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Preface

Science and technology seldom progress separately; more often

they go hand in hand, in a combination that yields to a number of

intellectual and practical paths. Nanotechnology is part of one of

such vibrant paths, leading to a number of new findings that are

maturing and thriving fast in both academia and industry, while

nanophotonics gathers together all that can be utilized to manipu-

late light at the nanoscale, for a number of photonic applications.

As a matter of fact, nanophotonic devices are of great interest for

integrated optics, plasmonic circuits, biosensing and quantum infor-

mation processing. Plasmonics is a subfield of nanophotonics, which

involves exploitation of surface plasmons to realize the control of

light at the nanoscale. Indeed, one promising way to localize the

optical radiation into a nanometer-sized volume has been realized

by using the unique properties of plasmonic metallic nanoparticles

(NPs), which, represent an effective bridge between bulk materials

and atomic or molecular structures. NPs can exhibit a highly vibrant

color, which is absent both in the bulk material and in individual

atoms; the physics behind this phenomenon can be understood by

considering the collective oscillation of the conducting free electrons

of the metallic NP, an effect that is referred as the “localized plas-

monic resonance (LPR)”. Such a resonance is strongly dependent on

particle size and shape, and on the dielectric function of the medium

surrounding the NPs; as an example, these parameters enable a

“static” design of the resonance frequency throughout the visible

and into the near-infrared spectra when keeping the particle size

below 100 nm. A more effective method to influence the LPR is to

vary the refractive index of the medium surrounding the NPs; the use

of reconfigurable matter as the surrounding medium could hence

provide an “active way” for controlling the plasmonic resonance.
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xvi Preface

This book is aimed at reviewing some recent efforts committed

to utilize NPs in a number of research fields that include, but are not

particularly limited to, photonics, optics, chemistry, material science,

or metamaterials. In this framework, a particular interest is devoted

to “active plasmonics”, a concept related to NPs that play an ‘active’

role, and includes realization of gain-assisted means, utilization of

NPs embedded in liquid crystalline materials, and exploitation of

NPs for solar energy or even flexible plasmonics. Moreover, the book

is designed to provide a powerful tool to people that are enthusiastic

of technology, but have no, or minimal, scientific background. The

book, indeed, begins with a theoretical background on the physical

interaction between light and plasmonic materials. Further on, the

most important techniques enabling size and or shape-controlled

growth of NPs are highlighted, with an additional focus on their

surface functionalization.

In editing and organizing the book, I have made all possible

attempts to cover the growing field of plasmonic nanomaterials

and related technologies. With this aim, the publication gathers

various contributions of outstanding research groups all over the

world, which are related to the field of plasmonic nanomaterials and

provide both the basics and the necessary advanced knowledge in

the field of plasmonics, photonics, and optics. I express my deep and

sincere thanks to all the authors, who contributed their expertise

and research findings for the success of this publication. Special

thanks to Antonio De Luca for providing the cover image of the

book and to Roberto Bartolino, Timothy Bunning Nelson Tabiryan,

and Cesare Umeton for their nurturing and long-standing support.

I thank Stanford Chong for his never-ending help in organizing and

completing the book and to Hari M. Atkuri for talking over its content

while participating with me in official and unofficial 10 km runs.

I would like to express my gratitude to my family without whose

support I would not have been able to published this work. I owe

thanks to Francesca Petronella for encouraging me to materialize

and finalize the book.

Luciano De Sio
Summer 2015
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Chapter 1

Plasmonics: A Theoretical Background

Luigia Pezzi, Giovanna Palermo, and Cesare Umeton
Department of Physics and Centre of Excellence for the Study of Innovative Functional
Materials, University of Calabria, 87036 Arcavacata di Rende, Italy
luigia.pezzi@fis.unical.it

1.1 Introduction

The paper that best embodies the genesis of processes involved in

plasmonics of nanostructured materials is the one by the Russian

physicist Veselago (1968). In his visionary work, he lays the

foundation of many topics that have been clarified in recent years.

Plasmonics is a branch of optics that investigates the behavior of

electromagnetic (EM) waves in the visible range in nanostructured

materials. In order to study the propagation of EM waves in matter,

the dispersion equation represents the starting point:∣∣∣∣ω2

c2
εi lμl j − k2δi j + ki kj

∣∣∣∣ = 0 (1.1)

In this equation, the only involved parameters of the medium

are εi l and μl j , which are the components of the tensors dielectric

permittivity ε and magnetic permeability μ, respectively; δi j is the

Active Plasmonic Nanomaterials
Edited by Luciano De Sio
Copyright c© 2015 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4613-00-2 (Hardcover), 978-981-4613-01-9 (eBook)
www.panstanford.com
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Kronecker delta; ω is the frequency of a monochromatic impinging

wave and k its wave vector. If we consider an isotropic material,

Eq. (1.1) takes the simpler form:

k2 = ω2

c2
n2 (1.2)

where n2 is the square of the refractive index of the material and is

given by

n2 = εμ. (1.3)

Veselago’s analysis starts by assuming that a material with

negative values of both dielectric permittivity ε and magnetic

permeability μ might exist. This hypothesis does not change Eq.

