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Introduction: Present Challenges and 
Future Solutions via Nanotechnology for 
Electronics, Environment and Energy

Oil fuels the modern world, but oil is a finite resource. It brought 
great changes to economies and lifestyles in less than 200 years 
and nothing else to date equals the enormous impact which the 
use of oil has had on so many people in so many ways around 
the world. The critical question is, however, “When is or was the 
maximum daily amount of world oil production at its peak?” After 
that, oil is going to become an irreversibly declining resource facing 
an increasing demand, which will not be met. The world passed its 
peak of rate of oil discoveries in the 1960s, and it seems that the 
peak of world oil production will then be reached by 2020, and 
possibly within the next decade (Campbell, 1997; Campbell and 
Laherrere, 1998; Ivanhoe, 1995).

What are then going to be realistic alternative energy sources 
for humanity among the existing renewable or non-renewable one 
(Table 1)?

Fusion involves the fusion of either of two hydrogen isotopes, 
deuterium or tritium. Deuterium exists in great quantities in 
ordinary water, and from that perspective fusion is theoretically an 
almost infinitely renewable energy resource. This is the holy grail 
of ultimate energy. Fusion is the energy that powers the Sun, and 
that is the problem. The temperature of the Sun ranges from about 

Claudio Nicolini
Fondazione Nanoworld Institute ELBA Nicolini, Largo Redaelli 7, 24020, Pradalunga, 
Bergamo, Italy

claudio.nicolini@unige.it

mailto:claudio.nicolini@unige.it
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10,000 degrees Celsius on its surface to an estimated 15–18 million 
degree Celsius in the interior where fusion takes place. Containing 
such a temperature on Earth in a sustainable way and harnessing 
the heat to somehow produce power has so far escaped our search. 
However, even if commercial fusion will be accomplished, the end 
product again is likely to be electricity, and not a replacement for 
fuel sources such as oil and gas.

Table 1	 Alternative energy sources

Non-renewable Renewable

Oil sands, heavy oil Wood/other biomass
Coal Hydropower
Shale oil Solar energy
Gas hydrates Wind energy
Nuclear fission Wave energy
Geothermal Tidal power

Fusion
Ocean thermal energy conversion

Questions are sometimes raised as to using hydrogen and fuel 
cells for fuel sources. Neither is a primary energy source. Hydrogen 
must be obtained by using some other energy source. Usually 
it is obtained by the electrolysis of water, or by breaking down 
natural gas (methane CH4). Hydrogen is highly explosive, and to be 
contained and carried in significantly usable amounts, it has to be 
compressed to hundreds of pounds per square inch. Hydrogen is 
not easy to handle, and it is not a replacement for pouring 10 gallons 
of gasoline into an automobile tank. Fuel cells have to be fuelled; 
most use hydrogen or some derivative of oil. Fuel cells are not a 
source of energy in themselves.

Oil appears to be a unique energy source that up to now has 
no complete replacement in all its varied end uses. British scientist 
Sir Crispin Tickell concludes, “…we have done remarkably little to 
reduce our dependence on a fuel [oil] which is a limited resource, and 
for which there is no comprehensive substitute in prospect.” Coming 
to realize that oil is finite, any and all suggestions of means to replace 
oil are obviously welcomed, but so far only cheerful myths are 
enthusiastically embraced. These include: that there are two trillion 
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barrels of economically recoverable oil in the Colorado Plateau oil 
shales; that dams and their reservoirs are a source of indefinitely 
renewable energy and that they are environmentally benign; that 
solar, wind, geothermal and hydro-electric power can supply the 
electrical needs, from the Arctic to the tropics, of the Earth’s over 
six billion people (likely to further grow in the near future); that 
coal, oil from oil sands, and biofuels can replace the 72 million 
barrels of oil the world now uses daily; and that somehow electricity 
produced from various alternative energy sources can readily 
provide the great mobility which oil now gives to the more than 
600 million vehicles worldwide. Regrettably, none of these cheerful 
myths appear up to now to be valid, including the mega-myth which 
represents the most popular public placebo that “The scientists will 
think of something” as I did witnessed myself few months ago at 
Orlando during a short visit to Disneyworld. The energy spectrum 
from burning wood to fusion that fuels the Sun (Table 1) is now well 
known. If there is some major exotic energy source beyond what 
is here listed, we have no evidence of it and the reality appears to 
be that the world is rapidly running out of a resource (oil) that in 
many ways appears irreplaceable. We have been living on a great 
fossil fuel inheritance accumulated during more than 500 million 
years that humanity has incredibly exhausted in the last period 
in less than 200 years. We will soon exhaust this capital, and we 
will have to go to work to try to live on current energy income. It 
will not be a simple easy transition as pointed out in a remarkably 
perceptive book written by Darwin in 1952, where were described 
historic changes in the human condition, calling them “revolutions.” 
Darwin wrote that there is one more revolution clearly in sight: 
“The fifth revolution will come when we have spent the stores 
of coal and oil that have been accumulating in the earth during 
hundreds of millions of years…it is obvious that there will 
be a very great difference in ways of life… .”

