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Preface 

The theory of mathematical programming has developed considerably during the last 
years due to the stimulus given by an increasing demand from management and tech-
nology and it is therefore understandable that courses on mathematical programming 
now belong to standard teaching programs of Universities and Institutes. 

Our aim in writing this boob is to introduce students of mathematics, science, econom-
ics and management to the qualitative theory of mathematical programming in vector 
spaces. Prerequisite for the study of this book is a basic knowledge of analysis and linear 
algebra. We also apply some elementary ideas of functional analysis for a more rigorous 
construction of proofs and for some generalizations of the finite dimensional theory 
enclosing Banach-spaces. The problems are presented in such a way that the theory can 
be generalized to apply to topological vector spaces. 

Many different concrete programming problems possess one and the same theoretical 
basis, which we can formulate as a principle of duality. Many authors have generalized 
the well known relations of duality of linear programming for problems of non-linear 
programming. In this connection, the Fenchel theory of conjugate functions, and the 
relations of duality following on from this theory, plays an important role. 

The main theme of this book is to represent such relations of duality and to 
consider a general theoretical basis for different special programming problems. In so 
doing, we do not claim to cover all programming problems but rather discuss some 
of the main ones by concentrating our enquiries on specially chosen Lagrangian 
forms. For linear programming we extend our investigations by constructing the theory 
in Banach spaces. In infinite dimensional Banach spaces we give examples to demon-
strate the difference between finite dimensional and infinite dimensional theory and 
give a generalization of the transportation- and potential problem in finite directed 
graphs. We are not concerned here with constructions of algorithms for calculation 
of solutions. 

In the first chapter the reader will find a collection of relations between convex sets, 
hyperplanes and extremal points which are required in the following chapters. Further-
more, we construct relations between convex functions and convex sets and describe 
the Fenchel theory of conjugate functions. In the second chapter, we formulate relations 
of duality and prove equivalence theorems with respect to saddle-point, duality and 
minimax theorems. Special structures of equivalence statements are very useful for 
well known linear programming problems to be embedded in. The third chapter deals 
with the embedding of different programming problems in connection with specially 
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chosen Lagrangian forms and in addition to equivalence theorems, the chapter also con-
tains existence theorems. 

The basic conception of this book is an extended version of a course which the author 
gave at the Rangoon Arts and Science University during 1974/1975. The main sour-
ces were the University text the author prepared based on this course with the assistance 
of Professor Chit Swe. 

M. Walk 
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1. Convex sets and convex functions 

1 .1 . Convex sets 

In the theory of optimization, the idea of convexity plays a central role. We shall 
begin our study of this concept with convex sets and their properties. In this mono-
graph, we would restrict our discussions to real finite dimensional vector spaces, even 
though it is possible to extend most of the ideas and theorems to an abstract topological 
vector space. Inquiries of the following kind, one may find in all standard books on mathe-
matical programming, especially works by VOGEL [32], KARLIN [20], BERGE and 
GHOUILA-HOURI [4] , and KREKO [23] . 

Let R " be a vector space of dimension n. 

Definition 1.1.1. A set C = R * is convex, if for any two elements u,v € C and any real 
number A, 0 A ^ 1, we have 

x = hi + (1 - X)v € C. (1.1.1) 
T 

An element x = J] Aixi is a convex combination of vectors X y X j » * • j X € JR." if the real 
1 = 1 r 

numbers A1; A2, . . . , Ar are nonnegative and J J A, = 1. 
¡=1 

Theorem 1.1.1. Let C g R " be a convex set. Every convex combination of vectors of C 
is an element of C. 