(1.3), but by considering the case ε < 0 and μ < 0 from a purely

formal point of view in Maxwell’s equation, Veselago comes to

rewrite some important laws of physics and to presume that new

and interesting phenomena could occur.

The first case that he presents is the so called “left-handed”

medium. For a monochromatic plane wave, in which all fields

contain the phase factor ei(kz−ωt), Maxwell’s equations that involve

the curl of the EM field become

k × E = ωμH

k × H = −ωεE.
(1.4)

It is evident that if ε > 0 and μ > 0, then E, H, and k form a right-

handed triplet of vectors, but if ε < 0 and μ < 0, then the vectors

form a left-handed set. This means that the energy flux carried by

the wave, which is determined by the Poynting vector S:

S = E × H (1.5)

always forms a right-handed set with E and H. Now for right-

handed substances, k (related to phase velocity) and S (related to

energy flux and group velocity) are in the same direction, while

for left-handed materials, k and S have opposite directions, with

the consequence that left-handed materials exhibit a negative group

velocity. Introducing the direction cosines for vectors E, H, and k,

the determinant of the resulting matrix p is always +1 for right-

handed set and −1 for left-handed set; thus, p characterizes the

“right-ness” of the given medium, and with this difference in mind,
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α α

β

Figure 1.1 Passage of a light beam through the boundary between two

media: from a right-handed medium to a left-handed one.

Veselago rewrites the laws of a lot of physical effects, like Doppler

shift, Vavilov-Cerenkov effect, and Snell’s law. In particular, for the

refraction of a light beam from one medium into another, boundary

conditions must be satisfied independently of the rightness of the

media:

Et1
= Et2

Ht1
= Ht2

(1.6)

ε1 En1
= ε2 En2

μ1 Hn1
= μ2 Hn2

(1.7)

where subscripts 1,2 indicate the two media, while n and t stay

for “normal” and “tangential” to the separation surface, respectively.

It follows that the path of the resulting refracted beam (Fig. 1.1)

lies on the opposite side with respect to the normal axis to the

separation surface only in case of a right-handed second medium.

Indeed, according to the above considerations, with notations of
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Fig. 1.1, Snell’s law is now written as

sin α

sin β
= n1, 2 = p2

p1

∣∣∣∣
√

ε2μ2

ε1μ1

∣∣∣∣ (1.8)

where p1 and p2 are the “right-ness” of the two media and ε1, 2

and μ1, 2 are their dielectric permittivity and magnetic permeability,

respectively. Therefore, by going from a right-handed medium to a

left-handed one, the angle of refraction turns out to be negative (the

β angle in Fig. 1.1).

This law allowed scientists to experimentally verify the existence

of the first “metamaterial” [Shelby et al. (2001)] operating in the

microwave region, that is, a material that exhibits a frequency

range where the effective index of refraction (n) is negative. The

material consists of a two-dimensional array of repeated unit cells

of copper strips and split ring resonators on interlocking strips

of standard circuit board material. By measuring the scattering

angle of the transmitted beam through a prism fabricated with this

material, Shelby et al. determined the effective n value that satisfies

Snell’s law. These experiments directly confirmed the prediction of

Maxwell’s equations that n is given by the negative square root of εμ

for the frequencies where both the permittivity and the permeability

are negative. An interesting case, pointed out by Veselago, is that of

a beam going from a medium with ε1 > 0, μ1 > 0 into another

one with ε2 = −ε1, μ2 = −μ1. In this case, the beam undergoes

refraction at the interface between the two media, but there is

no reflected beam, since in Fresnel’s formulas [see Born and Wolf

(1999)] only the absolute values of quantities ε, μ, n, α, β have to be

used; then the reflection coefficient turns out to be zero. The use of

left-handed media would allow the design of very unusual refracting

systems. An example (Fig. 1.2) is a simple plate of thickness d made

of a left-handed medium with n = −1 and put in the vacuum

(where n = 1). Such a plate can focus in a given point the radiation

from a point source located at a distance l < d from the plate,

but it is not a lens in the usual sense of the word since it will

not focus in a given point a bundle of rays coming from infinity.

Above considerations have been exposed by Pendry (2000) in his

letter in which he assumed also the possibility to build a perfect

lens. In addition, Pendry envisaged that the left-handed medium can

prevent the decay of evanescent waves. Indeed, such waves decay in
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Figure 1.2 Passage of rays of light through a plate of thickness d made

of left-handed substance. A is a source of radiation, B is the detector of

radiation.

amplitude, but not in phase, as they propagate away from the object

plane; therefore, in order to be focused, they need to be amplified

rather than corrected in their phase. Pendry showed that in above

materials, evanescent waves emerge from the far side of the sample

enhanced in amplitude by the transmission process. This does not

violate the energy conservation, since evanescent waves do not

transport energy, but by using this new lens, a distinctive feature can

be exploited, represented by the circumstance that both propagating

and evanescent waves contribute to the resolution of the image.