The present energy situation is exemplified in Figs. 1 and 2 
from what has been occurring in the United States in the recent 
time.

Similarly, the natural disasters have been increasing in number 
and frequency in the last few years permitted by the wrong myth 
that humanity could do without the Kyoto agreement attempting 
to control the devastating carbon dioxide effects. As in the 
preservation of oil reserve, the humanity and its governments have 
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failed also in the protection of natural environment. In summary, 
the result could become very shortly a great change in economies, 
social structures and lifestyles, and the opportunities for science and 
technology to make a difference are becoming constantly narrower. 
And this despite the striking development in electronics at the 
nanoscale, through the construction of new effective nanosensors 
and nanoactuators.

Figure 1	 US electricity net generation by source for 2000 (EIA Annual 
Energy Review) Source: International Energy Agency.

Figure	2 Renewable energy in proportion to total US energy supply. 
Source: Energy Information Administration (EIA).

It is, therefore, essential to find concrete solutions to the 
growing problems in all sectors of the economy, such as energy, 
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environment and electronics, and worldwide the situation could 
be overcome only by a wide internationalisation involving the 
leading countries in economic, military and financial terms, 
namely the Russian Federation, the United States of America 
and Europe. Furthermore, only at the nanoscale, we can hope to 
embark on such undertaking with some degree of success. It is the 
right moment for the United States and Russia to unite with 
Europe their forces and to concentrate all the possible resources 
to solve the dramatic problems affecting the entire world as those 
illustrated above, involving resources and facilities from leading 
multinational companies, as well manpower coming from citizens 
of the above three large countries which should change their 
priorities and return to science and technology as for the past full of 
long stories of successes. I know this will work for the entire world’s 
benefit and for my personal direct experience having passed my 
entire life in these three large communities extremely productive in 
R&D. Attempt to do this at the national scale with large recruitment 
from underdeveloped countries is bound to failure because the 
magnitude of the crisis induced by the derivatives has far lasting 
devastating effects (continuously coming to light) and because the 
magnitude of the technological problems long time underestimated 
is unmatchable at any single isolated nation scale. The scheme 
based on multinational companies, that in the past was able to work 
for Italy in Bioelectronics with Polo Nazionale Bioelettronica and 
CIREF (both centred around Italian-based multinational companies 
as ABB, Montedison, FIAT, ST Microelectronics, Olivetti, Farmitalia, 
Elsag-Bailey), may still be valid but this time only if the above named 
three large countries, frequently in the past on opposite sites, find 
means to cooperate in order to achieve the required critical mass 
at the world scale. An institution (Fondazione EL.B.A.) indeed 
in the past was born and did grow with participation of 
organizations at the crossing of Europe, Russia and the United 
States and constitute the proof of principle that something 
similar (Nanoworld Institute) could become again the triggering 
factor between Europe, Russia and the United States. In the past, 
the Biochip Project initiated by President Gorbachev through 
Academician Velikov (USSR) and President Craxi through myself 
(Italy) did work and I do not see why should not work now, despite 
the larger scale and the more ambitious objectives. I hope that 
the time has passed for science to be at the service of arms race 
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among between the United States and Russia, and the reduction 
of nuclear arsenals and waste being pursued in START (STrategic 
Arms Reduction Treaty) should further aim not only to avoid their 
falling in wrong hands and to increase global security (as suggested 
by President Obama in the 2013 State of the Union), but also to 
transfer all these military resources in joint civilian project. 
Recently in an open debate with President Putin organized by 
Russian television I raised via the Internet a question (subsequently 
acknowledged) about the opportunity of final disarmament within 
the “Measures to Further Reductions and Limitation of Strategic 
Offensive Arms” treaty between Russia and the United States such 
that the enormous resources spent could be used for the develop-
ment of joint projects in nanoscience and nanotechnology for 
energy, health, electronics and environment.

