

F. Payri/J.Ma. Desantes

DETECCIÓN Y COMPENSACIÓN DE IRREGULARIDADES DE INYECCIÓN A TRAVÉS DE LA MEDIDA DEL RÉGIMEN INSTANTÁNEO DEL TURBOGRUPO

F. Payri/J.Ma. Desantes

DETECCIÓN Y COMPENSACIÓN DE IRREGULARIDADES DE INYECCIÓN A TRAVÉS DE LA MEDIDA DEL RÉGIMEN INSTANTÁNEO DEL TURBOGRUPO

CARLOS GUARDIOLA

Dr. Ingeniero Industrial

Profesor Titular de Escuela Universitaria del Departamento de Máquinas y Motores Térmicos

Directores de la Serie

Francisco Payri González
Dr. Ingeniero Industrial

José María Desantes Fernández

Dr. Ingeniero Industrial

Catedráticos de Universidad CMT – Motores Térmicos Universidad Politécnica de Valencia

Detección y compensación de irregularidades de inyección a través de la medida del régimen instantáneo del turbogrupo

Copyright © C. Guardiola

Edición en papel:

© Editorial Reverté. S.A., 2005 ISBN: 978-84-291-4705-6

Edición en e-book:

© Editorial Reverté. S.A., 2020 ISBN: 978-84-291-9089-2

Propiedad de:

EDITORIAL REVERTÉ, S. A.

Loreto, 13-15, Local B 08029 Barcelona Tel: (34) 93 419 33 36

e-mail: reverte@reverte.com

www.reverte.com

Reservados todos los derechos. La reproducción total o parcial de esta obra, por cualquier medio o procedimiento, comprendidos la reprografía y el tratamiento informático, queda rigurosamente prohibida, salvo excepción prevista en la ley. Asimismo queda prohibida la distribución de ejemplares mediante alquiler o préstamo públicos, la comunicación pública y la transformación de cualquier parte de esta publicación (incluido el diseño de la cubierta) sin la previa autorización de los titulares de la propiedad intelectual y de la Editorial. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual (Art. 270 y siguientes del Código Penal). El Centro Español de Derechos Reprográficos (CEDRO) vela por el respeto a los citados derechos.

Prefacio

Tengo el placer de presentar este trabajo, realizado en el seno del grupo CMT-Motores Térmicos, y encuadrado en una productiva línea de investigación sobre el control y diagnóstico de motores Diesel turboalimentados. En concreto se ha abordado la posibilidad de emplear la medida del régimen instantáneo del turbogrupo de los motores diesel turboalimentados para obtener información que permita el diagnóstico y corrección de irregularidades de inyección.

El autor realiza un profundo estudio de las técnicas existentes para la detección de estos fallos, resaltando las principales ventajas e inconvenientes de las mismas. Este estudio permite contextualizar la opción que se presenta, que evita los principales inconvenientes de las técnicas convencionales. La combinación del análisis teórico del acoplamiento entre el motor y el turbogrupo, la información obtenida de ensayos experimentales y la simulación matemática, permite vertebrar un trabajo original y completo. Finalmente se realiza un estudio sobre la corrección en tiempo real de fallos de inyección, apuntando a interesantes posibilidades para el futuro de los motores Diesel.

Es de resaltar tanto la concisión de los resultados teóricos, apoyados en desarrollos matemáticos rigurosos, como el desarrollo de técnicas y equipos experimentales particulares. En este último aspecto hay que citar el desarrollo de un sistema para la medida de la variación cíclica del régimen de turbogrupo y la aplicación de técnicas de tratamiento digital de señales.

Finalmente quisiera dedicar unas líneas para presentar al autor: Carlos Guardiola es Profesor Titular de Escuela Universitaria y miembro del instituto CMT-Motores Térmicos. Autor de diversas publicaciones de carácter científico, ha centrado su investigación en la sobrealimentación y en el diagnóstico y control de motores de combustión interna alternativos. Ambas facetas de su actividad investigadoras se han conjugado perfectamente en el libro que nos ocupa que, estoy seguro, es sólo el principio de una brillante carrera científica.

José Manuel Luján Martínez Profesor Titular de Universidad CMT-Motores Térmicos Universidad Politécnica de Valencia

Índice General

1	El d	control	en motores de automoción	1
	1.1	Introd	lucción	1
	1.2	Sisten	nas actuales de control	3
		1.2.1	Principales bucles de control en MCIA	4
		1.2.2	Aplicaciones existentes de la medida del régimen del turbogrupo	8
	1.3	Sobre	este libro	8
		1.3.1	Objetivos	8
		1.3.2	Metodología	9
	Bibl	iografía	·	13
2	Téc	nicas a	actuales de detección de irregularidades de inyección	15
	2.1	Introd	lucción	15
	2.2	Defini	ción del problema	16
		2.2.1	Fallos de inyección-combustión en MEP	17
		2.2.2	Fallos de inyección-combustión en MEC	18
		2.2.3	Potencial de corrección de fallos	19
	2.3	Norma	ativa y tendencias futuras	20
	2.4	Métod	los actuales para la detección de fallos	23
		2.4.1	Métodos basados en la variación instantánea del régimen	

