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Kurzfassung

Motivation: Die Beriicksichtigung von Finite Elemente (FE) Strukturen in der Mehrkor-
persimulation (MKS) hat sich zu einer etablierten Methode entwickelt, sofern die Anzahl
der Krafteinleitungspunkte moderat bleibt. In den letzten Jahren gibt es Bestrebungen
auch verteilte Lasten, wie sie zum Beispiel durch den Kontakt zweier Koérper entstehen, in
der MKS zu beriicksichtigen. Bei fein vernetzten FE Strukturen ergeben sich somit sehr
viele mogliche Krafteinleitungspunkte. In so einem Fall versagen die herkémmlichen Me-
thoden und fithren zu exorbitant hohen Rechenzeiten. Im letzten Jahrzehnt wurden An-
sitze zur reduzierten Berechnung der Verformungen in einem verteilten Krafteinleitungs-
gebiet vorgestellt. Dabei kommen spezielle Ansatzvektoren zum Einsatz, die hier , lokale
Moden“ genannt werden. Diese lokalen Moden fiithren zu einer Reduktion der involvierten
Gleichungen um mehrere Gréflenordnungen. Allerdings werden bei sehr grofien potentiellen
Krafteinleitungsgebieten immer noch sehr viele lokale Moden benétigt, beispielsweise meh-
rere tausend. Da jeder lokale Mode zu einer Differentialgleichung fithrt, ist mit tiblichen
Methoden eine schnelle numerische Zeitintegration nicht moglich. In dieser Arbeit werden
zwei methodische Weiterentwicklungen vorgeschlagen, um derartige Systeme schnell und

genau in der Zeit zu integrieren.

Ergebnisse: Der erste Vorschlag zur Effizienzsteigerung betrifft die numerische Zeitintegra-
tion mit vielen lokalen Moden. Derartige Moden zeichnen sich durch eine hohe Steifigkeit
aus. Die entsprechenden Differentialgleichungen werden deshalb separat von den nicht-
steifen Gleichungen integriert. Dabei kommt auch eine optimalere Integrationsmethode
zum KEinsatz. Der zweite Vorschlag zur Effizienzsteigerung betrifft die Berechnung der ver-
teilten Kréafte. Es war bisher iiblich, diese auf Basis von FE Knotengréflen zu berechnen.
Damit ergeben sich zwangslaufig viele Gleichungen. Als deutlich effizientere Alternative
wird eine allgemeine Methode zum Aufbau eines reduzierten Gleichungssystems vorgeschla-

gen. Man spricht dann von Hyperreduktion.

Nutzen: Mit Hilfe der vorgeschlagenen Methoden ist es beispielsweise moglich, den Kontakt
zwischen zwei flexiblen Kérpern in der MKS schnell und genau zu beriicksichtigen. Verfor-
mungen und Spannungen haben die gleiche Qualitit wie die FE Methode. Die Rechenzeiten
sind so niedrig, dass Probleme, die bisher als wirtschaftlich nicht rechenbar eingestuft wur-

den, mit geringen Rechenzeiten simuliert werden kénnen.

Schlagworter: Flexible Mehrkorperdynamik, Floating Frame of Reference Formulation,

Numerische Zeitintegration, Reduktion, Hyper-Reduktion, Kontaktmechanik



Abstract

Motivation: The consideration of Finite Element (FE) structures in multibody simulation
(MBS) has become an established method, especially when the number of force application
points remains moderate. In recent years, a trend can be observed in which distributed
loads are considered as well, such as those arising from the contact of two elastic bodies.
For finely-meshed FE structures, this results in a large number of possible force application
points. In such a case, conventional methods fail, leading to exorbitantly high computation
times. In the last decade, approaches for the reduced computation of deformations inside
distributed load application areas were introduced. Special approach vectors are used,
called ‘local modes’ here. These local modes lead to a reduction in the involved equations
by several orders of magnitude. However, for very large potential load application areas, a
large number of local modes is still required—for example, several thousand. Since each
local mode leads to a differential equation, a fast numerical time integration is not possible
with common methods. In this work, two methodological improvements are proposed for a

fast and accurate time integration of such systems.