Cancer at the molecular scale is strongly interlinked to 
differentiation, ageing and proliferation, but also to ecology, and 
solving it we will solve major correlated problems in life sciences. 
Energy is strongly interlinked with power generation, automation 
and environment, while similarly is happening (at the nanoscale) 
for really intelligent hardware, being strongly interlinked to 
communication, defence and environment. Indeed the risk of 
upcoming ecological disasters, including global warming, can be 
reduced or avoided with the development of new energy sources 
nanotechnology-based from sun, wind and hydrogen. The far-
reaching effects will be beneficial for the entire humanity and for 
the survival and growth of earth. Last but not least is the objective 
to bring back the prestige of science among young people to 
correct the economical disasters caused by bankers and financial 
institutions.
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Influence of Chromosome Translocation 
on Yeast Life Span: Implications for 
Long-Term Industrial Biofermentation

Ageing as always been part of the biological life and a topic that 
we understand very little of. In particular, ageing in microbial 
cultures undergoing long-term industrial fermentation is a very 
important factor determining the overall efficiency and in final 
analysis the economic outcome of the bio-production process. On 
the other hand, gross chromosomal rearrangements (GCR), 
specifically translocations, are genomic alteration well known 
to occur in fungal cells undergoing long-term growth. This work 
focuses primarily on the effects of chromosome translocation on 
the chronological life span (CLS) of Saccharomyces cerevisiae (SC),	
a model organism used both, for understanding the ageing process 
as well as for industrial large-scale production of re-cyclable 
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10 Influence of Chromosome Translocation on Yeast Life Span

biomass. A secondary goal of the research was to verify the feasibility 
of using telomeric DNA sequence length as a molecular marker 
to monitor population ageing during long-term fermentation. 
Therefore, a comparison between telomere length and CLS was 
performed. The data that have been gathered show that chromosome 
translocation has a different and sometimes opposite effect on 
the CLS of the budding yeast; furthermore, it was demonstrated 
that in some cases telomere length does not correlate with the 
life span of SC. This finding refutes the postulate that age and life 
expectancy can be deduced from the length of the telomeric DNA 
and thus precludes the possibility to use this parameter to monitor 
the health and viability of a long-term industrial fermentation 
process.

1.1 Introduction

1.1.1 The Yeast Saccharomyces cerevisiae

Saccharomyces cerevisiae, also known as the budding yeast, has been 
used since the dawn of the great civilizations for its fermentation 
properties in the production of bread, beer, and wine (Fig. 1.1).

Figure 1.1 Electron microscope picture of Saccharomyces cerevisiae.
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It is one the eukaryotic models of choice for the easiness with 
which it can be handled; in fact, it is one of the most studied eukaryotic 
microorganisms in the fields of molecular and cell biology.

Major discoveries have been made working on SC such as 
cell-cycle and genome instability, which have greatly contributed 
to the development of the recent techniques used in laboratories; 
furthermore, it presents the same structural complexity of plant 
and mammal cells.

Going deeper into the structural and molecular content of SC, 
it is important to understand some major characteristics that 
define the budding yeast.

SC cells differ from ovoid to round and have a diameter that 
varies from 5–10 depending if it is haploid or diploid.

The haploid form is due to the fact that it has gone into starvation, 
meaning that it has fewer nutrients on which it can survive and 
therefore it must conserve itself by using less energy as possible. 
This is achieved thanks to the production of four haploid spores, 
which remain held in a capsule called ascus. Since the different 
sexes are expressed by a couple of heterozygous alleles MATa/
MATα, every ascus will hold two haploid cells for every sex type; 
this means two a and two α. If the amount of nutrients is re-
established to normal, it returns to the diploid form by mating one 
α with one a.

