Mohamed Maher

Ethernet passive optical networks erformance optimization.An extensive comparative study for DBA algorithms

Passive Optical Network

Master's Thesis

G R I N 😇

YOUR KNOWLEDGE HAS VALUE

- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography; detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased or as strictly permitted by applicable copyright law. Any unauthorized distribution or use of this text may be a direct infringement of the author s and publisher s rights and those responsible may be liable in law accordingly.

Imprint:

Copyright © 2021 GRIN Verlag ISBN: 9783346477545

This book at GRIN:

https://www.grin.com/document/1066406

Ethernet passive optical networks erformance optimization. An extensive comparative study for DBA algorithms

Passive Optical Network

GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by students, college teachers and other academics as e-book and printed book. The website www.grin.com is an ideal platform for presenting term papers, final papers, scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com EPON performance optimization: An extensive comparative study for DBA algorithms

Mohamed Ahmed Maher Awad

ACKNOWLEDGEMENTS

I am very grateful to **ALLAH** Subhanahu WaTa'ala who gave me an excellent family to live with and provided me the environment where I could finish my M.Sc. and without whose will it would have been impossible to complete my degree.

Second only to ALLAH, thanks to my parents Mr. A.Maher Awad and Mrs. Nadia for what they have contributed towards my education. Their unconditional love, continuous support, great advice and prayers over the years are something that I cannot thank them for enough. Additionally, knowing that my success in completing my M.Sc. would be a source of happiness for them, I was further motivated to work hard.

I must also thank my supervisors **Prof. Dr. Moustafa Hussein** and **Dr. Nazmi Azzam** for their continuous guidance and support.

My deepest appreciation goes to my advisor **Prof. Dr. Moustafa Hussein** for his active contribution to refining my research work and filling in the gaps. At times, when things looked difficult, he was the one who gave me hope. Whether it was studying existing research or writing articles, he was there to listen to my concerns, review the material, provide feedback and show direction.

Similarly, I thank **Dr. Nazmi Azzam** for his support in improving my understanding of the all-optical network background and his suggestions during the research.

I would also like to thank my wife **Mrs. Nadeen** for her great support to me, and thank **Eng. Ahmed Yossry** from AAST Alexandria, Egypt, and **Eng. Mohamed Tarek Hawel** for fruitful discussions.

Finally, I gratefully acknowledge the staff of the Electronics and Communications Engineering Department for providing me with support and convenience during my studies at the Arab Academy for Science, Technology and Maritime Transport.

ABSTRACT

Dynamic bandwidth allocation in Ethernet passive optical networks (EPON) presents a key issue for providing efficient and fair utilization of the EPON upstream bandwidth while supporting the quality of service QoS requirements of different traffic classes. Rare literatures have addressed a qualitative and quantitative comparison of large numbers of DBA algorithms based on their performance indicators.

This thesis provides a detailed comparison and a classification study for a large number of DBA algorithms with respect to time delay and throughput as performance indicators. The study shows that IPACT WITH CBR, UDBA, IPACT with two stages and CPBA are the optimum DBA algorithms regarding both time delay and throughput at highly loaded scenarios.

These algorithms are enrolled in a parametric optimization process targeting performance enhancement at highly loaded scenarios this increasing upstream line rates, changing distance between the OLT (Optical Line Terminal) and ONU (Optical Network Unit), increasing size of an Ethernet packet and changing maximum cycle time to 1 ms and altering guard time value).

This process reduces time delay around 3.5% for IPACT WITH CBR, 1.725% for UDBA, 1.167% for IPACT with two stages and (1.167% for CPBA. Also, the optimization increases the throughput by 1.3% for IPACT WITH CBR, 1.795% in UDBA, 2.5% for IPACT with two stages and 1.684% for CPBA.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF SYMBOLS	vii
LIST OF ABBREVIATIONS	viii
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF PUBLICATIONS	xii

CHAPTER 1	INTRODUCTION	
1 1	History	

1.1	History	1
1.2	Objective of Thesis	4
1.3	Organization of Thesis	4

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1	Introduction	5
2.1.1	Traffic Growth	5
2.1.2	Evolution of the "First Mile"	6
2.1.3	Next-Generation Access Network	7
2.2	Overview of PON Technologies	9
2.2.1	Optical Splitters/Combiners	9
2.2.2	PON Topologies	10
2.2.3	WDM vs. TDM PONs	12
2.2.4	Burst-Mode Transceivers	14
2.3	Ethernet PON (EPON) Access Network	16
2.3.1	Why Ethernet?	16
2.3.2	Principle of Operation Ethernet PON	17
2.4	BANDWIDTH ALLOCATION	21
2.4.1	DBA METHODS	22
2.4.1.1	DBA Algorithms without QoS Support	24
2.4.1.2	DBA Algorithms with QoS Support	25
2.4.1.2.1	DBA Algorithms with QoS Support locally	25
2.4.1.2.2	DBA algorithms with QoS support globally (universally)	31

