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Preface

Recent developments in nanoscience have given rise to concerns 
about the possible negative impact of nanomaterials (NMs) on 
human health and the environment. On the other hand, the 
application of nanomaterials in the medical field as drug delivery 
vehicles, contrast agents, or scaffolds for tissue engineering has 
grown in parallel with industrial use. NMs are extremely difficult 
to detect and quantify once distributed in a biological system, 
and one approach to overcome this problem is to label NMs with 
(radio)isotopes, enabling ultra-sensitive detection using different 
techniques.
 This unique book is the result of several years of work devoted 
to labeling nanomaterials for nanosafety and nanomedicine 
studies. The aim is to share the considerable cumulative experience 
of the authors by describing the state-of-the-art and future 
perspectives on the labeling of NMs for toxicological, imaging, and 
safety studies.
 The book is presented in three main parts. The first part 
(Chapters 1–7) provides a general background to the topic, 
including synthesis and properties of the most commonly used 
NMs (Chapters 1–5), a general introduction to radioactivity and 
the reasons why radiolabeling is required (Chapter 6) and a 
description of the main imaging techniques that can be used to 
study radiolabeled NMs in vivo (Chapter 7). The second part of the 
book (Chapters 8–15) covers the different strategies reported so 
far for the preparation of radiolabeled NMs using positron and 
gamma emitters (Chapters 8–14) and the radiolabeling of NMs 
for therapeutic purposes (Chapter 15). The third part of the 
book contains three more chapters. Chapter 16 discusses the 
radiochemical integrity of the radiolabeled NMs, Chapter 17 
covers the labeling of NMs using stable isotopes, and Chapter 18 
discusses some operational health and safety issues related to 
the preparation and use of radiolabeled NMs.



xxii

 The book, which aims to be a comprehensive resource for 
both the specialist and the non-specialist reader, covers a hot an 
emerging topic and is intended to become a point of reference for 
all those working in the field of nanotechnology.
 Finally, special acknowledgements go to all authors who 
contributed to this book. The editors gratefully acknowledge 
editorial assistance from Nextgenediting (http://www.
nextgenediting.com) and the projects MAT2013-48169-R (Spanish 
Ministry of Economy and Competitiveness) and FP7-NMP- 
2010-LARGE-4-263307 (European Commission) for financial 
support.

Jordi Llop Roig
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Edited by Jordi Llop Roig, Vanessa Gómez-Vallejo, and Peter Neil Gibson
Copyright © 2016 Pan Stanford Publishing Pte. Ltd.
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Introduction

Recent developments and technical advances in nanotechnology 
and nanosciences have given rise to concerns about the possible 
negative impact of nanomaterials (NMs) on human health and the 
environment. The increased use of NMs in everyday products and 
a number of industrial processes exacerbate this worry. Large-
scale production of NM-based products and devices is by no 
means a fantasy, and nanotechnology is already present in myriad 
household products including textiles, construction materials, 
electronics, surface coatings, fuels, and solar cells. The application 
of nanotechnology to the medical field, particularly for the 
treatment of complex diseases in which conventional medicines 
lack treatment or diagnostic efficacy, has grown in parallel with 
industrial use. NMs are rapidly emerging as promising drug delivery 
vehicles, contrast agents, or scaffolds for tissue engineering.

However, the toxicological evaluation of NMs due to either 
unintended or deliberate exposure is challenging. NMs are 
complex and variable, and a lack of long-term studies and technical 

Sergio E. Moya
Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón, 
182 San Sebastián, 20009 Guipúzcoa, Spain

smoya@cicbiomagune.es

http://www.panstanford.com
mailto:smoya@cicbiomagune.es


� Introduction

limitations in tracking and quantifying NMs in organisms and cells 
hampers progress.

Studying the translocation and eventual fate of NMs is 
fundamental to comprehending possible toxicological mechanisms. 
The toxicological effects of NMs will depend on a number of different 
factors, such as the organs that the NMs reach and their dose. Fate 
and translocation studies are particularly important in medical 
applications of NMs, in which their capacity to target selected 
organs and subcellular domains needs to be established.

On exposure, NMs can translocate into the body by crossing 
the epithelial barriers provided by the skin, the gastrointestinal 
tract, the upper respiratory tract, or the lungs. For medical purposes, 
NMs may also be administered parenterally or intravenously. Once 
in the circulatory system, NMs redistribute and must cross an 
endothelial barrier to translocate into remote tissues or organs. 
The biokinetics, biodistribution, and tissue and cellular interactions 
of NMs are complex and are influenced both by the nature of the 
NMs and their surface functionalisation.

NMs eventually gain access to the inside of the cell. In order 
to understand the biochemical action(s) of NMs, mechanisms 
of cellular uptake, intracellular localisation, and intracellular 
processing need to be characterised.

The intracellular actions of NMs are influenced by their 
physical state including their aggregation, interaction with 
biomolecules in different cellular environments, formation of 
protein/lipid coronas, and dynamics. At the cellular level, NMs 
can be present as single entities or as aggregates, and the degree 
of aggregation can change during their residence time in the cell. 
The aggregation state of NMs affects their interaction with other 
intracellular molecules (such as proteins, nucleic acids, and lipids) 
and also their localisation and intracellular trafficking. Moreover, 
NM aggregation has an impact on their toxicological action and, 
in cases where the NMs are intended for medical use, the 
aggregation state and how this varies over time also influences 
clinical efficacy.

Many of the difficulties in tracing NMs in the cell and body 
stem from their complexity, the wide variety of different NMs 
available, and a lack of suitable generalisable techniques. NMs 
can be broadly classified as organic/polymeric, carbon, inorganic, 



�

and hybrid. Organic/polymeric NMs are most frequently used 
in nanomedicine. Inorganic NMs, such as metal and metal oxide 
NMs, have highly variable surface to volume ratios and shapes 
(e.g., spherical, nanorods, nanowires, stars, triangles).

The complex nature of the interactions between NMs and 
biological molecules, cells, and organisms is strongly related to 
their surface properties and stability in biological fluids. Organic, 
self-assembling NMs can easily degrade into their component 
molecules in vivo, while many metal and metal oxides can dissolve 
to generate ions that negatively affect cellular homeostasis. Metal 
and metal oxide NMs can also have highly reactive surfaces that 
interfere with biological reactions by acting as catalysts and/or 
oxidising/reducing agents. Carbon-based NMs, unless oxidised, do 
not degrade easily and tend to form large aggregates and fibrillar 
structures.

