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The response of an organism to drugs has been challenging

scientists through the years, and it must be considered as one

aspect of the overall responses that living species exert to different

environmental impacts and stressors within an ever-changing

environment. To this regard, our knowledge of illness etiology

and drug actions in the body goes in parallel with the scientific

advances focusing to elucidate mechanisms and processes that

contribute to the existence of life itself. In this way, understanding

the pathophysiology of disease phenotypes as well as deciphering

the underlying pharmacological mechanisms have long been set as

the primary goals to be achieved, maximizing benefits in medical

and pharmacy practice. Moreover, maximum efficacy and safety

upon drug delivery, implying the improvement of pharmacotherapy

profiles, is a long-desirable target for drug administration and

coincides chronologically with the establishment of pharmacology

as a basic and clinical discipline. Especially, over the past 80 years,

medical and pharmaceutical specialties were given the capacity

to suitably adopt scientific advancements coming from various

research areas, thus providing health care practitioners with the

suitable skills and expertise to improve disease prognosis and

diagnosis as well as drug delivery clinical outcomes. As an example,

if the scientific achievements will be considered over this period

for the drug discovery and development era, one can easily came to

the conclusion that it has been mainly influenced by fundamental

advances in chemistry, physiology, and pharmacology, whereas

specific contributions occurred at various decades from disciplines

as these were being expanded through the years. Such examples

refer to breakthroughs from microbiology in the 1930s and 1940s,

from biochemistry and enzymology in the 1950s and 1960s, and
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from molecular biology and recombinant DNA (rDNA) technology

from the middle of 1970s and onward.

Nowadays, advances in nanotechnology, genomic technologies,

informatics, molecular biology and pharmacology have long held

out the promise of transforming medical practice, drug development

and delivery from a matter of serendipity to a rational pursuit

grounded in a fundamental understanding of the mechanisms of

life. As far as the drug-related research and clinical environment

is concerned, pharmacogenomics revived pharmacogenetics and

pharmacology research boundaries to keep pace with fastevolving

life-imposed scientific advances. The application of pharmacoge-

nomics focuses on the clinical translation of genomics data to

predict and evaluate disease risk and progression, as well as

the pharmacological response to drugs in individual patients or

groups of patients. As a matter of fact, the clinically validated

genomic knowledge of target receptors, ion channels, enzymes,

or transporters could be an additional clinical factor in guiding

personalized prescription of most, if not all, currently in practice,

orally delivered drugs to achieve the best-possible efficacy and

safety profiles. By definition, personalized medicine implies the

management of a patient’s disease in terms of prognosis, diagnosis,

and drug delivery to achieve therapy with the best-possible medical

outcome for that individual. To this end, the concept of personalized

medicine has emerged as the way by which a suitable infrastructure

setting in research, clinics, education and regulation could be

built to hasten the translational efficiency of genomic, molecular

and technological advancements into the practice of medicine and

pharmacy. The latter means that both clinical and research efforts

focusing on those concepts might formulate and broaden the era

of personalized medicine and could facilitate as well as accelerate

its practical utility in the clinical settings. This is considered a very

important aspect toward achieving major benefits for personalized

medicine worldwide. Such an approach was further supported by

the notion that the possibility of focusing on the development

of “personalized medicines” for specific individual patients could

hardly be attained in practice, since it represents a very difficult

task to be affordably achieved in terms of existing regulatory drug

development issues, world-broad clinical utility, and therapy costs.
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Personalized medicine, although in its infancy, represents

already the next evolutionary step in medicine and pharmacy

by gaining acceptance as an independent area of research to

join the gap as well as connect experimentally the interfaces

between the clinical settings with health-related basic disciplines.

Through the application in everyday clinical practice of personalized

medicine concepts, the improvement of prognosis, diagnosis, and

therapy outcomes can be achieved in an affordable way as well in

real time by permitting the stratification of patients suffering the

same complex illness (e.g., cancer, cardiovascular disorders). It is

expected to revolutionize the whole health and pharmaceutical care

environment by focusing on the individualization approach both

in research and in everyday clinical practice. This refers, among

others, to disease risk assessment, diagnosis profiles, and new

drug development approaches in order for the clinical translation

of genomics information to be more efficiently achieved, thus

maximizing drug delivery and prescription worldwide.

Having this in mind, the organization of a multidisciplinary

approach toward serving better the clinical exploitation of the

knowledge achieved thus far from cutting-edge genomics, innova-

tive bioinformatics, and frontline nanotechnological advancements

seems reasonable and attainable. Furthermore, this direction might

more affordably permit the application of personalized medicine

concepts in routine health care as well as cultivate the functional

merger and unification of these core research directions into

a common ground of “communication research language” to

achieve the desirable personalized medicine targets. For example,

by strengthening the clinical benefits of genomic knowledge as

well as applying informatics methodologies and nanotechnological

procedures and putting in perspective their advancements that

contribute to personalized medicine, such an idea is gaining

practical utility in clinical practice and drug delivery in a way that

it connects the outcomes with specific markers and gene expression

signatures of prognostic, diagnostic, and even therapeutic value.

To this end, practical clinical utility worldwide could be faster and

more efficiently achieved. And more importantly, by fulfilling the

needs of broader clinical utility for personalized medicine, this also

coincides with the active participation of health care educators in
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the advancements happening both in research and at the clinical

level in order then to transfer their expertise and experience into

future professionals through the creation of suitable education

programs in medicine and pharmacy. Such direction is crucial, since

the implementation of the curricula has to take into consideration

the scientific approaches with practical clinical consequences in

the profiles of individual patients for diagnosis and drug delivery

outcomes.

Handbook of Personalized Medicine represents an effort to

critically shape the era in which various advancements contributing

to health care disciplines merge to formulate the structure needed

for allowing personalized medicine concepts to emerge in everyday

clinical practice. The latter implies that these advancements are clin-

ically validated, getting practical utility and broad use, and meeting

regulatory requirements, as well as receiving a final approval to

enter health care. To achieve this goal, leading scientists in their

areas of expertise with various scientific backgrounds have been

invited to contribute. To this end, recent advancements in genomics

and nanotechnology will be presented that create a fertile ground

for pharmacogenomics and personalized medicine to advance

prognosis and diagnosis profiles for specific groups or individual

patients and move toward pharmacotyping in drug prescription,

that is, the individualized specific drug and dosage scheme selection

based on the patient’s clinical and genetic data. Within this frame,

this book is unique in its structure by including issues related to

nanosystems and nanodevices, innovative drug formulations and

nanotheranostics, molecular imaging and signatures, translational

nanomedicine and informatics, predictability of drug effect behavior,

genetic etiology of drug response heterogeneity, pharmacogenetics-

guided drug prescription, pharmacovigilance and regulatory as-

pects, ethical and cost-effectiveness consequences, personal genome

analysis, pharmacogenomics knowledgebase, education issues, and

information-based medicine, as well as, last but not least, a frame-

work and infrastructure to support personalized medicine utility

for everyday clinical practice. This multidisciplinary Handbook of
Personalized Medicine is also unique in its concept by including and

presenting selective cutting-edge technological advancements from

genomics, pharmacology, nanotechnology, informatics, and statistics
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that focus on pharmacogenomics and personalized medicine and

allow the practical utility of clinically relevant genomic knowledge

to enter health and pharmacy care. The idea to present various

topics addressing the practical utility of personalized medicine

and pharmacogenomics in a feasible and cost-affordable manner

for routine health care is also innovative for this book volume.

The text, although organized in such a way that each chapter

represents an independent area of research, simultaneously allows

an easy manner for the reader to intercorrelate various subjects

covered in separate chapters. I sincerely hope that the book will

assist readers in understanding the multidisciplinary nature of the

changes happening in health and pharmaceutical care sectors and

also to enrich their knowledge and their own perspectives on how

genomics, informatics, pharmacology, and nanotechnology affect

health-related professions to better adjust themselves in the new

setting.

From the beginning and upon completion of this volume, new

scientific achievements have stressed toward the empowerment of

personalized medicine decisions by working and building a more

multidisciplinary infrastructure in research and clinics. It is, for

example, very interesting to note the vast load of human and

other complex genomes functional data published in September

2012 from the ENCODE Project Consortium (The Encyclopedia of
DNA Elements; ENCODE) that provides new insights into genetic

variability patterns seen in individuals and populations. As is

pointed out, many previously clinically validated DNA variants

are located within or very near to intergenic regions and other

noncoding functional DNA elements, thus providing new ways to

clinically translate genomic information by linking specific genetic

polymorphisms and disease etiology and progression profiles.

Such new genetic information impinges on the regulation of

complex mechanisms involved in human genome function, which,

in turn, may contribute to molecular pathophysiology mechanisms.

The latter stressfully points toward a more multidisciplinary

effort for a practical clinical utility infrastructure in the era of

personalised medicine for the benefit of society and individual

patients worldwide. And more importantly, as recently published,

the application of an integrative personal “omics” profile analysis
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that combines genomic, transcriptomic, proteomic, metabolomic,

and autoantibody profiles from a single individual has revealed the

dynamics of this approach toward achieving personalized medicine

decisions in clinical practice.

Last, but not least, the dynamic scientific environment that

already exists in the era of nanotechnology and genomics with

the potential to affect health care and drug delivery decisions

needs more collaborative multidisciplinary efforts to make practical

clinical utility of personalized medicine a maximum success. As

a matter of fact, by crossing the borderlines of genomics with

nanotechnology a fertile ground can be created to lead to the advent

of “personalised nanomedicine” as a new discipline to enforce

individualized therapeutic decisions with maximum safety and

efficacy. To this end, a theme issue on “personalized nanomedicine”

in the journal Advanced Drug Delivery Reviews has been recently

coedited (October 2012) to define and exemplify that necessity

in both research and clinical settings. The interested reader can

follow such referred theme issues for further information and

consideration.

I feel so deeply grateful, and I express my sincere thanks to all

authors who contributed to this volume by taking time from their

busy schedule, as well as presented their work and provided their

personal perspectives on the concept of personalized medicine, thus

making the initial multidisciplinary approach a reality and get its

sense in the book.

Special thanks are also expressed to the Pan Stanford Publishing

staff for their kind help as well as their work to see this volume being

completed.

I cordially express my gratitude to my family members for their

patience in all stages of this project, as well as for their continuous

encouragement and the creation of such a supportive and creative

environment that make this work finalized and complete.

Ioannis S. Vizirianakis
Thessaloniki, Autumn 2013
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1.1 Introduction

We are living in an era of mass marketing and big business—a

strategy that favors retail giants such as Walmart R©, Costco R©, and

Best Buy R© in attempts to satisfy the insatiable commercial needs

of a growing population. Current economic drivers instinctively

motivate fiscally conscious consumers to flock to warehouse-style

retailers to purchase mass-produced generic products; rather than
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paying a premium at privately owned and operated boutique shops

that sell unique goods marketed toward specific subgroups of

customers. Unfortunately, this trend superficially appears to have

been adopted with vigor by large pharmaceutical companies, “Big

Pharma” as they are commonly referred to, as they develop and

market blockbuster drugs to treat the masses. As a result, an

individual patient’s clinical needs have been blurred in efforts to

accommodate entire populations of patients. But before we lump Big

Pharma into the likes of retail giants that mass-produce products

to lower costs and boost margins, one must understand the harsh

realities of drug development. On average, it is estimated that

a single new drug compound costs over $1 billion and 10–15

years to develop [1]. And shockingly, only one out of five new

drug compounds actually generates revenue equal or greater to

its inherent developmental costs [1]! It is obvious that to disrupt

this drug development trend, a “perfect storm” of novel emerging

technologies, nonconventional regulatory approaches, Big Pharma

support, and health insurance reform must converge to initiate the

shift toward developing personalized therapies (Fig. 1.1).

Personalized medicine is the collection and analysis of clinically

relevant patient data (e.g., genomic, proteomics, metabolomics, etc.)

to determine the most effective, tailor-made treatment strategy

possible. The transition to individualized therapy is a palatable

idea to embrace since its application is deeply rooted in the

logical evolution of clinical medicine; however, its ubiquitous imple-

mentation will require an unprecedented synchronized integration

of effort from the pharmaceutical industry, the Food and Drug

Administration (FDA), and medical insurance companies—pushed

by scientific advancements and pulled by clinical demand from

physicians and patients. Nanotechnology has been hailed by many

as the enabler of individualized therapy since nano-based medicine,

or nanomedicine, allows us to interact with disease at the scale

of biology. We are now able to bring the battle to the level where

a war is being waged. Nanotechnology provides scientists and

clinicians with access to disease pathways, mechanisms to exploit

minuscule pathologic changes in anatomy, strategies to augment

imaging modalities, and tools to collect near-overwhelming amounts

of patient information to reveal new approaches to identifying
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Figure 1.1 (A) Conventional chemotherapeutic strategies are often admin-

istered as standard protocols for patients with cancer. This practice “blurs”

patient-to-patient distinction and approaches the treatment of cancer in

the context of populations of the disease. (B) Personalized medicine is a

developing clinical approach that “focuses” upon the needs of individual

patients and is predicated upon the assembly and analysis of patient-

specific information made possible through emerging technologies such as

nanotechnology.

vulnerabilities of complex ailments such as cancer, heart disease,

and other clinical challenges.

This chapter will provide a snapshot of nano-based strategies

that have reached the clinic in the context of cancer and those that

remain in the process of translation. In addition to this summary

of nanotechnology and personalized medicine for the treatment of

cancer, this chapter will also feature multiple perspectives regarding

the enabling of individualized therapy from several key vantage

points ranging from a practicing surgeon to a biotech chief executive

officer (CEO) to an FDA consultant to a patient advocate.

1.2 Conventional Cancer Chemotherapeutics

1.2.1 A Brief History

The dawn of modern cancer chemotherapy may have risen from

the aftermath of the smoke and twisted metal of Allied warships

stationed in Bari Harbor, Italy, on December 2, 1943. A German
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strategic air raid sought and destroyed 17 vessels as they unloaded

supplies and cargo intended to support the final Allied push

into Italy [2]. Unknowing to the squadron of German Luftwaffe,

the strike left a US Liberty ship in wreckage, detonating its

deadly payload of mustard gas bombs and subsequently exposing

the weaponized chemical agent into the harbor and surrounding

city. This tragic event, which killed over 2,000 Allied servicemen

and Italian citizens, enabled two Yale pharmacology professors

to validate their research focused upon the leukopenic effects

of nitrogen mustard [3]. Drs. Alfred Gilman and Louis Goodman

began their research in 1941 under a program funded by the US

government’s Office of Scientific Research and Development [4].

The attack of 1943 provided a grim opportunity for these scientists

to document how β-chloroethylamines destroyed lymphatic tissue

and bone marrow in human subjects. Their clinical findings were

published in a landmark article titled “Nitrogen Mustard Ther-

apy: Use of Methyl-bis(Beta-Chloroethyl)Amine Hydrochloride and

tris(Beta-Chloroethyl)Amine Hydrochloride for Hodgkin’s Disease,

Lymphosarcoma, Leukemia, and Certain Allied and Miscellaneous

Disorders” in the Journal of the American Medical Association (JAMA)

in 1946 [5].

Over 60 years have passed since the tragedy in Bali Harbor,

and modern medicine is still employing extremely toxic, non-

specific agents to combat disease. In fact, cyclophosphamide, a

nitrogen mustard alkylating agent and direct descendant from

the therapeutic discovery of the US Liberty ship disaster, is still

being actively used today as adjuvant therapy or as part of first-

line treatments for various cancers. At the time of this chapter,

a search of ClinicalTrials.gov found 2,269 studies that involved

cyclophosphamide for clinical indications ranging from early-stage

breast cancer to multiple myeloma. The results of such a query

can be viewed as strong evidence of the clinical importance of

the discovery of nitrogen mustard alkylating agents or perhaps an

indication to the lack of significant therapeutic innovation achieved

over the past half-century in cancer therapeutics. Statistics remain

the most powerful metric to measure the progress of our fight

against cancer, and the American Cancer Society recently published

http://ClinicalTrials.gov
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its latest figures tabulating trends in the five-year relative survival

rate in the United States from 1975 to 2005. The findings indicate

a promising 18% increase of the five-year relative survival rate

when comparing 24 cancer types over the 30-year period [6].

We have achieved major improvements in several cancers such

as prostate cancer (increase of 31%), non-Hodgkin lymphoma

(increase of 21%), and breast cancer (increase of 15%). However

in certain cancers we have attained minimal improvement; the five-

year relative survival rate for pancreatic cancer remains in the single

digits (6%) and has only improved by 3% since 1975 [6].

1.2.2 A Summary of Conventional Anticancer Drugs

Most conventional anticancer agents can be categorized into one of

three therapeutic mechanisms: 1) to damage the deoxyribonucleic

acid (DNA) of the affected cancer cells, 2) to inhibit the synthesis

of new DNA strands to halt cell replication, and 3) to stop

mitosis, thereby inhibiting uncontrolled cell division [7]. Table 1.1

summarizes the hallmarks of several drug classes commonly

employed as anticancer drugs. Scientific journals are filled with

case studies demonstrating the clinical merits of exploiting cancer

cell vulnerabilities associated with these mechanisms; however,

decreasing the rate of cell division is not a ubiquitously welcomed

therapeutic consequence. Many bodily systems naturally depend

upon the healthy rapid turnover of cells, including the skin,

gastrointestinal lining, bone marrow, and hair follicles. Herein lies

the most fundamental conundrum of cancer therapeutics—how to

kill cancer cells, sparing as many healthy cells as possible (the

patient must survive the rigors of his or her therapy to be cured

of the cancer). It is alarming that conventional clinical wisdom still

prescribes treatments where often times only 1 out of 100,000

drug molecules actually reach the intended site of disease [8].

A simple calculation reveals that 99.99% of the injected dose is

nonspecifically distributed throughout the body, subjecting healthy

organ systems to the brutal consequences of cytotoxic adverse side

effects associated with most cancer therapeutics.
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1.3 Concept of Personalized Medicine

Personalized medicine is the next evolutionary stage of development

for traditional health care, building upon the strong foundations of

evidence-based observation, symptomatic analysis, and pathologic

expression/presentation [9]. Scientific advances in several emerging

fields, such as bioinformatics, systems biology, and nanomedicine,

are providing scientists and clinicians with extraordinary access

to a wealth of information with tremendous clinical value. As

new tools are invented to integrate and process this collection

of patient data, the clinical boundaries that distinguish patients

as individuals become less blurred, providing clarity to resolve

a patient’s specific needs. Treating the masses with standardized

“one-size-fits-all” therapies become less acceptable, and ethical,

as new clinical evidence becomes accessible with the promise

of more efficacious courses of action. Current applications of

personalized medicine integrates such information as a patient’s

molecular profile or genetic map to supplement conventionally

acquired patient information, such as mammogram images and/or

histological pathology, prior to determining the final treatment

strategy; however, this just represents the “tip of the iceberg” of

the wealth of potentially applicable clinical knowledge that new

emerging technologies can provide access to [9].