viii Índice General

			2.4.1.1	Clasificación de los métodos de detección	24
			2.4.1.2	Principales aportaciones	29
			2.4.1.3	Ventajas	35
			2.4.1.4	Inconvenientes	36
		2.4.2	Métodos	alternativos	38
			2.4.2.1	Medida de presión en cámara y otros métodos intrusivos	38
			2.4.2.2	Ruido de combustión \dots	40
			2.4.2.3	Medida de vibraciones	41
			2.4.2.4	Medida de concentración de oxígeno en el colector de escape	41
			2.4.2.5	Medida del par instantáneo	42
			2.4.2.6	Medida de la presión de escape	42
			2.4.2.7	Medida de la temperatura de escape	43
	2.5	Conclu	usiones .		43
	Bibl	iografía			44
3	Med	dida de	el régime	en del turbogrupo	53
	3.1	Introd	ucción		53
	3.2	Proble	emática as	sociada	56
	3.3	Métod	los de med	dida del régimen del turbogrupo	58
		3.3.1	Vibracio	nes	58
		2 2 0			60
		3.3.2	Métodos	s ópticos	00
		3.3.3		es de Foucault	61
			Corrient	es de Foucault	61
			Corrient 3.3.3.1	es de Foucault	61 61

Índice General ix

	3.4	Deter	minación del régimen instantáneo del turbogrupo	70
		3.4.1	Consideraciones generales	70
			3.4.1.1 A partir de una señal analógica	70
			3.4.1.2 A partir de una señal digital	71
		3.4.2	Muestreo en tiempo frente a muestreo en ángulo	73
			3.4.2.1 Medida de $\mathrm{d}\theta_t/\mathrm{d}t$ frente a medida de $\mathrm{d}\theta_t/\mathrm{d}\theta$.	74
	Bibl	iografía		74
4	Téc	nicas e	experimentales y de simulación	77
	4.1	Introd	lucción	77
	4.2	Instala	aciones experimentales	78
		4.2.1	Motores y salas de ensayo. Descripción general	78
		4.2.2	Adquisición de señales	80
		4.2.3	Métodos de medida de n_t empleados	81
		4.2.4	Equipo delcom	83
			4.2.4.1 Simulación de fallos de inyección	84
			4.2.4.2 Medición de regularidad de giro y n_t	86
		4.2.5	Modos posibles de operación	87
	4.3	Model	o de acción de ondas	89
		4.3.1	Introducción	89
		4.3.2	WAM	91
			4.3.2.1 Método de Lax-Wendroff	92
			4.3.2.2 Modelo de turbocompresor	93
			4.3.2.3 Modelo de turbina	95
		4.3.3	Adaptación del modelo para el estudio de la variación de n_t	96
		4.3.4	Ajuste para un motor determinado	97
		4.3.5	Comprobación de la validez del WAM	98
	Bibl	iografía		101

x Índice General

5	Var	iacion	es instan	táneas de n_t	105
	5.1	Introd	lucción . .		105
	5.2	Ecuaciones características del turbogrupo			106
		5.2.1	Turboco	ompresor	106
			5.2.1.1	Condiciones de bombeo	109
		5.2.2	Turbina		111
			5.2.2.1	Relación \dot{m}_t - P_3	112
			5.2.2.2	Rendimiento de la turbina η_t	114
		5.2.3	Acoplan	niento motor-turbogrupo	114
			5.2.3.1	Motor estabilizado	115
			5.2.3.2	Respuesta en transitorios	117
		5.2.4	Variació	n instantánea de n_t	120
			5.2.4.1	Variación de instantánea n_t en condiciones de bombeo	124
	5.3	Obser	vación de	la presión de escape a partir de la medida de n_t	126
		5.3.1	Desarrol	llo de un observador de $ ilde{P}_3$	126
			5.3.1.1	Ajuste del modelo	127
			5.3.1.2	Aplicación a diferentes puntos de funcionamient	o128
		5.3.2	Aplicaci	ón al $motor\ B$	128
			5.3.2.1	Plan experimental	128
			5.3.2.2	Resultados y discusión	129
	5.4	Concl	usiones .		135
	5.A	Anexo	o: influenc	cia de la pulsación de \dot{W}_c sobre n_t	136
	Bibl	iografía	ı		138
6	Cor	recció	n de la i	nyección a partir de $n_{t}\left(t\right)$	141
	6.1	Introd	lucción . .		141
	6.2	Estud	io en frec	uencia del régimen del turbogrupo	142
		6.2.1	Carácte	r pulsante del régimen del turbogrupo	142