As a consequence, there is no physical obstacle to realize a perfect

reconstruction of the image beyond those practical limitations that

are, in general, introduced by the numerical aperture value and by

defects in the lens surface.

As a matter of fact, in order to get all the fantastic properties

listed so far (and much more), it is, however, necessary to exploit

a material that simultaneously exhibits negative values of both ε

and μ. As this feature is not found in natural substances known

to date, it is necessary to obtain it artificially. Today, it seems that

the best way to obtain both ε < 0 and μ < 0 is the fabrication

of nanostructured (nonmagnetic) metallic materials which would

naturally exhibit this characteristic. In the microwave region, this is
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already a reality [Pendry et al. (1999); Smith et al. (2000); Shelby

et al. (2001)], while, for the optical frequency range, there is still

much to do.

As a starting point, in order to study these nanostructured

materials, it is necessary to know in details the electromagnetism

of metals and associated phenomena, which involve the volume

plasmon (VP), the surface plasmon polaritons (SPP), and localized

surface plasmon (LSP).

As well known from everyday experience, for frequencies up

to the infrared part of the spectrum, metals are highly reflective

and do not allow EM waves to propagate through them. At higher

frequencies, toward the near-infrared and visible part of the

spectrum, the EM field penetration increases significantly, leading

to an increased dissipation. Finally, at ultraviolet frequencies, metals

acquire dielectric character and allow the propagation of EM waves,

albeit with varying degrees of attenuation, depending on the details

of the electronic band structure of the medium. These dispersive

properties can be described by a complex dielectric function ε(ω),

which provides the basis of all previously listed phenomena (PV, SPP,

LSP) associated with EM of metals.

The interaction of metals with EM fields can be investigated in

a classical framework based on Maxwell’s equations. Even metallic

nanostructures down to sizes of the order of a few nanometres can

be described without a need to resort to quantum physics. Indeed,

this has been introduced as a solution to the failure of the classical

model for physical systems at the atomic and molecular scale. The

“unit” that is necessary to take into account for a particular physical

system to be assigned a macroscopic or microscopic character is

represented by Planck’s constant �: In the limit where � → 0, the

formalism must reduce to the classical one. In fact, in a black body,

assuming that the energy is discretely packed in energy packets

called “quanta” with energy hν = �ω, by making use of the kinetic

theory, Plank’s Formula for the average energy gives E = hν/(e
hν

kB T −
1); in the limit where Plank’s constant tends to zero (i.e., when

kB T � hν), the classical result is obtained:

lim
hν

kB T →0
E � hν

1 + hν
kB T + · · · − 1

� kB T (1.9)
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Optics of metals was developed in the framework of Drude’s

theory, which considers (as we will see in the next section) only

the effects of the electrons that are in the conduction band. Since

the high density of free carriers results in a quite minute spacing

between the electron energy levels if compared to the thermal

energy kB T at room temperature, the argument falls within the

realms of the classical theory.

1.2 Electromagnetism of Metals

For a long time the most known property of metals was the high

electrical conductivity. After three years from Thompson’s discovery

of the electron, scientists became more interested in studying

mechanisms of interaction between metals and electromagnetic

fields. Around 1900, Paul Drude, a German physicist, used new

concepts to postulate a classical model that well explained several

phenomena related to the interaction between radiation and metals.

This model links optical and electric properties of a metal through

the behavior of electrons. The assumptions of Drude’s model are as

follows:

• Metals are made of heavy, static, positively charged ions

immersed in a cloud of light, negatively charged, easily

mobile electrons, which form an electron gas that follows

the Maxwell–Boltzmann statistics.

• The electron–electron interactions can be neglected.

• The only considered interaction are the electron–ion

collisions.

By following the kinetic theory of gases, electrons in the gas move

in straight lines and make collisions only with the ion cores. The

probability for an electron to make a collision in a short time dt is

dt/τ , where τ is the mean time between collisions, called relaxation
time. This quantity, which is typically of the order of 10−14 s at room

temperature, is related to another important quantity γ = 1
τ

, which

represents the collision frequency and thus has values of the order

of 100 THz.
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Drude’s model successfully determined the form of Ohm’s law

in terms of free electrons and the relation between electrical

and thermal conduction [Drude (1900)], but it failed to explain

electron heat capacity and the magnetic susceptibility of conduction

electrons. Failures of the model are the result of the limitations of

the classical model (and Maxwell–Boltzmann statistics in particular)

[Ashcroft and Mermin (1976)].