P r o o f : For r = 1, the assertion of the theorem is trivial. 
Assume that the theorem is true for the value r — 1 with r > 1. Now consider vectors 

r r—1 
€ C and nonnegative numbers A1; A2, . . . , ?.r ,where JJ h = 1. If 2J A,- = 0, 

then i = 1 i==1 

T 
x = £ XiX* = xr 

¿=1 
r-1 

which is an element of C. If A = 2 J -̂i =H 0 then we have 
¡=1 

x = i ?Hx* = ¿¿Ipi + W 
i=i ¡=i 

A- - r ~ 
with Aj = — , / = 1, 2, . . . , r — 1. Obviously A, S; 0 and JJ A; = 1. By induction hy-

A ¿=1 
r~h T 

pothesis x = JJ liX' € C. Moreover, JJ A; = 1 implies 0 < A ig 1 and Ar = 1 — A. Thus, 
¿=1 i=l 

by Definition 1.1.1 a;= ).x + Arxr 6 C. • 
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Theorem 1.1.2. Let Gx and C2 be convex sets. If at and a2 are any two real numbers, then 
the set C = a1C1 + a2C2 = {x 6 IR": x = o^x2 + a2x2, x'- 6 C,} is also convex. 

P r o o f : Consider any two elements u,v£C. Then there exist elements u1, vl a C1 
and corresponding elements u%, v2 6 C2 such that 

u = (fxU1 + a2u2 , v = axvx + o2v2. 

Now, for any real number X, 0 iS X sS 1, 

x = Xu + (1 — X) v = ¿(cTjW1 -f a2u2) + (1 — X) {a^1 + a2v2) 

= aJ^Xu1 + (1 - X) v1) + a2[Xu2 + (1 - X) v2) = axxl + <r2x2 

where x1, x2 are elements of convex sets C\ and C2. Consequently, x 6 C. • 
Regarding Theorem 1.1.2 we notice the following special cases: 

(i) If Cl is a convex set and x° any element of IR", then the set 

C = Cx + {x0} = {x 6 R n : x = xl + x°, x1 € Cx} 

is also convex. 

(ii) If Cj is a convex set and a any real number, then the set 

C = <JC1 = {x 6JR.n:x = ax1, x1 € Cx} 

is also convex. 

(iii) If Cj is a convex set, then the set 

C = = {x € IR": x = -x1, x1 € CJ 

is also convex. 

Definition 1.1.2. Given A E IR", 

Conv {A) = j x € IR": x = £ X t f , x{ € A, X-t ^ 0, £ ^ = 1, r = 1, 2, . . . j ; 

(1 .1 .2 ) 

is called the convex hull of A. 
Obviously Conv (A) is a closed set if the set A is finite. In case the set A is infinite, 

the convex hull Conv (̂ 4) is generally not closed. We may consider, for example, 

A = j ^ - : w = l , 2 , . . . j E1R. 

One can easily find 

Conv (A) = {x 6 IR: 0 < x g 1} 

which is not closed. 

Theorem 1.1.3. The convex hull Conv (̂ 4) of a set A is the smallest convex set, containing 
the set A. 



1.1. Convex sets 11 

P r o o f : We shall first show that Conv (A) is convex. Consider u, v <£ Conv (^4). Then 
u and v may be represented in the following forms: 

T r 
u = £ 6iul> U* e A, Qi^O, £ Qi = 1, 

t = l ! = 1 
S S 

V = £ ViV\ V* € A, Oi ^ 0, £<Ti = l. 
i = l i = 1 

Now, for any real number A, 0 ^ A sS 1, 

x = Xu + (1 — A) v 

= 27 ¿e««1 + £ (1 - *) = r £ r k z k 
i=1 ¡=1 k=l 

where 

fc = 1, ..., r, UQk» 

l a -1 A; = r + 1, r + 2, . . . , r + a, 

k = 1, . . . , r , 
k = r + 1, ..., r + s. 

We can observe that zk € A, rk ^ 0, k = 1, . . r + s and 

 =X£ek + ( l - l ) £ Ok-r = A + (1 — A) = 1. 
k=1 k=1 t=r +1 

Thus a; € Conv (A) implying that Conv (A) is convex. To complete the proof, we still 
have to show that for every convex set K containing A, Conv (A) S K. This is quite 
clear because K is convex and from A £ K, it follows by Theorem 1.1.1 that every 
convex combination of elements of A belongs to K. • 

The converse of Theorem 1.1.3 now follows: 

Theorem 1.1.4. If L is the smallest convex set containing A, then 

L = Conv {A). 

