 291–296.
- (a) Ziolo R, Gunther W, O'Horo M, Kellerman R, Ganguly B (7-9 September 1977) Preparation and Properties of Low Optical Density, Superparamagnetic, Small Particle Iron Oxide Composites,

presented at AIP Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Ohio State University, Columbus, OH; (b) Ziolo R, Gunther W, O'Horo M, Kellerman R, Ganguly B (1978) *ACS Abtracts Papers*, **175**, 28.

- Rossetti R, Hull R, Gibson JM, Brus LE (1985) Excited electronic states and optical spectra of ZnS and CdS crystallites in the ~15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties, *J Chem Phys*, **82**, 552–559.
- 6. Brus L (1986) Electronic wave functions in semiconductor clusters: Experiment and theory, *J Phys Chem*, **90**, 2555–2560.
- (a) Ziolo RF, Giannelis EP, Weinstein BA, O'Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline γ-Fe₂O₃: A new optically transparent magnetic material, *Science*, **257**, 219–223; (b) Ziolo RF, Giannelis EP, Shull RD (1993) Matrix-mediated synthesis and properties of nanostructured materials, *Nanostruct Mater*, **3**, 85–92; (c) Giannelis EP, Mehrotra V, Vassiliou JK, Shull RD, MacMichael RD, Ziolo RF (1994) Magnetic and optical properties of γ-Fe₂O₃ nanocrystals, in *Nanophase Materials—Synthesis, Properties, Applications* (Hadjipanayis GC, Siegel R, eds), *NATO ASI Series E: Applied Sciences*, Kluwer Academic Publishers, Dordrecht, pp 617–624.
- 8. (a) Ziolo RF (1984) Developer composition containing superparamagnetic polymers, US Patent 4,474,866, October 2; (b) Ziolo RF (1994) Magnetic materials with single-domain and multidomain crystallites and a method of preparation, US Patent 5,358,659, October 25; (c) Ziolo RF (1994) Method of preparing a stable colloid of submicron particles, US Patent 5,362,417, November 8; (d) Ziolo RF (1996) Method of preparing a stable colloid of submicron particles, US Patent 5,578,245, November 26; (e) Ziolo RF, Kroll EC Pieczynski R (1997) High magnetization aqueous ferrofluids and processes for preparing and uses thereof, US Patent 5,667,716, September 16; (f) Ziolo RF (1997) Magnetic and nonmagnetic particles and fluids, US Patent, 5,670,078, September 23; (g) Ziolo RF (1999) Particle size reduction process, US Patent 5, 927, 621, July 27.
- 9. Hadjipanayis GC, Siegel RW (eds) (1994) *Nanophase Materials: Synthesis–Properties–Applications,* Kluwer Academic Publishers, Dordrecht.
- 10. Siegel RW, Hu E, Roco MC (eds) (1999) *Nanostructure Science and Technology*, Kluwer Academic Publishers, Dordrecht.

- 11. Timp G (ed) (1999) Nanotechnology, Springer-Verlag, New York.
- 12. Wolf E (2006) Nanophysics and Nanotechnology, Wiley-VCH, Weinheim.
- (a) Chen H, Roco MC, Son J, Jiang S, Larson CA, Gao Q (2013) Global nanotechnology development from 1991 to 2012: Patents, scientific publications, and effect of NSF funding, *J Nanopart Res*, **15**, 1951, 21 pp; (b) Roco MC, Bainbridge WS (2013) The new world of discovery, invention, and innovation: Convergence of knowledge, technology, and society, *J Nanopart Res*, **15**, 1946, 17 pp.
- (a) Martin-Palma RJ, Lakhtakia A (2010) Nanotechnology: A Crash Course, SPIE Press, Washington; (b) Perez J, Bax L, Escolano C (2005) NRM Project, 6th Framework Programme, http://nanoparticles.org/ pdf/PerezBaxEscolano.pdf (20/08/2014); (c) Sergeev GB, Klabunde KJ (eds) (2013) Nanochemistry, 2nd ed, Elsevier, Amsterdam.
- 15. Hanson GW (ed) (2008) *Fundamentals of Nanoelectronics*, Pearson/ Prentice Hall, New Jersey.
- Stroscio MA (2008) Materials for nanoelectronics, in *Introduction* to nanoelectronics: Science, Nanotechnology, Engineering, and Applications (Mitin VV, Kochelap VA, Stroscio MA, eds), Chapter 4, Cambridge University Press, UK, pp 65–108.
- 17. Ohtsu M (ed) (2006) Progress in Nano-Electro-Optics V: Nanophotonic Fabrications, Devices, Systems, and Their Theoretical Bases, Springer, Netherlands.
- 18. Minoli D (ed) (2005) Nanotechnology Applications to Telecommunications and Networking, Wiley-VCH, Weinheim.
- Ermolov V, Heino M, Karkkainen A, Lehtiniemi R, Nefedov N, Pasanen P, Radivojevic Z, Rouvala M, Ryhanen T, Seppala E, Uusitalo MA (2007) Significance of nanotechnology for future wireless devices and communications, in *Personal, Indoor and Mobile Radio Communications, PIMRC 2007, IEEE 18th Int Symp,* 1–5.
- 20. Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging, *Theranostics*, **4**(3), 290–306.
- 21. Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers, *Int J Nanomed*, **7**, 3445–3471.
- 22. Corr SA, Rakovich YP, Gun'ko YK (2008) Multifunctional magneticfluorescent nanocomposites for biomedical applications, *Nanoscale Res Lett*, **3**(3), 87–104.

- 23. Moreno-Vega AI, Gómez-Quintero T, Nuñez-Anita RE, Acosta-Torres LS, Castaño V (2012) Polymeric and ceramic nanoparticles in biomedical applications, *J Nanotech*, 936041, 10 pp.
- 24. Mattoussi H, Rotello VM, eds (2013) Inorganic nanoparticle platforms, *Adv Drug Deliv Rev*, **65**(5), 605–756.
- 25. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery, *J Control Release*, **166**(2), 182–194.
- Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review, *Prog Pol Sci*, 38(8), 1232–1261.
- 27. Cohen-Karni T, Langer R, Kohane DS (2012) The smartest materials: The future of nanoelectronics in medicine, *ACS Nano*, **6**(8), 6541–6545.
- Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: The state of investigational and approved nanomedicine products, *Nanomedicine NBM*, 9(1), 1–14.
- Kim YY, Walsh D (2010) Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions, *Nanoscale*, 2(2), 240–247.
- 30. Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels, *Nano Lett*, **10**(8), 2735–2741.
- Whittingham MS (2008) Materials challenges facing electrical energy storage, *MRS Bull*, 33, 411–419.
- 32. Nanoscience Research for Energy Needs (2004) Report of the National Nanotechnology Initiative Grand Challenge Workshop, March 16–18, http://www.whitehouse.gov/files/documents/ostp/ NSTC%20Reports/nni_energy_rpt%202004.pdf (22/08/2014).
- 33. Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry, *ChemSusChem*, **5**(1), 65–75.
- 34. See Manufacturing at the Nanoscale, US National Nanotechnology Initiative, http://www.nano.gov/nanotech-101/what/manufacturing (20/08/2014).
- 35. Pelton M, Bryant GW (2013) *Introduction to Metal-Nanoparticle Plasmonics*, John Wiley & Sons, New York.