Índice General xi

	6.2.2	Descom	posición en componentes armónicas	143
6.3	Espect	tro del rég	gimen del turbogrupo	147
	6.3.1	Espectro	o de n_t en ausencia de fallos de inyección	147
		6.3.1.1	Variación del grado de carga	149
		6.3.1.2	Variación del régimen de giro del motor	150
		6.3.1.3	Efectos de la turbina de geometría variable $$	152
		6.3.1.4	Efectos de la recirculación de gases de escape y del waste gate	154
		6.3.1.5	Efectos de los parámetros geométricos sobre el espectro de n_t	157
	6.3.2	-	o del régimen del turbogrupo en presencia de inyección-combustión	161
		6.3.2.1	Efecto de fallos en un único cilindro	161
		6.3.2.2	Superposición de fallos	167
6.4	Desarrollo de un controlador para la corrección de la inyección			
	6.4.1	Hipótesi	s de partida	168
	6.4.2	Constru	cción de una transformación lineal	171
		6.4.2.1	Forma canónica de la transformación lineal $$.	171
		6.4.2.2	Ajuste de la transformación lineal	175
		6.4.2.3	Inversión de la transformación lineal	176
	6.4.3	Adaptac carga .	ción a diferentes regímenes de giro y grados de	178
	6.4.4	Algoritn	no de corrección	179
		6.4.4.1	Características del controlador	183
		6.4.4.2	Sensibilidad ante errores de fase	186
		6.4.4.3	Sensibilidad ante errores de magnitud	188
		6.4.4.4	Sensibilidad ante errores en $\vec{\varepsilon_0}$	189
	6.4.5	Resultad	los	189
6.5	Colabo ción		ntre diversos algoritmos de regularidad de inyec-	190

xii Índice General

	6.6	Conclu	usiones	192
	6.A	Anexo	: parámetros suficientes para identificar irregularidades .	193
	6.B	Anexo	: cálculo iterativo de la DFT	196
	6.C	Anexo	: propiedades y demostraciones	199
		6.C.1	Principales propiedades de Z y Z_p	199
		6.C.2	Principales propiedades de R y Φ	202
		6.C.3	Autovalores de la matriz A	203
		6.C.4	Forma general del controlador	204
	Bibli	iografía		205
7	Res	ultado	s experimentales	207
	7.1	Introd	ucción	207
	7.2	Condi	ciones de los ensayos y plan experimental	208
	7.3	Caract	terización del sistema	210
	7.4	Diagno	óstico de la inyección a partir de n_t	213
		7.4.1	Estudio de fallos de diversa magnitud $\dots \dots \dots$	213
		7.4.2	Estudio ante la variación del grado de carga	215
		7.4.3	Estudio ante la variación de la posición de la ${\tt TGV} \ \ . \ \ .$	217
		7.4.4	Variación del punto de funcionamiento en el mapa motor	220
		7.4.5	Ajuste de la transformación lineal y detección de fallos múltiples	223
	7.5	Compa	aración con técnicas alternativas	228
		7.5.1	A partir del régimen de giro del motor	229
		7.5.2	A partir de P_3	232
		7.5.3	A partir de T_3	232
		7.5.4	Resumen	235
	7.6	Correc	cción de la inyección con n_t	238
		7.6.1	Controlador implementado	238
		7.6.2	Resultados en bucle cerrado	240

Índice General xiii

			7.6.2.1	Sintonizado del controlador	240
			7.6.2.2	Resultados en el punto de diseño	242
			7.6.2.3	Resultados al variar la posición de la ${\tt TGV}$	242
			7.6.2.4	Resultados en diferentes puntos del mapa moto	r247
			7.6.2.5	Respuesta ante transitorios de régimen y carga	249
	7.7	Conclu	siones .		250
	7.A	Anexo	enfoque	unificado a través de la DFT	250
	Bibli	iografía			251
0	C	_1		ha: 6.4	050
8	Con	clusior	ies y tra	bajos futuros	253
	8.1	Princip	oales apor	taciones y conclusiones	253
		8.1.1	Técnicas	experimentales	253
		8.1.2	Variación	n instantánea de n_t y relación P_3 - n_t	254
		8.1.3	Efecto de	e las irregularidades de la inyección sobre n_t	254
		8.1.4	Controla	dor multivariable basado en la DFT	254
		8.1.5	Compara	ación de diversas técnicas de detección de fallos	
			de inyeco	ción	255
	8.2	Trabaj	os futuros	3	255
		8.2.1	De carác	ter científico	256
		8.2.2	De carác	ter tecnológico	257
Ín	dice	Bibliog	gráfico		259

Tabla de símbolos

 $egin{array}{ll} a & ext{Velocidad del sonido} \\ c & ext{Velocidad del gas} \\ \end{array}$

Parámetro de la acción integral del controlador

Factor de corrección del modelo de \tilde{P}_3 Calor específico a presión constante

 c_p Calor espect Frecuencia

 f_c Frecuencia del ciclo termodinámico

 f_e Frecuencia de excitación f_r Frecuencia relativa f/f_c f_s Frecuencia de muestreo n Régimen de giro del motor n_t Régimen de giro del turbogrupo

m Gasto másico

 \vec{m}_f Vector de combustible inyectado r^2 coeficiente cuadrático de correlación

s Carrera

 r_k Ganancia del armónico k

t Tiempo

 t_s Periodo de muestreo z Número de cilindros

A Matriz del sistema en bucle cerrado

 A_{iny} Area invector

 A_{ef} Área efectiva de la TGV C Matriz del controlador E Matriz identidad

 $egin{array}{ll} F & \operatorname{Dosado} \\ G & \operatorname{Sensibilidad} \end{array}$

K

I Momento de inercia

Distribución impulso unitario Matriz del modelo $\vec{\epsilon}$ - $\Delta \vec{m}_f$