In microscopic physics, it is common to express Ohm’s law in

terms of a dimension-independent conductivity, which is intrinsic

to the substance that the wire is made of. In this framework, Ohm’s

law writes as:

J = σE (1.10)

where E represents the electric field, J the current density, and

σ the conductivity of the material. We consider a wire of cross-

sectional area A, where an electrical current flows, which consists of

N electrons per volume unit, all moving in the same direction with

velocity v . The number of electrons flowing through the area A in

time dt is given by dN=NAvdt, while the charge crossing A in dt is

dQ= −edN= −NevAdt, so that J = −Nev. In the absence of electric

fields, electrons move randomly inside the conductor due to their

thermal energy, but when an electric field is applied, electrons are

affected by the force F = −eE that pushes them to move all in the

same direction, with an average speed given by:

v = −eτ
m

E (1.11)

Thus, substituting in J = −Nev, Eq. (1.11) yields

J = − Ne2τ

m
E (1.12)

Comparison with Eq. (1.10) gives the DC-Drude conductivity:

σ0 = − Ne2τ

m
(1.13)

Drude’s model can also predict a current as a response to an

oscillating electric field with angular frequency ω. This can be

achieved by considering that the equation of motion for an electron

of the electron gas subjected to an external electric field E, is:

mẍ + mγ ẋ = −eE (1.14)
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where m is the effective mass and γ is the already mentioned

collision frequency that produces the damping. This expression can

be rewritten as:

ṗ = −p
τ

− eE (1.15)

where p = mẋ is the momentum of an individual free electron. If

E assumes the form E = E0e−iωt , we consider as a solution to Eq.

(1.15) the expression p(t) = p0e−iωt , by substituting we obtain:

−iωp0 = −p0

τ
− eE0 (1.16)

J = − Nep
m

= σ0

1 − iωτ
E = σ (ω)E (1.17)

Thus, the AC-Drude conductivity is given by:

σ (ω) = σ0

1 − iωτ
(1.18)

A useful application of the Drude model is the description of

the propagation of electromagnetic waves in metals by considering

a complex dielectric function ε(ω), which shows the dispersive

properties of the substance. In order to derive the expression of

ε(ω), we consider again Eq. (1.14), which takes into account the

oscillations of the free electron gas induced by the electric field E(t).

A solution to Eq. (1.14) is given by x(t) = x0e−iωt , which, when

replaced in Eq. (1.14), yields:

x(t) = e
m(ω2 + iγω)

E(t). (1.19)

Since the electric displacement D and the macroscopic polariza-

tion P are given by:

D = ε0E + P = ε0εE (1.20)

P = −Nex (1.21)

respectively, where N is the number of electrons per unit volume.

Thus,

D = ε0E − Ne2

m(ω2 + iγω)
E (1.22)

and

ε(ω) = 1 − ω2
p

ω2 + iγω
(1.23)
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that represents the dielectric function in the Drude model, where ωp

is the plasma frequency of the free electron gas, is defined by:

ωp =
(

Ne2

ε0m

)1/2

(1.24)

From Eq. (1.23) it can be easily derived that the real and

imaginary components of this complex dielectric function ε(ω) =
ε1(ω) + iε2(ω) are given by:

ε1(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
(1.25)

ε2(ω) = ω2
pτ

ω(1 + ω2τ 2)
(1.26)

The complex dielectric function ε(ω) is related to the complex

refractive index of the medium ñ = n(ω) + iκ(ω) through the

relation ñ = √
εr . Explicitly, this yields:

ε1 = n2 − κ2 (1.27)

ε2 = 2nκ (1.28)

n2 = ε1

2
+ 1

2

√
ε2

1 + ε2
2 (1.29)

κ = ε2

2n
(1.30)

Here, κ is called extinction coefficient and determines the

absorption of optical EM waves propagating through the medium;

it is linked to the absorption coefficient α of Beer’s law, which

describes the exponential attenuation of a beam intensity I (x)

propagating through the medium via I (x) = I0e−αx . Indeed, since

E ∝ exp (i ω
c ñx) and then I ∝ E 2 ∝ exp (2i ω

c (n + iκ)x), we have:

α(ω) = 2κ(ω)ω

c
(1.31)

Equations (1.25) and (1.26) allow as to study the EM response of

metals (related to the plasma frequency ωp) distinguishing the three

cases ω > ωp, ω < ωp, and ω = ωp).

In the case ω > ωp, ñ is positive because ε(ω) is real and

positive, and ε(ω) → 1, which implies that the electromagnetic wave

propagates through the metal that appears transparent. For noble

metals, it is necessary to take into account that the response of the
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material in this region is dominated by free s-electrons, since the

filled d-band close to the Fermi surface causes a highly polarized

environment [Maier (2007)]. This contribution to the polarization

related to the ion cores can be considered by adding the term P∞ =
ε0(ε∞ − 1)E to Eq. (1.20). This effect is, therefore, described by a

dielectric constant ε∞ (usually 1 ≤ ε∞ ≤ 10), and we can write:

ε(ω) = ε∞ − ω2
p

ω2 + iγω
(1.32)

The validity limits of the free-electron description (1.32) are

illustrated for the case of gold in Fig. (1.3). It shows the real and

imaginary components ε1 and ε2 of the dielectric function of a free

electron gas, fitted with experimental data of the dielectric function

of gold [Johnson and Christy (1972)]. In the visible frequency range,

the applicability of the free-electron model clearly breaks down due

to the occurrence of interband transitions, leading to an increase

in ε2.

