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Graphene in the ideal form is a single layer of carbon atoms arranged 
in a honeycomb lattice, consisting of two interpenetrating Bravais 
sublattices. It is this unique lattice structure that gives graphene a 
range of peculiar properties that most metals and semiconductors 
lack. As far as electronic applications are concerned, its gapless and 
linear energy spectrum, high carrier mobility, frequency-independent 
absorption, and long spin diffusion length make it a material of choice 
for a variety of electronic, photonic, and spintronic devices. Apart 
from these applications, owing to its unique electronic properties, 
graphene has also attracted tremendous attention for applications 
that are due to primarily its unique shape and surface morphology, and 
low-cost production of related materials such as few-layer graphene 
sheets and graphene oxides. These graphene derivatives are more 
attractive and viable than single-layer graphene for applications that 
require a large quantity of materials with low cost and that rely less on 
graphene’s electronic properties. These different types of graphene-
based carbon nanostructures are referred to as two-dimensional 
(2D) carbon in this book, which include but are not limited to single 
layer graphene, few-layer graphene, vertically aligned few-layer 
graphene sheets (or carbon nanowalls), reduced graphene oxide and 
graphene oxide, etc. As far as large-scale applications are concerned, 
we feel that these graphene-related materials may be a step closer 
to reality than their pure graphene counterpart, in particular, in 
energy storage–related applications. This has motivated us to pull 
together a team of researchers who are doing frontier research in 
the respective fields to discuss fundamental properties of graphene, 
synthesis and characterization of graphene and related 2D carbon 
structures, and associated applications in an edited book. 
	 The book is organized into 11 chapters. Following the introduction 
in Chapter 1, Yihong Wu gives a brief overview of electronic band 
structure and properties of graphene in Chapter 2. In addition 
to the description of band structure based on the tight-binding 
model, several unique electron transport properties of graphene 
are discussed. Chapters 3 and 4 cover the growth of graphene on 
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SiC substrates by Xiaosong Wu and on metallic substrates by Wei 
Wu and Qingkai Yu, respectively. The former discusses the growth 
mechanism of graphene on both Si-face and C-face of SiC, while 
the latter deals with the growth of graphene on nickel and copper 
substrates using chemical vapor deposition. Chapter 5 discusses 
the growth and electrical transport properties of carbon nanowalls 
on different types of substrates. Emphases are placed on how to 
design and form different types of electrical contacts that allow for 
the study of electrical transport properties of material structures 
with an unusual surface morphology. This is then followed by 
Chapter 6, in which Masaru Tachibana writes about the structural 
characterization of carbon nanowalls using Raman spectroscopy and 
transmission electron microscopy, and their potential applications in 
energy storage such as lithium ion batteries and fuel cells. In Chapter 
7, Zexiang Shen and Da Zhan discuss the structural properties of 2D 
carbon based on Raman spectroscopy studies. Chapters 8 and 9 are 
devoted to the energy storage applications of graphene obtained 
by the chemical reduction route, which is more cost effective 
compared with other vapor deposition–based techniques. Xiu Song 
Zhao and Jintao Zhang focus on the applications of 2D carbon in 
supercapacitor in Chapter 8, followed by Zhaoping Liu and Xufeng 
Zhou dealing with battery applications in Chapter 9. The photonic 
properties of graphene are discussed by Won Jong Yoo and Hua-Min 
Li in Chapter 10. In Chapter 11, Hua Zhang and Shixin Wu discuss 
another important material derived from graphene, graphene oxide, 
and its potential applications in sensor and memory devices.
	 Owing to the very competitive environment of graphene research, 
many researchers would put their priority in doing research and 
writing papers rather than contributing to book chapters. In this 
context, we would like to thank all the contributing authors for their 
excellent chapters; without their extra efforts, we would not have 
the book in the present form. We would like to thank Prof. Andrew 
Thye Shen Wee of National University of Singapore for giving the 
opportunity to edit this book. Finally, we would like to thank Mr. 
Stanford Chong and his team at Pan Stanford Publishing for their 
help on this project.