 \tilde{K} Matriz del observador $\Delta \vec{m}_f - \vec{\varepsilon}$ (6.21)

xvi Tabla de símbolos

M_1, M_2	Matrices de transformación (6.21)
M	Par
N	Número de muestras de una señal discreta
P	Presión
R	Constante de los gases
	Matriz de ganancia (6.16)
T	Temperatura
\dot{W}	Potencia
Z	Matriz geométrica (6.16)
Z_p	Matriz geométrica transformada (6.22)
α	Grado de carga
$ec{eta}$	Vector de acciones de control
γ	Razón de calores epecíficos c_p/c_v
$\delta ec{m}_{f_0}$	Error del controlador en bucle cerrado
δn_t	Resolución en la medida de n_t
δr_k	Error en la parametrización de r_k
δR	Error en la parametrización de R
$\deltaec{arepsilon_0}$	Error en la parametrización de $\vec{\varepsilon_0}$
$\delta\phi_k$	Error en la parametrización de ϕ_k
$\delta\Phi$	Error en la parametrización de Φ
$ec{arepsilon}$	Vector espectro
$ec{arepsilon}_0$	Vector espectro en ausencia de fallos
η	Rendimiento
θ	Ángulo del cigüeñal
$ heta_t$	Ángulo del turbogrupo
λ	Exceso de aire
ξ	Error
ho	Densidad
σ	Espectro de una matriz
	Desviación típica
$ au_e$	Periodo de excitación
ϕ_k	Fase del armónico k
Λ_i	<i>i</i> -ésimo pulso energético
Ξ	Función de corrección para el observador de P_3
П	Relación de presiones
Φ	Matriz de giro (6.16)

Subíndices

0	Condiciones ambiente
1	condiciones a la entrada del compresor
1'	condiciones intermedias del compresor
2	Condiciones a la salida del compresor
2'	Condiciones a la salida del intercooler
3	Condiciones a la entrada de la turbina

Tabla de símbolos xvii

3'	Condiciones intermedias de la turbina
4	Condiciones a la salida de la turbina
a	Aire
c	Compresor
e	Valor efectivo del motor
egr	Gas de escape recirculado
f	Combustible
m	Pérdidas mecánicas
s	Isentrópico
t	Turbina

Símbolos y operadores matemáticos

Δ	Variación
Im	Parte imaginaria
Re	Parte real
cos	Coseno
sen	Seno
sec	Secante
cosec	Cosecante
tan	Tangente
*	Conjugado
	Corregido
T	Transpuesta
•	Derivada temporal
-	Valor medio
~	Valor pulsante
^	Relativo al controlador
d	Diferencial
e	Número e
j	Variable compleja $\sqrt{-1}$
\mathbb{R}	Conjunto números reales

Siglas

CR	Sistema de inyección common rail
DELCOM	Demostrador de control electrónico de motores
DFT	Transformada discreta de Fourier
DMMT	Departamento de Máquinas y Motores Térmicos
ECU	Unidad de control electrónico
EGR	Recirculación de gases de escape
PWM	Modulación por ancho de impulso
MCIA	Motor de combustión interna alternativo
MEC	Motor de encendido por compresión
MEP	Motor de encendido provocado

xviii Tabla de símbolos

OBD On board diagnostics

TGV Turbina de geometría variable

TURBO Equipo de medida de n_t

WAM Modelo de acción de ondas (Wave action model)

WG Sistema waste gate

Capítulo 1

El control en motores de automoción

1.1 Introducción

El uso del control electrónico en los motores se ha extendido de forma considerable en los últimos años. Hoy en día, la práctica totalidad de los sistemas que podemos encontrar en motores de automoción se hallan gestionados en mayor o menor medida a través de sistemas de control electrónico. Las ventajas que permiten los sistemas de gestión electrónicos son numerosas:

- Aumento de las prestaciones y eficiencia del motor: los procesos de inyección y encendido gestionados electrónicamente han permitido la optimización local de parámetros íntimamente relacionados con las prestaciones y la eficiencia de los motores (como la riqueza y el punto de encendido en motores de encendido provocado, y la presión y avance de inyección en motores de encendido por compresión). Aunque resulta exagerado achacar toda esta mejora a la contribución de la electrónica, sí que es cierto que los más modernos sistemas de inyección resultarían inimaginables sin la componente electrónica.
- Control avanzado del sistema motor: los controladores electrónicos en bucle cerrado han mejorado de forma importante la gestión de los diferentes elementos presentes en los motores de última generación (como pueden ser la recirculación de gases de escape y la sobrealimentación

por turbina de geometría variable). Estos controladores, de prestaciones y versatilidad muy superiores a los clásicos sistemas neumáticos o centrífugos, han permitido la integración de sistemas de complejidad creciente.

- Disminución de las emisiones contaminantes: Actualmente, la legislación medioambiental es uno de los mayores focos de impulso para la investigación y mejora de los motores. La aplicación de las tecnologías actuales de control de emisiones precisa del control electrónico. La implantación del control de riqueza con sonda λ, el control del porcentaje de EGR y la regeneración del filtro de partículas, son ejemplos concretos que nos muestran la importancia del control electrónico para el control de emisiones.
- Mayor interacción entre el motor y otros sistemas del vehículo: la interconexión de los diferentes subsistemas que conforman el vehículo (el motor, la interfaz del conductor, la gestión del habitáculo, los sistemas de tracción y de frenado, etc.) permiten una gestión globalizada atendiendo a los efectos cruzados entre cada uno de ellos. En la actualidad se han desarrollado redes de comunicación específicas para automoción con el fin de reducir el cableado y aumentar la seguridad y robustez de las comunicaciones.