1.4 Nanotechnology in Medicine

The day Drs. Smalley, Curl, and Kroto published their discovery

of the carbon-60 fullerene in Nature (1985), they effectively

established a new field called “nanotechnology” and introduced

to the scientific community a world that exists at a minute

scale where material behavior can no longer be predicted by

conventional wisdom and theory [10]. Unlike biotechnology, which

presented clinical medicine with innovative therapeutically “active”

agents that necessitated the creation of a new class of drugs, for

example, monoclonal antibodies, molecular targeted inhibitors, and

recombinant proteins, among others, nanotechnology offers the

ability to exploit a “toolbox” of novel material properties that may be
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applied to offer new approaches to fight human disease. Nanomedi-

cine facilitates interaction with disease processes at the cellular

and molecular scale with the objective of disrupting, abating, or

terminating pathologic progression. Furthermore, nanotechnology

provides unique access to biologically relevant information and

means to control drug release profiles pending on device integration

and design.

1.5 Injectable Therapeutics

1.5.1 Personalization by Design of Nanovectors with
Lesion-Specific Transport Properties

The fundamental basis for the administration of drugs or imaging

agents is to achieve a favorable therapeutic/diagnostic outcome

with minimal detrimental adverse reactions. When referring to

any systemically injectable therapeutic, diagnostic, or theranostic

agent, the set of obstacles preventing the mass transport among

various compartments/systems of the body (e.g., circulation, tumor

tissue, interactions with various cells on the cell membrane level

and in subcellular compartments) should be clearly understood.

These barriers, also termed biobarriers, can be of biological,

physical, chemical, or combined (biophysical, biochemical, physico-

chemical) nature. Sequentially, from the point of intravenous

administration, biobarriers can involve enzymatic degradation of

the active agent, inefficient margination in the bloodstream, inability

to overcome vascular endothelium, and insufficient delivery into

affected cells [11, 12]. To demonstrate the effectiveness of these

combined biobarriers, it has been calculated that only 1 out of

100,000 molecules of a drug successfully reaches the intended

pathological site. Thus, to achieve therapeutic efficacy, unreasonably

high doses of the active agents should be administered with 99.99%

distributing to unintended sites, causing unwanted side effects. As

an example, studies in Kaposi’s sarcoma models demonstrated that

∼0.001% of doxorubicin accumulated at tumor sites in patients [13].

Solid tumors, as well as several other pathologies (e.g., cardio-

vascular, inflammatory, and infectious diseases), can be generally
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considered as diseases of biobarrier dysregulation ranging from the

molecular to whole-body scale. As such, novel strategies must be

conceived to circumnavigate or, if possible, overcome these barriers

to drug delivery. Initially postulated as the “magic bullet” theory by

Paul Erhlich early in the 20th century [14], and initially considered

too outlandish, the idea of getting the right amount of drug to

the right place at the right time is now a possibility, thanks to

advancements in nanotechnology. Such is the immense potential

of nanotechnology to surmount these biobarriers that the field of

nanomedicine, a science that enables the clinical use of existing

agents through the utilization of nanoscale (1–1,000 nm) constructs

[11], has yielded several drug-containing platforms currently used

in clinics. This is best exemplified by Doxil R©, a polyethylene glycol

(PEG)-ylated liposomal formulation of doxorubicin, approved by

the US FDA in 1995 for the treatment of Kaposi’s sarcoma [15].

Liposomal doxorubicin was able to collect more efficiently in tumors

by taking advantage of the impaired endothelial barrier integrity in

cancer lesions, essentially using the tumors’ own biology against

them. The enlarged fenestrations in tumor-associated angiogenic

endothelia, and the resulting hyperpermeability of the neovascu-

lature in the tumor microenvironment, explain why systemically

injected nanoparticles tend to accumulate more in tumor sites.

The proposed mechanism, called the enhanced permeation and

retention (EPR) effect, was initially described by Maeda et al. [16–

19] and is considered the main reason underlying the therapeutic

index advantages stemming from the use of nanoparticles for

drug delivery. Moreover, the addition of PEG to the surface of

doxorubicin liposomes significantly increased the blood circulation

time from 10 minutes to 50 hours [20], effectively overcoming the

barrier sequestration by the mononuclear phagocyte system (MPS),

a system of monocytes and macrophages that effectively scavenge

foreign particulates. Last but not least, the encapsulation and

packaging of the drug within the core of the liposome help protect

the drug from enzymatic degradation, all the while preventing

release until its arrival at the site of action. This not only maximizes

efficacy at the site of action but also decreases harmful side effects,

such as cardiotoxicity in the case of doxorubicin. These and many

other advantages afforded by nanoparticulate systems for drug
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delivery are the reason for the hundreds of clinical trials currently

underway, making nanomedicine a significant player in the current

therapeutic/diagnostic options in oncology for the past two decades.

A recent boom has occurred in the field of nanomedicine,

with several novel nanoscale platforms generated for drug delivery

purposes. However, the most ubiquitous platforms, either in clinics

or in clinical trials, remain liposomes and micelles. Liposomes

were among the first nanoparticle platforms approved for clinical

use, helping pave the way for future generations of nanoparticles.

Liposomes are phospholipid-based bilayered membrane structures

with sizes approximating ∼100 nm in diameter [21]. The advantages

of liposomal doxorubicin have been detailed earlier, with their

impact on patient survival proving highly impressive. In one

study, 53 patients with advanced Kaposi’s sarcoma underwent

liposomal doxorubicin administration every three weeks. Of these

patients, 19 showed a partial response, while 1 patient experienced

a clinically complete response [22]. Since then, several other

liposomal formulations have found their way into the clinical arena.

One such example, LErafAON, is a liposomal formulation of the

raf antisense oligonucleotide. These liposomes are meant as an

adjuvant therapy, as the oligonucleotide acts on c-raf, a protein that

enables tumors to become resistant to radiation or chemotherapy

[23]. In a phase I trial, patients undergoing radiation therapy

were administered LErafAON twice a week, with 4 of 12 patients

presenting stable disease and 4 of 12 showing a partial response [23,

24].

Polymer micelles represent an emerging nanomedicine platform,

currently undergoing various phases of clinical trials in several

countries. These spherical nanostructures, ranging from 10 to

100 nm, were first developed for drug delivery by Ringsdorf et al. in

the early 1980s [25]. Polymer micelles are composed of amphiphilic-

block copolymers and form spherical structures through self-

assembly in aqueous environments [26]. The unique chemistry of

polymer micelles proves highly advantageous for chemotherapy.

Firstly, the hydrophobic core that results from their self-assembly

provides an ideal compartment for the encapsulation and solubiliza-

tion of water-insoluble drugs, which most anticancer agents prove

to be, given their polycyclic nature [27]. Secondly, the hydrophilic
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outer shell made of PEG, arising also from the self-assembly process,

naturally provides protection from aggregation and opsonization,

resulting in increased circulation times [28]. Other advantages

include the inclusion of novel polymers that allow for chemical

attachment of drugs or for incorporation of functionalities for

controlled release [29] and the outfitting of micelles to include

targeting moieties for enhanced tumor accumulation strategies [30].

As mentioned previously, polymer micelles are emerging as

nanoplatforms with immense potential for chemotherapy. NK911,

a micellar formulation of doxorubicin (∼40 nm in size), showed

long circulation times and resulted in a partial response in a patient

with metastatic pancreatic cancer in a phase I clinical trial [31]. A

cisplatin formulation of polymer micelles, NC-6004, recently entered

clinical phase I trials. Seven of seventeen patients treated had

a stable disease response, with much less toxic side effects and

associated treatment morbidity [32].

The goal of personalized therapy is to have nanovectors serve

as tools for exploring biobarriers, as well as instruments designed

to overcome or take advantage of these barriers to efficiently

deliver therapeutics to tumor sites. This especially holds true while

considering that biobarriers largely vary from one type of disease to

another, from patient to patient, and from lesion to lesion, changing

also over time in the course of therapy. It should also be kept in mind

that inefficient negotiation of sequential biobarreirs can prevent,

for example, molecular recognition, at the disease site. If the agent

is not delivered in close (submicron) proximity to the specific cell

population (e.g., tumor cells) that expresses the antigen, it cannot

create a close-enough contact for receptor–substrate interaction

governed by Michaelis–Menten kinetics. In this case, the specificity

in receptor recognition observed in vitro will not be confirmed

in in vivo studies. Thus, the increased molecular selectivity and

resolution of the problems associated with biobarriers have in many

cases proven largely to be reciprocally exclusive processes.

Recently, a paradigm shift in the design of nanovectors occurred

with the emergence of logic-embedded vectors [9, 12]. These multi-

functional constructs comprised of several nanoelements were de-

signed to act in a synergistic fashion to sequentially avoid/overcome

biobarriers and efficiently codeliver multiple payloads to the disease
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site [33–37]. The emblematic system in this subcategory is the multi-

stage system designed to perform a time sequence of functions that

involve cooperative coordination of multiple nanoparticles and/or

nanocomponents. The system, recently reviewed in [38], is based on

the nanoporous silicon particles (first stage) that utilize their unique

nonspherical geometry in concert with active tumor biological

targeting moieties to efficiently deliver payloads of second-stage

nanoparticles (S2NPs) to the disease site. First-stage nanoporous

silicon particles are specifically designed through mathematical

modeling to exhibit superior margination and adhesion properties

during their negotiation through systemic blood flow en route to

the affected site [39–41]. Particle characteristics such as size, shape,

porosity, and charge can be exquisitely controlled with precise

reproducibility through semiconductor fabrication techniques [34,

42, 43]. In addition to its favorable physical characteristics, the

stage 1 particle can be surface-treated with such modifications as

PEG for MPS avoidance [34] and equipped with biologically active

targeting moieties (e.g., aptamers, peptides, phage, antibodies) [44–

46] to enhance the specificity of tumor targeting and imaging

[36]. This approach decouples the challenges of 1) transporting

therapeutic agents to the tumor-associated vasculature and 2)

delivering therapeutic agents to cancer cells. Within the nanoporous

structure of stage 1 particles, S2NPs can be safely delivered into

the intended vascular target. S2NPs generically represent any

nanoparticle construct within the approximate diameter range of 5–

100 nm. Various nanoparticle payloads were investigated, including

liposomes [47], carbon nanotubes [37, 48], iron oxide [9] and gold

nanoparticles [44], fullerenes [48], polymeric micelles, and others.

The ability to load multiple payloads in a single multistage particle

was also demonstrated [37]. It is important to emphasize that unlike

its nonporous counterpart, porous silicon is biodegradable, with the

degradation product being harmless orthtosilicic acid [34]. This has

been shown in various studies in vitro in cell cultures of immune and

endothelial cells as well as in vivo in healthy animals that the system

is biocompatible [34, 36, 47, 49].

As predicted by mathematical modeling, the nonspherical geom-

etry of the first-stage particles contributes to accumulation of up to

five times higher concentrations of the nanovectors in the tumor
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microenvironment as compared to their spherical counterparts

[50]. These findings support the proposed mechanism of action

for the multistage system, where each stage performs part of the

journey from the site of administration toward the target lesion,

negotiating one or more biological barriers and adding a degree of

targeting selectivity in the process. Following arrival to the tumor

microenvironment, second-stage particles are released, permeating

into the tumor mass, further reaching the target cells with biological

specificity. It was shown that single or multiple payloads can

be specifically released at different subcellular locations, with

potentially different time release profiles. Personalization in this

case is based on the optimal/rational design of the nanovector

geometry for specific accumulation into the tumor site, porosity

of the carrier suitable for loading specific S2NPs and attaining the

desired release kinetics, and surface properties for recognition of

the inflamed endothelium in the neovasculature.

Recent advances in molecular oncology enabled a better

understanding of the pathological pathways involved in tumor

formation and maturation. Elucidation of some of the molecular

mechanisms brought about new potent drug candidates. Small

interfering ribonucleic acid (RNA) (siRNA) therapeutics belong to

one important class of new potent agents. These double-stranded

RNA molecules, able to specifically silence gene activity [41], were

discovered a decade ago by Fire et al. [51]. The main obstacle in the

clinical translation of siRNA therapeutics is the delivery overcoming

some of the above-mentioned biobarriers, including an extremely

prompt degradation in physiological conditions and an inability

to cross membranes. While siRNA liposomes have shown some

efficacy in animal studies [52, 53], frequent intravenous doses seem

to be unfeasible and are not cost effective in the clinical setting.

The antitumor efficacy of multistage silicon vectors (MSVs) loaded

with neutral dioleoyl phosphatidylcholine (DOPC) nanoliposomes

containing EphA2-specific siRNA was tested in animals with two in-

dependent orthotopic mouse models of ovarian cancer [47]. EphA2

is an oncoprotein overexpressed in most malignancies, including

ovarian tumors. Interestingly, after a single treatment with EphA2-

targeted MSV and without concurrent chemotherapy, gene silencing,

and a decrease in tumor burden, evaluated through cell proliferation
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(Ki-67) and angiogenesis (CD31), were observed. To achieve a

similar effect with siRNA-DOPC, six administration doses were

required with a twice-higher total administered amount of siRNA.

The mechanism of action of sustained liposomal siRNA delivery was

likely to rely on surface modification, tissue distribution, and slow

biodegradation of the first-stage mesoporous particle (S1MP). S1MP

not only served as storage for liposomal siRNA but also shielded

siRNA oligos from degradation by enzymes inside the body. This

novel approach opens new avenues in personalization of siRNA

therapeutics through controlled delivery of synergistic payloads in

a time-controllable fashion.

Another example of a nanovector with emerging imaging

properties is an agent based on magnetic resonance imaging (MRI)

contrast agents loaded into the porous structure of the first-stage

particle [48]. The MRI resolution determines the efficiency of early

diagnosis, treatment monitoring, and prognosis and can be highly

enhanced by using contrast agents based on paramagnetic materials.

The most commonly used contrast agents in the clinical setting

are gadolinium (Gd) chelates. Gd3+ ions are highly toxic in free

form and, thus, have to be chelated to minimize toxicity. However,

chelation also significantly reduces the number of coordination

sites, resulting in low relaxivities of less than 4 mM−1s−1 at 1.41 T.

The multistage approach was used in the design of a new category of

MRI contrast-enhancing agents. Gd-based contrast agents, such as a

clinically used chelate (Magnevist R©, MAG) and Gd3+-loaded carbon

nanoparticles (carbon nanotubes, gadolinium nanotubes (GDNTs),

and fullerenes, gadolinium fullerenes GFs) were loaded within the

nanoporous structure of discoidal (D) or hemispherical (HS) S1MP

[48]. The resulting MSV constructs showed a significant boost in

longitudinal relaxivity, resulting in up to 40 times higher values than

clinically used MAG. The proposed mechanism of the prominent

enhancement in the MRI contrast is based on the geometrical

confinement of Gd-based contrast agents within the porous silicon

S1MP, which affects the paramagnetic behavior of the Gd3+ ions

by enhancing interactions between neighboring contrast agents

through reduction of the mobility of water molecules and the ability

of contrast agents to rotate [48].
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To conclude, this section described how impairment in the

transport phenomena in the disease tissue can be utilized for per-

sonalization or even individualization of the injectable therapeutics.

Ideally, the individualization of therapy is consequently built in

the carrier vector, which enables direct imaging observation of

the lesion, and is present regardless of the drug delivered, though

obviously optimal when molecularly targeted drugs are delivered.

The time dynamics of the evolution of the lesion do not essentially

necessitate an adjustment in therapeutic payload, since the response

to the evolution of the lesion and its microenvironment may be built

in the individualization of nanovectors.

1.6 Molecular Imaging

1.6.1 Collection of Patient-Specific Data for Tailoring
Treatments

Clinical imaging is experiencing a major paradigm shift, moving

away from structural-based diagnostics to dynamic molecular

imaging. The purpose of molecular imaging is to facilitate the

noninvasive detection and visualization of morphological and

biochemical changes that influence disease and/or its response to

therapy. Progress in this field has been driven largely by applications

in oncology, from the identification of specific molecular pathways

associated with tumor growth and progression to the clinical

monitoring of cancer biomarkers before and after treatment

[54]. With the advent of molecular-specific chemotherapies, it is

becoming increasingly important to collect patient-specific data for

tailoring treatment regimens.

Molecular imaging is already in clinical practice today. Positron

emission tomography (PET), single-photon-emission computed

tomography (SPECT), and MRI are some of the first clinical

imaging modalities capable of generating images with molecular

specificity. These technologies monitor the localization of different,

exogenously administered contrast agents to collect information

about tissue anatomy, physiology, and metabolism. New contrast
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agents for these and other imaging modalities are continually being

introduced to enhance clinical care.

Nanoparticles have been proposed as an enabling technology

for molecular imaging. Advantages of nanoparticles include high

contrast, tunable physical properties, long circulation times, and

ease of integrating multiple functionalities [55, 56]. A variety of

nanoparticle-based contrast agents are currently under develop-

ment for a range of clinical indications, including superparamagnetic

agents, metal nanoparticles, liposomes, and more. Each of these

platforms differs in bioavailability, pharmacokinetics, toxicity, im-

munogenicity, and specificity. It is likely that a variety of different

and specialized nanoparticle platforms will be required for targeting

different disease processes. Several nanoparticle-based contrast

agents have entered the market, and additional products are

currently undergoing clinical testing or entering the pipeline. The

integration of molecular imaging with nanoparticle-based contrast

agents is expected to have a major impact on the detection,

diagnosis, and decision making for personalized treatment.

Much of the innovation in nanoparticle-based contrast agents is

driven by the quest for personalized medicine. Many nanoparticles

under development contain active targeting ligands. These ligands

are used to enhance the specificity of contrast agents, resulting

in the localized accumulation of contrast agents at the molecular

target of interest. Targets include cancer biomarkers (e.g., human

epidermal growth factor receptor 2 [HER2], epidermal growth

factor receptor [EGFR], integrin αvβ3, prostate-specific membrane

antigen [PSMA], CD20), inflammatory biomarkers (e.g., E-selectin,

intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion

molecule-1 [VCAM-1]), apoptosis markers, and many others. An

early example of molecule-specific targeting for in vivo imaging

was provided by Weissleder et al., who used monocrystalline

iron oxide functionalized with antimyosin Fab fragments to detect

myocardial infarcts in rats [57]. More recently, effort has been

directed toward the rational design of ligand attachment [58].