P r o o f : L has the following properties: 

(i) A g L. 

(ii) L £ K for every convex set K containing A. 

Since Conv (A) is a convex set containing A, we have by (ii), 

L g Conv {A). 

On the other hand, Theorem 1.1.3 together with (i) implies that 

Conv (.A) £ 

Hence the proof of the theorem. • 
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Theorem 1.1.5. The convex hull of a set A is the intersection of all convex sets which 
contain A: 

Conv (4) = n K. 
A<zK 

K being convex and containing A. 

Proof. It is easily seen that the intersection of any collection of convex sets is convex. 
Thus, the set n K is convex and it contains A. Furthermore, for any convex set K Con-

vex 
taining A, we have P\ K, i.e. f ) K is the smallest convex set which contains A. 

AcK AcK 
Now, by Theorem 1.1.4, 

Pi K = Conv (4). • 
AcK 

The Theorems 1.1.1 to 1.1.5 are given only on the basis of the Definition 1.1.1 of 
convex sets. However, the proofs do not depend on the fact that we are restricting our 
considerations to finite dimensional Euclidean spaces. We should notice that if the 
discussions were in the more general framework of any linear space, the Theorems 1.1.1 
to 1.1.5 are still true. 

Besides convexity the following theorems are concerned with boundedness in finite 
dimensional spaces. 

We will first deal with a theorem which says that in the case of an «-dimensional 
Euclidean space, the convex hull Conv (A) can be generated by all convex linear com-
binations of n + 1 or fewer elements of A. 

Theorem 1.1.6. If A is a subset of R", then x C Conv (4) can be represented by 

r T 

x* € A, A;> 0, 2 7 ^ = 1, r^n+1. 
i=1 i=l 

Proof : For any x € Conv (̂ 4), 

x* & A, ¿¡^0, ¿A; = l . 
¡=1 i=l 

We can assume A; > 0. If there is one = 0, we will drop this term off. If r Si n + 1> 
then there is nothing to prove. Now, consider the case r > n + 1. In this case, we can 
construct a new representation for x in which at most r — 1 elements of A appear. Such 
a construction is possible, because in an «-dimensional vector space, n + 1 vectors are 
always linearly dependent. 

Let us consider vectors zl — xl — xr, i = 1, 2, .. . , r — 1. Under the assumption 
r > n + 1, the number of vectors zl is more than n and in consequence the vectors zi 

are linearly dependent. Thus there exist real numbers <fit i = 1, ..., r — 1, which are 
not all zero such that 

¿ t f jZ ' = 0 . 
¡=1 

Putting 
r-1 

Of = ~E Ci 
i=l 
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we get 

0 = E = ' ¿ " i * ~ = E <*ixi 

¿=1 > = 1 ¡=1 i = 1 
and 

= o. 
¡=1 

Now, for any s > 0 

* = E W = E - ea i )x \ (1.1.3) 
i = i i = i 

Since at least one CT, is positive, it is possible to calculate 

lin j — : cr, > o l = ^ . 

A-
Here the index i0 may not be uniquely defined. Now, if we put e = —i2-, then 

~
 £ff', = 0 ' 

A; — e<Ji =|= 0, for i 4= »o 
and 

E{K-Mi) = l . 
r=l 

A-
Now, from (1.1.3), for e = —1—, we get the new representation 

(X,; 
r 

x = E {h — eOi) x*. 
i = 1 
i*l'o 

In this form the element a; will be represented by a convex linear combination of at most 
r — 1 elements of A. This construction, we can continue till we get the representation 
of a? as a convex linear combination of at most n + 1 elements of A. • 

Theorem 1.1.7. Every set {xk:lc = 1, ..., r] of r elements from ]R" where r^in-\- 2 can 
be divided into two parts such that the convex hulls of these parts have a nonempty inter-
section. 