1.1.2 The Yeast Genome

The yeast genome is organized in 16 chromosomes that vary in 
length between 200 and 1800 kb. The total amount of the genome 
is 12 Mb with approximately 6400 ORFs. Furthermore, there is the 
presence of extra-nuclear DNA such as 2 µ, which is an endogenous 
plasmid, and mitochondrial DNA. However, the yeast genome is 
very different from any other organism because it is very condensed; 
as a result, 72% of it is encoded.

One of the reasons why SC has become so important is that it 
was the first eukaryotic genome to be sequenced. The completed 
sequence has been published in 1996 (Goffeau et al., 1996).

The availability of the genome has turned SC in an optimal 
model for the studies concerning homologous genes in humans, 
plants and other organisms. In addition, presumably 50% of the 
yeast genes have a homologous gene in humans.
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1.1.3 DNA Double-Strand Break

Different DNA lesions can occur; one of them is the double-strand 
break (DSB). This break can be induced by different kinds of factors: 
endogenous such as accumulation of oxygen reactive species, 
replication stresses and replication errors, whereas the exogenous 
factors are chemical reagents, different kinds of drug species and 
IR radiation.

In human cells, these breaks normally occur during the entire 
life span of the cell due to their metabolism and environmental 
factors therefore by leading to a major structural damage of the 
DNA molecule, which can dramatically change how the cell reads 
the gene information. Consequently, the cell needs to frequently 
repair the damage using different repair mechanisms. However, 
when the cell ages these repair mechanism become slower and 
less efficient to a point that it cannot repair itself anymore, now the 
cell can choose different paths to follow, such as senescence, 
apoptosis or carcinogenesis.

The majority of the cells in our body are senescent. However, 
if they are hit by a non-repairable DNA damage, they will follow 
the path of apoptosis, this is the last resort to prevent the formation 
of tumorigenic cells.

In somatic tissues, since the recurrence of repair is high, 
the genome instability can lead to the loss of heterozygosity and 
carcinogenesis.

This means that you can have the activation of proto-oncogenes 
through an allelic mutation or the inactivation of oncosuppressor 
(i.e. the alteration of the gene that gives mammary gland cancer 
BRCA1).

When a DSB occurs in a eukaryotic cell a complex web of proteins 
activate, these are damage sensor enzymes, signal transductors 
and effectors. Some of the proteins that are activated are kinases 
(Mec1 and Tel1), which in terms activate by phosphorylation Rad9 
and Rad53.

Rad53, moreover, acts on a series of substrates (Brca1, Nbs1, 
p53 and Cdc25C) activating the damage response mechanism. 
Therefore, Rad53 stops the cell-cycle and enhances the repair 
mechanism and if necessary triggers apoptosis (Zhou et al., 2000).
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1.1.4 DBS Repair Mechanisms

There are different DBS repair mechanisms (Fig. 1.2):
 • homologous recombination (HR)
 • single-strand annealing (SSA)
 • synthesis-dependent strand annealing (SDSA)
 • break-induced replication (BIR)
 • crossing over
 • non-homologous end joining (NHEJ)

(a)

(b)

Figure 1.2 Schematic representations of some DNA repair mechanisms.

The different repair mechanisms that arise after the DSB are 
used differently in the different cells; NHEJ is used by the mammalian 
cells, whereas HR is used by the yeast (Kanaar et al., 1998; Kolodner, 
2002). In addition, the HR is more efficient in the diploid yeast cell 
rather than the haploid yeast (Shrivastav et al., 2008).

Defects in these repair systems cause genome instability, which 
can lead to tumorigenesis.

DSB in SC activates different repair mechanisms, which are 
kinetically different but all activated by Mec1 and Tel1. Mutations to 
Mec1 and Tel1 cause different chromosome alterations such as the 
shortening of the telomeres, the increase in mitotic recombination, 
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chromosome loss, and the sticking of the telomere ends, which 
ultimately leads to translocations and circular chromosomes (Craven 
et al., 2002).

1.1.5 Homologous Recombination

The term “homologous recombination” describes a set of 
mechanisms, all of which use homologous sequences to repair 
DNA. Most current models of HR are initiated by a DSB; the most 
common models are double-strand break repair (DSBR), SDSA, 
SSA, and BIR models. These HR mechanisms have several common 
features: All HR reactions are catalyzed by a number of proteins 
that belong to the RAD52 epistasis group, although some enzymes 
are more important for specific pathways.