It has been demonstrated, for example, that nanoparticles that

present multiple small ligands have increased target affinity over

monovalent particles [59]. Mathematical models that consider

parameters such as ligand density, ligand accessibility, and receptor



November 27, 2013 16:38 PSP Book - 9in x 6in 01-Chapter-1

18 Nanotechnology toward Advancing Personalized Medicine

distribution have been used to successfully improve nanoparticle

specificity in vivo [60, 61].

Molecular-specific, nanoparticle-based contrast agents have the

ability to provide information that is not readily available using con-

ventional diagnostics. In the simplest case, an intravenously injected

contrast agent could be used to noninvasively detect the expression

of biomarkers important for disease diagnosis and treatment selec-

tion, without the need for biopsy. The design of nanoparticles with

long circulation times, or the repeat administration of nanoparticles,

would facilitate dynamic monitoring of how biomarker expression

changes with time, which is important for determining disease

progression and response to therapy. More complex nanoparticle-

based contrast agents, known as “smart” bioprobes, could be used

to collect functional information from specific molecular targets.

In cancer, for example, elevated telomerase activity is associated

with poor prognosis and increased risk of recurrence [62–65].

Measurement of telomerase activity and other prognostic proteins

could be used for the smarter selection of personalized therapy.

1.7 Early Detection

1.7.1 The -Omic Technologies and Systems Biology:
Resolving the “Portrait of Health”

One of the most recognized leaders and visionaries of personalized

medicine is Leroy Hood, MD, PhD, president and cofounder of

the Institute for Systems Biology in Seattle, Washington. Dr. Hood

states, “Over the next 5–20 years, medicine will move from being

largely reactive, to being predictive, personalized, preventive, and

participatory (P4)” [66]. The movement can be simplified through

the analogy of comparing a disease to a digital image. Each pixel of

the photo adds its enabling contribution to resolve an image on a

digital canvas. No single pixel has the ability to reveal the complete

image—just as information regarding the metabolism of sugar can

provide complete evidence and cause of disease. Technological

advancements have given the scientific community a new resource

of information contained in the study of “-omic technologies”
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(e.g., genomics, proteomics, metabolomics, transcriptomics, etc.);

however, this wealth of information represents only a fragment of

data that contributes to the complete understanding of the state of

health. A systems biology approach respects each “pixel” of clinical

data and offers a strategy that compiles and integrates all available

information to form a more complete “image” or “portrait of health”

that best represents the entire system or organism.

The inherent nature of nanotechnology offers the ability to

interact with the scale of biology through a vast spectrum of

nanoconstructs and devices. In the context of early detection,

nanotechnology provides an enabling role for the utilization of -

omic approaches, and furthermore, the nanoscale offers the intrinsic

ability to multiplex procedures in a high-throughput nature and to

analyze minute quantities. Here is a summary of a few examples

in the fields of high-throughput technology, nanodiagnostics, and

nanofluidics.

1.7.1.1 Microarray technology

Since first demonstrated as an analytical device by Schena et al. in

1995 [67], the microarray has been extensively developed to be a

multiplex lab-on-a-chip for high-throughput screening. The general

production of microarrays consists of printing and immobilizing a

series of chemical molecules, nucleic acids, proteins or lipids on

a functionalized substrate. Detection with a fluorescent probe and

imaging capture are carried out after incubating the analyte on

the array surface [68]. Thanks to their miniaturized size and large

amount of genetic information, DNA microarray-based technologies

have exhibited tremendous promise for unraveling complex gene

expression profiles of cancer clinical diagnosis [69]. The formation

and progression of cancer involve mutation in various genes,

including the change of both gene structure and gene expression.

DNA microarrays are capable of determining alterations in tens of

thousands of genes simultaneously. Emerging results suggest that

the use of DNA microarrays can distinguish between tumors of

similar morphology and predict response/resistance to anticancer

therapies [70, 71]. Another member in the family of microarray

technologies, protein microarrays, has also been explored as a
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promising method for a wide range of applications, including the

identification of protein–protein interactions and quantification

of proteins present in samples, protein–phospholipid interactions,

small-molecule targets (like identification of drug activity), and

substrates of proteins kinases [72]. Depending on different functions

to study the biochemical activities of proteins, protein microarrays

can be classified into three types: analytical microarrays, functional

microarrays, and reverse-phase microarrays. To date, the most

sensitive method for protein microarray processing is the “sandwich

assay” based on the enzyme-linked immunosorbent assay (ELISA)

technique. It uses two antibodies that bind with the same antigen

simultaneously with dual the function of immobilization and detec-

tion. Biomarker concentration in the analyte is demonstrated by the

intensity of the fluorescent signal. Through investigating proteomic

information in a single pattern, protein microarrays enable us to

accelerate and improve clinical diagnostics. For example, Joos’s team

is developing sandwich immunoassays for the detection of the well-

established prognostic indicators and predictive factors involved in

tumor proliferation, tumor vascularization and metastatic potential,

for example, the cell surface receptors HER2 and EGFR and hormone

receptors ERα and PR [73]. It has been confirmed that microarray

technology will undoubtedly improve diagnosis and management

of patients with specific cancers. However, it is impossible that

microarray technology will fully replace current existing methods. A

more individualized approach to cancer patient management could

be achieved by efficiently combining old and new technologies.

1.7.1.2 Nanodiagnostics

A variety of nanodiagnostic platforms are under development for

the detection and monitoring of cancer [74, 75]. These diagnostics

rely on the use of nanoscale particles or nanotextured surfaces to

selectively capture and identify molecules of interest. Progress in

this field has largely been driven by the need to detect clinically

relevant biomarkers in a rapid, sensitive, and cost-effective manner.

This is especially important for the early detection of cancer, in

which patients may not show any overt symptoms before diagnosis.
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Particle-based nanodiagnostics generally rely on the binding

between nanoparticles and target molecules of interest to produce a

measurable signal. Optically active nanoparticles, such as quantum

dots and gold nanoparticles, can be readily engineered to self-

assemble in recognizable patterns in the presence of specific targets.

Magnetic nanoparticles may be used to pull targets out of a large mix

of analytes for increased sampling sensitivity. An elegant example of

particle-based nanodiagnostics for early detection is the polyvalent

gold assay developed by the Mirkin group [76, 77]. Here, monodis-

perse gold nanoparticles functionalized with oligonucleotides have

been used to detect prostate-specific antigen (PSA) from serum with

femtomolar sensitivity [76]. Similar technologies, designed to test

genetic sensitivity to warfarin and genetic predisposition to blood

clots, have already been commercialized and FDA approved. Further

refinements to this scheme, such as the addition of pH-sensitive

chemotherapeutics [78], have the potential to expand the utility of

polyvalent gold assays beyond the in vitro setting.

Nanowire biosensors provide an alternative approach for de-

tecting known biomarkers with high sensitivity. Semiconductor

nanowires patterned in two dimensions and three dimensions, for

example, take advantage of field effects to produce a change in

conductance upon the binding of target molecules. The high surface-

to-volume ratio of nanowires allows molecules in solution to be

detected with high sensitivity. A major advantage of this approach

is that genetic alterations or the presence of rare molecular

biomarkers can be detected without additional amplification. A two-

dimensional (2D) silicon nanowire platform functionalized with

single-stranded DNA has been used by Wu et al. to detect a cancer

BRAF gene mutation [79], a common mutation associated with a

variety of human cancers. Nanowires functionalized with antibodies

or aptamers have demonstrated multifold increased sensitivity over

ELISA assays, facilitating the detection of cancer biomarkers such

as VEGF [80] and CA125 [81]. Multiple biomarkers may also be

assayed simultaneously. Zheng et al. have described the multiplexed

detection of PSA, PSA-alpha1-antichymotrypsin, carcinoembryonic

antigen (CEA) and mucin-1 in serum with pg/ml sensitivity [82]. In

the future, it is likely that nanowire biosensors will be constructed as
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large microfluidic circuits for sampling a variety of genes or proteins

from clinical samples [83].

Nanocantilever systems are another category of nanodiagnostics

for highly sensitive molecular detection. Like nanowires, they

have no intrinsic chemical selectivity and are coated with self-

assembled monolayers, nucleic acids, antibodies, or peptides. When

a target molecule binds, surface stresses cause the lever to undergo

nanomechanical bending that can be measured using a variety

of techniques. Multiplexed DNA and RNA hybridization to nucleic

acids immobilized on cantilever tips has shown sensitivity in the

nanomolar [84] to picomolar range [85]. Cantilever nanosensors

have been successfully used to detect alpha-fetoprotein (AFP), a

potential prognostic and diagnostic marker of hepatocarcinoma, by

sensing resonance changes in cantilever movement in response to

AFP adhesion to immobilized antibodies [86]. The dynamic range of

such a system can be varied by using an array of cantilevers with

different tip sizes, as demonstrated by Wu et al. for the detection

of PSA (from 0.2 ng/ml to 60 g/ml) [87]. Additional enhancements,

such as the use of antibody-presenting silica beads as extra

weight transducers, can improve the lower sensitivity to the pg/ml

range [88]. Future advances in efficient immobilization techniques,

nanoscale motion detection, and microfluidics integration are

expected to make such chips a clinical reality.

1.7.1.3 Nanofluidics

Leveraging the technological advances of the integrated circuit,

scientists applied novel semiconductor fabrication techniques to

transition from solid-state microfluidic microelectromechanical

(MEM) devices [89] to bring forth the next evolutionary embod-

iment that feature the integration of nano-channeled structures

[90, 91]. The ability to achieve nanoconfinement through silicon

nanofabrication techniques has enabled such achievements as

increased sensitivity and specificity of biomolecular detection and

the ability to manipulate DNA to screen for infectious disease. An

important feature of nanofluidic devices is the inherent ability to

employ miniscule amounts of a sample with the reproducibility

and reliability necessary for use as clinical diagnostic/screening
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tools. This benefit can be attributed to the increased surface-

area-to-volume ratios and subsequent improvement of the surface

interactions between the nanochannel wall and target molecules

unique to the scale of nanotechnology, relative to their microfluidic

counterparts [92].

In the context of early detection of disease, the Kitamori

laboratory has engineered a μ-ELISA system with integrated

nanoscaled features for the detection of AFP [93, 94]. This device

achieves single-molecule detection by employing a one-dimensional

nanochannel (500 nm deep, 100 μm wide, and 70 mm long) to

create an environment that offers an increased bound-analyte-to-

volume ratio to improve device sensitivity when used in conjunction

with a fluorescence microscope [93]. The Kitamori device provides

evidence of the benefit of the nanoscale to increase sensitivity;

however, Wang et al. leverage nanoconfinement to more efficiently

aggregate metal nanoparticles and target molecules to improve

surface-enhanced Raman scattering (SERS) [95]. This device fea-

tures microchannel to nanochannel transitions that effectively

accumulate, or “trap,” molecules and nanoparticles at the junction

to create “SERS-active clusters” that allow the detection of trace

molecules when excited by a laser source [95]. Another embodiment

of the utilization of nanofluidics has been used to develop a novel

DNA diagnostic device. Hashioka et al. engineered a device with

50 nm gap arrays that allow DNA to be “stretched, denatured,

hybridized, and detected” [96]. This approach allows the analysis

and detection of viral DNA to be applied to the diagnosis of influenza,

human immunodeficiency virus (HIV), and other infectious diseases.

1.7.1.4 Biomarker discovery

Advances in early detection will be heavily impacted by the

discovery and validation of new biomarkers of disease. Even

after the release of the entire human genome sequence nearly

a decade ago, diagnosis and prognosis of many diseases still

rely on the conventional biochemical and clinical methods. These

methods do not reflect the vast heterogeneity and complexity

of the disease, and they poorly predict clinical outcomes and

response to therapy. Additionally, diseases like cancers are often
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detected only in advanced stages and that too by a combination

of physical examination, X-rays, needle biopsy, and, in some cases,

blood tests. For example, breast mammograms are capable of

detecting the tumors only when they have grown to a critical

size, and mammogram sensitivity can be as low as 34% in some

of the subtypes [97]. Similarly, the common method of detecting

cardiovascular disease is to measure lipid profiles and perform

electrocardiography (ECG) only when symptoms such as chest pain

are present. Therefore, novel and reliable biomarkers are needed not

only to assess the response to therapy and progression of disease but

also to detect disease early enough to increase survival rates [98].

With the recent advancements in -omic technologies, it is now

possible to identify a panel of biomarkers for a disease rather than

the traditional single gene-/protein-based markers. Identification of

such a panel of markers has facilitated avenues for personalized

medicine. Gene expression profiles have been reported to be

useful for the classification of cancers and cancer subtypes [99,

100]. Progress in the field of mass spectrometry and sample

processing methods made proteomics a promising -omic science in

identifying reliable and patient-specific biomarkers. Besides other

clinical samples such as tissue specimens, the highly complex body

fluids plasma and serum have been suggested as major sources of

biomarkers [101, 102]. Since biologically important fluids can be

acquired using minimally invasive techniques, they can be sampled

at any stage of disease. Despite the application of several protein

separation and mass spectrometry methods [9, 101, 102], due to the

vast concentration range of their proteins and variability, serum and

plasma remain challenging for the identification of low-abundance,

clinically important biomarkers. Nanotechnology promises signifi-

cant advances in molecular detection by improving the sensitivity

and specificity over current technologies and accelerating novel

biomarker discovery for individualized therapy [103].

Blood contains a treasure trove of previously unstudied bio-

markers that could reflect the ongoing physiologic state of all

tissues [104]. These are the low-molecular-weight (LMW) proteins

and peptides that result from degradation and enzymatic cleavage

of larger proteins secreted or released into the bloodstream.

Although proteins entering the blood from the surrounding tissue
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are much less abundant, this treasure trove could consist of all

classes of proteins whose diagnostic information has been largely

unknown until now [104, 105]. To overcome the interference of

large and high-abundance proteins and to enrich the level of

the clinically important LMW proteins, the Ferrari laboratory has

developed a novel nanotechnology-based silica chip [106, 107].

These mesoporous silica chips are made through a process involving

self-assembly of a mixture of triblock copolymers and hydrolyzed

silicate precursors [108, 109]. Evaporation of solvents after spin-

coating drives the self-assembly, and thin silica films with uniform

nanoscale pore size and thickness are subsequently formed.

Nanoporous silica chips (NSCs) are convenient and easy to use as

their use involves only three simple steps: sample loading, washing,

and elution [106] (Fig. 1.2). Serum or plasma samples can be studied

with just a few microliters, and the washing step ensures removal

of high-molecular-weight proteins excluded by the nanopores. Thus,

NSCs help for 1) the selective removal of high-molecular-weight and

abundant proteins, such as albumins, and 2) the enrichment of low-

abundance, LMW proteins from complex samples, such as serum and

plasma. The LMW proteins eluted from the chips are subsequently

spotted on to a matrix-assisted laser desorption/ionization (MALDI)

plate, along with a suitable matrix (α-cyano-4-hydroxycinnamic acid

[CHCA]), and protein profiles are obtained [107]. By comparing the

MALDI profiles for control and test serum/plasma samples (Fig.

1.3), biomarkers that are specific for diseases such as cancer can be

identified at an early stage.

Nanotechnology-based NSCs not only rely on the ease and conve-

nience of sample processing, they allow controllable pore size and

surface chemistry, which facilitates selective enrichment of LMW

peptides and proteins with a specific molecular weight range and

physico-chemical properties, and post-translational modifications

[106, 107, 110]. Very recently, mesoporous thin silica films with pre-

cisely engineered pore sizes that sterically select for molecular size

combined with chemically selective surface modifications (i.e., Ga3+,

Ti4+, and Zr4+) that target phosphoroproteins are demonstrated

[110]. As the NSCs could selectively exclude high-molecular-weight

proteins such as trypsin, the trapped LMW peptides and proteins

are also reported to be protected from enzymatic degradations [107,
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Figure 1.2 Sample fractionation using mesoporous silica chips. The

schematic shows the four primary steps in sample processing, which results

in the removal of high-molecular-weight, high-abundance proteins and

enrichment of low-abundance, LMW proteins. The elution sample is then

analyzed via mass spectroscopy, and the data can be subsequently mined

and analyzed.

110]. There are other research efforts that are also attempting to

tap into the potential of LMW proteins. Luchini et al. demonstrated

the use of hydrogel particles for harvesting and protecting LMW

peptides and proteins from biofluids [111]. This technology involves

introduction of an affinity bait molecule into N -isopropylacrylamide

for the capture and protection of LMW peptides and proteins.

1.8 Regenerative Medicine and Tissue Engineering

Cancer can be an incredibly disruptive and destructive disease

both physically and mentally for patients to endure. For some, the

disease eats away at one’s most fundamental structure—bone. And

for others, invasive disfiguring surgeries are performed to contain
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spreading and to protect the remaining healthy tissues from being

invaded. For too many, cancer leaves an indelible mark, which now

scientists and clinicians are trying erase with new regenerative

medicine approaches and tissue engineering technologies aimed to

rebuild that which is destroyed and to offer patients solutions to

address their needs.

1.8.1 Stem Cells for Regenerative Medicine

As the primitive and most potent cell source available, stem cells

naturally regenerate and heal damaged tissues in the body. Stem

cells come in many different forms, depending on the age of

the donor and the harvest site. Embryonic stem (ES) cells are

derived from human embryos created through in vitro fertilization.

These cells and their early progeny are termed either totipotent

(capable of becoming any human tissue) or pluriponent (capable

of differentiating into tissues of the three germ layers: endoderm,

mesoderm, and ectoderm) [112–114]. However, ethical and political

questions surround the research and clinical application of ES

cells [115, 116]. Additionally, ES cells will inherently be from a

different donor with unique genetics, which may require permanent

immune suppression to prevent the rejection of implanted cells

and secondary complications [117]. To avoid this dilemma and in

the spirit of “personalized medicine,” significant research has been

conducted in the area of mesenchymal stem cells (MSCs). MSCs are

derived from adult tissues, including bone marrow, adipose, and

other mesoderm-related systems. These cells have demonstrated

the ability to differentiate into bone, cartilage, fat, muscle, and

even nerve and cardiovascular tissues in vitro and in vivo [118–

123]. For nearly 30 years, MSCs have purified and expanded in

vitro to attain great numbers of potent cells for tissue regeneration

purposes [124, 125]. MSCs secrete factors or cytokines essential for

signaling the host system and stimulating necessary functions for

cell maintenance and tissue growth. By using a patient’s own cells,

the donor-specific levels and secretion rates of these cytokines are

exactly matched [126, 127]. With detectable variations in metabolic

signaling cascades from person to person, personalized therapeutic

strategies, including autologous MSC delivery, appear more efficient
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and likely more effective for long-term clinical success than the use

of donor ES cells or MSCs.