To trace NMs at the intracellular and body level and to study 
their fate and interactions with biomolecules requires a combination 
of different experimental techniques, the exact details of which 
depend on the nature of the material and its surface characteristics. 
It also requires the proper design, engineering, and labelling of 
the NMs to be traced.

In vivo translocation studies of NMs require sophisticated, 
and often difficult, techniques. In most scenarios, the NMs are 
extremely difficult to detect and quantify once distributed in a 
biological system. One way to overcome this problem is to label NMs 
with radionuclides, which enables ultra-high sensitivity detection 
in biological systems using positron emission tomography (PET) 
or single-photon emission computerised tomography (SPECT), as 
routinely performed for pharmaceuticals. However, incorporation 
of radionuclides into NMs is far from trivial and usually requires 
laborious procedures. To date, different strategies have been 
developed to incorporate radionuclides into NMs that depend on 
their chemical composition. One common NM labelling strategy is 
to attach an appropriate radiolabelled tag to the surface of the NM. 
Other strategies are based on the incorporation of the radioactive 
isotope into the NM core without significantly changing its surface 
properties.

This unique book is the result of several years of work devoted 
to radiolabelling nanomaterials for nanosafety and nanomedicine 
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studies in a number of European projects. The aim is to share the 
considerable cumulative experience of the authors by presenting 
state-of-the-art and future perspectives on the labelling of NMs 
for toxicological, imaging, and safety studies.

The book can be considered in three main parts. The first 
(Chapters 1–7) provides the reader with a general background to 
the topic. Chapters 1–5 cover the synthesis and properties of the 
most commonly used NMs: metal and metal oxide nanoparticles, 
carbon-based NMs, and organic nanoparticles. This general 
description of NMs provides the reader with the basic knowledge 
necessary to understand the labelling strategies available and the 
complexities that can be expected when approaching the problem. 
A large collection of references is provided to facilitate further 
reading. Chapter 6 provides a general introduction to radioactivity 
and the reasons why radiolabelling is required, along with some 
key parameters that must be taken into consideration when 
selecting the most appropriate isotopes. Chapter 7 provides a 
description of the main imaging techniques that can be used to 
investigate radiolabelled NMs in vivo.

The second part of the book covers the different strategies 
reported so far for the preparation of radiolabelled NMs: 
Chapter 8 details the radiolabelling of NMs with radiometals; 
Chapter 9 provides a description of the labelling alternatives when 
using radiohalogens and the short-lived positron emitters 13N 
and 11C; Chapter 10 covers the different labelling strategies 
described to date for the preparation of radiolabelled liposomes; 
Chapters 11–13 cover the preparation of labelled NMs by direct 
activation (including ion beam activation, neutron activation, and 
recoil labelling); and Chapter 14 introduces the main calculation 
tools that can be applied to isotope production by beam activation. 
Finally, Chapter 15 covers the preparation of radiolabelled NPs 
for therapeutic purposes.

The third part of the book contains three more chapters. 
Chapter 16 discusses one of the main issues arising when using 
radiolabelled NPs for in vivo investigations: the radiochemical 
integrity of the labelled species. Chapter 17 covers the labelling 
of NMs using stable isotopes while Chapter 18 discusses some 
operational health and safety issues related to the preparation 
and use of radiolabelled NMs.
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This book aims to be a comprehensive resource for both the 
specialist and non-specialist reader. The importance of the topic in 
the context of the safety evaluation of NMs and their assessment 
in biomedical applications makes this book a point of reference 
for all those working in the field of nanotechnology, and especially 
researchers or graduate students developing NPs for potential 
industrial applications or use in the biomedical arena.
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Inorganic Nanoparticles

This chapter is intended as an introductory overview of the 
vast subject of inorganic nanoparticles (INPs), drawing focus 
on some of the more common synthesis techniques, such as the 
wet chemistry methods, and on some of the characteristics of 
inorganic nanoparticles and their applications. A broad brushstroke 
approach to the subject matter was chosen in the hope of providing 
researchers in the radiolabeling and tracer fields with a guide to 
current trends in the synthesis of INPs over the broad landscape 
and backdrop of nanoscience and nanotechnology. We hope that 
the material and references presented herein will assist the reader 
in selecting possible INPs of potential interest and aid in suggesting 
potentially new opportunities for research and applications in 
the field of radiolabeled nanoparticles. As many reviews, books, 
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and articles as possible were consulted for the preparation of 
this chapter.

2.1 Introduction

The physics and chemistry of materials at sizes approaching those 
of atomic dimensions, i.e., of nanostructures and nanoparticles 
(NPs), are spawning new research strategies and paradigms in 
physics, chemistry, biology, materials science, and engineering. The 
unusual nature of such materials was noted in antiquity. Witness, 
for example, the glazes for early dynasty Chinese porcelain [1] 
and the unusual optical properties of the Roman Lycurgus cup [2]. 
During the 70s and 80s of the past century, studies in physics and 
chemistry started to focus attention on matter, then called ultra-fine 
particles (or inhomogeneous media when dispersed in a matrix), 
in the range of ~1 to 100 nm that displayed unusual and often 
unexpected electrical, optical and magnetic properties [3–8]. 
During the past two decades, inter- and multidisciplinary research 
has been broadening the scope of that attention to computation, 
systems, processes, manipulation, sensing, control, and analytical 
capabilities at the nanoscale [9–12]. These advances are presently 
fuelling further initiatives and growth in the rapidly growing 
disciplines of nanoscience and nanotechnology as the convergence 
of knowledge continues [13, 14]. Combined, research from these 
disciplines continues to impact discovery, development and change 
in societally important technology sectors such as electronics and 
photonics [15–17], telecommunications [18, 19], medicine [20–29], 
energy [30–32], catalysis [33], manufacturing [34], advanced 
materials, such as metal-NP plasmonics [35] and self-organizing 
nanoscale systems [36–38], and the environment [39–42]. 
Clearly, the nanoscale will provide numerous opportunities and 
challenges for innovative research and applications in the study 
and use of radiolabeling and tracer techniques. A “crash course” in 
nanotechnology is available for those wishing to have an overview 
[14a], as is the EC co-funded “roadmap” report on nanoparticles 
2005 [14b] and a recent overview of nanochemistry [14c].