Yihong Wu

Zexiang Shen

Ting Yu



1.1  Carbon Allotropes

The properties of a material at the mesoscopic scale are determined 
not only by the nature of its chemical bonds but also by its 
dimensionality and shape. This is particularly true for carbon-based 
materials. In the ground state, the carbon atom has four valence 
electrons, two in the 2s sub-shell and two in the 2p sub-shell. When a 
large number of carbon atoms come together to form materials under 
appropriate conditions, an individual carbon atom will promote one 
of its 2s electrons into its empty 2p orbital and then form bonds 
with other carbon atoms via sp hybrid orbitals. Depending on the 
number of p orbitals (1 to 3) mixing with the s orbital, it will lead to 
the formation of three kinds of sp hybrid orbitals called sp, sp2, and 
sp3. Carbon atoms with sp2 and sp3 hybrid orbitals are able to form 
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2 Introduction

three and four bonds with neighboring carbon atoms, respectively, 
which form the bases of graphene and diamond. 
	 An ideal graphene is a monatomic layer of carbon atoms 
arranged in a honeycomb lattice; therefore, graphene is a perfect 
two-dimensional (2D) material in the ideal case. As ideal 2D crystals 
in free state are unstable at finite temperature [1], graphene tends 
to evolve into other types of structures with enhanced structural 
stability, such as graphite, fullerene, nanotubes, and their derivatives 
[2]. Graphite is formed by the layering of a large number of graphene 
layers mediated by the van der Waals force; therefore, from the point 
of view of physics, it falls into the category of three-dimensional 
(3D) systems. Under appropriate conditions, a single- or multiple-
layer graphene can also roll up along certain directions to form a 
tubular structure called carbon nanotubes (CNTs) [3]. The CNTs, 
which can be in the form of single-walled, double-walled, and 
multiple-walled structures, are considered one-dimensional (1D) 
objects as far as their physical properties are concerned [4]. With 
the introduction of pentagons, graphene can also be wrapped up to 
form zero-dimensional (0D) fullerenes [5]. In addition to cylindrical 
CNTs and spherical fullerenes, there also exist intermediate carbon 
nanoforms, such as nanocones with different stacking structures 
[6]. Although ideal graphene is unstable, it may become stable 
through the introduction of local curvatures, as discussed in [7], 
or through the support of foreign materials. Macroscopic single-
layer graphene was successfully isolated from graphite through 
mechanical exfoliation in 2004 and was found to be stable on a 
foreign substrate, highly crystalline, and chemically inert under 
ambient conditions [8−10], albeit with local roughness and ripples 
[11]. This discovery has led to an explosive interest in 2D carbon 
nanostructures, which also earned K. S. Novoselov and A. K. Geim 
the 2010 Nobel Prize in Physics. In addition to crystalline carbon 
allotropes, there are also amorphous carbons and carbons with 
mixed phases, such as activated carbon and diamond-like carbon 
(DLC). As far as large-scale industrial applications are concerned, 
bulk carbons are still dominant, although nanocarbons are expected 
to play an increasingly important role in future. A pictorial summary 
of different forms of single-phase carbon, or allotropes of carbon, is 
presented in Fig. 1.1. For a detailed discussion on nomenclature of 
sp2 carbon nanoforms, the reader may refer to [6].
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Figure 1.1	 Major allotropes of carbon.

1.2  Two-Dimensional Carbon

Among all carbon allotropes, graphene stands out because of its 
unique lattice structure: a monatomic honeycomb lattice with 
a perfect 2D dimensionality. The specific lattice structure in 
combination with the valence electron configuration of carbon atoms 
gives rise to peculiar electronic band structures, which distinguish 
graphene from other allotropes. The quasi-particles (or electrons 
and holes) in graphene behave like massless relativistic particles, 
or Dirac fermions, with the electrons and holes degenerated at the 
Dirac points [12−16]. This gives rise to a number of peculiar physical 
properties that are either not found or superior to those found in 
other carbon allotropes [17]. Some of the unique physical phenomena 
that have been observed or explored so far include unconventional 
integer quantum Hall effect (IQHE) [9, 10], Klein tunneling [18−20], 
valley polarization [21, 22], universal (non-universal) minimum 
conductivity [23−26], weak (weak anti-) localization [23, 27−31], 
ultrahigh mobility [23, 32−34], specular Andreev reflection at the 
graphene−superconductor interface [35, 36], exceptional thermal 
conductivity [37, 38], and superior mechanical properties [39]. 
	 Since the discovery of single-layer graphene, tremendous 
progress has been made in the development/redevelopment of vari-
ous types of techniques for synthesizing both single-layer graphene 
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4 Introduction