To purify MSCs from bulk cell populations taken through

procedures, including marrow aspiration and liposuction, cell-

sorting technologies were developed based upon the protein

markers displayed on the surface of different cell types. Traditional

fluorescence-assisted cell sorting, or FACS, employs fluorescence-

labeled antibodies against proteins that can definitively distinguish

a cell to be a “stem cell” or not [128–130]. However, this process

requires expensive equipment, a time-consuming preparation, and

a significant loss of viable cells. New strategies have focused

on nanotechnology for sorting stem cells. Nanoparticles labeled

with appropriate antibodies are fabricated from materials such

as iron oxide, silicon, or aptamers [131–133]. These particles

possess a tunable magnetic character that can separate linked

MSC-nanoparticle conjugates by exposure to magnets or electric

fields. This method allows for point-of-care prospective isolation of

autologous MSCs in an economical and time-efficient manner.

1.8.2 Controlled Drug Release

Regenerative medicine requires the delivery of growth factors

to stimulate cell growth and migration, angiogenesis or blood

vessel formation, and differentiation agents to direct MSCs toward

their final fate. Inductive factors are necessary to promote MSC

differentiation toward destined tissue lineages such as bone,

cartilage, muscle, or fat [134–138]. Scientists have endeavored to

deliver these types of molecules or growth factors in a controlled

and sustained manner [139, 140]. Anticancer drugs and antibiotics

to treat tumors and prevent primary and secondary infections,

respectively, have also been used with these technologies for

sustained release over days, weeks, or even months. Nanosized

particles, or microparticles with nanofeatures, such as pores or

targeting moieties, have been employed in these controlled release

strategies for improved sensitivity and bioavailability. This includes

particles comprised of polysaccharides, polyesters, silicon, lipids

and liposomes, and composites of these materials [141–145]. The

combination of materials used, methodology of particle synthesis,
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mechanism of drug loading, and pretreatment conditions all affect

the release kinetics of the bioactive factors. Combinations of

materials, including coatings or surface modifications (electrostatic

charge, antibody tethering, etc.), allow for enhanced drug targeting

and temporally appropriate release of the particles’ biomolecular

payload [146–148]. Other manipulations trigger the release of

molecules based on environment cues such as temperature or pH

[149, 150]. Using different particles or functionalization strategies

in concert for the simultaneous delivery of multiple growth factors

is sometimes necessary as the molecules’ biological functions are

dose dependent and may be sequential in the cascade of tissue

development. Nanoparticles offer distinct advantages over other

drug delivery systems in that they have a significantly greater

surface area per mass or volume for expanded release and the ability

to travel through a patient’s vascular network directly to a targeted

site, and they may transverse through cell and tissue membranes.

1.8.3 Nanotechnology and Biomaterials

Tissue engineering and regenerative medicine require a combi-

nation of three essential elements: cells (either implanted or

recruited), locally released growth factors to induce cell activity

toward tissue formation, and biocompatible scaffolds to direct and

support tissue growth [151]. These scaffolds may be composed

of ceramics, metals, resorbable polymers, or proteins. Recently,

scaffolds have incorporated nanomaterials and nanofeatures to

provide additional beneficial properties to the material. Carbon

nanotubes, porous silicon, mineral apatite crystals, alumoxane, and

other nanoparticles have been integrated into polymer or cement

matrices for mechanical reinforcement [152–155]. Strengthening

of biomaterials is crucial for replacement of load-bearing tissues

like bone and cartilage. Magnetic nanomaterials have also been

incorporated into scaffolds, allowing for their suspension during

in vitro culture in the presence of a electric field for alteration

of gravitational effects, for triggering of the release of embedded

biomolecules and growth factors, or for enhanced in vivo magnetic

resonance imaging [156, 157]. Nanoscale features of the material

surface influence biological behavior of local cells (including
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induced differentiation) and tissues and include nanofibers and

nanoroughness [158, 159]. Nanofibers possess superior surface-

area-to-volume ratios to minimize the amount of synthetic scaffold

material that is implanted and provide unique dimensions for

extracellular matrix deposition. The size of the fibers can also

preferentially regulate the infiltration of cells and blood vessels.

As regenerative medicine and nanotechnology evolve as sciences,

their futures will no doubt be intertwined. The advantages of

nanomaterials for mechanical reinforcement, drug delivery, imaging,

and separations will continue to be incorporated into biomaterials,

stem cell therapies, and tissue engineering platforms. Nanotechnol-

ogy provides scientists, engineers, and clinicians with new tools

to mimic tissue features in three-dimensional (3D) environments

on the nanoscale. Obstacles such as the body’s interaction with

nanomaterials require further study, but the implementation of

these strategies will further enhance the capabilities of tissue

engineering and play a pivotal role in nanotechnology-based

personalized medicine.

1.9 The Role of Nanotechnology and Personalized
Medicine

The journey to recovery for a typical cancer patient begins with

detection and treatment and then moves to coping with indelible

marks that the disease forever leaves on a survivor. Nanomedicine

“levels the playing field” when it comes to fighting disease, providing

scientists and clinicians with the tools necessary to battle cancer at

the scale of biology. This chapter has provided a brief commentary

on how nanotechnology is being applied to the different facets of

cancer with an emphasis on patient specificity. New developments

in early detection and imaging have been discussed, which provide

a wealth of information on how to exploit the vulnerabilities

of the disease and to detect its presence. The discussion then

continued to inform how this new patient information assists in the

design of innovative nanodrugs and novel nano-based drug delivery

systems that are predicated upon a patient’s own clinical data to

optimize timing, accumulation, and effectiveness of the therapy.
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The technology review then concluded with nanotechnology’s r

ole in rebuilding through advances in tissue regeneration and

tissue regeneration to help patients fight and/or cope with the

trauma of cancer. Cancer manifests uniquely to every patient, and

therefore it is intuitive to employ strategies that address and

exploit opportunities that render cancer susceptible to treatment—

nanotechnology provides the access and tools that may eventually

lead to the eradication of cancer suffering.

1.10 Vantage Points: Nanomedicine Advancing
Personalized Medicine

1.10.1 The Evolutionary Process of Personalized Medicine:
The Real Drivers of Innovation

The implementation of personalized medicine will be a gradual

evolution of standard medical care that may ultimately take a

few decades, if not longer, to be successfully achieved. Where

computing power has been, and continues to be, predicted by

Moore’s law, individualized therapy will not be solely driven

by technology innovation. There are too many critical factors

that must be addressed, and matured, to inspire acceptance and

adoption. These factors refer to (1) the willingness of physicians

to embrace and utilize emerging technologies over gold standard

procedures, (2) the current regulatory process, (3) the existing

corporate philosophy regarding pharmaceutical business models

and availability of capital, and (4) the patients’ demand for change.

Since a definitive solution or plan is impossible to provide, an

assembly of key stakeholders has been asked to provide insight from

their unique vantage points.

1.10.2 A Physician’s Perspective

Current tools used in medicine are inadequate for thoroughly

characterizing cellular function at the molecular level. Biological

systems are made up of individual molecules operating on a

nanoscale, and therefore physiological and pathological processes
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at the cell level occur on a nanoscale. Personalized medicine offers

tremendous potential to deliver timely, appropriate prevention and

care. However, it also adds complexity to the decision-making

process, and as every advancement in medical technology, it will play

a major role in the costs of health care. In the United States many

legislative and government initiatives have been introduced for the

support of personalized medicine, such as the passage in 2008 of

the Genetic Information Non-Discriminating Act (GINA) and the

Personalized Health Care Initiative launched by the Human Health

Services (HSS). In Europe the European Personalized Medicine

Diagnostic (EPEMED) was created in 2009. The ability to classify

and treat diseases by their molecular profiles, avoiding passing

the expense and risks of unnecessary medical treatments on to

the patient, is the ultimate realization of policy makers, diagnostic

manufacturers, and of course clinicians. Physicians must play a

role in this fundamental shift in the delivery of health care that

will, eventually, involve the population as a whole. The challenges

are immense and include regulatory, technological, reimbursement,

legal, and ethical issues, to name the most important ones.

Realization of personalized medicine is dependent on the ability

to collect, disseminate, and process information in the context

of clinical care and this will require an electronic health record

(EHR) infrastructure to provide access to key clinical data with

clinical decision support (CDS) capabilities. In the United States,

President’s Obama goal is to have an EHR for everyone by 2014.

The use of molecular markers to signal the risk of disease or its

presence before the disease becomes clinically manifest is the base

of personalized medicine, but currently, not all the existing tests

have therapeutic options, and sometimes despite the proven value

of risk assessment tools, they have not been largely embraced as

part of the formal patient evaluation because of both the lack of

standards for the clinical data required and the algorithms used.

For physicians the constraints and demands of current clinical

practice often times discourage the acquisition of this knowledge.

The complete application of genomic and personalized medicine in

health care will require dramatic changes in reimbursement policies

as currently Medicare does not contemplate reimbursement for tests
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that are performed in the absence of signs, symptoms, complaints, or

personal history of disease [160].

Furthermore new genetic tests are undervalued under present

policies. There are suggestions, though, that payment policies are

beginning to shift toward the implementation of personalized

medicine as several large US insurers have initiated coverage plans

that pay for genetic tests that either identify high-risk populations

or steer toward optimal therapy. Physicians will have to discern

between biomarkers used in diagnostics, therapeutics, and drug

development. While advocates of personalized medicine envision

the sequencing of the full genome at birth, physicians and all the

other stakeholders should not underscore the enormous ethical

implication of gene-based tests, as these will blur the boundaries

between the healthy and the diseased that are so well defined across

the Western world. Where will the “presymptomatic” patients’

category fall? The necessary reclassification of health versus disease

is going to have a significant social impact as one only thinks

about the different social entitlements to health care once a genetic

predisposition to any disease is found. How will the knowledge of

having any cancer-causing mutations or a copy of the Alzheimer’s

predisposing apolipoprotein E4 allele impact an individual’s life

and his or her working life remains to be seen. It is unlikely that

the average human being will have the same curious approach of

the Nobel Prize winner and codiscoverer of the structure of DNA,

James Watson [161]. In the past few years several different direct-to-

consumer (DTC) companies have started offering DNA tests design

to provide insights into our personal genetic predisposition for

certain disease risks. A 2009 comparison from two DTC companies

showed that for some diseases, only 50% or less of the predictions

agreed between the two companies. The discrepancies arise from

the fact that each company has its own criteria on which a set

of markers are used in the relative risk calculation [162]. Much

needs to be done to move from reactive to predictive and preventive

personalized medicine and to incorporate these technologies in

clinical practice. It has been hypothesized that physicians are going

to be “followers rather than leaders in the clinical translation of

pharmacogenetics” because of liability concerns [162]. Physicians

will find themselves facing potential lawsuits until the tracking
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for the clinical utility of diagnostic and treatment intervention is

examined and becomes a standard of care. Physicians should use the

full potential of pharmacogenomic data to stratify and hence enrich

the population of a clinical trial in order to select patients who are

more likely to be responsive to that specific drug so as to reduce

the required time and sample size. Last but not least, there are very

few medical schools that have included courses on the practice of

genomic medicine as there are only a small number of hospitals

that have embraced early clinical adoption of personalized medicine.

This must be an imperative as the clinician will be the one ultimately

providing care and counsel for patients.

1.10.3 A Regulatory Consultant’s Perspective

The first scientific publications using the term “nanomedicine” are

from the year 2000 (Science Citation Index, Institute for Scientific

Information, Thompson, Philadelphia, PA, USA), making this an

extremely new and challenging field of medicine. It did not take

very long for the ingenuity and futuristic thinking behind US

pharmaceutical and device companies to see the potential of these

exciting new particles. In October 2006, the United States was

reported to be leading the field in the use of nanomedicine research,

with 32% of the publications and 54% of the patent filings [163].

As in other innovative medical developments, science leads the way,

and the regulatory processes required to ensure their safety and

effectiveness are compelled to follow.

As scientists discovered more and more uses for nanomaterials,

some feared that they could cause more harm than good, and

even before these statistics were reported in October 2006, the

US FDA was being asked to better regulate nanotechnology. The

FDA was “petitioned” in May 2006 by a coalition of consumer

groups and environmental groups to increase its regulation of some

nanoparticle-containing products and to even recall others [164].

Soon thereafter, in an article for the Chicago-Kent Law Review,

Jessica K. Fender (2008) claimed that this new “tiny technology” was

going to cause “big problems” for the FDA, including stretching the

agency’s already “extremely thin” resources even further, claiming
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that the FDA would not have the necessary funding to provide

adequate oversight [165].

The FDA was not blind to what was developing rapidly around

it and has not let nanotechnology slip past its radar. Even before

these criticisms arose, using the description of nanomedicine

as “a technology that allows scientists to create, explore, and

manipulate materials that are measured in nanometers”, the FDA

has assumed oversight for many nanomedicine products, including

foods, cosmetics, drugs, devices, in vivo imaging products and in

vitro diagnostics, veterinary products, and tobacco products. To

ensure that oversight for these products remained with the FDA,

Congress passed the Food and Drug Administration Amendment

Act of 2007. While the main focus of this amendment was to

revise and extend the user fee programs for prescription drugs

and medical devices and to enhance postmarketing authorities of

the FDA with respect to the safety of drugs, language was added

in which “promising technologies,” such as “nanotechnology,” are

specifically named. By adding this language, nanomedicine was

placed clearly under the auspices of FDA governance. Shortly before

the enactment of this amendment, the FDA, under the direction

of the then acting xommissioner Andrew C. Von Eschenbach,

MD, formed a Nanotechnology Task Force (August 2006) and

outlined the scientific and regulatory needs for regulation of the

new products being designed and developed on a nanoscale. FDA

representation in this task force included members from many of

the major offices of the FDA, including the Office of Policy, Planning

& Budget, the Office of Special Medical Programs, the Office of

the Chief Counsel, the Office of the Chief Scientist, the Office of

Regulatory Affairs (ORA), the Center for Drug Evaluation & Research

(CDER), the Center for Devices & Radiological Health (CDRH), the

Center for Biologics Evaluation & Research (CBER), the National

Center for Toxicological Research and Offices for International and

External Affairs, the Center for Veterinary Medicine (CVM), and Food

Safety and Tobacco Products. The diversity of members from many

divisions in the FDA clearly shows that nanomedicine was expected

to have wide-ranging applicability and bring broad challenges to the

agency.
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The report from this task force clearly shows that the FDA will

continue to have the authority to regulate these new nanomedicines

and nanomaterials. It also showed that the FDA realized that having

the necessary authority for oversight did not lessen the burden that

these products would create upon the agency. At a conference for

the Food & Drug Law Institute (February 2008) Norris E. Alderson,

associate commissioner for science at the FDA, reported the findings

of the task force and outlined the “myriad scientific and legal

issues facing the agency in trying to regulate products that use

nanomaterials.” Norris was quoted as saying that the FDA did not

know “if the changing properties of these materials [would or could]

change the toxicity” and that the FDA did not, at that time, “have

standards for measuring or detecting these materials” (6). Alderson

and other FDA representatives noted that nanomaterials could have

different toxicity characteristics than the same materials in a larger

amount and that the surface area of the particles, the particles’

surface charge, and, in some cases, their solubility could affect their

toxicity [166]. They also noted that the FDA historically has relied

on bioassays as a means of determining if a product was safe and

that it is unclear if the in vivo and in vitro tests available to the

FDA will be able to determine biocompatibility of nanomaterials.

The possibility that nanoparticles may readily cross the blood–

brain barrier could bring immense benefit to many patients with

neurological illnesses, but the rarity of this therapeutic mechanism

brings with it previously undefined side effects. Clearly the diversity

of nanomedical products will require the FDA to approach each drug

or device with an individual approach. This will require a delicate

balance between strictly controlling the new science and facilitating

the approval of potentially life-saving products.

The FDA is vividly aware of the complex challenges nanomedi-

cine presents, and it does not plan to take on these challenges

in a vacuum. In a recent update to its website (www.fda.gov),

the FDA acknowledged that it was its goal to “promote and to

participate in regulatory science research and other efforts to

increase scientific understanding, to facilitate assessment of data

needs for regulated products.” It states that these activities should,

where appropriate, “be coordinated with and leveraged against

activities supported by other federal agencies, the private sector
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and other international regulatory counterparts,” and it suggested

four areas of regulatory science research that were of interest to

it in regard to nanotechnology—physico-chemical characterization

in FDA-regulated products, nonclinical modeling of nanomaterials

in FDA-regulated products, risk characterization information, and

risk assessment. The FDA has also recently announced that draft

guidance documents are being developed for the industry by the

CVM on nanotechnology in CVM-regulated products. While guidance

documents for veterinary products generally precede those for

products used in human applications, the FDA is currently working

on a guidance document for manufacturers of clinical products also.

The FDA is aware that many of the new products that will

encompass nanotechnology will indeed be “combination products.”

These are products that comprise characteristics of both a drug

and a medical device. In nanomedicine combination products could

have a third characteristic included as well. Nanoparticles could be

combination of drug products, medical device products, and biologic

products also. The safety and effectiveness of combination products

have been a challenge to the FDA in the past and led to the formation

of the Office of Combination Products (OCP). This group works

closely with other FDA agencies, including the CDER, CBER, and

CDRH. The OCP will evaluate a product with combination attributes

and assign it to one of these centers, depending on the product’s

primary mode of action (PMOA). If the product is entirely new to

the FDA in regard to its safety and effectiveness profile, the product

will be assigned to the center with the most expertise in the safety

and effectiveness issues that may arise from the product. The OCP

takes the recommendation of the manufacturer into account when

assigning a product to a center for evaluation. The FDA believes

the manufacturer can provide valuable insight into the planned

actions of the drug or device and that it has critical history in the

development process of the drug or device. The FDA encourages

manufacturers to invoke early communications with the agency and

to include the OCP or the designated center in the planning phases

of drug/device development.

The FDA has taken other steps to ensure that nanomedicine

is provided with adequate regulatory oversight. While the Nan-
otechnology Task Force Report of 2007 states that most of the laws
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and regulations that the FDA operates under were in effect before

the advent of nanotechnology, they were written with sufficient

generality to allow them to be adapted to new technologies that

arise. In the “Mission Statement for the Task Force” it was made

clear that input from the public would be encouraged. The FDA

also facilitated collaboration with other regulatory agencies in an

effort to broaden its base of knowledge about nanotechnology.

These agencies included the National Institutes of Health (NIH),

the National Institute of Standards and Technology (NIST), and

the Environmental Protection Agency (EPA). The FDA and these

collaborative agencies have partnered in a “Memorandum of Under-

standing” to form the Nanotechnology Characterization Laboratory

(NCL). This laboratory will use the expertise of the coalition

to develop characterization assay cascades for nanoparticles and

develop standard approaches for evaluating these tiny particles.