At the nanoscale, the size of matter is dimensionally smaller 
than the characteristic length of a number of physical properties. 
As a consequence, the new and sometimes unexpected properties 
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of the nanoscale materials, as compared with those of the bulk, 
result from quantum confinement effects. Matter in the nanometer 
regime also has a high ratio of surface atoms to bulk atoms as the 
surface-area-to-volume ratio of the matter increases. Consequently, 
the electronic states of the surface and near-surface atoms become 
important as does any spill-out of electronic density, for example, 
outside of a NP. Nanoparticles and nanoscale materials of inorganic, 
bioceramic, carbon, and organic materials are the subjects of the 
introductory Chapters 2–5, respectively, and are the kinds of matter 
that will continue to contribute to the evolution of platforms, 
scaffolding, hierarchical and integrated structures during the next 
decades.

2.1.1 Nanomaterials and Nanoparticles

Nanomaterials generally have at least one dimension small enough 
to experience quantum confinement effects, usually in the size 
range of 1 to 100 nm. Thus, many materials of different 
compositions and shapes may be included, such as 3D clusters of 
atoms, compounds and materials, generally referred to as NPs, 
2D sheets of clays, rings, dendrimers, graphenes, and graphene 
quantum discs, 1D materials, such as rods, tubes, wires, and 
filaments, and 0D “nanoparticles,” such as knots and quantum dots 
(QDs). Nanoparticles generally contain about 102 to 107 atoms. In 
the literature, some of the 2D and 1D materials, when small enough, 
are referred to as NPs, especially when dispersed in a medium.

2.1.2 Chapter Scope

The aim of this chapter is to present a broad overview of INPs 
by introducing some of the synthesis techniques used to make 
them, some characteristics, and some representative applications. 
The discussion is meant to be illustrative rather than exhaustive 
and in this sense is selective and a bit arbitrary. Hence the 
reference list includes many books and review articles to which the 
reader is referred. No attempt is made to be comprehensive or all 
inclusive given the enormity of the literature and limited space of 
the chapter. The words synthesis, preparation, and methodology 
are used interchangeably.

Introduction
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2.1.3 Challenges

The challenges facing anyone wishing to prepare and use 
nanoparticles are many and depend foremost on the objective of 
the research or application and on the end use of the nanomaterial. 
Variables such as particle size, shape, distribution, composition, 
stoichiometry, phase, homogeneity, topology, and surface attributes, 
such as functionalization, dispersibility, the presence or absence of 
dispersing or capping agents, and, in some cases, biocompatibility, 
all deserve careful consideration as do issues of nanoparticle 
safety and environmental effects.

2.2 An Overview of Inorganic Nanoparticle 
Synthesis

Overall, there are three approaches or strategies to synthesizing 
nanoparticles. They can be synthesized by building the structures 
from the constituent atoms or molecules, i.e., from the bottom up, 
or, by breaking down large-scale structures to the nanoscale, i.e., 
from the top down. The third approach is a combination of the 
bottom-up and top-down strategies. Each approach can involve 
different synthesis techniques and even different strategies in 
execution of the techniques.

2.2.1 The Bottom-Up Approach: From Small to Large

Commonly, the bottom-up approach employs wet chemical or 
liquid phase techniques as discussed in Section 2.3. These 
techniques include precipitation, co-precipitation, hydrolysis, sol-
gel, spray pyrolysis, templating, microwave-assist, and electrochem-
ical, sonochemical, and solvothermal methods, and synthesis in 
microemulsions and supercritical fluids. Many of these techniques 
are referred to or illustrated in this chapter (see Sections 2.3 to 2.5). 
A recent overview of wet production methods was presented by 
Bensebaa [43a].

With a view toward biotechnology applications, Kharissova 
et al. recently reviewed “green” synthesis techniques for making 
NPs using natural products such as polyphenols in plant extracts 
as chelating or reducing agents in a one-step process without 
the direct addition of surfactants or capping agents [43b].
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Besides the liquid-phase techniques used in the bottom-up 
approach, high-purity nanoparticles can be synthesized using gas-
phase techniques, which are convenient for continuous processing. 
Kruis et al. review and evaluate many of the gas-phase techniques 
such as homogeneous gas phase nucleation, laser, flame, and 
plasma reactors, sputtering, and aerosols [44]. Surface growth 
under vacuum conditions using such techniques as chemical 
vapor deposition, molecular beam epitaxy, electron beam plasma, 
magnetron sputtering, and laser deposition may be employed to 
produce nanoparticles in film form and in different matrices. Gas 
phase and vacuum techniques per se are not discussed further.

2.2.2 The Top-Down Approach: From Large to Small

Breakdown or top-down strategies can involve mechanical 
processes such as dry and wet grinding, ball milling, mechanical 
alloying, sonication, and severe plastic deformation. In the early 60s, 
NASA first prepared highly stable magnetic colloids, now known 
as ferrofluids, by grinding mixtures of natural magnetite, oleic 
acid and a hydrocarbon for periods of up to nine months [45]. 
Today, bottom-up approaches can provide ferrofluids within 
minutes to hours. Breakdown can also be achieved by laser ablation, 
especially for noble metal NPs in water and organic solvents 
where surfactant-stabilizing molecules are not needed [46]. Redel 
et al. reported a fast, green synthesis of metal oxide NPs using a 
more traditional approach of metal powder reduction by chemical 
means. A controlled oxidative dissolution process of micrometer 
size bare metal powders using aqueous 30% hydrogen peroxide 
and acetic acid produced high-purity aqueous dispersions of 
3–8 nm metal oxide NPs [47]. The method appears to be widely 
applicable to the synthesis of metal oxide NPs. Although simple and 
straightforward, these reactions are very exothermic and must be 
carried out with extreme care and with the use of instant ice-bath 
cooling and other safety considerations.

In the top-down approach, mechanical alloying is also a 
viable technique, for example, in preparing mixed nanoscale 
chalcogenides, and can be used to prepare non-equilibrium phases 
of nanostructures [48]. Ferrando et al. reviewed metal alloys form 
theory to applications of alloy clusters and NPs [49]. Severe plastic 
deformation (SPD) has been employed in recent years for the 
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production of nanocrystalline particles. Data for several different 
SPD methods were evaluated to determine the refining efficiency 
and capabilities of the top-down synthesis methods [50].