For frequencies ω < ωp, we distinguish two subcases: ωτ � 1

and ωτ 	 1.

In the case ωτ � 1, we are in the condition of frequency very

close to ωp and, as we have seen at the beginning of this discussion,

metals totally reflect the EM waves; in this range the real and

imaginary parts of the dielectric function become:

ε1(ω) = 1 − ω2
p

ω2
(1.33)

ε2(ω) ≈ 0 (1.34)

respectively. As we can see from these equations, the permittivity is

real, which implies that there is no absorption; metals retain their

metallic character of perfect conductor. This behavior is common

among different metals but not for noble metals, in which the

response is again affected by the interband transitions.

In the case ωτ 	 1, we are in the condition of frequency very far

from ωp and the real and imaginary parts of the dielectric function

become:

ε1(ω) = 1 − ω2
pτ

2 (1.35)

ε2(ω) ≈ ω2
p

ω
(1.36)
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Figure 1.3 Real and imaginary components of the dielectric function for a

free electron gas (dash) fitted to experimental data of the dielectric function

of gold (dot).

respectively. In this case, ε2 � ε1, and the real and imaginary parts

of the refractive index have a comparable magnitude:

n ≈ κ =
√

ε2

2
=

√
τω2

p

2ω
(1.37)
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In this region, metals are mainly absorbing, with an absorption

coefficient given by

α(ω) = 2κ(ω)ω

c
=

(
2ω2

pτω

c2

)1/2

. (1.38)

Remembering the DC-Drude conductivity (1.13) and the expres-

sion for the plasma frequency ωp, the expression of σ becomes

σ0 = ω2
pτε0 and then

α =
√

2σ0ωμ0 (1.39)

This coefficient is closely related to the skin depth, which

represents the depth of penetration of the wave in the metal:

δ = 2

α
= c

κω
=

√
2

σ0ωμ0

(1.40)

In order to complete the study of the response of metals to an

EM field, it is necessary to consider the particular case ω = ωp. To

understand what happens in this case, it is necessary to introduce

the fundamental relation that links conductivity and dielectric

function in the Fourier domain. The relation can be derived by

starting from Maxwell’s equations [details of calculations in Maier

(2007)] and can be written as

ε(K, ω) = 1 + iσ (K, ω)

ε0ω
(1.41)

We consider the traveling-wave solution to Maxwell’s equations

in the absence of external stimuli. Combining the curl equations:

∇ × E = −∂B
∂t

(1.42)

∇ × H = Jext + ∂D
∂t

(1.43)

leads to the wave equation, which in the Fourier domain becomes:

K(K · E) − K 2E = −ε(K, ω)
ω2

c2
E (1.44)

where c = 1√
ε0μ0

is the speed of light in vacuum. Looking at this

equation, two cases have to be distinguished: the case of transverse

waves, K · E = 0, yielding the generic dispersion relation:

K 2 = ε(K, ω)
ω2

c2
(1.45)
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Figure 1.4 Dispersion relation of free electron gas.

where ε(K, ω) is given by Eq. (1.41), and the case of longitudinal

waves, for which Eq. (1.44) implies:

ε(K, ω) = 0 (1.46)

indicating that longitudinal collective oscillations can only occur at

frequencies corresponding to zeros of ε(ω). The meaning of this

oscillation can be elucidated by considering the dispersion relation

of the traveling wave obtained by using Eq. (1.33) in Eq. (1.45):

ω2 = ω2
p + K 2c2 (1.47)

Figure 1.4 shows the plot of the dispersion relation for the

traveling wave given by Eq. (1.47): there is clearly no propagation of

EM waves below the plasmon frequency (ω < ωp), while for ω > ωp

waves propagate with a group velocity vg = dω
d K < c; the special case

ω = ωp can be interpreted in the following way. In the small damping

limit, K = 0 and ε(ωp) = 0; this implies that D = 0 and that

the electric field becomes a pure depolarization field (E = −P
ε0

).

This leads to a collective longitudinal oscillation of the conduction

electron gas with respect to the fixed background of positive ion

cores in a plasma slab (Fig. 1.5). A collective displacement u of the

electron cloud leads to a surface charge density σ = ±Neu at the

slab boundaries and yields a homogeneous electric field E = Neu
ε0
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Figure 1.5 Longitudinal collective oscillations of the conduction electrons

of a metal:volume plasmons.

inside the slab. Thus, the displaced electrons experience a restoring

force, and their movement can be described by the equation of

motion Nmü = −NeE. Inserting the expression for the electric field

leads to

Nmü = − N2e2u
ε0

(1.48)

ü + ω2
pu = 0 (1.49)

Thus, the plasma frequency ωp represents the natural frequency

of a free oscillation of the electron sea and the quanta of these charge

oscillations are called plasmons or volume plasmons (VPs). Due to the

longitudinal nature of the excitation, VPs do not couple to transverse

EM waves and can only be excited by particle impacts.

