Lateefat Aselebe

Reacting System of Boundary Layer Flow of CuO-Oil-Based Nanofluid with Heat Generation through a Vertical Permeable Surface

Doctoral Thesis / Dissertation

YOUR KNOWLEDGE HAS VALUE

- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography; detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased or as strictly permitted by applicable copyright law. Any unauthorized distribution or use of this text may be a direct infringement of the author s and publisher s rights and those responsible may be liable in law accordingly.

Imprint:

Copyright © 2022 GRIN Verlag ISBN: 9783346826763

This book at GRIN:

https://www.grin.com/document/1333582

Lateefat Aselebe

Reacting System of Boundary Layer Flow of CuO-Oil-Based Nanofluid with Heat Generation through a Vertical Permeable Surface

GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by students, college teachers and other academics as e-book and printed book. The website www.grin.com is an ideal platform for presenting term papers, final papers, scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com

REACTING SYSTEM OF BOUNDARY LAYER FLOW OF CuO-OIL-BASED NANOFLUID WITH HEAT GENERATION THROUGH A VERTICAL PERMEABLE SURFACE

ASELEBE Lateefat Olanike (AAA1700149) B. Tech. (Hons.) Pure and Applied Mathematics, M. Tech. Applied Mathematics (LAUTECH)

A Ph.D Thesis Submitted to

THE DEPARTMENT OF PURE AND APPLIED MATHEMATICS, FACULTY OF PURE AND APPLIED SCIENCES, LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY, OGBOMOSO

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN APPLIED MATHEMATICS OF LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY, OGBOMOSO, NIGERIA

OCTOBER 2022

CERTIFICATION

This Thesis titled Reacting System of Boundary Layer flow of CuO-Oil-Based Nanofluid with Heat Generation through a Vertical Permeable Surface submitted by ASELEBE Lateefat Olanike was carried out under my supervision in the Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso.

•••••••••••••••••

•••••••• Date

Supervisor Prof. O. A. Ajala, B.Tech., M.Tech., Ph. D. Professor of Mathematics Department of Pure an Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

ATTESTATION

I hereby attest that this research work was carried out in the Department of Pure and

Applied Mathematics, Faculty of Pure and Applied Sciences, Ladoke Akintola University

of Technology, Ogbomoso, Nigeria.

•••••• Head of Department

•••••••••••

Date

Dr. R. A. Oderinu, B. Tech., M. Tech., Ph. D. Senior Lecturer Department of Pure and Applied Mathematics Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

ACKNOWLEDGEMENT

In the name of Allah, to whom I owe all my sincere gratitude for making it possible for me to accomplish my Doctor of Philosophy (Ph.D.) degree in Mathematics and for His guidance and blessing over me. I adore him and glorify His name.

Also, I am extremely grateful to my amiable Supervisor, Prof. O. A. Ajala, in the Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology Ogbomoso, for his suggestions, constructive criticisms, time and materials which served as an impulsion towards making this study a success. I pray that the Almighty Allah will bless and protect his family.

My appreciation also goes to the Head of the Department, Dr. R.A. Oderinu for his contributions towards making this thesis a success. My profound gratitude goes to the lecturers in the Department of Pure and Applied Mathematics; Prof. A. T. Oladipo, Prof. A.W Ogunsola, Prof S.O Adewale, Prof (Mrs) T.O Oluyo, Dr. S. Olaniyi, Dr. O.A Adepoju, Dr. S Alao, Mr. O. E. Opaleye, Mr. O. A. Akindele, Mr. P. Adegbite, Mr. S. F Abimbade, and last but not least, Mrs. A.A Oyewumi.

I sincerely appreciate the efforts of Dr. P.I. Farayola, the Dean of School of Science, Emmanuel Alayande College of Education, Oyo, for his support throughout this study; I pray that God bless him and his family.