2.2.3 Combined Approaches

Cryochemical synthesis techniques illustrate the combination of 
a top-down and bottom-up strategy where the high temperature 
vaporization of bulk elements or compounds is followed by con-
densation of the vapor in cold matrices of inert gases or selected 
molecular reactants to form NPs consisting of atom clusters [51]. 
As an example of a process that involves a bottom-up and top- 
down strategy, Ziolo et al. synthesized magnetic NPs in a polymer 
matrix, which was used to control the NP size, shape, and 
distribution of the NPs in the matrix [7]. The polymer nanocom-
posites were then milled for a few hours in water or alcohols to 
produce aqueous ferrofluids with shelf lives >30 years [8a–f]. 
Although no surfactant or stabilizing agents were used in the 
process, the long-term stability of the aqueous ferrofluids resulted 
from the polyelectrolytic nature of the oligomers that resulted from 
the breakdown of the polymer matrix during ball milling. Some 
discussion of the advantages and disadvantages of bottom-up and 
top-down methods of syntheses are discussed by Sergeev and 
Klabunde [52].

2.3 Synthesis of Some Specific NP Materials

2.3.1 Metal Oxide NPs

In a general overview of traditional and emerging synthesis 
approaches to nanostructured metal oxides, Corr discusses a 
broad range of synthesis techniques covering many different metal 
oxides [53]. The techniques include decomposition of precursors, 
chemical vapor methods, template synthesis, co-precipitation, and 
microwave-assist to name but a few. In a follow-up article, Corr 
discusses the characterization of NPs to probe more extensively 
their structure property relationships and of NP hybrids for 
synergistic relationships and applications [54]. It is important to 
note that in some cases, as pointed out by Corr, carefully constructed 
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hybrid nanostructures can promote a synergetic relationship 
between the composite constituents.

In the case of metal oxides, such as those, for example, of Al, 
Ti, Fe, Zn, Zr, Sn, alkaline earths, Ce, etc., that are prepared in 
aqueous solutions by hydrolysis and precipitation, the cations 
involved in the synthesis often undergo complex and extensive 
hydrolysis to form a wide variety of hydrolysis products. Baes 
and Mesmer provide a useful reference for the identity and 
stability of the many hydrolysis products [55].

2.3.1.1 Zinc oxide NPs

Zinc oxide NPs have received much attention in the literature 
because of the diversity of their applications, including biological 
applications, and have been prepared by a variety of techniques 
[56–75]. Zinc oxide NPs with tunable emission colors and good 
water stability were synthesized through an ethanol-based 
precipitation method. The emission colors could be tuned by 
adjusting the pH of the precipitating solution, Fig 2.1. The ZnO 
NPs were then encapsulated with silica to form ZnO@silica 
core–shell NPs, sometimes referred to as nanostructures, as in 
Chapter 3, to improve the water stability of the ZnO nanoparticles 
while retaining the fluorescence of the NPs in the core–shell form. 
The core–shell NPs exhibited low cytotoxicity and were promising 
in cell-labeling applications [56].

A problem of zinc oxide particles for fluorescent labeling 
for cellular imaging is their low stability in water. Zhang et al. 
synthesized ZnO@silica NPs modified with surface hydrophilic 
amino groups through a three-step silanization process to produce 
ZnO NPs that are stable in water, phosphate buffer saline, and 
Roswell Park Memorial Institute (RPMI) cell culture medium 
1640. The aqueous solutions showed high quantum yields with 
blue, green, and yellow emissions and were stable for cell imaging 
experiments [71]. Zhao et al. reported two facile synthesis routes 
for the preparation of water-stable ZnO NPs with blue and yellow 
fluorescence. In one preparation, zinc nitrate and oleic acid were 
dissolved in triethylene glycol. The mixture was heated to 240°C 
with stirring and concomitant ester elimination. In the second 
method, zinc acetate was hydrolyzed in ethanol with KOH at 
room temperature. The resulting NPs were then stabilized with 
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3-aminopropyltriethoxysilane, which improved their water stability 
[69]. High stability of ZnO nanocrystals in the aqueous phase was 
also reported by Zhang et al. [72].

Figure 2.1 Fluorescence emission of ZnO nanoparticles in ethanol 
under 365 nm excitation at, from left to right, pH 12, 10, 8, and 
6. Reprinted with permission from [56]. Copyright © 2010, 
American Chemical Society.

ZnO NPs can also be synthesized by the microwave 
decomposition of zinc acetate using an ionic liquid, 1-butyl-3-
methylimidazolium bis(trifluoromethyl-sulfonyl) imide, as a green 
solvent, as shown by Jalal et al. [57]. The resulting ZnO NPs, were 
then dispersed in glycerol using ammonium citrate to form a ZnO 
nanofluid that showed antibacterial activity toward E. coli.

2.3.1.2 Titanium dioxide NPs

Several methods have been used for the preparation of 
nanocrystalline titanium dioxide, TiO2, which, among other uses, is 
an important photocatalyst and pigment with many environmental 
applications. These methods include the sol-gel method discussed 
in Chapter 3, microemulsion techniques [76, 77] and chemical 
precipitation by hydrolysis [78]. For the room temperature synthesis 
of titanium dioxide in the rutile and anomalous pseudobrookite 
phases, using a microemulsion technique, see Keswani et al. and 
references therein [76]. Abbas et al. reported the radiolabeling of 
TiO2 NPs for radiotracer studies [79]. TiO2 NPs were prepared in 
[18O]H2O by precipitation under basic conditions using NH3(g) to 
prevent the incorporation of 16O, for use in 18F labeled TiO2 NPs for 
bio distribution studies [80].
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2.3.1.3 Aluminum oxide NPs

Different phases of aluminum oxide nanoparticles can be 
synthesized, for example, by sol-gel (see Chapter 3), hydrothermal, 
sputtering, and laser ablation techniques. Aluminum oxide NPs, 
for example, were synthesized in water using the latter technique 
with Al powder as a target and a long-pulsed Nd:YAG laser [81]. 
Pang et al. synthesized Al2O3 NPs using oil-in-water microemulsion 
techniques to obtain as-prepared NPs about 8 nm in size, which then 
yielded oxide NPs about 15 nm in size after calcination [82].

A facile and direct precipitation method using aluminum 
chloride and ammonia gas bubbled in water was used by Pérez-
Campana and Llop et al. to prepare 18O-enriched Al2O3 NPs of 
various sizes that were subsequently converted to 18F-labeled 
positron emitting NPs by proton irradiation for in vivo bio 
distribution studies [83, 84].

2.3.1.4 Other metal oxide NPs

Iron oxides NPs are discussed in Section 2.3.4. The sol-gel synthesis 
of NP metal oxides, such as those of Al, Ti, Si, and Ni, and of mixed 
metal oxides, such as barium titanate and other complex metal 
oxides, are discussed in Chapter 3. A brief introduction to the 
sol-gel process can be found in Wright and Sommerdijk [85].