(SLG) and few-layer graphene (FLG) sheets, such as epitaxial growth 
on both SiC and metallic substrates [40−44], reduction from graph-
ite oxide [45], chemical vapor deposition (CVD) [7, 46−48], and elec-
trical discharge [49]. It is worth noting that most of these techniques 
are not new and they have been used to grow various types of 2D 
graphitic materials before the discovery of graphene. Depending on 
the synthesis techniques and conditions, in addition to pure graph-
ene, various secondary forms of graphene can also be formed. These 
carbon nanostructures are typically multilayer graphene with a 
varying degree of curvature, defects, and morphology. Although dif-
ferent terminologies have been introduced to describe these nano-
carbon forms [6], in general, they can all be referred to as two-di-
mensional carbon, which is the focus of this book. Just like diamond 
and graphite, perfect crystalline materials are always desirable, but 
they are more difficult to produce and thus often too expensive for 
large-scale applications; on the contrary, partially perfect carbons 
such as synthetic graphite/diamond, activated carbon, and DLC are 
more widely used in industry. The same scenario may also happen 
to graphene, which warrants a book to discuss 2D carbon in a more 
inclusive manner instead of purely on graphene. 

1.3  Scope of This Book

This book is not intended to focus on the fascinating properties of 
graphene that have already been covered by other books. Instead, after 
a brief introduction of the band structure and electronic properties of 
graphene, we focus more on the synthesis and characterization of 2D 
carbons in general and the associated applications, in particular, in 
the area of energy storage. Based on this spirit, this book is organized 
into 11 chapters. Following the introduction, Yihong Wu gives a brief 
overview of electronic band structure and properties of graphene in 
Chapter 2. In addition to the description of band structure based on 
the tight-binding model, several unique electron transport properties 
of graphene are discussed, including quantum Hall effect, weak 
(weak anti-) localization, and electrical conductivity and mobility. 
Chapters 3 and 4 cover the growth of graphene on SiC substrates by 
Xiaosong Wu and on metallic substrates by Qingkai Yu, respectively. 
The former discusses the growth mechanism of graphene on both 
Si-face and C-face of SiC, while the latter deals with the growth of 
graphene on nickel and copper substrates using CVD. Chapter 5 
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discusses the growth and electrical transport properties of carbon 
nanowalls on different types of substrates. Emphasis is placed on 
how to design and form different types of electrical contacts that 
allow for the study of electrical transport properties of material 
structures with an unusual surface morphology. This is then followed 
by Chapter 6, in which Masaru Tachibana writes about the structural 
characterization of carbon nanowalls using Raman spectroscopy and 
transmission electron microscopy, and their potential applications 
in energy storage such as lithium ion batteries and fuel cells. In 
Chapter 7, Zexiang Shen discusses the structural properties of 2D 
carbon based on Raman spectroscopy studies. Chapters 8 and 9 are 
devoted to the energy storage applications of graphene obtained by 
the chemical reduction route, which is more cost effective compared 
with other vapor deposition-based techniques. X. S. Zhao focuses on 
the applications of 2D carbon in supercapacitor in Chapter 8, followed 
by Zhaoping Liu dealing with battery applications in Chapter 9. The 
photonic properties of graphene are discussed by Yoo Won Jong in 
Chapter 10. In Chapter 11, Hua Zhang discusses another important 
material derived from graphenegraphene oxideand its potential 
applications in sensor and memory devices.
	 The current interest in graphene is phenomenal, as evidenced by 
the large number of publications published in the last few years. Many 
reviews have been written on graphene, covering various aspects 
from fundamental physics and electronic properties [16, 23, 50−55] 
to material synthesis [40−45, 56, 57] and applications [58−62]. 
Several books with different emphases are already available. It is not 
possible for any book to cover all the relevant topics on graphene 
and related nanostructures. By extending the coverage to both flat 
and vertically aligned graphene sheets, it is hoped that this book 
can serve as a good reference for research on 2D carbon in general 
rather than graphene only. 
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2.1  Lattice structure