Consecuentemente, el número de sensores se ha visto incrementado, así como la capacidad de los microcontroladores y la complejidad de los algoritmos de control. Siendo un aspecto tan crítico sobre prestaciones, eficiencia y emisiones contaminantes, se hace necesaria la existencia de **algoritmos de diagnóstico** capaces de detectar la existencia de fallos tanto en el propio motor como en la sensorización o la lógica de control. Esta necesidad de diagnóstico, además del beneficio que supone para el funcionamiento global del sistema, ha sido sancionada a través de la normativa vigente [1, 2]. La relación entre control y diagnóstico es realmente estrecha, pudiendo emplearse la información obtenida a través del diagnóstico en la base de una acción de control posterior encaminada a resolver las deficiencias existentes, o a garantizar la seguridad del sistema.

Un tema crítico que afecta tanto a las prestaciones como a las emisiones es asegurar la cantidad de combustible inyectado en cada cilindro, así como la correcta realización del proceso de combustión. La dispersión de fabricación entre los diferentes cilindros e inyectores conlleva un funcionamiento fuera de diseño y tiene, como consecuencia final, el aumento de emisiones e incluso la aparición de fallos de encendido (especialmente en los motores de encendido provocado). También el efecto de la deriva de los inyectores, causado entre otros motivos por el ensuciamiento de los inyectores, agrava este fenómeno. Tal circunstancia es crítica en el caso de los motores Diesel de inyección directa, donde los diámetros efectivos de los inyectores son mínimos.

Desde el principio de la década de los 90, se han sucedido los intentos por detectar tales deficiencias, la mayor parte de ellos utilizando la medida de la regularidad de giro del motor. Aunque los resultados obtenidos son satisfactorios en muchos casos, aún existen problemas para la detección de fallos en el proceso de inyección-combustión en condiciones de alto régimen de giro o baja carga. En el presente estudio se plantea una alternativa a los sistemas convencionales de detección, basada en la medida de la variación instantánea del régimen de giro del turbogrupo.

De hecho, esta monografía trata de abordar desde un punto de vista general la interacción entre el turbogrupo y el motor. Más concretamente se estudia la posibilidad de emplear la información del régimen de giro del turbogrupo para la ejecución de algoritmos de diagnóstico y control. Siendo una máquina íntimamente ligada al motor, es de esperar que las variaciones instantáneas en sus variables de funcionamiento se vean afectadas por las circunstancias operativas del motor. Tal circunstancia se puede aprovechar para mejorar los algoritmos existentes relativos a la gestión del aire y de la inyección.

Aunque en el planteamiento del trabajo es general, en sus aspectos más concretos se centrará en el estudio de motores Diesel sobrealimentados de inyección directa.

1.2 Sistemas actuales de control

En esta sección se contextualizará el trabajo según diferentes puntos de vista. En el apartado 1.2.1 se hace un recorrido general de los diferentes bucles de control existentes en un motor de última generación, así como las últimas aportaciones que, aunque aún no están implementadas en motores comerciales, sí han sido presentadas en los foros de comunicación científica. Por su extensión, se ha creído conveniente dedicar un capítulo completo a la descripción de los diferentes métodos para la detección y corrección de los fallos en el sistema de inyección-combustión basados en la medida de la variación

del régimen del cigüeñal. En el apartado 1.2.2 se hablará de las aportaciones que han utilizado específicamente la medida del régimen del turbogrupo como variable de control o diagnóstico.

1.2.1 Principales bucles de control en MCIA

La multiplicación de sensores ha permitido un aumento de los bucles de control en los motores de combustión interna alternativos. Tales bucles rara vez son independientes y se hallan interrelacionados a través de una estructura de más alto nivel programada en la *Unidad de Control Electrónico* (ECU), que gestiona los conflictos e interacciones cruzadas que pudiesen existir entre los diferentes controladores. También se programan las estructuras de decisión que gestionan las actuaciones en caso de error en el sistema o de detección de un fallo.

Obviando este gran entramado general, es posible llegar a relacionar los diferentes pares de variables medidas y controladas por cada uno de los bucles. En la figura 1.1 se puede observar un esquema general del control de un motor Diesel de inyección directa common rail (CR). Las flechas negras indican la relación causa-efecto de los diferentes elementos presentes en un motor de estas características. Se han marcado con flechas de color gris los diferentes bucles de control existentes. Las flechas en trazo continuo indican soluciones que en la actualidad se están explotando comercialmente (nótese que se han obviado sistemas como el filtro de partículas). El trazo discontinuo se ha reservado para aquellas alternativas que han sido presentadas en foros científicos y que se encuentran en diverso estado de desarrollo. Finalmente en doble trazo se ha marcado la posibilidad que presenta la monografía que nos ocupa.