Results: The first proposal to increase efficiency concerns numerical time integration with
many local modes. Such modes are characterized by a high stiffness. It is proposed to
integrate the corresponding differential equations separately from the non-stiff ones. In
addition, a more efficient integration method is suggest as well. The second proposal con-
cerns the computation of the distributed forces. Till now, it was common practice to com-
pute them on the basis of FE node quantities, which results in many equations. As a much
more efficient alternative, a general method for the construction of a reduced system of

equations is proposed. This is called hyper-reduction.

Benefit: Using the proposed methods, it is efficiently possible to consider contact between
two flexible bodies in the multibody simulation. Deformations and stresses have the same
quality as when the FE method is used. The short computation times enable the simulation

of problems that were previously considered to be economically non-computable.

Keywords: Flexible Multibody Simulation, Floating Frame of Reference Formulation,

Numerical Time Integration, Hyper Reduction, Reduction, Contact Mechanics
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1 Introduction

Multi-body system (MBS) simulation has become an established numerical tool in engi-
neering science and in industry for predicting the motion of a system of solid bodies. These
bodies can be rigid or flexible and interact with each other and the environment via forces
and constraints. An established method for describing a deformable solid body is the so-
called Floating Frame of Reference Formulation (FFRF). Here, deformations are described
with the help of trial functions in a co-moving coordinate system. For the common case
that the elastic body is modelled with the Finite Element Method (FEM), trial vectors are
used instead of trial functions. These are often also called modes. In general, this is not
correct. However, this term has become so common that the expressions ‘trial functions’,
‘trial vectors’, and ‘modes’ are also used synonymously in this work. With the help of such
modes, the set of mathematical equations is reduced from the number of Finite Element
(FE) nodal degrees of freedom (dof) to the number of modes. This is called model order
reduction (MOR) or substructuring; it enables numerical time integration with reasonable
computation times even for complex-shaped and flexible bodies. Common suggestions for
proper modes focus on the correct representation of global deformations, as well as local
deformations at single concentrated force application points. A typical example of such a
situation is the multi-body simulation of a vehicle with an FE model of the car body. In
this case, at all points where the chassis and drivetrain are connected to the car body, such
concentrated force application points are required. It is obvious that the number of these
points remains manageable. Since for each dof of these force application points, a trial
vector is necessary, the total number of trial vectors results from the sum of these node dof
and the number of vibration modes considered. This number is also the size of the system
of differential equations for describing the flexible deformation. A typical order of magni-
tude is 10 to 50, at most 100 to perhaps 500, enabling efficient time integration. Summary
publications in respect of the history, modelling, and numerical time integration of such
flexible multibody systems can be found, for example, in Schielen (1997, 2005), Shabana
(1997), Wasty and Noor (2003), Wittenbrug (2008), Bauchau (2011) and Shabana (2013).

In recent years, there has been a trend to consider not only concentrated forces, but also
widely distributed loads with trial vectors. These loads are mostly dependent in a nonlinear
way on the state of the elastic body, and possibly also on another elastic body. A highly
relevant example would be contact forces acting between flexible bodies. Witteveen and
Irschik (2009), Witteveen and Pichler (2014), Géradin and Rixen (2015), and Pichler, Wit-

teveen, and Fischer (2017a and 2017b) propose specific trial vectors to represent small-



sliding contact in joints. In the case of finite sliding contact, Sherif (2012) and Sherif,

Witteveen, Holl, Irschik, and Mayrhofer (2013) propose suitable trial vectors. An applica-

tion for elastohydrodynamic contact between piston and cylinder is reported by Koller,

Witteveen, Pichler, and Fischer (2020). The latter’s examples deal with surface loads

whereas, for example, Tiso, Jansen, and Abdalla (2011) report on an application to distrib-

uted internal forces, specifically geometric nonlinearities, see section 2.2.2 for more litera-

ture on that.

This trend towards accounting for spatially distributed effects using trial vectors has at

least three consequences that are very unfavourable for efficient time integration:

(1)

(3)

Under certain circumstances, many additional modes are necessary to represent a local
load effect occurring in a large area of potential contact. This is the case for many
contact problems. Sherif (2012) provides an illustrative example where two rollers roll
on top of each other. An accurate representation of the deformations on the entire
roller surface because of the contact with the other roller, several thousand (!) addi-
tional trial vectors are necessary for each roller. The reduction of the number of equa-
tions from several hundred thousand nodal dof to several thousand modes per roller is
considerable, but numerical time integration with reasonable computation times is still
not possible with the current methods. Many additional trial vectors for the represen-
tation of local deformations, therefore, lead to many degrees of freedom in the numerical
time integration.