2.3.2 Noble Metal NPs

The noble metals, particularly those of gold and silver, continue to 
emerge as key materials in biological imaging, plasmonic sensing, 
medical therapeutics, and nuclear medicine and appear to offer 
potential for new opportunities in radiolabeling and tracing 
research and applications. Aside from biological and medical 
applications, it is interesting to note that a single 1.63 mm diameter, 
Epoxy/198Au tracer-particle bead was successfully tested for its 
applicability to indicate shed fouling in the stripper section of a 
fluid-coker [86].

Chen et al. provide a comprehensive discussion of the green 
synthesis of noble (Au, Ag, Pt, Pd, Ru, Rh) and other metal (Cu, Ni, 
Co, Mn, Zn, Fe) NPs with microwave irradiation and also consider 
the role of biocompatible and polymer surfactants for each of the 
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metals [87]. A low-cost, versatile, and reproducible large-scale 
synthesis of organoamine-protected Au and Ag NPs in the 6–21 
and 8–32 nm size range, respectively, was reported by Hiramatsu 
and Osterloh [88].

Michael Faraday first prepared NP gold sols by reducing AuC l 4  
_
   

in a two-phase system with phosphorous in CS2 [89]. The 
preparation of Au NPs in water is easily done using chlorauric acid, 
HAuCl4, or its salts, and reducing them, for example, with salts of 
sodium borohydride, metabisulfite, or citrate in the presence of a 
surfactant or capping agent such as the citrate ion. Frens used this 
approach with sodium citrate to produce nearly monodisperse 
gold NPs of different particle sizes of < 200 nm. The approach is 
limited, however, in that the gold cannot be directly capped with 
hydrophobic ligands or surfactants [90]. A different approach was 
used by Lu et al., who reported controlled growth of Au NPs with 
a narrow size distribution using Au(I) salts, such as AuBr and AuCl, 
and their relatively low stability in the presence of alkylamines 
[91]. Au NPs were prepared using AuCl and oleylamine heated in 
chloroform at 60°C without the need for a reducing agent.

Wilcoxon and colleagues introduced and pioneered a two- 
phase method for the preparation of specific sizes of metal NPs 
including Au using inverse micelles that allowed for capping by 
hydrophobic surfactants [92, 93]. Using a modification of this two 
phase method, Brust et al. prepared 1–3 nm thiol-capped Au NPs 
in water-toluene by reducing AuC l 4  –   with sodium borohydride in the 
presence of the alkanethiol [94].

As is the case for gold, silver NPs can also be prepared by 
reduction methods. Monodisperse samples of silver nanocubes, 
for example, were synthesized in large quantities by reducing silver 
nitrate with ethylene glycol in the presence of poly(vinypyrrolidone) 
[95]. Similarly, Guzman et al. reduced AgNO3 with hydrazine 
hydrate to form small silver agglomerates in powder form for 
antibacterial activity studies. The Ag NPs themselves had diameters 
of 20–40 nm [96]. Reducing agents obtained from natural sources 
rich in antioxidants were used by Rodríguez-León et al. to form 
Ag NPs in the 2–40 nm diameter range. The NPs grow in a single-
step method at room temperature with no additional energy input 
as shown in Fig. 2.2 [97a]. In vivo plant biosynthesis of metal NPs has 
also been studied [97b].
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Figure 2.2	 Change in color indicating growth of Ag NPs at different 
reaction times using R. hymenosepalus extract; vials (a) through 
(f) represent increasing concentrations of Ag NPs. Reprinted 
with permission from [97a]. Copyright © 2013, Springer.

2.3.3 Colloidal Semiconductor Quantum Dots

In one of their most commonly known forms, quantum dots (QDs) 
are nanocrystals of semiconductor materials that exhibit a 
sharp density of states due to quantum confinement. Examples 
of QD nanocrystals include such materials as the noble metals, 
particularly those of Au, Ag, and Pt, and binary compounds, such 
as CdS, CdTe, PbS, ZnSe, InAs, and InP, among many other known 
QD materials. The particles generally are a few nanometers in size, 
generally <5 nm, but some <10 nm, and are composed of a few 
hundreds to a few thousands of atoms. In very small size, where 
the particle radii are smaller than their exciton Bohr radius, 
QDs have electrical and optical properties that are highly tunable 
[98].

QDs were discovered in glass in the early 80s by Ekimov with 
an interpretation as to their role in colored glasses [99]. At about 
the same time, Brus and associates discovered QDs in colloidal 
liquids and attributed their color to quantum effects [5, 6].

An overview of the various synthesis techniques for colloidal 
QDs, is presented by Kim et al. [100]. A primer on QDs, including 
syntheses, was reported by Murphy and Coffer [101]. Drummen 
has reported on the synthesis of QDs and applications in biomedicine 
and the life sciences [102]. Bawendi et al. presented a review on 
the quantum mechanics of QDs [98].

Synthesis of Some Specific NP Materials
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Weiss presented a discussion on the use of organic molecules 
in the preparation of colloidal quantum dots as tools to control 
growth, surface structure and redox activity of these materials 
[103]. Wang et al. provided a direct synthesis of water soluble CdTe:
Zn2+ QDs that potentially may be applied to the synthesis of other QD 
chalcogenides [104].

For recent articles on the synthesis, properties, and applications 
of colloidal QDs, the reader is referred to the Web site of the 
International Conference, “30 Years of Colloidal Quantum Dots,” 
held in Paris, France, May, 2014 [105].

2.3.4 Magnetic Nanoparticles

Magnetic nanoparticles constitute an important class of 
nanostructured materials that can be manipulated with hand-
held magnets or by otherwise applied magnetic fields. Some of the 
more common magnetic NPs consist of metals such as Fe, Co, Ni, 
and Gd, their oxides, mixed metal oxides, and alloys. The breadth 
of their potential in applications at the nano and higher scales is 
enormous and continually growing with research impacting areas 
such as multifunctionality, device sophistication and hierarchical 
magnetic nanostructures.

Applications of magnetic NPs includes areas such as catalysis, 
biomedicine, drug delivery [21, 106, 107], therapeutics, sensors, 
MRI contrast agents [107–111], particle imaging, data storage, and 
environmental remediation, including water filtration [39, 112]. 