1.3 Surface Plasmon Polariton

In the framework of a classical approach, not only the VP, but

also the other two fundamental excitations of plasmonics can be

described: surface plasmon polariton (SPP) and localized surface

plasmon (LSP). In this section, the SPP will be treated. It occurs

when an EM radiation enters sliding at the interface of separation

between a dielectric and a conductor and represents an EM

excitation propagating at the interface, evanescently confined in

the perpendicular direction. In order to investigate the physical

properties of SPPs, it is convenient to start from the Helmholtz
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Figure 1.6 Sketch of the geometry of the system.

equation [Riley and Bence (2002)]:

∇2E + k2
0εE = 0 (1.50)

where k0 = ω/c is the wave vector of the EM wave propagating in

vacuum. This equation is obtained from Maxwell’s equations under

the conditions and assumptions:

• Absence of external stimuli: ∇ · D = 0

• Negligible variation of the profile of the dielectric sus-

ceptivity ε(r) over distances of the order of one optical

wavelength: ∇ε/ε � 0

• Harmonic time dependence of the EM field:

E(r, t) = E0(r)e−iωt

The propagation geometry is defined as follows (Fig. 1.6):

• Assumption of a one-dimensional problem, that is, ε

depends on one spatial coordinate only: ε = ε(z).

• Waves propagate along the x-direction of the Cartesian

coordinate system.

• Waves show no spatial variation along the y-direction.

• The plane z = 0 coincides with the interface.

With the hypothesis that the wave propagates in the x-direction,

while slow variations of the electric field amplitude can occur only
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in the z-direction, we look for a solution that can be written as

E(x , y, z) = E(z)eiβx ; thus, Eq. (1.50) assumes the form

∂2E(z)

∂z2
+ (k2

0ε − β2)E(z) = 0 (1.51)

Of course, the same relation exists for the magnetic field H. As

a matter of fact, Eq. (1.51) has to be solved separately in regions of

different, constant ε values, and the obtained solutions have to be

matched by exploiting suitable boundary conditions.

In order to use Eq. (1.51) for determining the spatial field profile

and the dispersion of propagating waves, we need to find explicit

expressions for the different field components of E and H. This can

be achieved by using the curl of Maxwell’s equations (1.42) and

(1.43) in the specific case of harmonic time dependence ( ∂
∂t = −iω),

propagation along the x-direction ( ∂
∂x = iβ) and homogeneity in the

y-direction ( ∂
∂y = 0). The obtained system of equations is

∂ E y

∂z
= −iωμ0 Hx (1.52a)

∂ E x

∂z
− iβE z = iωμ0 Hy (1.52b)

iβE y = iωμ0 Hz (1.52c)

∂ Hy

∂z
= iωε0εE x (1.52d)

∂ Hx

∂z
− iβ Hz = −iωε0εE y (1.52e)

iβ Hy = −iωε0εE z (1.52f)

which provides two sets of self-consistent solutions with different

polarization characteristics of the propagating waves: the transverse

magnetic (TM) mode, where only the field components E x , E z, and

Hy are nonzero, and the transverse electric (TE) mode, with only

Hx , Hz, and E y being nonzero. For TM modes, by starting from

Eq. (1.52d) and Eq. (1.52f), we obtain the expression of E x and E z

as functions of Hy:

E x = −i
1

ωε0ε

∂ Hy

∂z
(1.53a)

E z = − β

ωε0ε
Hy (1.53b)
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Here, Hy has to be obtained from the solution to the TM wave

equation

∂2 Hy

∂z2
+ (k2

0ε − β2)Hy = 0 (1.53c)

For TE modes, the analogous set is

Hx = i
1

ωμ0

∂ E y

∂z
(1.54a)

Hz = − β

ωμ0

E y (1.54b)

where E y has to be obtained from the TE wave equation

∂2 E y

∂z2
+ (k2

0ε − β2)E y = 0 (1.54c)

By utilizing the above equations, we are able to describe SPPs.

The simplest geometry sustaining SPPs is the one of a single, flat

interface (Fig. 1.6) between a dielectric, nonabsorbing half space

(z > 0) characterized by a positive real dielectric constant εdiel ,

and a conducting half space (z < 0) characterized by a dielectric

function ε(ω), where the requirement of a metallic character implies

that �[ε(ω)] < 0. As shown in the previous section, in metals

this condition is fulfilled at frequencies that are below the bulk

plasmon frequency ωp. We look for propagating waves confined at

the interface, that is, with evanescent decay in the perpendicular

z-direction (separately for the two cases TM and TE).