Primeramente se procederá a una descripción somera de los bucles más representativos aplicados actualmente en los motores Diesel CR [3, 4]:

Gestión del aire. En este epígrafe nos referiremos a todo lo relacionado con la circulación de aire a través del motor. Generalmente el control del aire permitirá satisfacer las demandas en términos de gasto másico de aire y porcentaje de EGR. Dado el problema asociado a la medida del porcentaje de EGR, generalmente se fija éste de forma indirecta a partir del gasto de aire. El bucle de control básico asume que satisfaciendo los requerimientos en el par gasto de aire-presión de sobrealimentación (\dot{m}_a, P_2) se puede cumplir las especificaciones impuestas en gasto de aire y EGR $(\dot{m}_a, \dot{m}_{eqr})$. Para conseguir

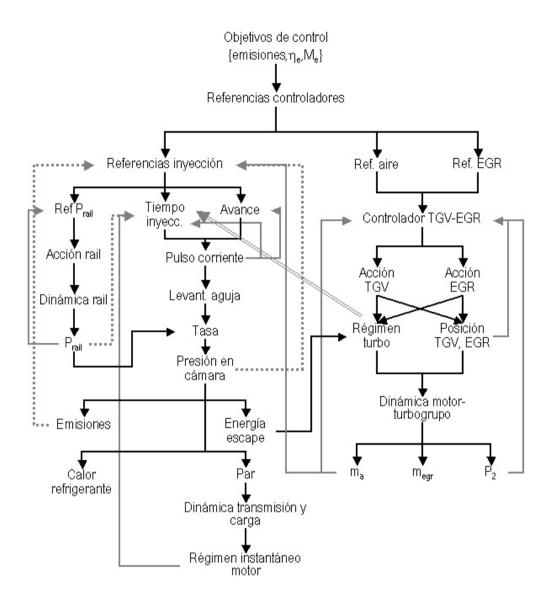


Figura 1.1. Principales bucles de control en un motor Diesel CR. —: relaciones físicas. —: bucles de control convencionales. — -: bucles de control en desarrollo. ==: bucle de control estudiado en el presente trabajo.

tal objetivo, se suele actuar sobre la válvula de EGR¹ y el sistema de sobrealimentación empleado (comúnmente turbina de geometría variable o waste gate). El emparejamiento clásico de las variables realiza el control de \dot{m}_a con la válvula de EGR y de P_2 con el sistema de sobrealimentación. Dado el importante acoplamiento entre ambos bucles, es un tema de investigación actual la ejecución de controladores multivariables que permitan el control conjunto de ambas variables [5–8].

También, con el fin de evitar los grandes fenómenos de histéresis propios de las válvulas electro-neumáticas, se han extendido los bucles de control en posición, que actúan en forma de controladores en cascada utilizando para ello la medida de captadores de posición.

Control de la inyección. La gestión de la inyección en un motor CR se efectúa mediante el uso, en la mayor parte de los casos, de un controlador que asegura el valor de la presión en el rail (actuando para ello sobre la válvula de descarga), así como un controlador que asegura que el tiempo de inyección corresponde con el de referencia. Nótese que no existe ningún tipo de retro-alimentación sobre la cantidad de combustible inyectado. Al tratarse de un sistema hidromecánico complejo, disfunciones en el levantamiento de la aguja o una permeabilidad del inyector diferente de la de diseño, suponen variaciones en la cantidad de combustible efectiva.

Detección de fallos de combustión. La medida de la regularidad del régimen de giro del motor durante un ciclo termodinámico permite obtener un diagnóstico sobre la existencia de problemas de encendido. Este punto es específicamente abordado por la normativa existente concerniente a diagnóstico. Además, un análisis más fino permite detectar posibles variaciones de un inyector frente al resto, que afectan de forma significativa a la regularidad del régimen de giro, de manera que pueden corregirse. Ambos aspectos han sido abordados por numerosos autores, y en el Capítulo 2 se presenta una revisión exhaustiva sobre el tema.

Limitador de humos. Para evitar las emisiones excesivas de partículas durante la puesta en carga del motor, existe un control que limita la cantidad

¹En algunos casos los motores están dotados de válvulas que permiten estrangular la admisión con el fin de aumentar el porcentaje de gas recirculado.

de combustible inyectada a partir de la determinación del aire admitido. Para no sobrepasar la riqueza límite, se emplea la medida del gasto másico admitido o de la presión de sobrealimentación.

En vías de desarrollo se encuentran algoritmos de control que permitirán mejoras muy notables en un futuro próximo. Entre ellos pueden destacarse:

Empleo de sondas de contaminantes en el colector de escape. medida directa de las emisiones contaminantes permitirá realizar un control más preciso y con mayor tolerancia a errores. Nótese que en el resto de estrategias de control presentadas, la referencia no tiene relación directa con los objetivos finales (potencia, consumo y emisiones). En el caso de medir las emisiones, la retroalimentación sería completa. Desafortunadamente, en la actualidad los sensores carecen de las características de robustez y bajo coste exigidos para su implantación comercial. Además, la respuesta de las sondas de contaminantes existentes suele ser de dinámica excesivamente lenta para su utilización como herramienta de control, limitándose su aplicación únicamente a tareas de diagnóstico. También es un problema por dilucidar cómo optimizar los parámetros de funcionamiento del motor en función de la diferencia entre los objetivos en términos de prestaciones y emisiones y lo obtenido realmente (hay que recordar que la calibración es un aspecto delicado y que aún no está completamente resuelto [9, 10]). Un caso particular por su incidencia es el uso de sensores de concentración de oxígeno, mejor conocidos como sonda λ . En el caso de motores de encendido provocado, que trabajan con dosado estequiométrico, se trata de un sensor de casi obligado uso para el correcto funcionamiento de los sistemas catalizadores de tres vías. Algunos autores han estudiado la posibilidad de diagnosticar la combustión a partir de este tipo de sondas [11, 12]. En el campo de aplicación Diesel diversos investigadores han trabajado con sondas λ lineales para mejorar el control del EGR [13].