CHAPTER 3 BASIC MODEL AND ANALYSIS

3.1	Introduction	33
3.2	Time Delay	34
3.3	Throughputs	34
3.4	Basic Model	35
3.5	Mathematical model	38
3.5.1	Arishtat- Limited Service IPACT- FSD-SLA	38
3.5.2	CDBA-IPACT	39
3.5.2.1	CDBA Principle	39
3.5.3	EBDBA-YDBA-SDBA-ADBA	41
3.5.4	CPBA- IPACT with two stages- IPACT with CBR credit	42
3.5.5	e-DBA n-DBA	44
3.5.6	TLBA-Two Stage Queue	45
3.5.7	IFLDBA- BP	46
3.5.8	UDBA-MSARF-CPBA SLA	48

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Introduction	50
4.2	Simulation	51
4.3	Throughput Performance	72
4.4	Time delay performance	74
4.5	Selection of optimum DBA algorithms	80
4.6	Optimization Process	82

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1	Introduction	87
5.2	Conclusion	87
5.3	Future Work	88

LIST of SYMBOLS

ø	
Å	Amount of bit rate for ONU to OLT (Mb/s)
B^M	Minimum guaranteed bandwidth
B_{req}	Requested bandwidth
B _{excess}	Excessive bandwidth
\mathbf{B}_{eth}	Ethernet overhead in bits
\mathbf{B}_{req}	REPORT/GATE message size in bits
$b_{i,c}^{fix}$	Fixed bandwidth
$b_{i,c}^{\min}$	Minimum guaranteed bandwidth
$b_{i,c}^{\max}$	Maximum bandwidth limitation
$D_i^{ONU}(t)$	Measure of maximum time (delay time)
Ð	Distance between OLT and ONUs (km)
D _{GRANT}	Delay for GRANT
D _{IPACT}	Delay in IPACT
D _{POLL}	Delay for POLL
D _{QUEUE}	Delay for QUEUE
E	Ethernet overhead (bits)
Gci	Total window size granted
N	Number of ONUs
Nci	Number of ONUs in class <i>i</i>
Р	Packet size (bits)
R_{bps}	Transmission speed of the EPON
Ř	Request message size (bits)
R_T	Total upstream bandwidth.
Ri	Requested window size of class <i>i</i>
R_U	Upstream data rate in bits per second
T_{cycle}	cycle time
T_{g}	Guard intervals
TCm	Max cycling time (ms)
W	Windows size for report message (Byte)
W _{max}	Maximum data transmission window size in packets
\prod_{i}^{ONU}	Payoff amount that ONU _i declares as its request for the bandwidth
α	Weight factor
β	Function of parametric bid
ß	Buffer size (M byte)
$\lambda_{\rm s}$	Separate wavelength
	-

LIST of ABBREVIATIONS

AAL	ATM Adaptation Layer
AF	Assured Forwarding
ATM	Asynchronous Transfer Mode
AWG	Arrayed Waveguide Grating
BE	Best Effort
BG	Bandwidth Guaranteed
CAC	Call Admission Control
CM	Cable Modem
СО	Central Office
CoS	Class-Of-Service
CPBA-SLA	Cyclic-Polling-Based DBA Scheme with Service Level Agreement
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
CSMA/CD	Carrier Sense Multiple Access with Collision Detection
DBA	Dynamic Bandwidth Allocation
DPoE	DOCSIS Provisioning of EPON
DSL	Digital Subscriber Line
DSLAM	Digital Subscriber Line Access Multiplexer
EDA	Even Distribution Algorithm
E-DSA	EPON Dynamic Scheduling Algorithm
EF	Expedited Forwarding
EPONs	Ethernet Passive Optical Networks
FCE	Fuzzy Credit Estimator
FPS	Full Priority Scheduling
FSAN	Full Service Access Network
FTTB	Fiber To The Building
FTTC	Fiber To The Curb
FTTH	Fiber To The Home
FUDLC	Fuzzy Unstable Degree List Controller
GEM	GPON Encapsulation Method
GPON	Gigabit-capable Passive Optical Networks
HFC	Hybrid Fiber Coaxial
IEEE	Institute of Electrical and Electronics Engineers
IFG	Inter-Frame Gap
IP	Internet Protocol
IPACT	Interleaved Polling with Adaptive Cycle Time