Let us first look at TM solutions. Using the equation set (1.53)

in both half spaces and searching for solutions to (1.53c), which are

propagating in the x-direction and exponentially decreasing along

the z-direction, we obtain

Hy(z) = A2eiβx e−k2z (1.55a)

E x (z) = i A2

1

ωε0ε2

k2eiβx e−k2z (1.55b)

E z(z) = −i A2

β

ωε0ε2

eiβx e−k2z (1.55c)

for z > 0 and

Hy(z) = A1eiβx ek1z (1.56a)

E x (z) = −i A1

1

ωε0ε1

k1eiβx ek1z (1.56b)

E z(z) = −A1

β

ωε0ε1

eiβx ek1z (1.56c)

for z < 0.
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Here A1, A2 are magnetic field amplitudes, kz, i (i = 1, 2) is the

component of the wave vector perpendicular to the interface in the

two media; its reciprocal value, ẑ = 1
|kz| , defines the evanescent decay

length of fields perpendicular to the interface, which quantifies the

confinement of the wave. Continuity of Hy , E x , and εi E z at the

interface (z = 0) requires that A1 = A2 and

k2

k1

= − εdiel

ε(ω)
(1.57)

According to the convention assumed for signs in the exponents

in Eqs. (1.55, 1.56), confinement to the surface demands that

�[ε(ω)] < 0 if εdiel > 0, thus surface waves can exist only at

interfaces between materials with opposite signs of the real part

of their dielectric permittivity, that is, between a conductor and an

insulator. In addition, the expression for Hy has to fulfill the wave

equation (1.53c), yielding

k2
1 = β2 − k2

0ε(ω) (1.58a)

k2
2 = β2 − k2

0εdiel (1.58b)

By combining Eqs. (1.57) and (1.58), we obtain the main result

concerning the argument of this section, that is, the dispersion

relation of SPPs propagating at the interface between a conductor

half space and an insulator one:

β = k0

√
ε(ω)εdiel

ε(ω) + εdiel
(1.59)

This expression is valid both for real and complex ε, that is, for

conductors without and with attenuation.

Where TE solutions are concerned, expressions for the field

components can be obtained by using Eq. (1.54) and are

E y(z) = A2eiβx e−k2z (1.60a)

Hx (z) = −i A2

1

ωμ0

k2eiβx e−k2z (1.60b)

Hz(z) = A2

β

ωμ0

eiβx e−k2z (1.60c)
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Figure 1.7 Dispersion relation of SPPs real part (red curve) and imaginary

part (green curve), at the interface between a metal with negligible collision

frequency and silica.

for z > 0, and

E y(z) = A1eiβx ek1z (1.61a)

Hx (z) = i A1

1

ωμ0

k1eiβx ek1z (1.61b)

Hz(z) = A1

β

ωμ0

eiβx ek1z (1.61c)

for z < 0.

Here, A1, A2 are now electric field amplitudes. Continuity of E y

and Hx at the interface leads to the condition A1 = A2 and

A1(k1 + k2) = 0. (1.62)

Since confinement at the surface requires �[k1] > 0 and �[k2] >

0, condition (1.62) is only fulfilled if A1 = 0, that means also A2 = 0;

thus, no surface modes can exist with TE polarization.

Figure 1.7 shows its plots for a metal, with negligible damping

described by the real (Drude) dielectric function (1.33) interfaced

with fused silica (εdiel = 2.25). In the plot, both the real (red curves)

and the imaginary parts (green curves) of the wave vector β are

shown (frequency ω and wave vector β are normalized to the plasma

frequency ωp). The light line represents plane wave propagation

in the dielectric, while ωsp is the characteristic surface plasmon
frequency, whose physical meaning will be discussed later on.
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• For ω > ωp, we are in the transparency regime of metals: the

propagation constant is only real and radiation propagates

through the metal.

• For ω < ωp, different behaviors occur:

– For very low frequencies, the SPP propagation constant

is close to k0 at the light line: waves extend over many

wavelengths into the dielectric space because the metal

does not allow to be crossed.

– For higher frequencies, the SPPs approach the char-

acteristic surface plasmon frequency ωsp, which is the

frequency value that makes the denominator in Eq. (1.59)

(with ε = 1 − ω2
p/ω

2) vanishing:

ωsp = ωp√
1 + εdiel

(1.63)

In the limit of negligible damping of the conduction

electron oscillation (
[ε(ω)] = 0), the wave vector β

goes to infinity as the frequency approaches ωsp, and

the group velocity vg = dω/dk → 0. The mode thus

acquires an electrostatic character and is known as the

surface plasmon. The electrostatic character is confirmed

by the circumstance that the condition ε(ω) + εdiel = 0 is

obtained also via straightforward solution to the Laplace

equation ∇2
 = 0 (imposing the continuity of 
 and

ε∂
/∂z in order to ensure the continuity of tangential

and normal field components).

– In the region between ωsp and ωp, the propagation

constant is only imaginary and no SPP propagation

occurs.