The peculiar electronic properties of graphene originate from its 
unique lattice structure. Graphene has a single layer of carbon atoms 
arranged in a honeycomb lattice, as shown in Fig. 2.1a. The primitive 
cell spanned by the following two lattice vectors

	  
a a a a a a1 2
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2

3
2

3
2

3
2

= -
Ê
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ˆ

¯̃
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ËÁ
ˆ

¯̃
, , , � (2.1)

contains two atoms, one of type A and the other of type B, which 
represent the two triangular lattices. Here, a = 0.142 nm is the carbon 
bond length. Type A atoms occupy the lattice sites 

  
R ma na= +1 2 , 

where m and n are integers, and the B atoms are shifted with respect 
to the A atoms in each primitive cell by 

  
t = +( )/ .a a1 2 3
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The corresponding reciprocal lattice vectors are given by

	  
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which also form a honeycomb lattice, but appears to be rotated by 
30° when compared with the real lattice. The first Brillouin zone (BZ) 

is a hexagon with a side length of 4
3 3

p
a

. Inside the first BZ, points 


K

a a
=
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ˆ
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p p  are of particular interest, 

where, as it will become clear later, the A and B lattices decouple, 
forming the so-called Dirac point.

2.2  Electronic Band Structure

2.2.1  Tight-Binding Model

In the ground state, each carbon has four valence electrons, two in the 
2s sub-shell and two in the 2p sub-shell. When forming bonds with 
other carbon atoms, an individual carbon atom will first promote one 
of its 2s electrons into its empty 2p orbital and then form bonds with 
other carbon atoms via sp hybrid orbitals. In case of graphene, two 
2p orbitals (px and py) hybridize with one 2s orbital to form three 
sp2 hybrid orbitals, and during this process the other 2s electron is 
promoted to the 2pz orbital. The hybrid orbits are given by
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� (2.3)

where s, px, py, and pz are the valence orbitals before hybridization 
and i = A and B, indicating the A and B atoms in the honeycomb 
lattice. The three sp2 hybrid orbitals lie in the xy plane and form 
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an angle of 1200 with one another. In contrast, the 2pz orbital is 
perpendicular to the xy plane. Due to the strong directionality 
of the sp2 hybrid orbitals, they subsequently form the so-called 
σ bonds with the three nearest neighbor carbon atoms in the 
honeycomb lattice. The σ bonds are energetically stable and 
localized; therefore, they do not contribute to the electrical 
conduction. The overlap of the 2pz orbitals of neighboring carbon 
atoms leads to the formation of p-bonds and anti-bonds (p*), which 
are responsible for the high electrical conductivity of graphene. 
	 The band structure of graphene can be calculated using the tight-
binding approximation by taking into account only the pz obitals [1, 
2]. The calculation involves the construction of a wave function which 
is the linear combination of Bloch wave functions for A and B atoms 
and the use of variational principle to obtain the eigenfunctions 
and eigenstates. Under this framework, the single-particle electron 
wavefunction in a crystal can be written as 

	 Y  


k
n

i
n

i
k iC r( ) ( ) ( ),= Â a

a
ac � (2.4)

where n is the band index, 

k  is the wave vector, a is the index 

of orbitals for each atom, i is the index of atoms in a primitive 
cell, C i

n
a
( )  is the coefficient to be determined, and c a




k i r( )  is a 
linear combination of atomic orbitals which satisfies the Bloch’s 
theorem:

	 c fa a

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   
k i

ik R

R
i lr

N
e r t Rl

l

( ) ( )= - -◊Â1 � (2.5)

with the summation running over all primitive cells (N in this case) 
of the crystal. Here, 


r  is the position vector, 


ti  is the position of 

atom i in a specific primitive cell, and 

Rl  is the position of the 

lth primitive cell. In case of graphene, i = A and B and a can be 
omitted because we are only interested in the pz orbital; therefore, 
c a



k i r( )  can be written as

	 c 
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for atom A and 

	 c 
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N
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for atom B. The linear combination of these two gives