The simpler magnetic NPs are easily synthesized by wet 
chemical methods [113] and may be used to form, for example, 
additional nanostructured materials, such as magnetic polymer 
nanocomposites or the core or shell of bi-functional core–shell 
nanoparticles.

Some of the most studied magnetic nanoparticles are 
magnetite, Fe3O4, and maghemite, g-Fe2O3, which display relatively 
high saturation magnetization moments [114]. These and other 
oxides of iron have been prepared by a host of different and 
reliable methods [113, 115]. Magnetite can be prepared by mixing 
aqueous solutions of stoichiometric amounts of Fe(II) and Fe(III) 
salts (such as chlorides, nitrates or sulfates) and simply controlling 
the pH, temperature and stirring rate. This co-precipitation 
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method was used early on by Masart [116], for example, to prepare 
ionically stabilized aqueous ferrofluids. By adjusting the molar 
ratio of ferrous to ferric ions in aqueous solutions, Osaka et al. 
synthesized Fe3O4 NPs in controlled sizes from 10 to 40 nm 
potentially suitable for drug delivery systems [106]. Iron oxide 
particles with mean diameters ranging from 7 to 20 nm were 
synthesized by Carvalho et al. [117]. A novel and simple non-
aqueous route for the preparation of nanocrystalline magnetite 
was reported by Pinna et al., using the decomposition of ferric 
acetylacetonate in benzyl alcohol to make particles from 12 to 
25 nm in size [118].

The saturation magnetization of magnetic nanoparticles is 
typically lower than that for the same material in the bulk state. 
The lower values generally result from magnetically disordered 
surface states of the NPs with their high surface-area-to-volume 
ratios and by the presence of attached surface ligands or capping 
agents [119]. 

The effect of surface modification with amine and carboxylate 
groups on the magnetic properties of iron oxide colloids for 
applications in the biomedical field was reported by Yuan et al. 
[109]. It was also shown that the composition and magnetic 
properties of iron oxide NPs can be influenced by the synthesis 
method and size of the magnetic nanoparticles [117]. The magnetic 
relaxation of polymer-coated NPs in aqueous solution was reported 
by Keshavarz et al. [120]. Cao et al. reported the preparation and 
radiolabeling of surface-modified magnetic nanoparticles with 
rhenium-188 for magnetic targeted radiotherapy [121]. Glaus 
reported on the development and analysis of radiolabeled magnetic 
NPs for positron emission tomography (PET) and magnetic 
resonance imaging (MRI) [108]. 

In nanocrystalline form, magnetic NPs generally exhibit 
superparamagnetism (SPM) above a critical temperature called the 
blocking temperature. In a practical sense, an ensemble of single 
domain SPM nanoparticles can be attracted to a magnet where 
the particles, each with their own magnetic moment, align in a 
magnetic field. The ensemble, however, possesses no permanent 
magnetism or magnetic memory above the blocking temperature 
due to thermal effects that keep the particles randomly oriented 
[114, 119]. SPM iron oxide NPs, or SPIONs, are emerging 

Synthesis of Some Specific NP Materials
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as potentially important magnetic nanoplatforms for drug 
delivery. Wahajuddin and Arora present a practical review of 
the preparation of SPIONs, their utility as drug delivery vehicles 
and concerns that need to be addressed before they can be 
moved from bench top to bedside [21]. A recent book by Stroeve, 
Milani, and Arbab covers the synthesis, surface engineering, 
cytotoxicity, and biomedical applications of SPIONs [122].

A facile, one-pot hydrothermal synthesis and surface 
functionalization of branched polyethyleneimine-coated Fe3O4 
nanoparticles for biomedical applications was reported by Cai et al. 
[123]. Suspensions of magnetic nanoparticles with glycopeptide 
coatings affording high sugar unit density were obtained via ring-
opening polymerization of N-carboxyanhydride, followed by 
step-glycosylation [124]. Chitosan-coated iron oxide nanoparticles 
are receiving increased attention for biomedical applications. 
The chitosan-coated magnetic NPs prepared by Unsoy et al. were 
found to be non-cytotoxic on cancer cell lines SiHa and HeLa [107]. 

2.4 Non-Aqueous, Microwave-Assist and Other 
Synthesis Routes

Most of the wet chemistry methods for the synthesis of INPs 
use water as a reaction medium. Non-aqueous routes, however, 
are available that offer equally viable preparations of INPs. 
Additionally, microwave-assisted reactions are showing great 
promise for the preparation of INPs in both aqueous and non-
aqueous media.

2.4.1 Nanoparticle Synthesis by Non-Aqueous Routes 

As in the case of NP synthesis in aqueous routes, syntheses using 
non-aqueous routes offer ways to control and tailor particle size, 
shape, and surface attributes, and can be performed at ambient 
temperatures in common solvents such as alcohols, ketones, and 
amines, while other methods may require higher temperatures 
and the use of solvothermal methods up to 250°C.

The reader is referred to the numerous works of Niederberger 
and associates that report on the synthesis of NPs by non-aqueous 
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routes, some of which are referenced herein [118, 125–142]. These 
works include reviews on the synthesis, assembly and formation 
mechanisms of metal oxide nanocrystals [129, 140], and on non-
aqueous sol-gel routes to metal oxide NPs [127]. Materials covered 
in these works include perovskites, such a BaTiO3, SrTiO3, and 
mixed titanates [128], zirconium and titanium dioxides [131, 133], 
semiconducting metal oxides for gas sensing [132], and the oxides 
of indium and zinc [137a,b], manganese [137c] and molybdenum 
[142]. For the preparation of multimetal and doped metal oxide 
nanocrystals using a benzyl alcohol route, see Pinna et al. and 
references therein [143]. For an overview of nanoparticles in organic 
solvents, including synthesis, characterization, reaction mecha-
nisms, assembly, properties, and applications, see Niederberger 
and Pinna [141]. Recent trends in the synthesis of metal oxide 
nanoparticles through reverse microemulsions in hydrocarbon 
media were recently reviewed by Khadzhiev et al. [144]. Surfactant-
free non-aqueous synthesis of metal oxide NPs [130a,b] and 
nanorods and wires [130c] has also been demonstrated.

2.4.2 Nanoparticle Synthesis by Microwave-Assisted 
Routes

Research in microwave-assisted synthesis of inorganic NPs is 
progressing rapidly with the area offering many new avenues for 
exploration. The technique can involve wet and dry syntheses, the 
bottom-up and top-down approaches, and assists by sonication 
[145], not only in the breakdown from the macro scale, but also in 
the breakdown of nanoscale materials to form smaller nanoscale 
materials. The overall subject of microwave-assisted synthesis 
of INPs is discussed in a recent book by Horikoshi and Serpone 
[146].