The FDA also values input from the scientific arena and has

recommended that collaboration, collation, and interpretation of

scientific data will be key to the successful transmission into the

future of nanomedicine. The FDA has partnered with the NIH,

the National Cancer Institute (NCI), and Johns Hopkins University

and has formed collaborations with the Houston-based Alliance for

NanoHealth (ANH). The ANH has an eight-member coalition of med-

ical and scientific institutes based in Houston, Texas, known as the

FDA-ANH Nanotechnology Initiative (FANTI) [167]. This initiative

is tasked with the goals of collaborating to develop strategic plans,

set priorities, and leverage resources and expertise from multiple

sources, facilitating the development of nanotechnologies that

constitute novel research tools. The FDA’s interest and perspective

for participating in this type of collaboration is to provide safer,

more effective therapies by establishing a framework for effective

risk identification, assessment, and evaluation of emerging products

based on nanotechnology.

On the basis of input from these many sources, the FDA has

developed a plan for evaluation of products such as drugs, devices,

and biologics that are used in products subject to premarket

authorization. The current testing required for these products may

be revised to include an individualized approach based on the

specific characteristics of the nanoparticles used in the product
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development. Long- and short-term toxicity will be evaluated, and

if the FDA believes the nanoparticles could affect these toxicities the

manufacturer will be required to submit additional in vitro and in

vivo test results that demonstrate that a nanoparticle’s size does

not change its toxicity profile. The FDA’s approach to nanomedicine

will mimic its standard practice in new product evaluations and

will be based on risk management. The FDA launched its Critical

Path Initiative in 2004, a plan that modernized the scientific process

through which FDA-regulated products are developed, evaluated,

and manufactured. This initiative will be key in the evaluation of

nanoproducts.

The FDA regulates products, not technology. Product manufac-

turers of nanoproducts will also be subject to FDA requirements

of meeting current good manufacturing practices (cGMPs), and the

FDA will conduct audits of facilities prior to market release. Most

manufacturers conducting clinical trials under FDA jurisdiction are

inspected an average of four times prior to premarket approval.

Inspections will focus on compliance and enforcement actions,

review of deviation reports, and assessment of risk and response.

The FDA is also expected to utilize process analytical technology

(PAT) in its evaluation of the pharmaceutical development of

nanoproducts and their manufacturing and quality assurance. A

“Guidance for PAT” was published by the FDA in September

2004, which outlines the FDA’s expectations. PAT is a system of

designing, analyzing, and controlling manufacturing through timely

measurements of critical quality and performance attributes of raw

and in-process materials and processes, with the goal of ensuring

final product quality. Questions asked when using this process

include the following: What are the mechanisms of degradation,

drug release, and absorption? What are the effects of product

components on quality? What sources of variability are critical?

How does the process manage variability? The FDA believes that

using PAT will also enhance communications between the FDA

and manufacturers throughout the life cycle of the products being

reviewed.

Clinical sites where the studies are being run will also expect

frequent inspections from the FDA, generally involving a cyclic

review of every principal investigator every four years. Investiga-



November 27, 2013 16:38 PSP Book - 9in x 6in 01-Chapter-1

40 Nanotechnology toward Advancing Personalized Medicine

tional sites will be held to tight standards for current good clinical

practices (cGCPs). Annual reports will be scrutinized for adverse

events and progress in the trial. Clinical trials are expected to begin

with small feasibility studies, involving small numbers of patients,

and stopping rules focusing on adverse events and failure to meet

expected outcomes will be part of the protocol design.

By working with industry and scientific investigators in the

design and development of nanomedicine products, the FDA will

be able to contribute to the advancement of personalized medicine.

By reconfirming that they regulate products, not technology, the

FDA will be able to successfully evaluate clinical trials based on

individual patient results. Looking at nanotechnology from the

perspective of the individual patient and the accomplishment of

expected individual outcomes rather than shying away from a new

and complex technology fits with the longstanding mission of the

FDA. It will evaluate safety and effectiveness on the basis of the

results produced in carefully planned and executed clinical trials.

1.10.4 A Biotech Startup CEO’s Perspective

Personalized medicine is being viewed as a potential panacea

by the health care industry as a means to lower the overall

cost of therapy, improve individual patient outcomes, and, in the

case of the pharmaceutical and biotech industries, revive research

and development (R&D) productivity that have been falling at an

unsustainable rate over the past decade or more.

Physicians know that while patients may display the same signs

or symptoms, the underlying cause may vary. Take the simple

example of high blood pressure. The elevation may be the same

from patient to patient, but the causes differ. Because of this, the

commonly used medications only work in 50–60% of patients.

Additionally, side effects will occur unpredictably in both responders

and nonresponders. While certain attributes may help guide therapy

(for instance, Caucasians are statistically more likely to respond

to angiotensin-converting-enzyme [ACE] inhibitors than people of

African origin [168]), finding the right regimen for the individual

patient is largely a matter of trial and error in general practice. This

inability to precisely predict which patients will respond safely to
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which antihypertensive at the time of initial diagnosis adds waste

(cost) and inconvenience to the health care system and can even lead

to tragedy in rare cases, such as when a fatal drug reaction occurs.

But usually in hypertension the result of our inability to

individualize therapy is just waste and inconvenience, and even-

tually an effective and well-tolerated treatment regimen is found.

Contrast that to the situation in cancer. Tumors may have the same

size, shape, distribution of metastases, and histology (microscopic

appearance) and yet respond dramatically differently to therapy.

Approved cancer therapies can have response rates as low as 10%

in a given cancer type. In most cancers, knowing which patients will

respond is the central question. Increasingly, by conducting special

studies on tumors removed or biopsied from an individual patient,

treatment can be individualized. Trastuzumab (Herceptin R©) is

prescribed in ∼20% of patients with breast cancer expressing a high

concentration of human EGFR-2 on the surface of their tumors [169].

In a more recent example, the experimental agent crizotinib has

been shown to lead to dramatic increases in response and survival

in approximately 2–7% of patients with non-small-cell lung cancer

expressing a certain mutation of the anaplastic lymphoma kinase

gene [170].

From a strictly commercial perspective, regulatory authorities,

and most especially the US FDA, have relentlessly raised the bar

on efficacy and safety to the point that R&D productivity has

declined dramatically at major pharmaceutical companies and it

has been predicted that some may actually fail over the next 10

years. In addition, governments increasingly don’t want to pay

for treatment failures, especially as the price for medications has

escalated to compensate for loss of revenue as patents expire

and regulatory approvals becoming too rare to compensate. By

allowing the a priori identification of a patient subset dramatically

more likely to respond to therapy and perhaps in the future

also unlikely to have unacceptable side effects, it is expected that

personalized medicine will lead to a higher likelihood of regulatory

approval (improved R&D efficiency), while reducing system costs

associated with treatment failures and adverse effects. As such,

personalized medicine could simultaneously meet the needs of

companies, regulators, payors, and consumers—groups that often
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find themselves with competing interests in today’s constrained

health care environment.

This chapter has documented some of the ways that nanotech-

nology is contributing to the toolset of personalized medicine. Over

the coming years, it is anticipated that driven in some cases by

nanotechnology, we will increasingly determine an individual’s (or

his or her tumor’s in the case of cancer) genetics and/or proteomics

before initiating therapy and use such techniques as molecular

imaging and biomarker analysis to rapidly assess therapeutic

response and, in the case of tumors, emergence of mutations and

resistance. Such a revolution in the practice of medicine raises a

number of practical issues to be overcome for this vision to be

achieved.

For example, some clinical trials now include the routine genetic

analysis of resected tumor samples to determine eligibility for

trial inclusion or for stratification in randomization schemes. The

logistics of collecting specimens from distant sites, processing and

transporting them properly to avoid tissue degradation, and then

providing a timely analysis is challenging in the clinical trial setting.

Doing so outside the clinical trial setting is a more daunting task.

In a future where much cancer therapy is personalized, it would be

anticipated that such testing would best be conducted locally, for

instance, as pathology examination normally has been. A broadly

utilized test will almost certainly require FDA approval, a long,

laborious, and expensive process. To highlight the challenge, the FDA

has recently refused to approve what would be the first premorbid

diagnostic test for Alzheimer’s disease over concerns about the

ability of community-based physicians to properly interpret the test

results.

Similarly, if a new drug’s efficacy has been proven in a specific

patient population (take crizotinib, for example), then the drug

will only be approved for use in those patients where it has been

proven effective. This means that often the diagnostic test must

be approved ahead of (unlikely), or more commonly, alongside the

new drug. This means that the pharmaceutical company will be

seeking independent approvals for the drug and a diagnostic test

from different FDA divisions. While the author is not aware of such a

case, the future may see the unfortunate scenario of a very promising
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drug being kept from the market because something has happened

in the development of the diagnostic test that prevents its approval.

The FDA and the industry are currently grappling with how to make

such codevelopments of drugs and diagnostics straightforward and

less prone to error [171].

This is by no means an exhaustive list of the challenges that

personalized medicine will face; rather the above represent some of

the more important issues already at hand. Fortunately, nanotech-

nology does not present particularly unique issues. As described in

this chapter, nanotechnology offers a means to solve some of the

more difficult challenges posed by personalized medicine. As with

all innovations, there will be hurdles, both expected and unforeseen,

but history says that they will be overcome. Innovation comes more

slowly than we would like in commercial medicine, in no small

part due to the need to satisfy regulatory systems put in place to

ensure safety for consumers. But nanotechnology and personalized

medicine will cooperate to offer a future of hope for previously

untreatable disease.

1.10.5 A Patient Advocate’s Perspective

When one survives breast cancer for 22 years, one thankfully

sees much progress toward curing the disease. As learned over

time, and with much research, the cancer of any organ site is

actually a compellation of numerous subtypes, breast cancer being

no exception. Trite as the phrase is, it does seem that the more

we learn, the more there is to learn. Although a drug regiment

may be successful for one subtype, unfortunately it may very well

not translate into shared success with other subtypes. As stated

in the introduction, there will not be one answer to all, which

means bucking the current drug development trend and most

notably addressing the novel emerging technologies, in respect to

drug delivery systems, drug treatments, and drug development to

target cell-surface receptors, to identify potential for metastasis and

resistance to therapeutics.

As a patient with an aggressive form of breast cancer, over

a 10-month period I was treated with two different regiments

of chemotherapy combinations: the standard cocktail or the big-
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box approach at the time, fluorouracil (5FU), adriamycin, and

cytoxan (FAC) and a clinical trial of methotrexate and vinblastine.

The expected side effects, hair loss, fatigue, and nausea being the

most prominent, were experienced. The regimen was delivered by

infusion—two given immediately and one with a pump over a three-

day period, which could arranged to include a weekend, so that only

one day of work each month was missed. It cannot be said that life

was normal during this period, but with some adaptations, a “near

or new normal.”

Fortunately a comprehensive cancer center was available with

the most current treatments of the day; in addition, clinical trials

were accessible. Thankfully the cancer center was in close proximity.

This is a success story for me, but it cannot be said for thousands of

others who were diagnosed and treated during the same period or

in subsequent years. Many were diagnosed with later-stage disease

or developed metastasis, and some patients did not respond to any

treatments. Certainly some could have been saved today with the

discovery of HER2 and Herceptin, but even today lives are still lost.

Therefore delivery of new and current drugs needs to reach the

target, whether it is a primary or a metastatic site, to destroy cancer

cells.

If the identification of the cancer and its particular cell types and

pathways could be determined using small amounts of blood to test,

this would certainly be a cheaper, more efficient method to establish

the target pathways. With the development of molecule-specific

contrast agents, it is now possible to facilitate the noninvasive

detection and visualization of morphological and biochemical

changes that influence disease and predict response to therapy.

Physicians are better able to understand the molecular signatures of

cancer cells, enabling them to target abnormally activated pathways.

When combined with more conventional diagnostic imaging, one

could expect to have a major impact on the detection, diagnosis,

and decision making for personalized treatment. One attainable

goal is to discover new biomarkers to verify cell types and specific

pathways to tailor treatments to the individual and to prevent un-

warranted treatment. The times of one shot for all, big box, are over.

Using nanotechnology, nanoporous silicon particles, to deliver

the drugs in a multistage approach allows these MSVs to carry their
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specific payload to the target, increasing their therapeutic efficacy.

This multistage approach, along with implantable miniature devices

to release the drugs, further provides a controlled drug delivery of

the predetermined, effective drug over a prescribed period of time.

Rather than using a cumbersome pump, this miniature device could

be implanted, relieving the patient of the burden of returning to

a clinic for multiple infusions. The device might handle the drug

delivery for months. This would save time and money for the patient

and caregivers. The benefit to rural patients would be incredible.

The side effects of the drugs should be significantly reduced, and

therefore this system should allow the patient to lead a more normal

life during treatment, and hopefully reach the target with limited

invasiveness and without effecting surrounding organs and tissue.

These new technologies provide much hope for patients.

Through research and clinical trials many lives should be saved and

the quality of life should be improved during treatment.

1.11 Summary

The solution for the enablement of personalized medicine will

eventually be realized; however, the activation energy required for

clinical acceptance and implementation will necessitate a significant

overhaul of current practices. This chapter briefly reviewed the

nanotechnologies that are providing the catalysis to this movement,

but it also addressed the challenges impeding progress through

the insights from several critical vantage points. The incentive of

personalized medicine is too great to be ignored; the immediate

question remains: Who will lead us into the next clinical evolution:

scientists/clinicians, regulatory agencies, the industry, or the patient

population?
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Utilizing RNAi as a novel therapeutic modality has an enormous

potential to bring the era of personalized medicine from a notion

to reality. However, targeting of RNAi molecules into specific tissues

and cells is still a hurdle. Major attempts are done for developing

carriers that could overcome systemic, local, and cellular barriers.

This chapter will present the recent progress in this emerging field,

focusing on strategies of systemic, active cellular targeting, which is

considered a major challenge for drug delivery.
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2.1 Introduction

Ribonucleic acid interference (RNAi) is a natural cellular mechanism

for RNA-guided regulation of gene expression. This regulation

is carried out by double-stranded RNA (dsRNA) that suppress

the expression of specific genes with complementary nucleotide

sequences either by degrading specific messenger RNA (mRNA) or

by blocking mRNA translation. RNAi can be activated exogenously

by expressing short hairpin RNA (shRNA) with viral vectors or by

incorporating synthetic small interfering RNAs (siRNAs) directly

into the cell cytoplasm [1, 2].

siRNA is a chemically synthesized dsRNA of 19–23 base pairs

with two nucleotides unpaired in the 5′-phosphorylated ends and

unphosphorylated 3 –ends [3, 4]. Inside the cell cytoplasm, siRNAs

are incorporated into an RNA-induced silencing complex (RISC), a

protein-RNA complex that separates the strands of the RNA duplex

and discards the sense strand. The antisense RNA strand then

guides the RISC to anneal and cleave the target mRNA or block its

translation [2]. By recycling the target mRNA, the RISC complex

incorporates the antisense strand may show a therapeutic effect

for up to seven days in dividing cells and for several weeks in

nondividing cells. Furthermore, repeated administration of siRNA

can result in stable silencing of its target [5].

The combination of knocking down any gene of interest and

the ability to treat various diseases by addressing otherwise

“undruggable” targets (i.e., molecules without ligand-binding do-

mains or those that have a structural homology with other

important molecules in the cell), the elimination of clinical safety

concerns associated with viral vectors, and the reduced likelihood

for interference to the endogenous microRNA machinery (which

could occur due to saturation of enzymes or transport proteins)

emphasizes the potential of siRNAs to serve as a new platform for

therapy in personalized medicine.

Despite this promise, utilizing siRNA as therapeutics is not a

trivial task. For example, due to the large molecular weight (∼13

kD) and the net negative charge, the efficiency with which naked

molecules of siRNA cross the plasma membrane and enter the cell

cytoplasm is very low [2, 6]. When injected intravenously, in addition
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to rapid renal clearance and susceptibility to degradation by RNAses,

unmodified naked siRNAs are recognized by Toll-like receptors

(TLRs). This often stimulates the immune system and provoking

interferon response, complement activation, cytokine induction, and

coagulation cascades. Besides the undesired immune activation,

these effects can globally suppress gene expression and generate

off-target effects and misinterpreted outcomes [6, 7]. Therefore,

there is a clear need for appropriate delivery systems for siRNAs,

all of which have to utilize cellular mechanisms for internalization,

release (from the carriers), and escape (from the endosomes), in

addition to accumulation of siRNAs in the cell cytoplasm and RISC

activation. This chapter will present the recent progress in this

emerging field, focusing mostly on the in vivo applications with

special emphasize on the strategies for RNAi delivery to leukocytes

in an era of personalized medicine, where complete sequencing of

the transcriptome of a diseased individual becomes a reality and so

the option to design sequence-specific molecules that can interfere

with translation of any given protein and can be used to manipulate

cellular functions is not a dream anymore and might soon become a

reality [8].

2.1.1 Cellular Delivery Strategies of RNAi

Most of the methods commonly used for in vitro or ex vivo delivery

of siRNAs are conventional transfection methods. Studies with

purely physical methods such as microinjection and electroporation

[9–12], as well as studies using calcium coprecipitation [13], com-

mercial cationic polymers and lipids [3, 14–19], and cell-penetrating

peptides [20–24], have demonstrated an effective knockdown of

desired genes. Except for the physical methods (in which the cell

is subjected to an injection of small volumes of siRNAs directly into

the cell cytoplasm or to a burst of electricity that causes pores in

the membrane, hence elevating the ability of extracellular material

to enter into the cell), all the methods share a main feature—a

positive (cationic) charge that enables complexation of the siRNAs

and interacts with the negatively charged plasma membrane. In this

manner, it is important to note that there is evidence of toxicities of

the commercial cationic lipids and polymers [25], reviewed in [26].
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This emphasizes the promise of the cell-penetrating proteins, which

are much less toxic and have the potential ability to target specific

cells.

2.1.2 Translation of siRNA into Clinical Practice

Silencing of gene expression in vitro is a great tool for functional and

validation studies. Nevertheless, understanding gene expression in

a disease model by validating specific genes’ roles in vivo, along

with the potential to induce therapeutic gene silencing, opens new

avenues for utilizing RNAi as a novel therapeutic modality and

brings the era of theranostics and personalized medicine a step

further from a vision to a potential reality.

Despite the large diversity of available methods for in vitro

siRNA delivery shortly represented above, there are additional

hurdles to translate these methods into clinical therapeutic tools. As

detailed below, the biggest hurdle facing the translation of siRNAs’

therapeutic potential into the clinic is their delivery.

2.1.2.1 In vivo delivery of siRNA

Local delivery of siRNAs has been demonstrated in various animal

models [23, 27–29] and is employed in several ongoing clinical

trials. On the basis of local injections of naked or cationic lipid-/

polymer-formulated siRNAs, this method of treatment, although

having demonstrated very promising outcomes, is suitable only for

mucosal diseases or subcutaneous tissues.