	 Y   
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	 By substituting Eq. (2.8) into Schrödinger equation and 
minimizing the energy, one obtains the following secular equation:
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	 Here, e k
n  is the energy and Hab (a, b = 1, 2) are the interaction 

matrix elements. The latter can be readily obtained by taking into 
account the nearest neighbor interactions:
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	 Here, ezA (ezB) is the energy of pz orbital for atom A (B) after the 
hybridization but without the formation of bonds with neighboring 
atoms and g0 is the hopping energy between nearest neighbor atoms. 
As we are only interested in the excitation spectrum, we may set ezA 
(ezB) = 0. The electronic band structure can be obtained by letting 
the determinant be zero, i.e., 
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Solving Eq. (2.11) gives the energy dispersion:
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	 Note that, for clarity, we have replaced e k
n  by E(k) since we have 

only two bands which are corresponding to the conduction and the 
valence band of electrons. In Eq. (2.12), kx and ky are the components 
of 

k  in the (kx, ky) plane, g 0 2 75= . eV  is the nearest-neighbor 

hopping energy, and plus (minus) sign refers to the upper (p*) and 
lower (p) band. Figure 2.1c shows the three-dimensional electronic 
dispersion (left) and energy contour lines (right) in the k-space. 
Near the K and K’ points, the energy dispersion has a circular cone 
shape which, to a first order approximation, is given by 
	 E k kF( ) | |





= ± n .� (2.13)

	 Here v
a

F ms= ª -3
2

100 6 1g


 is the Fermi velocity. Note that in 

Eq. (4) the wave vector 

k  is measured from the K and K’ points, 

respectively. This kind of energy dispersion is distinct from that of 

non-relativistic electrons, i.e., E k
k
m

( ) = 
2 2

2
, where m is the mass of 

electrons. The linear dispersion becomes “distorted” with increasing 
k away from the K and K’ points due to a second order term with 
a threefold symmetry; this is known as the trigonal warping of the 
electronic spectrum in literature [3−5]. The peculiarity of electrons 
in graphene near the K (K’) points can be intuitively understood 
as follows. The 2pz orbital of each carbon atom in the A sub-
lattice interacts with the three nearest neighboring atoms in the 
B sub-lattice (and vice versa) to form energy bands. Although the 
interaction between the two atoms is strong (as manifested by the 
large hopping energy), the net interaction with the three nearest 
neighboring atoms diminishes as 


k  approaches the K (K’) points. 

This can be readily verified by substituting the K a( , / , )0 4 3 3 0p  and 
K a a¢( / , / , )2 3 2 3 3 0p p  points into Eqs. (2.10) and (2.12). The strong 
interaction with individual neighboring atoms makes it possible for 
electrons to move at a fast speed in graphene and the diminishing 
net interaction at Fermi level leads to a zero band gap. This result 
indicates that any honeycomb lattice consisting of same atoms will 
exhibit similar energy dispersion curves, and it is not necessary that 
one must have a carbon lattice. 

2.2.2  Low-Energy Electronic Spectrum

Although the electronic band structure of graphene can be 
calculated by the tight-binding model, the salient features of low-