Utilización de la variación instantánea de las variables dentro del ciclo termodinámico. El tratamiento con alta frecuencia de adquisición de las señales provenientes de sensores convencionales o no convencionales se perfila como una clave para la mejora del control del motor. En la actualidad tal tratamiento sólo se da al régimen de giro del motor; más allá de los meros problemas de tiempo de computación, la medida y tratamiento de diversas señales, como pueden ser las presiones en los colectores o las vibraciones del bloque motor, pudiendo particularizar los eventos a lo largo del ciclo

termodinámico pueden permitir un diagnóstico muy sensible a pequeños defectos de funcionamiento. Mención especial merece la medida de la **presión** en cámara [14], aspecto que será analizado con detenimiento en el apartado 2.4.2.1.

1.2.2 Aplicaciones existentes de la medida del régimen del turbogrupo

Existen pocas referencias bibliográficas del empleo del régimen del turbogrupo para el control o diagnóstico de motores. Aunque el régimen de giro es un parámetro crítico en el funcionamiento del turbogrupo y por tanto de la sobrealimentación, generalmente las tareas de control se confían a la medida de la presión y del gasto de aire. Por contra, esta variable sí que es medida de forma generalizada en la mayoría de instalaciones de investigación y desarrollo.

El estudio del régimen de giro del turbogrupo en aplicaciones de sobrealimentación se ha reducido históricamente al análisis de su valor medio, no existiendo referencias sobre la variación del régimen del turbogrupo asociada con las pulsaciones de escape. Por otra parte algunos investigadores han empleado el régimen del turbogrupo para la medida indirecta de la potencia instantánea al ensayar turbinas en bancos específicos [15].

1.3 Sobre este libro

A continuación se presentan los objetivos perseguidos en este trabajo, así como la metodología que se ha llevado a cabo para permitir su realización.

1.3.1 Objetivos

Los principales objetivos del trabajo que se aborda son:

• Puesta a punto de herramientas para la medida y tratamiento del régimen instantáneo del turbogrupo. La variación instantánea del régimen del turbogrupo es una variable de difícil medida sujeta a grandes ruidos que enmascaran la señal. Por lo tanto, un especial esfuerzo será dedicado al desarrollo de herramientas matemáticas para el filtrado de la señal. Paralelamente, la implementación de algoritmos de control en tiempo

1.3 Sobre este libro 9

real precisa de sistemas electrónicos capaces de realizar la adquisición, el tratamiento digital y la actuación en tiempos razonables.

- Relacionar la velocidad de giro del turbogrupo con las variables de funcionamiento del motor. El estudio del acoplamiento entre el motor y turbogrupo permitirá relacionar los parámetros de funcionamiento de ambos sistemas. En el trabajo que nos ocupa, dicho análisis se centrará en la variación instantánea del régimen del turbogrupo a lo largo de un ciclo del motor.
- Utilizar la variación del régimen del turbogrupo como herramienta de diagnóstico del proceso de inyección-combustión. Una vez establecida la relación entre las variables de funcionamiento del motor y el régimen instantáneo del turbogrupo, parece posible emplear éste para diagnosticar el primero. Más particularmente, la disminución en el combustible inyectado supondrá una merma en la energía disponible en la turbina, que deberá reflejarse en una bajada puntual en el régimen del turbogrupo.
- Diseño de un controlador en bucle cerrado que permita la corrección automática en tiempo real de los fallos de inyección y deriva de los inyectores.

1.3.2 Metodología

Un correcto planteamiento metodológico es condición indispensable para la consecución de los objetivos anteriormente presentados. En la figura 1.2 se esquematizan los pasos y tareas concretas a realizar dentro del marco del presente trabajo. A continuación se hace una descripción somera de los mismos y se relacionan con la estructura del presente documento. Nótese que aunque el proceso es lineal en su concepción, no lo es en absoluto en su ejecución, y serán requeridas diversas iteraciones hasta obtener los resultados deseados.

- Revisión bibliográfica. Con el fin de contextualizar el trabajo de investigación dentro del estado actual de la ciencia, se hace imprescindible una revisión exhaustiva que comprenda los principales puntos relacionados con el mismo. Más concretamente:
 - Soluciones actuales para la corrección de la regularidad de inyección entre cilindros, atendiendo tanto a las técnicas convencionales basa-

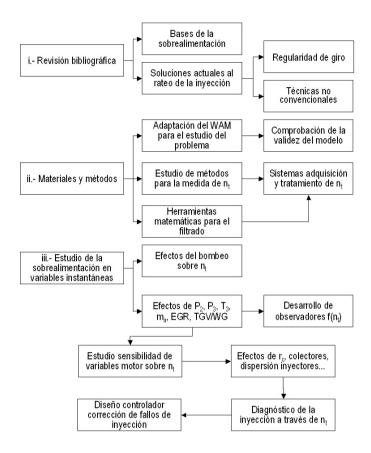


Figura 1.2. Planteamiento metodológico.

das en el estudio de la regularidad de giro del motor como a técnicas no convencionales. Estos aspectos se tratarán en el Capítulo 2.