My deep appreciation goes to Dr. Adeyemi Moses, Mr. Muslim Taiwo, Mr. Afolabi Muritala, Mr. Omoloye Abayomi for their useful information provided during the programme. My special thanks go to my parents Late Pa G.O Badrudeen and Mrs M.O Badrudeen; I appreciate my siblings as well. Thank you and God bless you all.

I really appreciate my loving and caring Husband Dr. K.O. Aselebe for his support both financially and spiritually. Darling I really appreciate you and I pray that the almighty God protects and guides us. And also my Children Mariam, Aishat and Abubakar for their support, may the God almighty increase them in wisdom, knowledge and understanding.

ABSTRACT

The loss of energy in any thermo-dynamical system has been a challenge to power generating industries in recent times. It becomes necessary to control the factors responsible for this in order to prevent the engines from breaking down. The heat carrier fluids like water, oil, ethylene glycol etc. are useful in heat transfer but their performances are limited due to their low thermal conductivities. Nanofluids are known to enhance heat transfer properties better than conventional heat carrier fluids. The flow and heat transfer performance of nanofluids are highly influenced by their thermo-physical properties. This study, therefore, investigated the reacting system of boundary layer flow of CuO-oil-based nanofluids with heat generation through a vertical permeable surface.

The physical system was modeled into a system of Partial Differential Equations (PDEs) denoted as continuity, momentum, energy and concentration equations which were further simplified into a system of coupled nonlinear Ordinary Differential Equations (ODEs) by using suitable similarity variables. The considered nanofluids consisted of CuO as nanoparticles and engine oil as base fluid. During the analysis, the flow was considered to be steady, incompressible and two dimensional. Two cases were considered for the thermo-physical properties of nanofluids, viz-a-viz: temperature and concentration-dependent thermo-physical properties of CuO-Oil-based nanofluids with the physical parameters of viscosity variations (α, γ), specific heat (ξ, Σ), density (ϖ, Λ), thermal conductivity (ω, Ω), heat generation (δ), Brownian motion (Nb), thermophoresis (Nt), Suction (S), Grashof number (Gr), Biot number (Bi), Brinkmann number (Br), Chemical reaction (R), Permeability (K^*) and Prandlt number (Pr) at the free stream temperature T_{∞}

which moves over the right surface of the plate with a uniform free stream velocity U_{∞} . The resulting equations were solved numerically using fourth order Runge-Kutta method implemented on MAPLE 18.0 software. The velocity $f'(\eta)$, temperature $\theta(\eta)$ and concentration $\phi(\eta)$ profiles, skin friction coefficient $f''(\eta)$, Sherwood number $\phi'(\eta)$ and Nusselt number $\theta'(\eta)$ were examined for some associated physical parameters of CuO-Oil-based nanofluids and were presented via graphs and tables.

Results showed that as Gr, δ , ϖ , α , Λ , Ω , ω , γ , S, and φ increased the velocity profile increased and increase in K^* and Pr decreased the velocity profile in the two cases. The temperature of CuO-Oil based nanofluid increased as Ω , ω , K^* , and δ increased, but decreased as S, ϖ , Λ , ξ , Σ , α , γ and Pr increased. Furthermore, $f''(\eta)$ increased as ϖ , ω , γ , Λ , α , Ω , K^* and φ increased, but decreased as S and δ increased. $\theta'(\eta)$ increased as S, Ω , ω , φ and δ increased but decreased as ϖ , Λ and K^* increased. Also $\phi'(\eta)$ increased as K^* , δ and φ increased but decreased as S, ξ , Σ , ω , Ω increased.

In conclusion, combining some thermo-physical properties like thermal conductivity, viscosity, specific heat and density of CuO-oil-based nanofluids influenced the rate of flow of the fluid as well as the heat and mass transfer significantly. It also has the potential to reduce friction, fuel consumption and overheating of the engine which tends to prolong its life span.