Systemic delivery of siRNAs is the most challenging and daunting

task in this field. While cellular and local delivery strategies have

to deal with the need for internalization, release, and accumulation

of the siRNAs in the cell cytoplasm, delivery strategies for systemic

treatment of an entire animal enforces additionally to deal with

the siRNAs’ interaction with blood components, entrapment within

capillaries, uptake by the reticuloendothelial cells, degradation by

RNAses, renal clearance, anatomical barriers (such as the liver),

immune stimulation, extravasation from blood vessels to target

tissues, and permeation within the tissue.
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Systemic delivery of naked siRNAs may occur by the hy-

drodynamic method. This method, whose precise mechanism is

unsolved yet, involves rapid injection of a large volume of siRNAs in

physiologic solutions (about 10% of the body weight administered

within 5–10 seconds) [30, 31]. Hepatocytes in the liver are the

main target of this approach. Different studies were done with

this method, demonstrating functionally a knockdown of specific

genes in the animals’ liver [30–33]. Nevertheless, due to volume

overload side effects, the hydrodynamic method is not appropriate

for therapeutic use.

Naked siRNAs could also be utilized for targeting the kidney.

When systematically administrated, a large amount of naked siRNAs

are excreted by the glomerulus (which excretes any molecule with a

molecular weight less than 40 KDa) and reabsorbed in the proximal

tubule. The accumulation of free siRNA in the kidney is 40 times

higher than in any other organ, an ideal propriety for selective gene

therapy. Studies in rat models for renal injury indicated functional

silencing of p53, a major proapoptotic gene, and renal protection,

both in single and multiple injections administration [34, 35]. A

product based on these studies, QPI-1002, is being developed by

Quark Pharmaceuticals for systemic delivery of p53-siRNA in acute

renal injury and delayed graft function [35].

Because of the rapid renal clearance, utilizing naked siRNAs

systematically is relevant only when the target organ is the kidney.

Otherwise, strategies for systemic delivery of siRNA must rely on

carriers. These carriers should be made from fully degradable

materials (to avoid undesired and probably toxic accumulation of

the delivery system components in the body) and should act on

specific cells or tissues, while avoid damaging others.

The systemic siRNA delivery strategies are divided into two

major categories, passive and active (cellular-targeted) delivery.

Passive delivery exploits the inherited tendency of nanoparticles

to accumulate in organs of the reticuloendothelial system (RES),

also known as the mononuclear phagocytic system (MPS). The RES,

part of the immune system, consists of phagocytic cells located in

reticular connective tissue, primarily monocytes and macrophages.

These cells accumulate in lymph nodes, the spleen, and Kupffer cells

in the liver and uptake foreign particles believed to be intruders in
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the body, such as viruses, bacteria, and parasites of different types,

sizes, shapes, and charges. Hence, it is not surprising that major

attempts have been made to develop siRNA delivery systems for

treating different liver diseases. Active (cellular-targeted) delivery is

based on specific antibodies, ligands, or ligand mimetics that direct

the nanocarriers to specific target cells and tissues.

2.1.2.2 Passive systemic siRNA delivery

A stable nucleic acid–lipid particle (SNALP) is a ∼100 nm nontar-

geted liposome with low cationic lipid content that encapsulates

siRNAs and is coated with a diffusible polyethylene glycol (PEG)-

lipid conjugate [36, 37]. The PEG-lipid coat stabilizes the particle

during formation and provides a neutral and hydrophilic exterior

that prevents rapid systemic clearance. The lipid bilayer containing

a mixture of cationic and fusogenic lipids enables the internalization

of the SNALP and an endosomal escape while releasing the siRNA

payload. A biodistribution study indicates that most (28%) of the

siRNAs carried by the SNALPs were accumulated in the liver (and

only 0.3% in the lungs). A functional study of SNALP-encapsulated

apolipoprotein B (ApoB)-siRNA has shown significant reduction in

ApoB mRNA levels. Despite the presence of cationic lipids known to

trigger toxicities [26], mice and non-human primates did not reveal

any adverse effects except for liver enzyme release. On the basis of

these results, several clinical trials are conducted these days to test

the ability of SNALPs to deliver siRNAs for liver cancer treatment and

for lowering cholesterol levels [2, 35]. SNALPs encapsulating siRNA

against the polymerase gene of the Zaire strain has been shown to

protect guinea pigs from the lethal challenge of the Ebola virus [38].

Other formulations of cationic liposmes, with larger cationic lipid

content than SNALPs, have induced effective gene silencing but also

cytokine induction and toxicities and thus cannot be used for clinical

evaluation.

Significant toxicities have been associated with cationic li-

posomes [25, 39]; therefore, liposomes neutral in charge are

very promising carriers for systemic delivery of siRNAs. 1,2-

dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) non-PEGylated

liposomes encapsulating siRNA against different molecules express
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Figure 2.1 Passive and active tumor targeting. Passive tissue targeting is

achieved by extravasation of nanoparticles through increased permeability

of the tumor vasculature and ineffective lymphatic drainage (the EPR effect).

Active cellular targeting (inset) can be achieved by functionalizing the

surface of nanoparticles with ligands that promote cell-specific recognition

and binding. The nanoparticles can (i) release their contents in close

proximity to the target cells; (ii) attach to the membrane of the cell and

act as an extracellular sustained-release drug depot; or (iii) internalize into

the cell. (Reprinted with permission from Ref. 42. Copyright 2007 Nat.
Nanotechnol.)

on melanomas and ovarian cancers inhibited tumor growth in

human xenograft models [40, 41]. The accumulation of these

liposomes in the cancerous tissues on the basis of the enhanced

permeability and retention (EPR) effect increased permeability

of the blood vessels in tumors caused by rapid and defective

angiogenesis and dysfunctional lymphatic drainage that retains the

accumulated liposomes [42] (see Fig. 2.1).

Cationic lipidoid (synthetic lipid-like molecules)-containing lipo-

somes is another siRNA delivery system that has been shown to

induce effective gene silencing (80% reduction in ApoB and factor

VII mice’s mRNA levels) in the liver. A single intravenous injection
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of cationic lipidoid-containing liposomes encapsulating ApoB-siRNA

resulted in a 50% decrease in the protein level in three days and up

to two weeks after treatment. Although no immune response was

indicated, increases in the levels of two liver enzymes suggest liver

toxicity [43, 44].

HK peptides are another effective delivery system for siRNAs.

This system is based on the addition of histidines into polylysine

peptides. While lysine is important for binding the siRNAs, histidines

stabilize the particles and have an important role in buffering acidic

endosomes, thereby leading to endosomal disruption and payload

release. Specific ratios and patterns of histidine and lysine have been

found to augment the siRNA delivery, while carriers with a higher

ratio of histidine to lysine content seemed to be more effective

[45]. HK peptides carrying Raf-1-siRNA or human rhomboid family-

1-siRNA induced significant silencing of target genes and growth

inhibition of tumor xenografts [46, 47].

Atelocollagen is a biomaterial consists of a low-immunogenic

fraction of pepsin-digested collagen type I from calf dermis. Rich in

positively charged residues (lysine and hydroxylysine), it complexes

the negatively charged siRNAs and interacts with the plasma

membrane and hence helps incorporate the siRNAs into the cells.

Although these particles have not been modified to target tumors,

passive targeting due to the EPR effect causes selective accumulation

within the cancerous tissues, as shown in several studies with

different tumor xenografts [22, 48–50]. Initial studies indicated

that atelocollagen particles could be administered safely without

induction of cytokines or observed toxicity to the tissues.

2.1.2.3 Active (cellular-targeted) systemic siRNA delivery

siRNAs conjugated to other molecules is a common strategy for

active delivery. A cholesterol-siRNA conjugate is one example. The

specificity of this delivery system is determined by the lipoprotein

to which the cholesterol-siRNA conjugates are attached in the

circulation. When the conjugates bind low-density lipoprotein

(LDL), the particles are mainly taken up by the liver due to its

LDL receptors’ expression, whereas when they bind high-density

lipoprotein (HDL), they accumulate in the liver, the gut, the kidneys,
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and steroidogenic organs, all of which express scavenger receptor

class B, type I (SR-BI) receptors, which bind HDL [51]. The

cholesterol-ApoB-siRNA conjugate as well as α-tocopherol [52]

and lithocholic acid or lauric acid conjugated to ApoB-siRNA [53]

reduced serum cholesterol and ApoB mRNA levels in the liver.

Another example of this strategy is the dynamic polyconjugates [54].

This system includes membrane-active polymers whose activity is

masked until reaching the acidic environment of the endosomes.

Thanks to their employment of N -acetylgalactosamine, which binds

to the asialoglycoprotein receptor, they are target hepatocytes. Like

the SNALPs, these particles, when carrying ApoB-siRNAs, decreased

ApoB mRNA levels in the liver.

Polyethylenimine (PEI) nanoplexes carrying siRNAs have also

induced functional silencing in subcutaneously transplanted tumors

in nude mice. These particles composed of Arg-Gly-Asp (RGD)

peptide coupled via PEG (that is required for greater specificity,

longer half-life, and reduced immunogenicity) to PEI (a cationic

polymer that in addition to its ability to condense nucleic acids, its

pH-buffering property, disrupts endosomes, thus enabling to reach

the cytoplasm). When complexed with siRNAs, some RGD-PEG-PEI

molecules form a polyplex, with the positively charged RGD-PEG

components exposed on its surface. The targeting ability of this

particle is based on the overexpression of av integrins, whose RGD

peptides bind in certain cancers and in tumor vasculature [55]. Like

the two last examples, cyclodextrin-containing polycation (CDP)

particles have been successfully used for siRNAs delivery into mice’s

subcutaneous tumors [56]. CDP is a polymer with a cyclic oligomeric

glucose backbone that when complexed with siRNAs assembles

into a colloidal 50–70 nm particle. To achieve targeting, transferin-

coupled PEG is attached to the surface of the particles, exploiting

the upregulation of transcription factor (Tf) receptors in cancers.

However, despite being considered less toxic than conventional

cationic polymers (such as PEI), safety experiments on nonhuman

primates revealed that in high-concentration tests, injection of these

particles induced elevation in blood urea (that might indicate kidney

toxicity), a mild increase in liver enzyme levels, and a mild increase

in interluekin 6 (IL-6) levels. Multiple injections of the particles

induced antibodies to human-Tf. Despite these disadvantages, the
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efficacy of Tf-coupled CDP containing siRNAs for ovarian cancer

treatment is evaluated nowadays in clinical trials [57].

Antibody-protamine fusion carriers are a promising system for

systemic siRNA delivery. Protamines are relatively small (5–8 KDa)

and highly basic proteins composed of 55–79% arginine residues

[58]. Positively charged protamine interacts with the negatively

charged siRNAs and hence stabilizes, neutralizes, and condenses

the siRNAs. The ErbB2-protamine fusion protein in a complex with

siRNA significantly inhibited growth of breast cancer cells [59].

Aptamer-siRNA chimeras are completely RNA-based particles for

specific delivery of siRNAs. This approach relies only on the fact that

structured RNAs are capable of binding a variety of proteins with

high affinity and specificity. The chimera includes a targeting moiety,

an aptamer, and an RNA-silencing moiety, the siRNA. The aptamer-

siRNA chimeras have demonstrated specific binding and delivery

of siRNAs into a xenograft model of prostate cancer. The aptamer

portion of the chimeras mediates binding to prostate-specific

membrane antigen (PSMA), a cell surface receptor overexpressed in

prostate cancer cells and tumor vascular endothelium, whereas the

siRNAs reduce the expression of survival genes [60]. This approach

eliminates various side effects; hence aptamers and siRNAs have

low immunogenicity. Additional advantages are the possibility to

synthesize large quantities at a relatively low cost and the smaller

size of aptamers compared with that of antibodies (<15 kDa vs. 150

kDa), which promotes better tissue penetration.

Different formulations of targeted cationic liposomes served for

selective targeting of hepatic stellate cells (which are major cell

populations involved in the formation of scar tissue in response to

liver damage, named fibrosis) or solid tumors. Stellate cells express

receptors for retinol-binding proteins, which efficiently uptake

vitamin A. On the basis of these, injection of cationic liposomes

coupled to vitamin A and complexed with siRNA to a murine key

fibrogenesis factor (gp46) into cirrhotic mice silenced the specific

gene in the mice’s liver and resolved fibrosis [61]. 1,2-dioleoyl-

3-trimethylammonium-propane (DOTAP) liposomes encapsulating

HER2-siRNAs and containing histidine-lysine peptides (to enhance

escape from the endosomes) and a single-chain antibody fragment

targeting transferrin receptors (elevated on the membranes of
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tumor cells) on their surface have been targeted to a tumor xenograft

and inhibited its growth [62]. Anisamid-PEG-liposomes-polycation–

deoxyribonuclein acid (DNA) (anisamid-PEG-LPDs) are unilamellar

cationic liposomes coated with PEG-linked anisamide (a small-

molecule compound binds sigma receptors) on their surface and a

protamine-condensed mixture of siRNAs and a carrier calf thymus

DNA in their core. Encapsulating EGFR-siRNA, anismaide-PEG-LPDs

injected intravenously into tumor-bearing mice has been shown to

increase the mice’s sensitivity to chemotherapy [63]. Unfortunately,

these particles induced a significant increase in serum cytokines

levels and hence weakened the potential for clinical therapeutic

use. However, it is important to note that cytokine response is not

always deleterious with therapy, and there are cases when immune

activation could enhance the therapeutic effects.

2.1.2.4 Targeted delivery systems for leukocytes

Utilizing siRNAs to manipulate gene expression in leukocytes holds

great promise for the drug discovery field, as well as for facili-

tating the development of new therapies’ platforms for leukocyte-

implicated diseases such as inflammation, blood cancers, and

leukocyte-tropic viral infections. However, due to their resistance

to conventional transfection methods and to their dispersing in the

body, systemic delivery to leukocytes is even more challenging than

systemic delivery to other organs and tissues.

Kortylewski et al. [64] used siRNAs synthetically linked to a CpG

oligonucleotide agonist of TLR9 for targeting myeloid cells and B-

cells (both are key components of the tumor microenvironment)

that express this receptor. These particles simultaneously silenced

stat3 by siRNA and activated TLRs’ responses by their agonists.

Consequently, they effectively shifted the tumor microenvironment

from pro-oncogenic to antioncogenic (by causing activation of

tumor-associated immune cells and potent antitumor immune

responses).

Two studies from the same group presented newly developed

siRNA delivery systems for treating viral infections. scFvCD7Cys

is a single-chain antibody against CD7 (a surface antigen present

on the majority of human T-cells) that was modified to include
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a Cys residue for conjugation to a 9-Arg peptide. This conjugate

was used for targeted delivery of CCR5 (a chemokine receptor that

functions as a coreceptor for human immunodeficiency virus [HIV])

and Vif/Tat (HIV replication proteins)-siRNA payloads into T-cells

and has been demonstrated to suppress HIV infection in humanized

mice without inducing toxicity in their target cells [65, 66]. A similar

approach for treating dengue virus–infected cells employed DC3

(a 12-mer peptide that targeting dendritic cells)-9dR for targeting,

with tumor necrosis factor (TNF)-α (which plays a major role in

dengue pathogenesis) or specific highly conserved sequence in the

viral envelope-siRNAs. These complexes significantly reduced virus-

induced production of TNF-α and succeeded in suppressing the viral

replication in monocyte-derived dendritic cells and macrophages in

vitro. In vivo, treatment of mice with intravenous injection of DC3-

9dR-complexes carrying TNF-α-siRNAs effectively suppressed this

cytokine production by dendritic cells [67].

Our approach for targeting leukocytes is based on leukocytes’

integrins, which are cell adhesion molecules mediating cell–cell

and cell–matrix interactions [68]. We have developed antibody-

protamine fusion proteins utilizing the lymphocyte function–

associated antigen-1 (LFA-1) integrin, which is expressed in all

leukocytes’ subtypes, for selective targeting. The use of LFA-1 for

targeting leukocytes is supported by its exclusive expression on

leukocytes, its constitutive internalization and recycling activity, and

its ability to undergo activation-dependent conformational changes.

Using those antibody-protamine fusion proteins we have demon-

strated selective delivery of siRNAs into leukocytes, both in vitro and

in vivo. Importantly, neither lymphocytes’ activation nor interferon

response induction was indicated. Furthermore, by targeting these

fusion proteins to the high-affinity conformation of LFA-1 that

characterizes activated lymphocytes, we demonstrated even more

selective gene silencing, which, unlike most immunosuppressive

therapies, could provide a way to overcome the unwanted immune

stimulation without global immunosuppressive effects on bystander

immune cells. Additionally, due to the prevalence of aberrant

affinity modulation of integrins in a variety of leukocyte-implication

diseases [69, 70], targeting the high-affinity conformation of LFA-1

seems to be a very promising therapeutic tool [71].
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Next, to increase the payload and achieve more robust targeted

gene silencing, we have generated integrin-targeted stabilized

nanoparticles (I-tsNPs) that successfully deliver siRNAs into a

specific leukocyte subset involved in gut inflammation. Using this

system, we identified cyclin D1, a regulator protein of the entry

into, and the progression throughout, the cell cycle, as a potential

new target for treating inflammation. The I-tsNPs have been

developed as ∼80 nm neutral liposomes that were loaded with

siRNAs condensed with protamine. The particles have been coated

with hyaluronan (HA), a naturally accruing glycosaminoglycan, for

stabilization during siRNA entrapment and prolonged circulation

time in vivo. The targeting ability of the particles has been achieved

by attaching a monoclonal antibody against β7 integrin (which is

highly expressed in gut mononuclear leukocytes) to the HA [72].

Made from natural biomaterials, these nanoparticles offer a safe

platform for siRNAs delivery, avoiding cytokine induction and liver

damage. Enabling the usage of low doses of siRNAs (2.5 mg/kg),

this system, in addition to advantages such as high payload capacity

(∼4,000 siRNA molecules per particle) and low off-target effects

and toxicities, is economically worthy. We also used the I-tsNP

platform with an LFA-1 integrin-targeted antibody for delivery of

CCR5-siRNAs to human lymphocytes and monocytes. This system

has been shown to protect mice from the HIV challenge [73]. LFA-1

I-tsNPs with CCR5-siRNAs did not induce an interferon response or

TNF-α (inflammatory cytokine) secretion and hence strengthened

the potential for clinical relevance.