So far we have assumed an ideal conductor that presents 
[β] =
0; however, real metals present a complex ε(ω) and also an SPP

propagation constant β . Since SPPs travel according to the term eiβx

(e2iβx for the intensity), if β is complex, its imaginary part 
[β] �= 0

establishes an energy attenuation length L = (2
[β])−1, which has a

maximum finite value in correspondence of the plasmon frequency

ωsp. In Fig. 1.8, the actual behavior of silver obtained from data by

Johnson and Christy (1972) is shown.
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Figure 1.8 Dispersion relation of SPPs real part (red curve) and imaginary

part (green curve), at the interface between silver and air.

If we turn our attention to SPPs in multilayers consisting of

alternating conducting and dielectric thin films, we can say that

each single interface can sustain bound SPPs. When the separation

between adjacent interfaces is comparable to or smaller than the

decay length ẑ of the interface mode, interactions between SPPs give

rise to coupled modes. The general properties of coupled SPPs are

elucidated in [Maier (2007)].

1.4 Localized Surface Plasmon

When a light beam impinges on a particle, the optical electric field

puts into oscillation the electrical charges of matter (conduction

electrons and protons). As a consequence, there is an absorption

of part of the impinging radiation and an emission of a secondary

radiation, a phenomenon known as scattering. In order to describe

both effects, it is necessary to write down the expressions of EM

fields E, H starting from Maxwell’s equations. The most famous

exact solution to Maxwell’s equations, for the case of small particles

with arbitrary radius and refractive index, has been obtained in

the framework of the Mie theory [Bohren and Huffman (1983);
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Mie (1908)], developed by Gustav Mie in 1908 with the aim

of explaining the different colors exhibited, in absorption and

scattering processes, by small colloidal particles of gold suspended

in water.

In a linear, isotropic, homogeneous medium, a time-harmonic EM

field (E, H) must satisfy the wave equation:

∇2E + k2E = 0 (1.64)

∇2H + k2H = 0 (1.65)

where k2 = ω2εμ. Fields (E, H), which have a null divergence:

∇ · E = 0 ∇ · H = 0 (1.66)

are not independent, since they are related by the following

relations:

∇ × E = iωμH ∇ × H = −iωεE (1.67)

Equations (1.64) and (1.65) are complicated because of their

vectorial character. Mie’s theory simplifies the problem by reducing

their solution to the solution of a single scalar wave equation:

∇2ψ + k2ψ = 0 (1.68)

whose solution enables to obtain the expressions of fields (E, H).

The detailed procedure is exhaustively reported in [Bohren and

Huffman (1983)], and the main steps can be shortly resumed as

follows.

Suppose that the scalar function ψ and an arbitrary constant

vector c define a vectorial field M:

M = ∇ × (cψ) (1.69)

By keeping in mind that the divergence of the curl of any

vectorial field vanishes (∇ · M = 0), and using the vectorial

identities ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B
and ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (B · ∇)A + (A · ∇)B,

we find that M satisfies the vector wave equations (1.64) and (1.65)

if ψ is a solution to the scalar wave equation (1.68). We may also

write M = −c×∇ψ , which shows that M is perpendicular to c. Now,

we derive from M a second vectorial field:

N = ∇ × M
k

(1.70)
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which has a null divergence and also satisfies the vector wave

equation. Since ∇ × N = kM, we can state that both M and N
exhibit all the properties required to be an EM field: they satisfy

the vector wave equation, they are divergence-free, the curl of M is

proportional to N, and the curl of N is proportional to M. Thus, the

problem of finding solutions to the wave equations (1.64), (1.65)

reduces to the simpler problem of finding solutions to the scalar

wave equation (1.68). The scalar function ψ is named generating
function for the vector harmonics M and N, while the vector c is

sometimes called the guiding or pilot vector. In general, the choice of

generating functions is suggested by whatever symmetry may exist

in the problem; thus, being interested in scattering by a sphere,

we choose functions ψ that satisfy the wave equation written in

spherical coordinates r, θ , ϕ (Fig. 1.9). The choice of the pilot vector

is somewhat less obvious. We could choose some arbitrary vector c;

however, if we write:

M = ∇ × (rψ) (1.71)

where r is the radius vector, then M is a solution to the vector wave

equation in spherical coordinates. In problems involving spherical

symmetry, therefore, we assume M as given in Eq. (1.71) and the

associated N as the fundamental solutions to the field equations.

Note that M is everywhere tangential to any sphere |r| = constant
(i.e., r · M = 0).

The scalar wave equation in spherical coordinates is

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

+ 1

r2 sin2 θ

(
∂2ψ

∂ϕ2

)
+ k2ψ = 0 (1.72)

We seek particular solutions to Eq. (1.72) in the form:

ψ(r, θ , φ) = R(r)�(θ)
(ϕ) (1.73)

which, when substituted into Eq. (1.72), yields three separated

equations linked by two separation constants (m and n), to be

determined by subsidiary conditions that have to be satisfied by

ψ . The request of single-valued functions and linearly independent