P r o o f : The proof is based on the fact that there always exist a nontrivial solution for a 
homogeneous system of n + 1 linear algebraic equations in r unknowns, if r Si n 2. 
Consider the set {xk: k = 1 , . . . , r), r n -f- 2. Then, there exists a nontrivial solution 
Aj, A2,..., Ar of the system. 

¿ 4 ^ = 0 , E h = 0. (1.1.4) 
t=l k=1 

Define the two sets of integers 

I = {k:Xk> 0}, J = {1, 2 , . . . , r} \ I. 

One can easily see that I and J are nonempty and because of (1.1.4), we find 

Eh = - E h > o. 
kil kiJ 
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Furthermore, we get from (1.1.4) an element z in the form 

27 V ' ' E - k * k 

z=k-^ = . (1.1.5) 
£ h Z - h 

k i l k i J 

Clearly, 

= o i f k e i • 2 > , = i , 

2 j h k a 

k i l 

= 0 if k e J ; i > * = l . 
L ~~ ' - k k i J 

k i J 

The equation (1.1.5) means that the element z belongs to the convex hull of { x k : k 6 I) 
as well as the convex hull of {xk: k 6 J ) . 

Theorem 1.1.8. (Theorem of H e l l y ) . L e t 0„ i = 1,2, + 1 b e a f i n i t e , c l a s s 

o f c o n v e x s e t s i n J R . " . I f t h e i n t e r s e c t i o n o f a n y n \ o f t h e s e t s C \ , 0 2 , . . . , C T i s n o n e m p t y , 

t h e n t h e i n t e r s e c t i o n o f a l l r s e t s i s n o n e m p t y . 

Proo f : If r = n + 1, the assertion of the theorem is trivial. 

Now assume that the theorem is true for r — 1 22 n + 1- This means if any n + 1 
of the sets Cu ..., Cr have a nonempty intersection, the intersection of any r — 1 of them 
always has a nonempty intersection. 

Now construct the set 

{xk:k = 1, 2, ..., rj (1.1.6) 
T 

with elements xk 6 p| C;-
>=i 

Let {x k : k € /} and {x1: j 6 J} be a partition of the set (1.1.6) as given in Theorem 
1.1.7. Every element xk with k £ / belongs to all sets C j € J , because for any k £ I 
and j € J, we have k =|= j. Consequently, for the convex hull of the set {xk: k € /} we 
have 

Conv ({a;*: k € /}) £ n Cj. (1.1.7) 
i a 

Similarly we find that every element x> with / 6 J belongs to all sets Ck, k £ I , and we 
have 

Conv { { x i - . j £ J } ) g n c k . (1.1.8) 
k i l 

Then it follows from Theorem 1.1.7 that 

Conv {{xk: k £ I}) n Conv ( {*»:/ £ J} ) #= 0. 
Let 

z € Conv {{xk: k £ I}) n Conv ({x> :/€•/}). 

Because of (1.1.7) and (1.1.8) 

z e ( n c k \ n ( n c , \ = n c , 

\ k a ) \ j i J ) i=l 

which proves the theorem. • 
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At last we will show that the convex hull of a compact set is compact. For this reason 
we need the following lemma: 

Lemma 1.1.1. If the sets A IR" and B £jj IRm are compact, then the product 

AxB = {(x, y)): x € A, y € -8} 

is compact. 

Proof : In a finite dimensional Euclidean space, a set is compact if and only if it is 
closed and bounded. For further discussions in the monograph we use the Euclidean 
norm. The following discussion shows that A X B is closed and bounded. 

A and B being compact there exist numbers cc and /? such that 

= I M l f o r any x t A , 
t = 1 
m E m 2 = for any y e B . t=I 

If we recognize that a norm for elements (x, y) 6 A X B is 

11(3,̂ )11 = (IMI2 + 

we get for any element (x,y) 6 A xB 

\\(z,y)\\* = M\t + M\t£«+P-
Thus A X B is bounded. 