Electronic Band Structure
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energy electron dynamics in graphene are better understood by 
modeling the electrons as relativistic Weyl fermions (within the  
k p◊  approximation), which satisfy the 2D Dirac equations [2, 6, 7]. 
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y y y= ( , )A B , and y y y′ ′ ′= ( , )A B . Equation (2.14) can be solved to 
obtain the eigenvalues and eigenfunctions (envelope functions) as 
follows:
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where a = 1 (−1) corresponds to the conduction and valence bands, 
b = 1 (−1) refers to the K and K¢ valley, and qk y xk k= -tan ( / )1  is 
determined by the direction of the wave vector in the k-space. 
Therefore, for both the valleys, the rotation of 


k  in the ( , )k kx y  plane 

(surrounding K or K‘ point) by 2p will result in a phase change of p of 
the wave function (so-called Berry phase) [8, 9]. The Berry phase of 
p has important implications to electron transport properties, which 
will be discussed shortly. 
	 The eigenfunctions are two-component spinors; therefore, 
low-energy electrons in graphene possess a pseudospin (with a = 
+(−) 1 corresponding to the up (down) pseudospin) [10]. It is 
worth stressing that the pseudospin has nothing to do with the real 
electronic spin; the latter is an intrinsic property of electron with 
quantum mechanical origin, while the former is a mathematical 
convenience to deal with A and B atoms in graphene, which 
represent two intervened triangular lattices. The spinors are 

also the eigenfunctions of the helicity operator h
p
p



= ◊1

2
s

| |
. It is 

straightforward to show that hy ab yab ab= 1
2

. Taking 

n  as the unit 
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vector in the momentum direction, one has 

n ◊ =s 1  for electrons 

and 

n ◊ = -s 1  for holes, for the K valley, and the opposite applies to 

the K’ valley [11]. 
	 The unique band structure near the K point is also accompanied 
by a unique energy-dependence of density of states (DOS). For a 2D 
system with dimension L L¥ , each electron state occupies an area of 
2 2p / L  in the k-space. Therefore, the low-energy DOS of graphene can 

readily be found as 
g g E

v
s v | |

2 2 2p F
, where gs and gv are the spin and valley 

degeneracy, respectively [1, 7, 11]. The linear energy dependence of 
DOS holds up to E ª 0 3 0. g , beyond which the DOS increases sharply 
due to trigonal warping of the band structure at higher energy [11]. 
Figure 2.1 compares the basic features of the electronic band 
structure of graphene with that of conventional 2D electron gas 
system [12]. In the latter case, the electron is confined in the z 
direction by electrostatic potentials, leading to the quantization of kz 
and thus discrete energy steps. As kx  and ky still remain as continuous, 
associated with each energy step is a sub-band with a parabolic 
energy dispersion curve. Due to energy quantization, the DOS is now 
given by a sum of step functions, and between the neighboring steps 
the DOS is constant. In contrast, graphene is a “perfect” 2D system; 
therefore, there are no sub-bands emerged from the confinement 
in the z direction. Furthermore, the single band has a linear energy 
dispersion in the (kx, ky) plane instead of a parabolic shape as it is in 
the case of conventional 2D system. Note that quantum wells with 
a well thickness of one atomic layer have been realized in several 
material systems; but these systems are fundamentally different 
from graphene. In addition to single-layer quantum wells, ultrathin 
2D sheets have also been realized in many other material systems 
[13]. However, these nanosheets are fundamentally different from 
graphene either in lattice structure or in the constituent elements. 
Although the linear energy dispersion or Dirac points are also found 
to exist in some bulk materials, in most cases, they do not play a 
dominant role in electrical transport; therefore, it is difficult to 
study electron behavior in these materials directly through electrical 
transport measurements. 
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Figure 2.1	 Comparison of graphene (a–d) and conventional 2D electron 
systems (e–h). (a) Lattice structure and first BZ; (b) Dirac 
equations; (c) 3D (left) and 2D (right) energy dispersions; (d) 
DOS as a function of energy; (e) schematic representation of 
a conventional 2DEG confined by electrostatic potentials in 
the z direction; (f) Schrödinger equation; (g) E −K dispersion 
curves; (h) DOS as a function of energy. Adapted and modified 
from Wu et al. [14].
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2.2.3  Effect of Magnetic Field

The difference in the behavior of graphene and particles with a 
parabolic spectrum is manifested when an external magnetic field 
is applied perpendicularly to the plane. We first look at the case of 
conventional 2D electron gas system (2DEGs) [12]. Let the magnetic 
vector potential be 


