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PREFACE
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- Models of parallel computations;
-New algorithms for individual problems, e.g. from graph theory,

logic programming, combinatorics and computational geometry;
- Hardware algorithms, parallel architectures.
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V.Kotov (Novosibirsk), T.Leighton (Cambridge), K.Mehlhorn (Saarbricken),
J.Miklosko (Bratislava), B.Monien{Paderborn), W,Paul (Saarbricken),
H.Thiele (Berlin), C.,D,Thomborson (Duluth), G.wWechsung (Jena),
C.K.Yap (New York).

The workshop was organized by the Department of Mathematics of
Humboldt-University (Berlin) and chaired by A,Albrecht and H,Jung.

\le would like to take this opportunity to express our sincere gratitude
to the Organizing Secretary of the workshop T.Zeugmann for his
engagement and excellent work,

We are all very grateful for the special support given by the local
organizers in Suhl who contributed their generous help in arranging

the workshop.

Finally we would like to thank the publishers for their assistance

and cooperation in the selection of the present volunme,

A. Albrecht, H. Jung, K. Mehlhorn
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Deterministic Simulation
of Idealized Parallel Computers
on More Realistic Ones

by

H. Alt* / T. Hagerup** / K. Mehlhorn** / F.P. Preparata*

*  Fachbereich Mathematik, Freie Universitdt Berlin, Arnimallee 2-8, D-1000 Berlin 33, FRG. Part of
the research was done while the author was a member of the Mathematical Sciences Research Institute,
Berkeley, U.S.A.

** Fachbereich 10, Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, FRG.

*** Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801, U.S.A.

Abstract: We describe a non-uniform deterministic simulation of PRAMs on module parallel comput-
ers (MPCs) and on processor networks of bounded degree. The simulating machines have the same number
n of processors as the simulated PRAM, and if the size of the PRAM’s shared memory is polynomial in n,
each PRAM step is simulated by O(logn) MPC steps or by O({logn)?) steps of the bounded-degree net-
work. This improves upon a previous result by Upfal and Wigderson. We also prove an ((log n)* /log log n)
lower bound on the number of steps needed to simulate one PRAM step on a bounded-degree network
under the assumption that the communication in the network is point-to-point.

As an important part of the simulation of PRAMs on MPCs, we use a new technique for dynamically
averaging out a given work load among a set of processors operating in parallel.

A preliminary version of this work was presented at MFCS 86, Bratislava. The full version is available
from the authors and will appear in SIAM Journal of Computing.

This work was supported by the DFG, SFB 124, TP B2, VLSI Entwurf und Parallelitit, and by NSF
Grant ECS-84-10002.
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1. Introduction and Models of Computation

Most parallel algorithms in the literature are designed to run on a PRAM (parallel RAM). The
PRAM model was introduced by Fortune and Wyllie [FW]. A PRAM consists of some finite number n
of sequential processors (RAMs), all of which operate synchronously on a common memory consisting of,
say, m storage cells (also called “variables®), cf. fig. 1.

T F

memory

Fig. 1. The PRAM model. P,,..., Py are processors.

In every step of the PRAM, each of its processors executes a private RAM instruction. In particular, the

may all simultaneously access (read from or write into) the common memery. Various types of
PRAMSs have been defined, differing in the conventions used to deal with read/write conflicts, i.e., attempts
by several processors to access the same variable in the same step. In the most restrictive model, exclusive
read-exclusive write or EREW PRAMSs, no variable may be accessed by more than one processor in a
given step. In contrast, CRCW (concurrent read—concurrent write) PRAMs allow simultaneous reading as
well as simultaneous writing of each variable, with some rule defining the exact semantics of simultaneous
writing.

PRAMSs are very convenient for expressing parallel algorithms since one may concentrate on the
problem of “parallelizing”, i.e., decomposing the problem at hand into simultaneously executable tasks,
without having to worry about the communication between these tasks. Indeed, any intermediate result
computed by one of the processors will be available to all the others in the next step, due to the shared
memory. Unfortunately, the PRAM is not a very realistic model of parallel computation. Present and
foreseeable technology does not seem to make it poasible for more than a constant number of processors
to simultaneously access the same memory module. A model of computation that takes this problem into
account is the MPC (module parallel computer, [MV]), cf. fig. 2.

Complete network

Fig. 2. The MPC model. P,,..., P, are processors, M,, ..., M, memory modules.

An MPC consists of n processors (RAMs), each equipped with a memory module. Every processor may
access every memory module via a complete network connecting the processors. However, the memory
modules are sequential devices, i.e., able to satisfy only one request at a time. More precisely, & memory
module M operates as follows: If several processors try in the same step to access a variable stored in M,
exactly one of the processors is allowed to carry out its read or write instruction; the remaining access
requests are discarded. All processors are informed of the success or failure of their access attempts. We
make no assumptions about how the single successful processor is selected from among the processors
competing to access M.

The MPC model is still not realistic for large n because of the postulated complete network connecting
the processors. This leads us to consider a third model which we shall call the network model. Here the
processors are connected via a network of bounded degree, i.e., each processor is linked directly to only a
constant number of other processors, cf. fig. 3.