An important point in the HR is the formation of the Holliday 
junction, which is a mobile cross formation of DNA with four 
different strands paired in two duplex. This formation is achieved 
because when a DSB occurs, one strand of the duplex anneals with 
the strand of the other duplex (Agmon et al., 2009).

1.1.6 Synthesis-Dependent Strand Annealing

Homologous recombination via the SDSA pathway occurs in cells 
that mitotically divide and results in non-crossover products. The 
invading 3 strand is extended along the recipient DNA duplex by 
a DNA polymerase and is released as the Holliday junction 
between the donor and recipient DNA molecules slides in a process 
called branch migration. The newly synthesized 3 end of the 
invading strand is then able to anneal to the other 3 overhang in 
the damaged chromosome through complementary base pairing. 
After the strands anneal, a small flap of DNA can sometimes remain. 
Any such flaps are removed, and the SDSA pathway finishes with the 
resealing, also known as ligation, of any remaining single-stranded 
gaps (Helleday et al., 2007).

1.1.7 Break-Induced Replication

During DNA replication, double-strand breaks can sometimes be 
encountered at replication forks as DNA helicase unzips the template 
strand. These defects are repaired in the BIR pathway of HR. The 
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precise molecular mechanisms of the BIR pathway remain unclear. 
Three proposed mechanisms have strand invasion as an initial step, 
but differ in how they model the migration of the D-loop and later 
phases of recombination (McEachern and Haber, 2006).

The BIR pathway can also help to maintain the length of 
telomeres, regions of DNA at the end of eukaryotic chromosomes, 
in the absence of (or in cooperation with) telomerase. Without 
working copies of the telomerase enzyme, telomeres typically 
shorten with each cycle of mitosis, which eventually blocks and 
leads to senescence. In budding yeast cells, where telomerase has 
been inactivated through mutations, two types of “survivor” cells 
have been observed to avoid senescence longer than expected by 
elongating their telomeres through BIR pathways (McEachern and 
Haber, 2006).

Maintaining telomere length is critical for cell immortalization, 
a key feature of cancer. Most cancers maintain telomeres by upregu-
lating telomerase. However, in several types of human cancer, a BIR-
like pathway helps to sustain some tumors by acting as an alternative 
mechanism of telomere maintenance (Morrish et al., 2009).

1.1.8 Single-Strand Annealing

The SSA pathway of HR repairs double-strand breaks between two 
repeat sequences. The SSA pathway is unique in that it does not 
require a separate similar or identical molecule of DNA, like the 
DSBR or SDSA pathways of HR. Instead, the SSA pathway only 
requires a single DNA duplex, and uses the repeat sequences as 
the identical sequences that HR needs for repair. The pathway is 
relatively simple in concept: After two strands of the same DNA 
duplex are cut back around the site of the double-strand break, the 
two resulting 3 overhangs then align and anneal to each other, 
restoring the DNA as a continuous duplex (Haber et al., 2010; 
West, 2003).

1.1.9 Non-Homologous End Joining

NHEJ is referred to as “non-homologous” because the break ends 
are directly ligated without the need for a homologous template, 
in contrast to HR, which requires a homologous sequence to guide 
repair. The term “non-homologous end joining” was coined in 1996 
by Moore and Haber.
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NHEJ typically utilizes short homologous DNA sequences called 
micro-homologies to guide repair. These micro-homologies are 
often present in single-stranded overhangs on the ends of double-
strand breaks. When the overhangs are perfectly compatible, NHEJ 
usually repairs the break accurately. Imprecise repair leading to 
loss of nucleotides can also occur but is much more common when 
the overhangs are not compatible. Inappropriate NHEJ can lead to 
translocations and telomere fusion, hallmarks of tumor cells (Boulton 
et al., 1996; Moore et al., 1996; Wilson et al., 1999; Budman et al., 2005).