A By= -( , , )0 0  (Landau gauge), the Schrödinger 

equation is given by
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02 2 2e e e
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where V0(z) is the confinement electrostatic potential in z direction 
and me is the electron mass. By substituting the wave function  
y f= +e yi k x k zx z( ) ( )  into Eq. (2.16), one obtains

	
p

m
m y y E Ey

zn

2
2

0
2

2
1
2

1
e

e c+ -
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= -w f f( ) ( )

where Ezn is quantized energy due to confinement in z direction 

and y
k

eB
x

0 =
- . The total quantized energy levels, or Landau levels 

(LLs), are given by

	 E l Enl zn= +Ê
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ˆ
¯̃

+1
2
wc � (2.17)

where wc e= eB m/  is the cyclotron frequency, n (= 1, 2, 3, …), and l (= 
0, 1, 2, 3, …) are integers and are the indices for quantization in the 
z direction and LLs, respectively. The area between two neighboring 
LLs is p pw( ) /k k ml l+ - =1

2 2 2 e c  ; therefore, the degeneracy of one LL 
is 

	 p
g m L

= s e cw
p

2

2 
, � (2.18)

where gs = 2 is the spin degeneracy. In the presence of disorder, 
the Hall conductivity of 2DEGs exhibits plateaus at lh/2eB and is 

quantized as s xy l
e
h

= ± 2 2
 [12], leading to the integer quantum Hall 

effect (IQHE) [15, 16]. 
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	 On the other hand, the low-energy electronic spectrum of 
electrons in graphene with the presence of perpendicular field is 
governed by 
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	 The energy of LLs has been calculated by McClure and is given by 
[17, 18]

	 E l v e B ll = sgn( ) | |.F 2  � (2.20)

	 Here, |l| = 0, 1, 2, 3, … is the Landau index and B is the magnetic 
field applied perpendicular to the graphene plane. The LLs are doubly 
degenerate for the K and K‘ points. Compared with conventional 
2DEGs, of particular interest is the presence of a zero-energy state at 
l = 0, which is shared equally by the electrons and the holes. This has 
led to the observation of the so-called anomalous integer quantum 
Hall effect, in which the Hall conductivity is given by [19, 20]

	 s xy l
e
h

= ± +2 2 1
2

( ) . � (2.21)

	 The measurement by Novoselov et al. [19] was performed at B = 
14 T and temperature of 4 K. Instead of a plateau, a finite conductivity 
of ±2 2e h/  appeared at the zero-energy. The plateaus at higher 
energies occurred at half integers of 4 2e h/ . The result agrees well 
with Eq. (2.21). The l = 0 LL has also been observed in Shubnikov−de 
Haas oscillations at low field [19, 20], infrared spectroscopy [21, 22], 
and scanning tunneling spectroscopy [23−25]. 

2.2.4  Quantum Confinement and Tunneling

The difference in behavior between graphene and normal 2D electron 
system is also manifested in their response to lateral confinement by 
electrostatic potentials. A further confinement of 2DEGs from one of 
the lateral directions leads to the formation of quantum wires. For a 
quantum wire of size Lz and Ly in the z and y directions, the quantized 
energy levels are given by 
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where m* is the effective mass, kx is the wave vector in x direction, 
and ny and nz are integers. The corresponding density of states is 
given by 

	 r
p

( ) * ( )
,

,

,,

E
m H E E

E E

n n

n ni j

y z

y z

=
-

-Â2


� (2.23)

where H is the Heaviside function. 
	 The counterpart of nanowire in graphene is the so-called graphene 
nanoribbon (GNR). In addition to the width, the electronic spectrum 
of GNR also depends on the nature of its edges, i.e., whether it has an 
armchair or a zigzag shape [26]. The energy dispersion of GNR can 
be calculated using the tight-binding method [26−29], Dirac equation 
[30, 31], or first principles calculations [32, 33]. All these models lead 
to the same general results, i.e., GNRs with armchair edges can be 
either metallic or semiconducting depending on their width, while 
GNRs with zigzag edges are metallic with peculiar edge or surface 
states. For GNRs with their edges parallel to x-axis and located at y = 
0 and y = L, the energy spectra can be obtained by solving Eq. (2.19) 
with the boundary conditions: y yB( ) , ( )y y LA= = = =0 0 0  at point 
K and y yB A