The product A X B is also closed. Suppose (xk, yk) 6 A X B is a converging sequence 
with a limit {x, y) i.e. 

lim ||(a;*, y") - (x, y)\\ = lim {\\xk - + \\yk - = 0. 
k- > fr—>oo 

This means the sequences {a;*} and {yk) converge respectively to the limits x and y. Since 
A and B are closed (x, y) 6 A X B. • 

The Lemma 1.1.1 and the fact that a continuous image of a compact set is compact 
lead us to the following theorem: 

Theorem 1.1.9. Let A ^ IR" be, compact. Then the convex hull Conv (A) is compact. 

Proof : We can easily observe that 

S = jz € :'¿Si = 1, Si ^ oj 

is compact. By Lemma 1.1.1, the set 

Y= 8X Ax-X A 

n + 1 
is compact. 

We assign to each point y € Y, by a continuous mapping %p: Y IR", the value 
B+l 

xp{y) = y>{x, a1, ..., an+1) = £ ¿¡a* 6 IR". 
j=i 



16 1. Convex sets and convex functions 

Then the image of the continuous mapping, 

{V(Y)} =\z6l&n:z=2J Sta*, a* € A, ^ 0, £ = 1 

is compact. By Theorem 1.1.6, we have {^(T)} = Conv (A). Consequently Conv (A) is 
compact. • 

1.2. Hyperplanes and separation theorems 

We will now present some principal relations between hyperplanes and convex sets. 
In the theory of duality of convex programming, such relations in the form of separation 
theorems play a central role especially in the proof of existence of optimal solutions. 
Of course, we apply the separation theorems also to an immediate characterization of 
convex sets. I t is in this context, we will find them in the following discussions. 

Definition 1.2.1. Let y be a real number and a £ ]Rn any non zero fixed vector. The 
set H £ IR" given by 

H = {x € IR": (a, x) - y = 0} 

is a hyperplane in ]R". 

Here (a, x) = £ «¡f,- denotes the scalar product of vectors a = («], <x2, . .<x n ) and 
x — (£], •••> In)- Further we notice that the Euclidean norm of vector x may be 
expressed in the form: 

For y = 0, the set H will form a (n — 1)-dimensional linear subspace of IR"; otherwise, 
we get a linear manifold which arises by parallel translation of the subspace. 

Geometrically in ]R3 a linear subspace (a, x) = 0 represents a plane through the origin 
whereas the linear manifold {a, x) — y = 0 still represents a plane obtained by parallel 
displacement. 

To prove the separation theorems, we need the following lemma: 

Lemma 1.2.1. If a closed convex set C is not empty and zero is not in C, then there exist 
exactly one point a;0 € C such that 

P r o o f : The proof of this lemma is based on the following well known facts: 

(i) A continuous function on a compact set always attains its minimum. 
(ii) Compactness in IR™ means being closed and bounded. 

Under the assumption that C is convex, the minimal element x° is uniquely defined. 
Let S = {x 6 IRB: ||a;|| ^ Q] be a closed sphere with centre at the origin, radius Q > 0 

being chosen sufficiently great so that the set A = C n 8 is not empty. Since A is bound-
ed and closed, A is compact. Consequently, for the continuous function ip(x) = |[x||, 
a vector x° € A exists such that 

n 

t = l 

M = min {||a;||: s € C}. 

<p{xP) = ||£°|| = min \<p(x) : x £ A}. 
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Because zero does not belong to C, it cannot be an element of A and thus ||x°|| > 0. 
Furthermore, ||a;0|| < q and ||x|| > q for all x € C, which are not in S. 