12



Bounded-degree network

Fig. 3. The network model. P,,..., P, are processors, M,, ..., M, memory modules.

Since each step of a completely interconnected processor network may be simulated by O(log n) steps of a
bounded-degree network ([AKS], (L]), efficient algorithms for the MPC model translate into asymptoti-
cally efficient algorithms for the network model.

The simulation of the idealized paraliel machine, the PRAM, on the more realistic one, the MPC, has
been considered in several previous papers. A naive approach represents each variable z of the PRAM
by one variable y)(z) of the MPC. Now if a PRAM step accesses the variables z,,...,z;, collisions may
occur in the simulating machine because y(z,),...,¥{z;) are not necessarily located in distinct memory
modules. If m < n, the m variables may be allocated to m different memory modules, and a trivial
O(1)-time simulation is possible. However, we are concerned with the case in which m is considerably
larger than n. Here a major problem is to find a memory correspondence between the PRAM and the
MPC such that, for all possible access patterns of the PRAM, the maximum number of variables requested
from a single MPC memory module is kept low. Note that, for specific PRAM algorithms such as matrix
multiplication, there may be very efficient ways of assigning variables to modules; we refer the reader to
Section 4 of the survey paper by Kuck [K]. Here we are interested in universal simulations which work
efficiently no matter which algorithm is executed by the PRAM.

Some results have been obtained previously using probabilistic methods: Mehlhorn and Vishkin [MV)
used universal hashing to define the memory correspondence. They obtained several upper bounds, for
example an average of O(log n) MPC stepa to simulate one PRAM step, with the total amount of memory
used by the MPC larger than the PRAM memory by a factor of O(log n). Upfal [U] found a probabilistic
simulation of O({log n)?) average time for one PRAM step on a bounded-degree network; this was recently
improved to O(logn) by Karlin and Upfal [(KU].

This paper is concerned with deterministic simulations. We define the slow-down of a simulation as the
number of steps needed by the simulating machine in the worst case to simulate one step of the simulated
machine. Note that if m > n?, the simple scheme outlined above (z is represented by y(z)) performs
poorly: An adversary could make the PRAM step access n variables z,,...,z, with ¥(z,),...,¢(z,) all
in the same module. Hence the slow-down is £1(n). This reasoning shows that each PRAM variable must
be represented by several “copies” stored in different modules. Mehlhorn and Vishkin [MV] showed that
read instructions can be handled very efficiently using this idea, However, they did not know how to
deal with write instructions. In a beautiful paper Upfal and Wigderson [UW] resolved this problem and
exhibited a simulation which uses ©(logn) copies of each PRAM variable. If m is polynomial in n, the
slow-down is O(log n(loglogn)*). They also showed an Q(log n/ loglog n) lower bound on the slow-down
for a large class of simulations.

Using similar techniques, this paper improves the upper bound to O(log m). If m is polynomial in n,
this is O(log n). Consequently, a PRAM step may be simulated in O(log n log m) time on a bounded-degree
network. On the other hand, we show that (1(log nlog m/log log m) time is necessary under certain assump-
tions on any bounded-degree network whose communication is restricted to be point-to-point. A similar
result was also obtained by Karlin and Upfal [KU]. The assumption of point-to-point communication is
not satisfied by our simulation algorithm which uses more general communication patterns.

The PRAM simulations which we consider will be based on emulations of the PRAM’s shared mem-
ory. We conceptually retain the n PRAM processors while replacing (or, equivalently, implementing)
the PRAM’s (physically infeasible) shared memory by a (more feasible) suitably programmed MPC or
bounded-degree network with n processors, called the emulating processors. Each PRAM processor, which
was formerly connected to the shared memory, is now instead connected to one of the emulating proces-
sors called its associated processor, each emulating processor being associated with exactly one PRAM
processor, «f. fig. 4. We require the change to be completely transparent, i.e., all PRAM programs must
run without change (though possibly slower) on the modified machine.
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Shared PRAM memory
(external view)

Emulating processor network
(internal view)

Network of emulating machine

Flig. 4 Emulation of the shared y of a PRAM.
Fori = 1,...,n, P; is s PRAM processor and F; its associated emulating processor.

Note that although the most direct PRAM simulation implied by & memory emulation as above uses a
total of 2n processors, it is a trivial matter to reduce the number of processors to n by coalescing each
pair of associated processors into a single processor. For expository reasons we prefer to keep the clean
separation between PRAM processors and (emulated) shared memory.

Our simulation algorithms are non-uniform. This means that they are not given explicitly. Instead
we merely prove that algorithms with the desired properties exist. For fixed values of n and m, such
algorithms may be found by exhaustive search in a large but finite set. We return to this question in the
concluding section.