Trial vectors representing local deformations have very high stiffness. Vibration modes
representing global deformations, on the other hand, have very low stiffness. Hence,
the resultant system of differential equations is very stiff, which is a challenge for nu-
merical time integration.

Usually, the distributed forces (or stresses) have to be calculated on the basis of the
FE nodal displacements. This is because the corresponding field equations are formu-
lated in the FE nodal domain. This means that for each iteration step of the time
integration, the state of all the FE nodes involved has to be reconstructed. The corre-
sponding equations are then solved for all involved nodal dof. Finally, the nodal forces
need to be projected back into the subspace of the trial vectors. In other words, the
time integration is performed in a reduced space, but not the computation of the loads.

Hence, the load computation becomes a bottleneck with respect to the simulation time.



1.1 Motivation

The previous outlined trend to describe distributed loads via trial vectors in the multi-
body simulation leads to long computation times when conventional approaches are used.
Though these computation times are still significantly shorter than those of the nonlinear
FEM, the question of economic efficiency arises more and more with the increase in the

number of modes.

1.2 Goal

The goal of this work is to introduce methods that lead to significant computational time
savings without losing result quality, when many modes are required for the computation

of distributed nonlinear loads.

1.3 Outline

This work can be roughly divided into three parts:

I.  In the first part (sections 2 and 3), the basics are recapitulated. Section 2 provides
a brief overview of model reduction via projection. The derivation of the equations
of motion of a flexible body in the FFRF is outlined in section 3. In section 4,
special attention is paid to those parts of the equations of motion that hold the
body’s compliance.
II.  In the second part (section 4), a numerical time integration method is proposed
that is CPU time-efficient and accurate, even in the presence of many modes.
II.  The third part (sections 5 to 7) is devoted to the optimized computation of nonlin-
ear forces. After explaining the basic idea of using stress modes in section 5, two
concrete methods for efficient load computation are proposed: Semi-hyper-reduction

(section 6) and hyper-reduction (section 7).
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2 Brief review on model reduction of finite element structures
via projection

Model order reduction is a key issue when the dynamic of Finite Element (FE) models is
investigated. It is concerned with the question whether a system with a large number of
degrees of freedom (dof) nre can be accurately represented by a transformed system of the
size ny with ny << ngg. An introduction and general reviews on this topic can be found in
Noor (1994), Meirovitch (1980), Zu (2004) and de Klerk, Rixen and Voormeeren (2008) for
general reviews and introduction on this topic. Since the 1950s a lot of reduction methods
have been proposed. The first publications dealt with linear systems. After some time,
proposals for systems with nonlinear behavior followed. In many of those publications, the
displacement or deformation dof at which forces or torques act play a special role. There-

fore, from now these dof are named either input dof or interface dof.

2.1 Linear FE models

The content of this section has been published in a very similar way in Witteveen (2012).

2.1.1 Introduction

For linear elastic structures with a moderate number of input dof, mode based reduction
methods, like Component Mode Synthesis (CMS) have been developed to very reliable
standard tools. An overview of the family of CMS methods can be found in Craig (1987)
and in Craig (2000). Another, more recently published review has been done by de Klerk,
Rixen and Voormeeren (2008). All CMS variants have in common, that the reduction base
is formed by vibration modes and static deflection shapes. The latter ones are often ob-
tained by static loads acting on the interface dof. In the last years some effort has been
made in order to adapt model reduction methods for mechanical structures which come
originally from control engineering, namely moment matching (MM) and balanced trunca-
tion (BT). In contrast to CMS where the trial vectors have a physical meaning, the latter
two methods are based on mathematical considerations. A more detailed introduction into
MM which is also known as ‘Krylov subspace method’ can be found in Lehner and Eberhard
(2006), Craig and Su (1991), Benner (2012) and Lohmann and Salimbarhrami (2004). For
an introduction to BT the interested reader is referred to Meyer and Srinivasan (1996),

Reis and Stykel (2008), Benner and Saak (2011) and Yan, Tan and Mc Gaugy (2008). The
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