New opportunities in microwave-assisted synthesis of INPs 
via liquid phase routes are discussed by Bilecka and Niederberger 
[136] and more recently by Niederberger for non-aqueous sol-
gel chemistry, the polyol, and benzyl alcohol routes [147a], and 
for synthesis in ionic liquids [147a,b]. According to Niederberger, 
microwave chemistry offers unique opportunities that no 
other synthesis technique can provide [147a]. An overview of 
nanomaterials prepared by microwave irradiation is given by 
Baghbanzadeh et al. [148].

Non-Aqueous, Microwave-Assist and Other Synthesis Routes
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Microwave (MW) irradiation can provide rapid decomposition 
of metal precursors and be extended to produce NPs of various 
compositions, sizes, and shapes. Herring et al. offered a broad 
overview of metal oxide NPs synthesized by MW irradiation, 
including ZnO, TiO2, CeO2, transition metal oxides, and metal ferrite 
nanostructures [149]. Discussions also appear for MW-assisted 
synthesis of iron oxide NPs [150], metal NPs [87], particularly 
those of Au, Ag, Pt, and Pd, the solution synthesis of nanomaterials, 
[151] and different ways of NP synthesis through MW heating 
[152].

2.4.3 Microemulsion and Micellar Techniques

Microemulsion (ME) and micellar methods continue to provide 
valuable techniques for the synthesis of inorganic NPs. Studies 
using these techniques were presented earlier in this chapter [76, 
77, 82, 92a,b, 144]. Eastoe et al. reviewed recent advances in NP 
synthesis with reversed micelles [153]. Microemulsion properties 
and applications [154], the formation and growth control in the 
synthesis of NPs in emulsions [155] and microemulsion dynamics 
and reactions in microemulsions [156] have also appeared. 
Inorganic micelles as efficient and recyclable micellar catalysts 
were recently reported by Zhang et al. [157].

2.5 The Role of NP Capping Agents and 
Functionalization

Various materials, whether in molecular, ionic, oligomeric, or 
polymeric form, are frequently used in nanoparticle syntheses 
to control critical aspects of the nanoparticles, such as their 
composition, phase, size, size distribution, shape, dispersibility, 
stability, homogeneity, and surface and near-surface chemical and 
physical properties. When used as such, these materials are known 
as capping or stabilizing agents, surfactants, ligands, chelates, 
shells and so on, depending on the literature source. Without the 
presence of such agents during synthesis, NPs can continue to 
grow in size and lose their nanoscale size-dependent properties. 
Although capping agents offer opportunities related to NPs, they 
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also introduce additional complexities to the study and application 
of NPs.

Typical capping materials can contain chemical functional 
groups, such as those found in organic acids, amines, alcohols, 
and thiols, and various ions, such as the citrate ion, C3H5O(COO ) 3  3– . 
Bonding between the NP and capping agent can involve covalent or 
coordinate bonds, hydrogen or other secondary bonding, and van der 
Waals interactions. In a more general sense, the capping agent can 
be described as being chemisorbed or physisorbed on the NP. The 
stabilizing forces keeping the NPs from agglomerating in liquid media 
can be electrostatic and steric in nature. Weiss discussed the varied 
roles of organic molecules as tools to control the growth, surface 
structure, and redox activity of colloidal semiconductor quantum 
dots [103]. Particularly useful approaches to functionalizing NPs 
with biological molecules are reviewed by Sapsford et al. [158]. 
This broad review covers nanoparticle bioconjugation chemistries 
for noble metals, semiconducting quantum dots, metal oxides, 
transition and post-transition metal NPs, rare earth, alkaline 
earth, and zirconium, silicon, and germanium NPs. Capping agents 
and surrounding mediums are also important to consider for 
the fluorescence aspects of INPs. Philippot and Reiss discussed 
the synthesis of inorganic NPs for biological fluorescence imaging 
[159]. 

It is well known that the capping agents used to stabilize NPs 
and nanocrystals can dramatically affect their stability and reaction 
chemistry. However, the nature and associated subtleties of the 
ligand shell itself, as an integral part of the CNP, are just beginning 
to be examined in detail and a lot of work is needed in this area. 
The reader is referred to the particularly relevant theoretical and 
experimental study by Zherebetskyy et al., who clearly demonstrated 
the complexity of interactions that occur during the hydroxylation 
of the surface of PbS nanocrystals capped with oleic acid [160a]. 
Likewise, Valdez et al. presented a methodology to quantify the 
nature of the dodecylamine (DDA) capping shell of colloidal zinc 
oxide nanocrystals in a non-polar solvent and report three different 
binding regimes for DDA using NMR spectroscopy [160b]. The 
relative complexity of the capped nanoparticles (CNPs) is shown for 
the latter case in Fig. 2.3.

The Role of NP Capping Agents and Functionalization
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Figure 2.3 Particles of ZnO with associated capping agents. Adapted and 
reprinted with permission from [160b]. Copyright © 2014, 
American Chemical Society.

Clearly, the nature of the capping agent and that of the CNP 
itself is a crucial factor to consider in any studies of NPs and their 
applications. This is particularly evident, for example, in biological 
studies where the CNP can react with its medium, such as in the 
cases of cell culture media, living cells, and in vivo and in vitro 
tracing and labeling studies. CNP interactions are also important 
in the area of nanocatalysis. The removal of capping agents in 
the case of nanocatalysts and the utilization of capping agents in 
general for nanocatalysts was recently reviewed by Niu and Li 
[161]. In cases where no capping agent is used in the preparation 
of nanoparticles, such as in laser ablation, the medium itself can 
act as the stabilizing agent. The reader is referred to the many 
papers presented at the recent conference, ANGEL 2012, in Paris, 
France, on laser ablation and NP generation in liquids [46].

The geometry or morphology of the various capping or 
coating agents used on NPs can also influence the NPs’ chemistry 
and performance. The coatings or capping agents, especially if 
oligomers or polymers, can vary and form, for example, brushes, 
close curl coatings, or open coatings. Pandey and associates gave a 
perspective view on polymer nanoparticle interactions and discuss 
how new developments in the field, through a concerted approach 
of theory, experiments and simulations, significantly expands our 
knowledge on the morphological behavior of such systems [162].
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Regarding nanoparticles, their capping agents, and applications 
in general, we are in concert with what Nui and Li stated in their 
excellent article on nanocatalysts: “While plenty of attention has 
been put on their inorganic cores that determine the intrinsic 
particle properties of nanoparticles, the influence of outside organic 
shells (e.g., capping agents) is relatively less examined” [161]. 
The need is clear. 