In summary, although there is no clinically approved siRNA

delivery system yet, we are convinced that in the coming years

this situation will change. We base this assumption on one of

the major advantages of siRNA delivery systems—the relative

ease of alternating them for purposes other than the origins by

changing either the payloads inside the nanoparticles (by using

different sequences of siRNAs or other drugs) or, in active delivery

systems, the targeting agent (by replacing the antibody or the ligand

decorating the nanoparticle’s surface). This opens new avenues

for treating a wide diversity of diseases as well as adjusting the
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Figure 2.2 siRNA delivery strategies under development include siRNAs

that are directly conjugated to cholesterol (A) or other small targeting

molecules (B), joined to an aptamer that binds to a cell surface receptor

(C), conjugated to membrane-penetrating polymers linked to targeting

small molecules (D), complexed with fusion proteins composed of an

antibody fragment or targeting peptide linked to an RNA-binding domain

that is either protamine (E) or polyarginine (F), or encapsulated within

nanoparticles (G) or liposomes (H) bearing targeting moieties. (Reprinted

with permission from Ref. 35. Copyright 2011 Gene Therapy.)
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treatment to the unique molecular abnormalities of a specific patient

in a personalized medicine era.
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Modern molecular imaging techniques are increasingly playing an

important role in individualized diagnosis and therapy in a wide

array of disorders. The impact is most evident in the field of

cancer, where patient-specific and tumor-specific information can

be obtained both at diagnosis and during the subsequent disease

course (viz., following initiation and completion of a particular

therapeutic intervention and in post-therapy disease surveillance).

The radionuclide-based PET-CT and SPEC) techniques have taken

the lead role in this arena. In recent years, there have been

varying degrees of success of novel methodologies being applied

to cross-sectional imaging as well. Examples include application of

(a) targeted microbubble techniques in the domain of ultrasound

(US), (b) hyperpolarized magnetic resonance imaging (MRI) (e.g.,
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metabolic MRI employing hyperpolarized 13C-labeled pyruvate

molecules), (c) diffusion-weighted MRI, (d) and magnetic resonance

spectroscopy (MRS). Such endeavors are likely to help in molecular

characterization of tumors and may have potential implications for

personalized cancer medicine. For the purpose of discussion, the

available imaging modalities, thus, have been broadly classified into

two broad groups, (A) the radionuclide-based methods (e.g., PET-CT,

SPECT, and planar technologies) and (B) nonradioactive molecular

imaging modalities. The latter could be subclassified into (1) MRI,

(2) US, and (3) optical imaging (near-infrared fluorescence and

bioluminescence). In the recent literature on molecular imaging–

based personalized medicine, particular emphasis has been given

on radionuclide-based PET-CT and SPECT imaging, which could

provide tumor-specific information in an individual (e.g., tumor

metabolism, cell proliferation, hypoxia, receptor status, and other

pathway activities). It has a very high impact on revolutionizing

and materializing the concept of personalized medicine in the field

of oncology. The potential of nonradioactive molecular imaging

modalities is also being examined at present for defining their

precise clinical role in the future. In the present chapter, the current

status and future potentials of these promising medical imaging

modalities in advancing personalized cancer medicine have been

reviewed from a clinical perspective with an emphasis on how they

can influence clinical management decisions in cancer.

3.1 Reasons for an Individualized Approach in an Era of
Evidence-Based Medicine in Oncology

Despite the enormous popularity of “evidence-based medicine”

in the medical community, different outcomes are encountered

in different individuals belonging to the same cohort. This is

most evident in the field of oncology, where it has a significant

bearing on mortality and morbidity and has a very high impact

on health care cost management issues as well. Such heterogeneity

and unpredictability thus challenge the traditional “one-size-fits-

all” approach and underscores the value of early assessment

of therapeutic effectiveness (especially when multiple salvage
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regimens and approaches are being increasingly available for a

given setting), disease monitoring, and appropriate staging of the

disease in patients with cancer. Two previous communications by

the author discuss the subject in detail and put forward the concept

of incorporation of a positron emission tomography (PET)-based

personalized approach in oncology that can further strengthen the

evidence-based approach in oncology [1, 2].

3.2 Reasons Molecular Imaging Is at the Forefront of
Personalized Cancer Medicine

In recent times, the importance of histopathological data and in vitro

diagnostics has been typically highlighted in personalized medicine

in oncology and other clinical disciplines. In vivo molecular imaging,

both by radionuclide and nonradioactive imaging technologies, on

the other hand, can address some of the practical shortcomings of

these in vitro biomarker tests (that assesses the unique variables

of individuals’ genetic material, proteins, and other biological

molecules). In vivo molecular imaging can be helpful in the following

ways:

(a) Obtaining a biopsy may not be an option in all disease states or

sites.

(b) Furthermore, significant intra- and intertumoral heterogeneity

in cellular characteristics can be observed during the disease

course, leading to varying degrees of response amongst the

different primary and metastatic sites or even within the same

lesion in the same individual.

(c) The final outcome of a therapeutic approach is the result of

complex interactions between a number of host and tumor

characteristics that the in vitro parameters alone will not be able

to predict.

The aforementioned factors lead to significant spatial and

temporal heterogeneity in a given malignancy that could be

successfully predicted and determined by the in vivo molecular

imaging methodologies. This has been termed by some authorities

as “regional proteomics” [3], which makes the in vivo molecular
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imaging approach attractive, not only as a reliable and objective

parameter, but also as a practically feasible technique that can be

employed and interpreted in a robust manner.

3.3 Medical Imaging Modalities with Significant Potential
toward Advancing Personalized Cancer Medicine

Molecular imaging technologies encompass a number of modalities

that have been and are being explored for their potential toward in-

dividualized diagnosis and treatment in cancer and other disorders.

It is perceivable that their role will be complementary.

The imaging modalities (Fig. 3.1) can be broadly classified

into two groups, (A) radionuclide-based methods (e.g., positron

emission tomography–computed tomography [PET-CT] and single-

photon-emission computed tomography [SPECT] technologies),

which have demonstrated the greatest clinical success till date,

and (B) nonradioactive molecular imaging modalities like magnetic

resonance imaging (MRI), ultrasound (US), and optical imaging

(near-infrared [NIR] fluorescence and bioluminescence).

Figure 3.1 Molecular imaging technologies with significant potential

towards advancing personalized cancer medicine and their classification.
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3.4 Radionuclide Functional Imaging vs. Conventional
Morphological Imaging Methodologies: Advantages
of the Former with Regard to Materializing the
Concept of Personalized Cancer Medicine

In the current clinical practice, the radionuclide imaging modalities

have emerged as the most successful approach that has made the

concept of “personalized cancer medicine” a clinical reality rather

than a theoretical hypothesis. Hence, the radionuclide imaging

techniques, especially PET and SPECT, as well as planar methods, are

considered the best performers toward this end [1, 2]. This success

is mainly due to two reasons:

(a) The ability to image the different biological characteristics with

different tracers. This is particularly true with PET imaging.

(b) The superior sensitivity achieved by the radiolabeled bio-

markers (in the range of femto- to picomolar concentrations

of radiolabeled compounds) as compared to the millimolar-

level detection with conventional structural methods (e.g., CT

iodinated contrast or the gadolinium agents of MRI).

3.4.1 The Functional Radionuclide Modalities

3.4.1.1 Targets in functional radionuclide imaging that have a
bearing on a personalized approach in oncology

As mentioned previously, the functional radionuclide techniques,

especially PET, have been at the forefront of the current molecular

imaging modalities and have revolutionized the concept of person-

alized cancer medicine. The feasibility to study and image various

tumor functional characteristics with various tracers has been the

prime reason for their success. The different targets that have been

utilized are depicted in Fig. 3.2. The common targets that have been

utilized in various studies include (i) glucose metabolism, (ii) cell

proliferation, (iii) tumor hypoxia, (iv) amino acid metabolism, (v)

cell membrane synthesis, and (vi) cell surface peptide receptors and

hormonal receptors.
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Figure 3.2 Clinically important targets in the domain of functional

radionuclide imaging. 1. Glucose uptake and enzymatic phosphorylation; 2.

amino acid uptake; 3. cell membrane components, e.g., phosphatidylcholine;

4. DNA proliferation; 5. mRNA (antisense imaging); 6. proteins (includes

cell surface receptors); 7. cellular hypoxia. Abbreviation: mRNA, messenger

ribonucleic acid.

The various radiotracers have been primarily developed toward

assessing these targets, which will influence the individual decision-

making process. An example in the arena of brain tumor imaging

is depicted below, where the various tumor characteristics are

pivotal for optimal therapeutic decision making. This has led to the

exploration of the various PET tracers that would characterize the

tumor biology (Table 3.1) in this malignancy.

Table 3.1 PET tracers investigated for brain tumor imaging

Principal class of PET tracer and

molecular mechanism involved Name of tracer

A Glucose metabolism Fluorodeoxyglucose (FDG)

B Amino acid analogues [11C]Methionine (MET), fluoroethyl-L-tyrosine

(FET) and L-3, 4-dihydroxy-6-[18F]fluoroprieny-

lalanirie(FDOPA), L-1-[11C]tyrosine (TYRl, and

L-3-[18F]fluoro- -methyltyrosirie (FMT)

C Radiolabeled cell membrane [11C]Choline PET (CHO)

components

D Radiolabeled nucleosides [18F]Fluorothymidine(FLT)

E Hypoxia Imaging Tracers [18F]Fljoromisoriidazole, [18F]EF5

F Somatostatin receptor imaging tracers [68Ga]DOTA-TOCPET

Reprinted with permission from Ref. [4].
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Figure 3.3 The key components of personalized cancer management (blue

boxes in the middle) based upon radionuclide molecular imaging in each

decision-making step (brown at the extreme left) and their implications for

improving patient care (green at the extreme right).

3.4.1.2 Management of individualization in various
decision-making steps in cancer with functional
radionuclide modalities

The impact of the functional imaging modalities is not limited to a

single point of decision making; rather it influences multiple steps

in the decision-making process of cancer management. Significant

data has been generated in the last two decades by examining each

of the decision-making steps in different malignancies in large- and

small-scale clinical trials.

For the purpose of easy understanding of the readers, the

clinical utilities are categorized into three broad settings (Fig. 3.3).

Under each of these broad settings, the specific clinical aspects and

advantages are highlighted in the middle column and the expected

outcome parameters are on the right column of the figure.
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Figure 3.4 A 62-year-old man, a known patient of squamous cell carcinoma

of the middle-third of the esophagus with contiguous nodal extension. After

FGD-PET imaging, unsuspected lung and liver metastases are detected. The

staging changes from M0 to M1b. (Reprinted with permission from Ref. 10.)

3.4.1.2.1 The varying aspects and advantages of individualization of
management strategy at initial diagnosis

At initial diagnosis, the information from radionuclide functional

imaging helps personalization of disease management in three

possible ways:

a. Better and appropriate initial disease staging: Appropriate

disease staging has been a major advantage of PET-CT with 18F-

fluorodeoxyglucose (FDG) and hence is extensively employed in

a wide array of malignancies [6–11]. This has the following

implications:

• Better triaging of cancer patients (Figs. 3.4 and 3.5)

• Initiation of appropriate therapy for an individual at the

earliest

• Reduction of patient morbidity (due to an inappropriate

strategy)

• Redefining of prognosis and survival in patients at all stages

of the disease (the Will Rogers effect) [6]

b. Defining of heterogeneity of tumor biology and characteristics:
PET-CT depicts intra- and intertumor heterogeneity in a global

fashion [12] (see Table 3.2). This aspect has been relatively less

explored but can potentially aid in personalized decision making in

the following ways:
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Figure 3.5 (a) Whole-body 18F-FDG-PET scan, done 60 min after the

intravenous injection of 300MBq of 18F-FDG, shows diffuse and patchy

FDG uptake in the entire axial skeleton and bilateral humerii and femora-

consistent bone marrow involvement (reproduced with permission from

Basu et al. [11]). Bone marrow involvement by the disease is a distinct

advantage of FDG-PET. In this patient of cerebellar medulloblastoma

the extensive bone marrow involvement was unsuspected, which was

subsequently proven by bone marrow biopsy. (b) Section from metastases

demonstrating high-grade round cell tumor involving bone (H and E, ×20)

(reproduced with permission from Basu et al. [11]).

• Prognostic stratification due to FDG uptake in a tumor [13–

17]

• Prediction of the probability of success and directing of the

optimal therapeutic strategy and dose of various treatments
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Table 3.2 Spectrum of tumor heterogeneity observed in the parlance of

clinical PET

A. Intertumor Heterogeneity

• Using various radiotracers: Different tumors may have differential amounts of uptake of

two or more radiotracers. For example, neuroendocrine tumors may have varying degrees

of uptake of [I124]-octreotide and FDG on PET imaging, and endocrine tumors such as

thyroid carcinoma may have varying degrees of [I124] and FDG uptake on PET imaging.

• Using FDG: Different tumors may have differential SUVs (based on PET imaging) and rates

of increase in SUVs over time (based on multiple time points or dynamic PET imaging).

B. Intratumor Heterogeneity

• Using various radiotracers: Individual tumors may have differential amounts and patterns

of uptake of two or more radiotracers. For example, a particular brain tumor may have

differential amounts of FDG, amino acid, or hypoxia agent on PET imaging.

• Using FDG: Decreased FDG uptake on PET within the same lesion may represent regional

necrosis, but variability of tumor metabolism within the same lesion could also explain

the reason for this observation and should be investigated in the future.

Reproduced with permission from Ref. [12]. Abbreviation: SUV, standardized uptake value.

in an individual (based upon the findings of multitracer PET

imaging).

Classic example: The role of PET hypoxia imaging in

optimizing external radiotherapy

c. Predicting and directing of targeted and other novel therapies:
This helps in determining the suitability of appropriate targeted

therapies (both radionuclide therapies and other targeted thera-

pies) [2].

Clinical examples:

As a surrogate for radionuclide therapies:

(i) Radioiodine scan for 131I therapy in patients of thyroid cancer

(ii) 123I–metaiodobenzyl guanidine (MIBG) scintigraphy for decid-

ing upon the possibility of radioiodine-labeled MIBG (131I-

MIBG) therapy in neural crest tumors

(iii) Radioimmunoscintigraphy for deciding upon the suitability of

radioimmunotherapy in patients of lymphoma

(iv) Somatostatin receptor (SSTR)based SPECT and PET studies,

for example, 111In-pentetreotide scintigraphy, (68)Ga-[1, 4, 7,

10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI3-

octreotide (68Ga-DOTA-NOC) to determine the suitability of
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yttrium- or lutetiumlabeled octerotide analog treatment in

patients of neuroendocrine tumors

As a surrogate for other targeted novel therapies:

(i) Imaging of epidermal growth factor receptor (EGFR) and EGFR

tyrosine kinase (EGFR-TKI) overexpression in tumors by PET

and SPECT modalities allowing in vivo a priori determination

of EGFR-targeted drug efficacy [18]

(ii) Imaging of estrogen receptor status and function and HER2

receptors in patients of metastatic breast carcinoma allowing

decision making of therapy with various estrogen receptor–

targeted agents and trastuzumab respectively [19, 20]

3.4.1.2.2 Assessment of early therapeutic response
The role of functional imaging with PET, SPECT, and planar

radionuclide imaging technologies has been pivotal in assessing

early therapeutic response [1, 2, 16, 21–43]. The advantages of this

have been in the following ways:

• Assessing the efficacy of a particular therapeutic approach

(e.g., systemic chemotherapy, radiotherapy or the newer

targeted therapies) early in its course enabling changes

being made in case of ineffective therapy at the earliest

• Substantial reduction of unnecessary toxicity

• Reduction of the cost of ineffective treatment

Some clinical examples of this can be seen in the following

scenario:

(i) The revolutionary impact of early interim FDG-PET in the

decision making of lymphoma treatment (Hodgkin and non-

Hodgkin and FDG avid variants of lymphomas at both nodal and

primary extranodal types) (Fig. 3.6)

(ii) Proven benefit of FDG-PET in early treatment monitoring of

patients with gastrointestinal stromal tumors (GISTs) once

therapy with imatinib mesylate is initiated and in its subse-

quent course (Fig. 3.7)
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Figure 3.6 A 30-year-old male with Hodgkin’s lymphoma, demonstrating

avid FDG uptake in the bulky mediastinal disease that shows CMR after the

third cycle of chemotherapy. (a) FDG-PET images at diagnosis. (b) FDG-PET

images following three cycles of chemotherapy. A 68-year-old male with

diffuse large B-cell lymphoma, demonstrating significant persistent disease

following the third cycle of chemotherapy. These images indicate that a

salvage schedule should be considered. (c) FDG-PET images at diagnosis.

(d) FDG-PET images following three cycles of chemotherapy. (Reprinted

with permission from Basu [1].) Abbreviation: CMR, complete metabolic

response.

(iii) The role of early monitoring of therapeutic response by FDG-

PET routinely employed in neoadjuvant therapy in various

tumors (Figs. 3.8 and 3.9)

(iv) Ability of FDG PET/CT to monitor the disease before and one

week after administration of a molecule-targeted agent called

EGFR-TKI reported in a recent study

(v) (11)C-labeled 4-N-(3-bromoanilino)-6,7-dimethoxy-

quinazoline ((11)C-PD153035), an imaging biomarker of EGFR,

proposed to be a noninvasive and rapid method for identifying

patients with refractory advanced non-small-cell lung cancer

(NSCLC) of adenocarcinoma or squamous histology likely to

respond to the EGFR-TKI erlotinib [41]

(vi) 68Ga-DOTATATE PET-CT now being regularly examined and

utilized to evaluate the effectiveness of peptide receptor

radionuclide treatment [43]
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Figure 3.7 (a) Coronal views of FDG-PET at the baseline, demonstrating

avid FDG uptake at the periphery of the described abdominal mass. Note the

uptake pattern commonly observed in a majority of active GISTs and their

metastases, the center of many of which is predominantly cystic or necrotic.

(b) Coronal views of FDG-PET at one month post-treatment (with imatinib),

demonstrating disappearance of FDG uptake from the periphery of the

mass, depicting a CMR. (c) One month post-imatinib treatment CT scan of

the abdomen (axial view), showing a persistent, thick-walled, peripherally

enhancing cystic lesion at the same site as described in the pretherapy

scan. (d) CT of the abdomen at three months, demonstrating a persistent,

peripherally enhancing mass in the left anterior pararenal space close to

the body and tail of the pancreas. The lesion shows a decrease in size,

whereas FDG-PET at this time continued to show a CMR. (Reproduced with

permission from Basu et al. [33].)

3.4.1.3 Post-treatment disease surveillance

FDG-PET/CT and other radionuclide methods have been utilized in

this area for two definitive benefits:

(i) Utilized in a number of major malignancies where there is

clinical or radiographic evidence of mass following completion
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Figure 3.8 (A) (upper panel): 25-year-old female, PNET of right proximal

femur. Prechemotherapy FDG-PET showing FDG uptake at the primary site

with SUVmax: 8.68. (B) (lower panel): Postchemotherapy SUVmax: 7.44. Per-

centage change in SUVmax: 14.28%; HPE: 34% necrosis. (Reproduced with

permission from Ref. [16].) Abbreviations: PNET, primitive neuroectodermal

tumor; HPE, histopathological examination.