1.1.10  Chromosome Translocation

Chromosome translocation is a rearrangement of parts between two 
non-homologous chromosomes (Fig. 1.3). When the two breaking 
points are within a gene coding sequence this could lead to the 
fusion of two genes, that is very common in cancer cells, and also 
is known to bring diseases such as the chronic myelogenous (or 
myeloid) leukemia (CML) which is the union between the BCR and 
the ABL protein genes (Klein et al., 1982).

There are two different main types of chromosome transloca-
tions in humans: the reciprocal translocation or non-Robertsonian 
translocation, which is usually an exchange of material between 
two non-homologous chromosomes, and the Robertsonian translo-
cations, which are the fusion of the two acrocentric chromosomes 
near the centromere with loss of the short arm that therefore lead 
to an unbalanced karyotype of 45 chromosomes. 

Figure 1.3 Three-dimensional image of a chromosome.



17Introduction

Carriers of Robertsonian translocations are not associated with 
any phenotypic abnormalities, but there is a risk of unbalanced 
gametes, which lead to miscarriages or abnormal offspring. 
For example, carriers of Robertsonian translocations involving 
chromosome 21 have a higher chance of having a child with Down 
syndrome. These chromosome translocations can also be seen in 
yeast and can represent a way to evolve.

1.1.11 BIT Bridge-Induced Translocation

Bridge-Induced translocation method (Fig. 1.4), which was 
developed in this laboratory, induces chromosome translocation 
in unmodified yeast cells through targeted DNA cassette integration 
of the KANr selectable marker flanked by sequences homologous 
to two chromosomal loci randomly chosen on the genome (Tosato 
et al., 2005).

Figure 1.4 Scheme of a bridge-induced translocation between the gene 
ADH1 on chr. XV and the gene DUR3 on chr VIII.

The cassette carried at its ends two nucleotide sequences 
homologous to two distinct genomic loci each located on a 
different chromosome. Thus, once integrated, the selectable linear 
DNA fragment becomes a molecular bridge between two unique, 
naturally occurring pre-selected loci.

This method gives chromosome translocations without the 
need of previously engineering the cells. In literature, there are 
different techniques used to induce chromosome translocation, but 
in these cases, it is necessary to insert a site for an endonuclease 
such as HO or Sce1 by therefore promoting a DBS and a translocation, 
but they all occur between homologous chromosomes.
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The length of the homology deeply influences the BIT system. 
In fact, a 40 nt homology has an efficiency of 1.6% integration into 
the desired locus, but by lengthening the homology to 65 nt the 
efficiency doubles. The low percentage in the desired translocation 
means that probably there is mechanism that suppresses the 
whole processes during mitosis.

Furthermore, the efficiency of the translocation is influenced by 
the region of homology. This means that the regions that regulate 
this process, also known as the promoter and the terminator 
regions, are more recombinogenic compared to the ORF.

The mechanism with which probably the translocation 
occurs follows two steps: First, one end pairs with its homologous 
sequence; second, the other end searches for its homology on the 
same chromosome, and if the homology is not met, the cell activates 
the mechanism to suppress the mitotic recombination. At this 
point, the free end is able to pair itself with the homology 
sequence found on the other chromosome and therefore induces a 
translocation. The pieces of DNA that are cut during the 
translocation can follow different paths such as degradation or 
chromosome rearrangements.

In most cases, the cassette can integrate ectopically in the 
genome, or with just one end of targeted locus. In this case, the free 
end can integrate in another chromosome using a micro-homology 
or it can integrate itself on the same chromosome without any 
homology at all. Finally, it can also integrate itself in the endogenous 
plasmid 2 µ.

It is also known that only 10–20% of the translocants show 
phenotype abnormalities such as polynucleated cells, longer buds, 
anucleated cells. In most cases the actin1 protein seems to be 
modified, this could explain in part the phenotype abnormalities. 
There is also a decrease of the Rad53p protein used in DNA repair 
mechanisms and also the missed phosphorylation of the same 
protein. These data suggest that the cells have undergone an 
adaptation after their arrest in the G2/M phase checkpoint (Nikitin 
et al., 2008).

It has been observed that from the same chromosome 
translocation you can obtain 10 translocants with different 
phenotype, morphology and different gene expression (Rossi et al., 
2009).
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1.1.12 Telomeres

Chromosomes to be determined as such need three essential 
structures: origin of replication, centromere, and a telomere.