Hence a fortiori 

M l ^ INI 

for any x 6 C. Consequently, 

(p(x°) = ||x°|| = min {<p(x): x € G). (1.2.1) 

To complete the proof, we have to show that is uniquely defined. Let us assume that 
this is not so, and x1 6 C is another element such that 

M i l = M l = min {<p(x) :xeC] 

and x° 4= x1. Convexity of C implies that x2 = — + x1) £ C. Finally we get 
2 

M i l 2 = 4 lix° + x l l l 2 < T (llx° + xlW* + - x l l i 2 ) 

4 4 

= \ (Mil2 + Mil2) = Mil2-

This means M|| < Mil i n contradiction to (1.2.1). • 
From Lemma 1.2.1, we get a first separation theorem which says that a closed convex 
set not containing the origin can be strictly separated from the origin by a hyperplane. 

Theorem 1.2.1. If the convex set C is not empty and if the closure G of C does not contain 
the origin, then there exists a vector a =¡= 0, such that 

|M|*>0 (1.2.2) 

for any x £ G. 

Proof : We notice that the vector a which satisfies the assertion of the theorem can 
be chosen from C. By Lemma 1.2.1, there exists a uniquely defined element x° € C such 
that 

M l = min {||z||:xeC}. 

Choose a = x° and consider any x € C and 0 < X 1. Because C is convex, 

Xx + (1 - /) x° =x° + ¿(z - x ° ) 6 C . 

a;0 being a minimal element, 

Mil2 ^ II«0 + - z0)ll2 = Ml!2 + 2 2 « x - x°> + 7? \[x - x°||2. 

Dividing by 2k, 

M , x) = (a, x) ^ ||a||2 - j H® - a||2. 

Now, by letting / converge to zero, we get the relation (a, x) Si ||a||2 > 0 for any x 6 G. • 
Theorem 1.2.1 can be generalized in a certain sense. Instead of a strict separation of 

a convex set from the origin, we consider two nonempty convex sets which are separa-
ted from each other by a positive distance and show that these two convex sets are 
separated strictly by a suitable hyperplane. 

2 Walk 
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Definition 1.2.2. Let C\ and C2 be two nonempty convex sets. Then 

d(C1,Ct)=inf{\\z-y\\;xeCuy€Ct} 

denotes the distance between and C2. 

Theorem 1.2.2. If C\ and C2 are two nonempty convex sets and the distance 8(Clt C2) is 
positive, then there exists a hyperplane 

H = {x € 1R": (a, x) - y = Of 

such that 

(a, x) — y > 0 for any x € C,, 
(1.2.3) 

(a, x) — y < 0 for any x € 02. 

P r o o f : d{Cu C2) > 0 implies that the set C = Ct — C2 has a positive distance from zero 
i.e. the closure C does not contain zero. Since C — — C2 is also convex, by Theorem 
1.2.1, it follows that there exists a vector a £ R" , a — 0, such that for any z 6 G 

{a,z)^ | M | 2 > 0 . 

Here z = x — y, x € Cu y 6 C2 and we get 

(a, x) ^ (a, y) + ||a||2 (1.2.4) 

for any x € C1 and y 6 C2. Thus we have 

inf {(a, x):xeC1}^ sup {{a, y): ye C2} + ||a||2 

i.e. 
inf {(a, x):x e CJ > sup {(a, y):yeC2}. 

Let y be such that 

inf {(a, x): x € Ct] > y > sup {(a, y): y € C2} . 

Then, we can see that 

H = {x € 1R": (a, x) - y = 0} 

is the required hyperplane, satisfying the conditions 

(a, x) — y > 0 for any x € Clt 

(a>y) — Y < 0 for any y 6 C2. • 

In fact existence of separating hyperplanes is assured under more stringent conditions 
than those given in Theorems 1.2.1 and 1.2.2. A convex set which contains the origin 
on the boundary or two convex sets having a zero distance between them and having 
at the most boundary points in common can be separated by a suitable hyperplane. 
But in such cases, we cannot expect a strict separation but the separating hyperplane 
contains the origin in the former case and boundary points of the two convex sets in the 
latter. 

Theorem 1.2.3. Let C be a nonempty convex set with zero on the boundary of C. Then 
there exists a vector a € 1R", « ± 0, such that for any x € C 

(a,x)^: 0 (1.2.5) 

[Notice that zero may not be a point of C, if C is an open set.] 