Figure 3.9 (A) (upper panel): 20-year-old male, PNET of right proximal

humerus. Whole-body FDG-PET at the baseline, showing uptake at the

site of primary tumor. Prechemotherapy SUVmax of primary tumor: 4.71.

(B) (lower panel): Whole-body FDG-PET after NACT. Postchemotherapy

SUVmax: 1.02. Percentage change in SUVmax: 78.04%; HPE: 95% tumor

necrosis. (Reproduced with permission from Ref. [16].) Abbreviation: NACT,

neoadjuvant chemotherapy.
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of therapy with the goal of evaluation of residual/viable disease

in the tumor

(ii) Utilized for early detection of recurrence

In both aforementioned scenarios, the findings will influence patient

management at an individual level.

3.4.1.4 Other advantages of whole-body FDG-PET imaging

Synchronous or metachronous second primaries unrelated to the

primary have been increasingly detected with the increasing use

of FDG-PET/CT in oncology practice. This has been reported in

the literature and involves a wide range of malignancies. It is also

emphasized that disease may be detected when it is confined to

the site of primary [44, 45]. This allows disease management at the

individual level at the earliest opportunity (Fig. 3.10).

Thus, as noted above, adopting a decision model based upon

functional radionuclide imaging into clinical practice has the

potential to address all the key objectives of personalized medicine

[2], that is, better diagnosis and accurate disease staging, earlier

and accurate therapeutic intervention and optimizing of the correct

dose in an individual, reduction of patient morbidity related to

adverse effects of ineffective therapies and a decrease of health care

costs, and overall initiation and facilitation of novel therapies (drug

development).

3.5 Functional Molecular Imaging with US: The
Potentials toward Personalization

3.5.1 Basic Principle

Functional molecular imaging with US has been primarily depen-

dent upon the development of microbubble contrast agents. This

promising method has been the focus of translational research

on molecular imaging and disease characterization with US, as

well as for delivering targeted drug or gene therapy. The multiple

applications of this technique using targeted microbubbles include
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Figure 3.10 (a) Study demonstrating an intense abnormal disease focus

(SUVmax = 4.3) in the left breast (reproduced with permission from Ref.

[44]). (b and c) Mammographic hook wire localization was done for the

nonpalpable mass corresponding to the FDG-avid left breast focus, and

specimen radiography was performed showing the mass with the hook

wire needle (reproduced with permission from Ref. [44]). (d) Section

shows infiltrating ductal carcinoma (H and E, ×40). The hormone receptor

status was triple negative (ER-/PR-/HER2-) on immunohistochemistry

(reproduced with permission from Ref. [44]).
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assessing angiogenesis, inflammation, the cardiovascular system

(e.g., highrisk atherosclerotic plaques) and tumors.

In the field of clinical oncology, the technique can be employed in

two ways:

a. By targeting angiogenesis: A lipid-based microbubble contrast

agent conjugated to a peptide, which is targeted to αvβ3, an integrin

highly expressed by activated endothelium in neoangiogenesis. This

has opened many new opportunities, including new functional

imaging methods, the ability to image capillary flow and the

possibility of molecular targeting using labeled microbubbles and

the imaging signals that are reflected back to the US transducer. This

aids in assessing neoangiogenesis associated with tumor growth at

the molecular level. This could have far-reaching implications for

angiogenesis-based therapeutic intervention in patients with cancer.

For assessing tumor neovascularity, the application of the

reperfusion kinetic method has been a significant development over

the power Doppler mode as the former allows capillary imaging.

b. By targeting tumors: Some of the promising applications of

microbubble US that have also been examined in the domain

of tumor targeting. Certain examples that are highlighted in the

peerreviewed literature:

(1) Barbarese et al. studied C6 glioma and L9 glioscarcoma brain tu-

mors by using fluorescence-labeled lipid-coated microbubbles

[48].

(2) Targeted breast biopsies for patients with early breast cancer:

In one study, microbubble contrast–enhanced US accurately

identified the sentinel lymph node (SLN) in 89% of the patients

in our study. The results have been promising to be entered into

comparison with conventional SLN biopsy method, that is, the

blue dye and radioisotope methodology. This has the potential

to be combined with less invasive biopsy and thereby preclude

the need for a surgical SLN biopsy [49].

(3) Targeted biopsy of prostate carcinoma using transrectal US

with perflubutane microbubbles: This was found to enhance

detection and provide efficient characterization, especially in

the transitional zone area in one study. The investigators
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suggested that this procedure might lower the number of

biopsies and more accurate diagnosis of prostatic carcinoma

[50].

(4) Three-dimensional power Doppler US to monitor response of

primary peritoneal papillary serous carcinoma to treatment

and to differentiate residual tumor from post-treatment fibrosis

[51].

3.6 Functional Molecular Imaging with MRI: The
Potential toward Personalization

In the recent literature, the feasibility of obtaining functional infor-

mation with MRI has been highlighted. This has been particularly

possible with hyperpolarized MRI using 13C, 3He, and 129Xe. The

advantage is due to the feasibility of achieving a high signal-to-noise

ratio through external nuclear polarization. Various methods for

hyperpolarization have been employed, which include the following:

[a] optical pumping, [b] para-hydrogen-induced polarization, and [c]

dynamic nuclear polarization [51–57].

The initial applications of hyperpolarized MRI have been in

lung studies using noble gases. However, this technique has now

been employed for metabolic studies as well. Among the various

molecules, 13C is particularly preferred for metabolic MRI as this can

construct many biologically relevant organic compounds (pyruvate,

urea, lactate, alanine, etc.). Hence, 13C MRI and MRS have been

investigated in tumor metabolic imaging. Among the various labels,

hyperpolarized [1-13C] pyruvate has particularly gained popularity

in the area of metabolic MRI. The principle of this modality lies in

measuring the lactate dehydrogenase (LDH)-catalyzed flux of the
13C label between the carboxyl groups of pyruvate and lactate in the

tumor. In an animal experiment, Day et al. observed that flux of the

hyperpolarized 13C label between pyruvate and lactate is decreased

in mouse lymphoma cells in vitro and in lymphoma tumors in

vivo after drug-induced cell death. The authors proposed that the

measurements of hyperpolarized 13C label flux between pyruvate

and lactate can be employed to assess response to chemotherapy

in malignancies in vivo. It is presumable that as pyruvate is
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an endogenous substrate, it will be preferable over other MRS

techniques due to obvious advantages.

In a recent editorial [57] on 13C-polarized MRI, three areas

have been proposed to be of significant promise in the field of

hyperpolarized MRI. These are (a) polarization at a higher magnetic

field, (b) relaxation time elongation, and (c) addressing of the low

aqueous solubility of many interesting compounds. Among these

the first issue has already demonstrated impressive results toward

increasing the percentage polarization and thereby enhancing the

signal achievable with a particular molecule.

In addition to hyperpolarized MRI, another promising approach

for studying tumor characteristics is diffusion-weighted imaging

(DWI). The principle of DWI is primarily based upon studying the

random translational diffusion of water molecules. This modality

has been primarily used to study brain tumors, particularly for

early monitoring of therapeutic intervention [58]. Changes in tumor

diffusion as early as 3 weeks following radiation therapy correlated

with structural imaging changes at 10 weeks. It is predicted that this

modality can be utilized as an early biomarker for tumor response,

time to progression, and overall survival in brain tumors. A similar

utility in early assessment of therapeutic response has also been

suggested in a few studies in patients with breast cancer [59, 60].

3.6.1 Molecular Optical Imaging

The modality of optical imaging is an attractive and promising

molecular imaging technique that has the ability to explore cellular

and molecular events with high sensitivity [61–63]. The major

advantages of the technique are (a) single-cell detection capability,

(b) utilization of a large spectrum of contrast and hence probing of a

wide range of endogenous and exogenous biomolecules and in vivo

processes, and (c) exploration of events in real time that could be

translated to assess pathophysiological phenomena and the effect of

potential therapeutic interventions and novel agents.

The principle of optical imaging involves designing of biocom-

patible NIR fluorochromes, development of targeted and activatable

“smart” imaging probes, and engineering of activatable fluorescent

and bioluminescent proteins. The currently perceived potential



November 27, 2013 16:58 PSP Book - 9in x 6in 03-Chapter-3

100 Impact of Current Medical Imaging Technologies on Individualized

of molecular optical imaging lies primarily in early disease di-

agnoses, functioning of a number of pathways, and speeding of

drug discovery. Multispectral opto-acoustictomography is a new

development in the domain of optical imaging that has made

possible (a) high-resolution imaging, (b) deep tissue visualization

over several millimeters to centimeters of tissue depth, and (c)

feasibility to resolve multiple tissue molecules at the same time

[62]. The preliminary data validation has been undertaken in animal

models. In the clinical area, it is being examined for applications in

human intraoperative fluorescence-guided surgery.

The two types of noninvasive optical imaging techniques that are

being extensively tested in preclinical, small-animal imaging settings

[61] are (a) bioluminescence and (b) fluorescence imaging.

3.6.1.1 Principle of bioluminescence imaging

The underlying principle of this approach is dependent on a gene

reporter/probe system, where the firefly luciferase enzyme acts as

a gene reporter and D -luciferin or coelenterazine as a probe of

luciferase gene expression. The enzyme is not normally expressed

in mammalian cells, but when introduced as a gene reporter, it

can be imaged optically on the administration of D -luciferin or

coelenterazine as a probe. On oxidation of its substrate, light of 500

to 580 nm is produced and collected via a charge-coupled device

(CCD) camera.

3.6.1.2 Principle of fluorescence imaging

NIR fluorescence imaging is based upon directly measuring gene

expression without the use of an exogenous probe. There are

two important differences of this method from bioluminescence

imaging: (a) the optical signal is generated from the expression of an

innocuous green or red fluorescent protein as a gene reporter, and

(b) an excitation light source is required that illuminates the entire

animal. The incident excitation light activates fluorescent proteins,

and its subsequent relaxation back to the ground state generates a

fluorescent photon that is available for imaging.
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3.6.1.3 Translation into molecular imaging

NIR fluorescence can be translated into molecular imaging because

of its ability to image signals from targeting compounds conjugated

to NIR fluorophores and from those conjugated to chelating moieties

for radio-metal sequestration. The increased photon count rate

gives this modality superior detection ability compared to other

modalities. With optical tomography of biological tissues, it would

be possible to quantify agent uptake in terms of percent injection

dose per gram (%ID/g) as can be obtained from SPECT and PET

imaging. This can aid in the development of personalized medicine

further, though presently this is mainly restricted to preclinical

animal experiments.

3.7 Conclusion

Current medical imaging data with regard to characterization of

an individual’s tumor phenotype, especially that obtained from

functional radionuclide imaging like PET-CT and SPECT imaging,

can answer some of the critical decision-making questions and thus

aid in management on an individual basis. The other molecular

imaging modalities (e.g., US, MRI, and optical imaging) also hold

significant potential and with developments and refinements could

be potentially utilized for individualized diagnosis and therapy and

further better the clinical management of cancer patients.
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In this chapter we place into context the scientific developments that

guide the application of boron-rich agents for the neutron capture

therapy of brain cancer and also review the evolution of the scientific

rationale that underpins current research efforts that are aimed

toward the design of liposome-based delivery vehicles that will

provide the means of facilitating the transport of boronated agents

to their target site.

4.1 Introduction

Many brain diseases (e.g., epilepsy, Parkinson’s disease, Alzheimer’s

disease, schizophrenia, depression, ischemia, oedema) arise from
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local or from peripheral physiological disorders. Others (e.g.,

encephalitis, meningitis, acquired immunodeficiency syndrome

[AIDS], dementia) are caused by brain infections. The blood–brain

barrier (BBB) represents the most significant obstacle [1] for drugs

that must reach the brain via the blood compartment before they can

be of therapeutic benefit in the treatment of diseases of the central

nervous system (CNS). This cellular and metabolic semipermeable

barrier separates the brain and the spinal cord from the blood

(circulation) and regulates the entry of molecules into the brain. The

surface area of the BBB is 5000 times larger than that of the blood–

cerebrospinal fluid barrier located at the choroid plexuses [2].

The BBB is comprised of a complex network of cerebral

endothelial cells, which form the capillaries of the brain and the

spinal cord and which are connected with astrocytes and pericytes

by means of a basal membrane. At their adjacent margins, the

endothelial cells form tight junctions (zonula occludens [ZO]) that

seal the paracellular pathway consequent to the strong interactions

between several transmembrane proteins. These proteins block

the diffusion of many blood solutes, inhibiting the access to

brain extracellular fluid [3]. Only small (molecular weight <600)

lipophilic circulating drug molecules may diffuse through the BBB

[4]. The BBB has carrier-mediated transport mechanisms working

for influx or efflux of endogenous and exogenous compounds,

a receptor-mediated transcytosis mechanism specific to certain

peptides (such as transferrin and insulin) and an adsorptive or

absorptive-mediated transcytosis mechanism [5–9]. Rationalized

by the principle that nutrients and peptides pass through the

BBB via receptor-mediated or carrier-mediated transport systems

(commonly low-density lipoprotein [LDL] receptors, insulin recep-

tors, and transferring receptors), an attempt has been made to

deliver actives into the CNS through the deployment of drug-loaded

liposomes [10].

While the BBB in patients with high-grade gliomas and brain

metastases is typically disrupted, allowing passage of fluid into

the extracellular space, the increased permeability of the BBB is

primarily owing to opening of the interendothelial tight junctions

(and also due to increased endothelial pinocytosis and endothelial

fenestrations), demanding that even in these cases the active needs
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to be transportable through the intact sections of the BBB if it is to

be made available at all sites of tumor nucleation.

Boron neutron capture therapy (BNCT) is a two-step radiother-

apeutic technique that involves the selective delivery of 10B-rich

agents to tumors and their subsequent irradiation with low-energy

neutrons. The excited 11B nuclei that are thus formed undergo

fission to yield high-linear-energy transfer particles, essentially

highly cytotoxic 4He2+ and 7Li3+ ions, which move over short

distances—ca.5 μm and ca. 9 μm, respectively—to effect cell death.

4.2 Liposomal Carriers for Delivery to the Brain

Amongst attempts to transport drugs across the BBB, chemical

modification of the drug [11, 12] or the opening of this barrier

by osmotic methods [13] has received most attention. However,

chemical modification invariably alters the pharmacological profile

of the drug whereas osmotic methods represent a massive invasive

treatment. An alternative strategy to the delivery of drugs to the

brain involves the employment of nanostructured formulation [14–

17].

Liposomes are vesicular structures in which an aqueous volume

is surrounded by a phospholipid membrane. Their size can range

between 30 nm and several micrometers. They may consist of

one (unilamellar) or more (multilamellar) homocentric bilayers of

amphipathic lipids (mainly phospholipids). Liposomes have been

initially invented by Alec Bangham [18] to serve as a model for

cell membranes in biophysical studies. In the 70’s they started to

be investigated as promising drug carriers [19, 20]. The suggested

use of liposomes in drug delivery has been rationalized in terms

of their (i) versatile structure, which can be readily tailored in

order to bear the properties needed for each specific application,

and (ii) capacity to accommodate any type of drug molecules

either in their aqueous compartments (hydrophilic drugs) or in

their bilayers (lipophilic drugs) or both (ampliplilic drugs). In

addition, there exists a large array of liposomal formulations

that are nontoxic, nonimmunogenic, and biodegradable. In this

respect, liposomes hold great promise as carriers for drug delivery
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to the brain. They offer the promise to maintain the levels of

many drugs at a therapeutically desirable range and to increase

the half-lives, solubility, stability, and permeability of many drug

molecules. However the fast non-specific clearance of liposomes

from circulation by the RES cells may be readily addressed by

coformulation with polyethylene glycols (PEGs) and/or targeting

ligands [21].

4.3 Boron Neutron Capture Therapy

Following the discovery of the neutron by Sir James Chadwick in

1932, a study by H.J. Taylor in 1935 demonstrated the capability

of 10B nuclei to capture thermal electrons. This neutron capture is

followed by the fission of the resultant 11B nuclei into helium-4, α-

particles and lithium-7 particles. It was this combination of scientific

findings that allowed G.L. Locher, in 1936, to lay the foundation for

neutron capture therapy as an approach toward the treatment of

cancer and further led to the development of the basic theory of

BNCT being introduced [22, 23].

BNCT is a radiochemotherapeutic technique that provides a way

of selectively destroying malignant cells in the presence of normal

cells [24]. BNCT involves the nuclear capture and fission reactions

that occur when 10B, a nonradioactive, naturally occurring isotope of

the element, is irradiated with low-energy (thermal) (LET) neutrons

to yield high-linear-energy-transfer (HLET) α-particles and recoiling
7Li (Fig. 4.1).

Within living tissue, HLET α-particles have a specific path length

of 5–9 μm, which implies that they offer the potential to selectively

destroy cancerous cells. To sustain a lethal dose, BNCT requires the

Figure 4.1 The outcome of the interaction between 10B and thermal

neutrons.
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Figure 4.2 Idealized schematic representation of the stages of BNCT.

successful and targeted delivery of therapeutic quantities of 10B (ca.

20 μ of boron/g of tumour [25].

The principle of BNCT is illustrated in Fig. 4.2: the malignant

cells take up a formulation/compound that has been designed to

selectively deliver 10B to the cancer cells. The tumor cells, which are

loaded with 10B, are then irradiated using a source of slow-moving

epithermal neutrons. The boron neutron capture process produces

HLET particles, which kill the 10B-containing cells, leaving behind

healthy cells.

Boric acid and its derivatives represent the first generation of

boron compounds to be considered for BNCT applications. Disodium

mertacapto-closo-dodecaborate (sulfhydryl boron hydride [BSH])

and 1-4-dihydroxyborylphenylalanine (BPA) (so-called second-

generation compounds) have both reached the clinical trial stage,

owing to low toxicity, longer retention at the tumor site, and

favorable (>1) tumor/brain and tumor/blood ratios [26, 27]. In

addition to formulation strategies [28, 29], the next advancement

in boron-facilitated therapy saw the development of molecules in

which a stable boron group or boron clusters (carboranes) are

functionalized or coformulated with amphiphilic biomolecules (e.g.,

porphyrins [30]) that facilitate transport or with tumor-targeting

moieties (e.g., monoclonal antibodies [31]).

The carboranes (C2B10H12) are organometallic compounds

consisting of carbon, boron, and hydrogen (Fig. 4.3). They are

synthesized by the reaction of acetylene or its derivatives with boron

hydrides. The polyhedral structure of carborane may exist in one of

three isomeric forms: ortho, meta, or para.

BNCT has been the subject of early-stage clinical trials concerned

with the treatment of malignant brain tumors, malignant melanoma,

hepatoma, and head and neck tumors [32, 33]. Of particular interest


