Bojidarka Ivanova / Michael Spiteller

Mass spectrometric study of randomly acetylated cyclodextrins and their associates.A stochastic dynamic approach

Academic Paper

YOUR KNOWLEDGE HAS VALUE

- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography; detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased or as strictly permitted by applicable copyright law. Any unauthorized distribution or use of this text may be a direct infringement of the author s and publisher s rights and those responsible may be liable in law accordingly.

Imprint:

Copyright © 2020 GRIN Verlag ISBN: 9783346254733

This book at GRIN:

https://www.grin.com/document/925353

Mass spectrometric study of randomly acetylated cyclodextrins and their associates. A stochastic dynamic approach

GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by students, college teachers and other academics as e-book and printed book. The website www.grin.com is an ideal platform for presenting term papers, final papers, scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com

MASS SPECTROMETRIC STUDY OF RANDOMLY ACETYLATED

$\label{eq:cyclodextring} CYCLODEXTRINS AND THEIR ASSOCIATES - A STOCHASTIC DYNAMIC$

APPROACH

By Bojidarka Ivanova^{*}, Michael Spiteller

PREFACE

A work on nonsubstituted cyclodextrins does illustrate persuasively the applicability of our innovative stochastic dynamic formulas connecting among measurable outcome *intensity*, analyte concentration in solution, the *temperature* and molecular properties to quantify and determine 3D structurally analytes. They bridge the gap between theory and experiment, in developing highly selective, sensitive, accurate and precise methods for quantification and exact 3D structural analytes by *mass spectrometry*. In this work, we will explore the same theoretical framework considering significantly more complex macromolecular objects of randomly acetylated derivatives of β - and γ -cyclodextrins as well as their noncovalent bond interacting self-associates (m/z 1400–1900.) The relationship between statistical parameter A_i of the SineSqr fitting of experimental relationship ($I-\langle I \rangle$)² = f(t) and diffusion parameter is tested (Aⁱ = (m.Dⁱ_{SD})/{-(ln((k_B.T)/m)³.(2.T. Δ t.k_B)}.) An approximation to A_i simplifies further our basic equation yielding to formula: D[']_{SD} \approx 1.3194.10⁻¹⁷.($\langle I^2 \rangle - \langle I \rangle$)² is also tested. The experimental proof of these model equations is presented, as well.

TABLE OF CONTENT

		Page
	PREFACE	3
	ACKNOWLEDGMENTS	7
	ABBREVIATIONS	9
1.	INTRODUCTION	11
2.	EXPERIMENTAL	19
2.1.	Materials and methods	19
2.2.	Sample preparation for ESI- and APCI-MS measurements	19
2.3.	Determination of statistical parameters accuracy and precision	20
2.4.	Determination of statistical parameters repeatability and reproducibility	20
2.5.	Chemometrics	20
2.6.	Theory/computations	20
2.6.1.	Stochastic dynamic theory and model formulas	20
2.6.2.	Quantum chemical computations	26
2.7.	Experimental design	27
3.	RESULTS	29
3.1.	Figures of merit	29
3.2.	Mass spectrometric data	32
3.2.1.	Assignment of fragment ions of randomly acetylated Ac- β - and Ac- γ -	32
	cyclodextrins	
3.2.1.1.	Fragment ions within low <i>m/z</i> -values	32
3.2.1.2.	Fragment ions within high <i>m/z</i> -values	37
3.2.1.2.1.	Self-associates of nonsubstituted cyclodextrins	37
3.2.1.2.2.	Self-associates of randomly acetylated cyclodextrins	39

3.2.2.	Determination of mass spectrometric diffusion parameters and correlative analysis with the quantum chemical diffusion data	42
3.2.3.	Temperature dependency of the stochastic dynamic diffusion parameters	47
3.2.4.	Functional relationship of the stochastic dynamic diffusion parameters and	48
	the statistical parameters within the framework of the empirical modification	
	of the characteristic function diffusion	
4.	DISCUSSION	53
	CONCLUSION	59
	REFERENCES	63
	APPENDIX A (Chemometrics)	73
	APPENDIX B (Experimental mass spectrometric data)	95
	APPENDIX C (Theoretical quantum chemical data)	113

ACKNOWLEDGMENTS

The authors thank the *Deutsche Forschungsgemeinschaft* for the grant 255/22-1; the *Alexander von Humboldt Stiftung*; the *Deutscher Akademischer Austausch Dienst* for grant within priority program *Stability Pact South-Eastern Europe*; central instrumental laboratories for structural analysis at Dortmund University of Technology, and analytical, respectively, computational laboratory clusters at the Institute of Environmental Research, therein.

The contribution was carefully carried out. Nevertheless, authors and publisher do not warrant the information to be free of errors. It is being published in English aiming at a widest access to the scientific information. English is not native language of the authors; thus, stylistic rough edges might occur. The authors hope for understanding of the reader.

Conflicts of interest

Michael Spiteller has received research grant (255/22-1, DFG); Bojidarka Ivanova has received research grant (255/22-1, DFG).

Address correspondence to the authors:

Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Deutschland.

Keywords:

Mass spectrometry; diffusion; quantum chemistry; stochastic dynamics; acetylated cyclodextrins

ABBREVIATIONS

ANOVA	Analysis of variance
APCI	Atmospheric pressure chemical ionization (mass spectrometric method)
BO	Born-Oppenheimer
CB	Carbohydrates
CD	Cyclodextrins
CID	Collision induced dissociation (mass spectrometry)
СМ	Concentration of the analyte in solution
DFT	Density functional theory
D _{QC}	Quantum chemical diffusion parameter
D _{SD}	Stochastic dynamic diffusion parameter
ESI	Electrospray ionization
GS	Ground state
Ι	Intensity (mass spectrometric outcome)
ICR	Ion cyclotron resonance
LM	Local minimum
LMW	Low-molecular weight (analytes)
MALDI	Matrix-assisted laser desorption/ionization (mass spectrometry)
MD	Molecular dynamics
MS	Mass spectrometry
PES	Potential energy surface
RT	Retention time
SD	Stochastic dynamics
sd(yEr±)	Standard deviation
se(yEr±)	Standard error