• Estudio de las bases físicas que rigen la sobrealimentación. La expresión de estos principios por medio de ecuaciones matemáticas servirá de base para el estudio de la sobrealimentación en variables medias e instantáneas que se presenta en el Capítulo 5. Especial atención merecerán aspectos tan dispares como el bombeo del turbocompresor, el rendimiento de la turbina en flujo pulsante o la simulación del sistema motor mediante modelos de acción de ondas.

1.3 Sobre este libro

2. Materiales y métodos. Se hacen necesarias una serie de mejoras en las herramientas existentes en varios aspectos, como son:

- El uso de un modelo matemático para la simulación del acoplamiento motor-turbogrupo se perfila como una herramienta ideal para el desarrollo de sistemas de diagnóstico basados en fenómenos fluidodinámicos. Tal modelo permitirá una aproximación sencilla al problema así como la realización de estudios paramétricos y de sensibilidad de otra forma difíciles de realizar (relacionados, por ejemplo, con la dispersión entre diferentes cilindros en cuestiones como la relación de compresión, o a la influencia de la geometría de los colectores). El Departamento de Máquinas y Motores Térmicos de la Universidad Politécnica de Valencia cuenta con un modelo de acción de ondas (WAM) que ha sido empleado en múltiples trabajos de investigación previos. Sin embargo, se hace necesaria una validación previa que evalúe su adecuación al estudio de la sobrealimentación en variables instantáneas.
- La medida de la variación instantánea del régimen del turbogrupo, indispensable para la consecución de los objetivos planteados. El régimen del turbogrupo, aunque es habitualmente medido en entornos de investigación, no se muestrea a alta frecuencia. Tanto el ruido asociado a la medida propiamente dicha, como el efecto de la dispersión de fabricación de los álabes, influyen de forma no despreciable sobre dicha medida. Para minimizar el efecto de este ruido, se deben poner a punto herramientas de tratamiento y filtrado digital. Además, la necesidad de mantener la fase entre la medida del régimen del turbogrupo y el ángulo de giro del motor precisa desarrollar sistemas de sincronización entre ambas señales (en este caso el uso de un triquer externo no da resultados satisfactorios).

La descripción del principio de medida del régimen del turbogrupo y la exposición teórica de los principales problemas asociados se presentará en el Capítulo 3. Las instalaciones experimentales, así como los equipos específicos desarrollados en el marco del presente trabajo, se recogen en el Capítulo 4. También en ese capítulo se presentará brevemente el WAM y se justificará su validez para el estudio que se realiza más adelante.

3. Estudio de la sobrealimentación en variables instantáneas. En el Capítulo 5 se realiza una descripción de la sobrealimentación desde el

punto de vista teórico. El estudio comprende tanto el funcionamiento estable del compresor como la aparición de inestabilidades -o bombeodel turbocompresor. Generalmente la sobrealimentación se ha analizado atendiendo únicamente a los valores medios de las diferentes variables. En esta monografía se va más allá en escala temporal y se presenta la variación instantánea de la velocidad de giro del turbogrupo como consecuencia de las pulsaciones en las diferentes variables del motor, tales como presión de escape, temperatura de escape, presión de sobrealimentación, régimen de giro del motor, etc. Tales relaciones podrán emplearse para la generación de observadores, o sensores software, que permitan predecir algunas variables de funcionamiento del motor a partir de la variación del régimen del turbogrupo. La posibilidad y aplicación de tales estructuras completan el Capítulo 5. Una vez demostrada la relación entre las variables de funcionamiento del motor y el comportamiento del turbogrupo, en el Capítulo 6 se estudia el efecto global sobre el régimen de giro del turbogrupo del acoplamiento motor-turbogrupo. El estudio mediante el WAM permite determinar el efecto de la relación de compresión de los diferentes cilindros, de la geometría de los colectores de admisión y de escape y, principalmente, de la cantidad de combustible invectado en cada uno de los cilindros. El efecto de este último factor sobre el régimen instantáneo del turbogrupo se aprovechará para diagnosticar el proceso de invección-combustión. Además, se comprueba el efecto de diferentes fallos simultáneos y se analiza la posibilidad de linealizar el problema. Más aún, una vez establecida la linealidad del sistema, la adecuación del principio de diagnóstico para generar un controlador multivariable en bucle cerrado se presenta como consecuencia directa. Nótese la dualidad experimental-modelado que se ha seguido en el proceso. Así como en el Capítulo 5 se parte de una base física teórica y se generan estructuras matemáticas que serán comprobadas experimentalmente, en el Capítulo 6 el análisis se hace a través del WAM, evaluando también en simulación la validez del controlador multivariable desarrollado. Evidentemente esta forma de actuar precisa de un paso intermedio del que ya se ha hablado anteriormente: la comprobación de validez del modelo. Finalmente, y para asegurar su aplicabilidad, los resultados obtenidos deberán comprobarse experimentalmente y a tal efecto se dedica el Capítulo 7.

Finalmente en el Capítulo 8 se realiza un compendio de las principales aportaciones y resultados de la presente monografía, así como se plantean los