The telomere (Fig. 1.5) has different functions in the chro-
mosome, which differ from the maintenance of the chromosome 
structure to the protection of the ends. It has been known since the 
1970s that the conventional DNA polymerase is unable to replicate 
the ends; therefore, the cell is unable to keep the telomere from 
shortening each round of cell division.

Figure 1.5 Representation of a chromosome and its telomere.

However, some cells such as stem and tumor cells have a very 
important protein that is expressed called the telomerase, which 
can increase the length of the telomeres every time they shorten 
since it carries a RNA template used for this task, this gives the cell 
a certain immortality, thereby the cell is able to divide limitlessly 
without entering senescence or a non-dividing stage.

In addition, there are some proteins that are associated to the 
telomere such as the TRF proteins that are considered the “ruler” 
of the telomere because they are used by the cell to understand 
how long is the telomere. Furthermore, another family of proteins 
known as sirtuins have shown to play an important role in the 
processes that bring the cell to senescence.

The Sir2 protein (silent information regulator) is known to 
suppress the rDNA recombination and extend the life span by 
40% if an extra copy of the gene is added. However, if the telomeres 
are too long—and therefore there are a large number of sirtuin 
proteins attached, Sir2 could suppress essential genes of the cell 

Introduction
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bringing it to a premature death (Kass-Eisler and Greider, 2000; 
Bitterman et al., 2003; Cheol Woong Ha and Won-Ki Huh, 2011).

1.2 Material and Methods

1.2.1 Materials

Table 1.1 Some of the translocants that were studied in this manuscript 
Yeast Strains 

Yeast 
Strains 
Name

Chromosomes 
involved

Genotypic 
background Produced by

D10 XV-VIII SAN1 BIT with 40 nt of homology
D3 XV-VIII SAN1 BIT with 40 nt of homology
D11 XV-VIII SAN1 BIT with 65 nt of homology
T5 XV-VIII Trisomic N2  

(SAN1 + VIII)
BIT with 65 nt of homology

T12 XV-VIII Trisomic N2  
(SAN1 + VIII)

BIT with 40 nt of homology

AD5 V-VIII SAN1 BIT with 65 nt of homology
N2 V-VIII Trisomic N2 BIT with 40 nt of homology
POLY XIII-XV BY4743 Excision by Scel in vitro; 

transformation with 50 nt 
homology

Val VII-II SAN1 BIT with 40 nt of homology
Susu1 IX-XVI SAN1 BIT with 40 nt of homology
Susu4 IX-XVI SAN1 BIT with 40 nt of homology
Susu5 IX-XVI SAN1 BIT with 40 nt of homology
77 VIII-VIII SAN1 BIT with 40 nt of homology
San1 None Wt

1.2.1.1 Media

The media compositions follow the standards of “methods in yeast 
genetics” (Kaiser et al., 1994). Yeast used for genomic extraction was 
grown in YPD + G418 (final concentration 200 μg/mL) for selection, 
whereas for the CLS, all strains were grown in synthetic complete 
medium with G418 for those that needed selection.
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Synthetic Complete Medium 

Ingredients % w/v

Bacto-yeast nitrogen base w/o amino acids 0.67
Ammonium sulfate 0.5
Glucose 2
Drop-out mix 0.2

Synthetic Complete Medium: Add 1000 mL of distilled water.
Dropout mix

Ingredients mg. in 1000 mL

Adenine 18

Arginine 76

Histidine 76

Leucine 380

Lysine 76

Methionine 76

Proline 76

Threonine 76

Tryptophan 76

Tyrosine 76

Uracil 76

Adenine, threonine, and tryptophane were added after 
autoclaving the media, since they are thermolabile.

1.2.1.2 Solutions and enzymes

 • Herring sperm (HS) (Roche), DNA MB grade, 10 mg/mL, for 
hybridization

 • Marker 1 Kb plus 1 µg/mL
 • Geneticine G418 50 mg/mL
 • Stock solutions: ethanol, ethanol 70%, TBE 10×, ammonium 

acetate 4 M, maleic acid 0.5 M, Tween 20, NaOH 0.4 N, HCl 
0.25 N, SSC 20×, SDS 10%

 • Enzyme use for genomic digestion BanI

Material and Methods