¢ ¢= = = =( ) , ( )y y L0 0 0  at point K‘ for zigzag ribbons 
and y y y yA B A B( ) ( ) ( ) ( )y y y L y L= = = = = = = =0 0 0  at point K 

and y y y yA B A B
¢ ¢ ¢ ¢= = = = = = = =( ) ( ) ( ) ( )y y y L y L0 0 0 at point K‘ for 

armchair ribbons. The eigenvalue equations of the zigzag ribbons 
near the K point are given by [30] 

	 e
k
k

L x

x

- =
-
+

2a a
a

 and k
k

k Lx
n

n

=
tan( )

� (2.24)

where a e2 2 2= -( )v kF x  for real a and a = ikn  for pure imaginary 
a, e is the energy calculated from the Fermi level of graphene. The 
first equation has a real solution for a when k Lx > 1/ , which defines 
a localized edge state [30]. The solution of the second equation 
corresponds to confined modes due to finite width of the ribbon. 
The eigenvalues near the K‘ point can be obtained by replacement, 
k kx xÆ -  [11]. The localized edge state induces a large density of state 
at K and K‘ which are expected to play a crucial role in determining the 
electronic and magnetic properties of zigzag nanoribbons [26−28, 
34]. In contrast, there are no localized edge states in armchair GNRs. 
The wave vector across the ribbon width direction is quantized by 
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k
n
L an = -p p4

3 3
 and the energy is given by e = ± +È

Î
˘
˚v k kF x n

2 2 1 2/
 

[11]. Here, n is an integer. The armchair nanoribbons will be metallic 
when L na= 3 3 4/  and semiconducting in other cases. 
Although the chiral electrons in graphene can be effectively confined 
in nanoribbons through the boundaries, they cannot be confined 
effectively by electrostatic potential barriers in the same graphene. 
For a one-dimensional potential barrier of height V0 and width D 
in the x direction, the transmission coefficient of quasi-particles in 
graphene is given by [11, 35]

� T
Dq Dq ssx x

( ) cos ( )cos ( )
[cos( )cos cos ] sin ( )( sin

f q f
f q f

=
+ - ¢

2 2

2 2 1 ssin )q 2   (2.25)

where q V E v kx y= - -( ) /( )0
2 2 2 F , E is the energy, ky is the 

wave vector in y direction, f = -tan 1 k

k
y

x

, and q = -tan 1 k

q
y

x

. The 

transmission coefficient becomes unity (i) when Dq nx = p  with n 
as an integer, independent of the incident angle and (ii) at normal 
incidence, i.e., f = 0. In these two cases, the barrier becomes completely 
transparent, which is the manifestation of Klein tunneling [6, 35]. 
Stander et al. have found evidence of Klein tunneling in a steep gate-
induced potential step, which is in quantitative agreement with the 
theoretical predictions [36]. Signature of perfect transmission of 
carriers normally incident on an extremely narrow potential barrier 
in graphene was also observed by Young and Kim [37]. Very recently, 
Klein tunneling was also observed in ultraclean carbon nanotubes 
with a small bandgap [38]. On the other hand, Dragoman has shown 
that both the transmission and reflection coefficients at a graphene 
step barrier are positive and less than unity [39]; therefore it does 
not support the particle−antiparticle pair creation mechanism 
predicted by the theory. Further concrete evidence is required to 
verify the Klein paradox in graphene system. 
	 Figure 2.2 summarizes graphene and normal electron systems 
under an external magnetic field, in ribbon and wire form. and with 
a 1D potential barrier. The fundamental properties of graphene 
summarized in Figs. 2.1 and 2.2 lead to the peculiar electronic, 
magnetic, and optical properties. In the following text, we give 
an overview of electrical transport properties that have more 
experimental results to support the theoretical predictions. 