2.6 INP Applications and Opportunities

There now exists an enormous amount of literature on the 
application and uses of INPs in almost all societally relevant areas of 
technology. Concomitantly, the focus on nanoparticles in toxicology 
and the environment continues to grow. Following are a few 
specific areas that may be of potential interest to researchers in 
radiolabeling and tracing studies.

Corr discussed some important applications of metal 
oxide NPs in the areas of sensors, water purification, catalysis, 
environment, energy, devices, and at the nano-bio interface. The 
latter is a particularly important area of study for the application 
of radiolabeling and tracer techniques, since more quantification 
studies are needed to better understand the complexities of the 
nano-bio interface [54]. 

Several books are available that discuss growth and properties 
of metal oxides and their applications and also of ZnO structures 
and devices [163]. Recent progress has demonstrated that 
nanostructured metal chalcogenide (MC) materials, such as metal 
sulfides, selenides, and tellurides, are promising candidates for 
advanced energy conversion and storage (ECS) devices. In a recent 
review, Gao et al. discussed 15 different liquid phase methods for 
the synthesis of MCs and their modification by other functional 
nanomaterials, such as carbon-based materials, noble metals, 
metal oxides, or by the MCs themselves [164]. ECS applications 
of the MC/modified-MC nanomaterials are then systematically 
summarized based on the number of successful cases.

A recent review by Zielińska-Jurek, summarized recent 
advances in the preparation and environmental application of 

INP Applications and Opportunities
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bimetallic TiO2-based photocatalysts using Au, Pt, Ag, and Cu to 
enhance the photocatalysis of the TiO2 template [165].

2.6.1 INPs in Potential Medical, Therapeutic and 
Toxicology Applications

The use of nuclear medicine and radiochemistry procedures 
continues to undergo rapid expansion with the increased use 
of imaging technologies, such as PET, MRI, and single photon 
emission computed tomography (SPECT), and with the advances 
in contributions from the life sciences in molecular biology, 
genetics, and proteomics [166]. In a theme issue of Advanced Drug 
Delivery Reviews, eds. Mattoussi and Rotello presented a sampling 
of what INPs, such as luminescent QDs, magnetic, plasmonic, 
and upconversion NPs, can provide in medicine and biology, 
which includes potential scaffolds for diagnostic, therapeutic and 
imaging agents [24].

As indicated earlier, INPs present potential platforms for 
drug delivery and therapeutics. Naahidi et al. reviewed the 
biocompatibility of engineered NPs for drug delivery [25]. Gottstein 
et al. addressed issues involving the precise quantification of 
NP internalization in measuring the impact of the physical and 
chemical properties on the uptake of NPs into targeted cells or into 
cells responsible for rapid clearance [167]. They addressed the 
issue of quantification with a mathematical model that integrates 
data from high-throughput flow cytometry measurements with 
data from confocal microscopy, as a potentially useful tool in 
biomedical nanotechnology studies. The method was then applied to 
measure the impact of surface coatings of vesosomes on their 
internalization by cells of the reticuloendothelial system.

The role of quantum dots from synthesis to applications in 
biomedicine and the life sciences is discussed by Drummen et al. 
[102]. Interest in nanoparticles [20] and QDs [168] for multimodal 
applications continues to gain momentum because of their 
potential for accurate and precise assessment of biological 
signatures. Gibson et al. discussed the radiolabeling of engineered 
NPs for in vitro and in vivo tracing applications using cyclotron 
accelerators [169].

Schütz et al. reviewed NP chemotherapeutic (CP) systems that 
have been developed for human therapy, considering the 
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components of the NPs, the therapeutic agents associated with 
the NPs, and the clinical indications for which the NPs were 
developed. The NP-CP systems reviewed are those that have been 
published, approved, and marketed, and that are currently in 
clinical use [170]. A recent review on the interaction of INPs with 
the skin barrier was presented by Labouta and Schneider [171]. 
The review briefly highlighted current applications and behavior of 
INPs in relation to the skin as well as qualitative and quantitative 
analysis of INPs present in the skin.

Engineered magnetic NPs for remediation and water treatment 
was reviewed by Tang and Lo with a focus on the necessity of 
enhancing the understanding of how these NPs react with 
contaminants and interact with the surrounding environment 
during applications [39]. Horie and Fujita discussed the toxicology 
of metal oxide nanoparticles [172].

The future promise of marine bio-nanotechnology in nano-
medicines, foodstuffs, pharmaceuticals, and the fabric industries 
offers potential areas for radiolabeling research and tracing 
involving INPs. This topic was recently reviewed by Asmathunisha 
and Kathiresan [173].

2.7 Summary, Conclusions, and Outlook

In the present chapter, we present an introduction to a broad 
spectrum of examples that hopefully illustrate the enormous 
diversity that abounds in the area of nanoparticle research, along 
with selected examples of the many ways of synthesizing such 
nanoparticles as a potential guide to our readers.

The synthesis strategies and techniques presented will 
continue to provide new materials, which, when applied to specific 
cases, will hopefully lead to better understanding and control of 
the NP challenges mentioned in Section 2.1.3. For NP radiolabeling 
and tracer studies, there is not one best synthesis method or 
approach to making NPs, but rather may depend primarily on the 
research objective or application and end use of the nanomaterial.

Chemical functionalization of NPs will remain a powerful 
strategy for controlling the potential energy landscape of these 
particles, particularly as it relates to the particle-medium interface. 
The utilization of capping agents needs to shift from qualitative 
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exploration to quantitative investigation, and a lot of work needs 
to be done on understanding and identifying the specific binding 
sites associated with nanoparticles.

The entire field of nanoparticle research is undergoing change 
on a daily basis and at an ever-increasing rate. There is no doubt 
that the change, growth and development will continue well into 
the foreseeable future. The possibilities of labeling inorganic 
nanoparticles appear ready for creative ideas, new strategies, 
and applications in the many fields presented in the chapter. As 
labeling techniques in radiochemistry broaden and cyclotron 
availability increases, through miniaturization and automation, 
new opportunities, challenges, and needs will emerge.
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