TABLE OF CONTENTS

Title p	age	i
Certification		ii
Attesta	ation	iii
Ackno	wledgements	iv
Abstra	ict	vi
Table	of contents	viii
List of	table	xi
List of	figures	xii
Nome	nclature	xv
CHAF	PTER ONE	
INTR	ODUCTION	
1.1	Background of the Study	1
1.2	Statement of the Problem	4
1.3	Justification/ Motivation	4
1.4	Aim and Objectives	5
	1.4.1 Aim	5
	1.4.2 Objectives	5
1.5	Scope of the study	6
CHAF	PTER TWO	
LITE	RATURE REVIEW	
2.1	Definition of terms	7
	2.1.1 Heat	7

	2.1.2 Heat Transfer	9	
2.2	Metal and Their Properties	12	
2.3	Lubrication	13	
2.4	Porous Channel	13	
2.5	Nanofluids	14	
2.6	Differential Equation	14	
2.7	Initial and boundary value problems	15	
2.8	Steady and unsteady flow	15	
2.9	Governing Equation of Fluid	15	
2.10	Review of Some Works on Porous Media	24	
2.11	Review of Some Works on Chemically Reacting Systems	25	
2.12	Review of Some Works on Nanofluids	26	
2.13	Review of Thermophoresis and Brownian motion	27	
2.14	Review of Some Works on the Density	30	
2.15	Review of Some Works on the Specific heat capacity	30	
CHAPTER THREE			

METHODOLOGY/MATHEMATICAL FORMULATION

3.1	Research Methodology	32
3.2	Governing Equation	32
3.3	Case 1: Temperature dependent thermo physical properties	49
3.4	Case 2: Concentration of particles dependent thermo physical properties	52
3.5	Numerical procedure	58
3.6	Shooting method of boundary value problem	58

3.7	The Ru	unge-Kutta	60
СНАР	TER F	OUR	
RESU	LTS A	NS DISCUSSION	
4.1	Numer	rical Results	62
	4.1.1	Results for temperature dependent Thermo-physical properties	
		(case 1) on Nusselt number, Sherwood and skin friction	66
	4.1.2	Discussion of Results of case 1	92
	4.1.3	The Results of Concentration of Nanoparticles dependent	
		thermo-physical properties (case 2) on Skin Friction, Nusselt	
		Number and Sherwood Numberat the Plate	99
	4.2	Discussions of Results	134

CHAPTER FIVE

CONCLUSION, RECOMMENDATIONS AND CONTRIBUTIONS TO

KNOWLEDGE

REFERENCES		
5.3	Contributions to Knowledge	128
5.2	Recommendations	128
5.1	Conclusion	127

APPENDIX

LIST OF TABLES

Table		Page
4.1	Computations showing comparison	_63
4.2	Showing the values of case 1 on skin friction, Nusselt number and Sherwood numbers	64
4.3	Showing the values of skin friction, Nusselt and Sherwood numbers	
	for case 2	110

LIST OF FIGURES

Figure		Page
4.1	Velocity profile varying Grashof number, Gr	68
4.2	Velocity profile varying Viscosity parameter, α	69
4.3	Velocity Profile for varying values of thermal conductivity of CuO	
	oil-based nanofluid	70
4.4	Velocity Profile for varying values of Volume fraction, φ of CuO	
	oil-based nanofluid	71
4.5	Velocity profile varying Permeability parameter, K^*	72
4.6	Velocity profile varying Hartman number parameter	73
4.7	Velocity profile varying Density parameter, ϖ	74
4.8	Velocity profile varying specific heat capacity parameter ξ	75
4 .9	Velocity profile varying Prantl number parameter, Pr	76
4.10	Velocity profile varying Heat generation parameter, δ	77
4.11	Velocity profile varying Suction, S	78
4.12	Temperature profile varying Permeability parameter, K^*	79
4.13	Temperature profile varying Suction, S	80
4.14	Temperature Profile for varying values of Volume fraction, φ of CuO	
	oil-based nanofluid	81
4.15	Temperature profile varying Viscosity variation parameter, α of CuO	
	nanoparticles	82
4.16	Temperature profile varying Density parameter, ϖ	83
4.17	Temperature profile varying Heat generation parameter, δ of CuO	
	oil based nanofluid	84