It has been known since Adleman’s work [A] that probabilistic algorithms may be converted into non-
uniform deterministic ones. Hence the result by Karlin and Upfal [(KU] automatically translates into a
non-uniform deterministic simulation of PRAMs on a bounded-degree network. However, if the translation
is based on Karlin and Upfal's analysis of their algorithm and uses known techniques, it introduces an
{3(n)-increase in the product of time and number of processors [R, Theorem 6]. Since it is not difficult
to devise a uniform deterministic simulation which uses O(n?/(logn)?) processors and has a slow-down
of O(logn) (the construction is similar to one presented in the remark ending Section 3), deterministic
algorithms derived from Karlin and Upfal’s probabilistic simulation are of little interest. The same is true
of all other known probabilistic solutions.

The remaining part of the paper is structured as follows: In Section 2 we describe our simulation
of PRAMs on MPCs and show that its slow-down is O(logm). As part of the development of the al-
gorithm, we define and solve a so-called “redistribution problem”. Section 3 considers the simulation
of PRAMs on bounded-degree networks and establishes upper and lower bounds of O(lognlogm) and
0(log nlog m/log log m), respectively. In Section 4 we return to the redistribution problem and prove a
stronger result than what was needed in Section 2. Finally, Section 5 addresses some interesting and
important open issues. Sections 2 to 5 can be found in the full paper.
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1. Abstract

Suppose we pick independently n random points X;, Xa,...,X, from a d dimen-
sional polytope P. (i.e., X; are independent identically distributed random variables
each with density = 1/volume(P) in P and 0 outside.) Let E, be the convex hull of
X1,X3,...X,. The following questions arise naturally :

1) What is the value of V,, the expected ratio of the volume of P\ E, to the
volume of P 7

2) What is the expected number of extreme points of the polytope E, ?

We show an upper bounds of ZE)(logn)4+! on V, and C(P)(logn)¥*! on M,
where C(P) is a constant that depends only on P (not on n). In both cases elementary
arguments will only give a bound that replaces the power of logn by a power (less
than one) of n. Previously, similar results were known only for the case of d = 2.
(Buchta (1984) and Rényi and Solanke (1963, 1964)). There has been substantial
amount of work on the problem for spheres as well as for other quantities depending
on E, in two dimensions. (see for example W.M. Schmidt (1968), G.Buchta, J.Miiller
and R.F.Tichy (1985), P.M.Gruber (1983) and L.B4rdny and Z.Fiiredi (1986) ) In case
the polytope P has at least one vertex with exactly d adjacent vertices, we prove lower
bounds of

d(P)(logn)?~?! /n on V, and d(P)(logn)*~! on M,.

Using the bounds,we are able to show that certain simple divide and conquer
algorithms for finding the set of all extreme points have good sequential (linear time)
and parallel (polylog time) complexitites in the expected case when the points are
chosen at random independently from a polytope in a fixed number of dimensions.

The results are based on a natural notion of centrality which we introduce for
convex sets.

2. The volume of the central region

Definiton : For any positive real number ¢ and a convex set P, a point p in P
is e-central for P, if for any hyperplane H through p, the volume of P in each of the
half spaces determined by H is at least ¢ times the total volume of P.

17



Clearly, no point is more than } central and the center of gravity is the only 1
central point. It is also clear that if p is € central then it is § central for any § < e.
We show below that the volume of the subset of points that are not ¢ central cannot
be too high. (It is obvious that the set of non ¢ central points is Lesbeg measurable;
we use volume to denote the Lesbeg measure.)

Theorem 1  For any polytope P in R®, there is a constant C(P) depending only
upon P and d such that for every positive ¢, the volume of the set of non ¢ central
points is at most

C(P)e(logl)® - volume of P

Remark It is possible to see that the volume of noncentral points is at most
C(P)(e)*/® times the volume of P by elementary arguments - any point at distance
at least ¢.(¢)*/? fram the boundary of P has a sphere around it of radius c.(¢)'/¢,
any hyperplane through the point leaves a half of this sphere (which is of sufficient
volume) in either half space. Note that the bound in the theorem is stronger - there
€ is multiplied by a power of log % whereas the elementary argument gives a bound
where e is multiplied by a power of 1.

Bemark The theorem is not true when P is a general convex set. For example
it is easy to show that when P is a sphere, the ¢ central region is a concentric sphere_
of radius (1 — ¢q¢*/?) times the radius of the original sphere whence the volume of
the smaller sphere is 1 — O(e*/?) times that of the whole sphere.

Proof : With each unit vector ¢ in R?, we can associate a function f.: R* = R
as follows : f.(z) = the volume of the set {y:¢-y > ¢-z} ,i.e., f.(z) is the volume
of the half space above z determined by the hyperplane orthogonal to ¢ through z.
Further let ¢, be the minimum of the linear functional ¢ - z over P. It will be useful
to define also g. : R — R, as g()\) = the volume of the set {z : c-z < ¢ + A}.
The following is a direct consequence of the Brunn-Minkowski theorem (Bonnesen
and Fenchel (1934) ).

Proposition 1  Suppose A, § are real numbers such that 0 < A < §. Then, with the
notation of the last paragraph,

a2 (3) o

Proof : Without loss of generality, we may translate P so that ¢, = 0. For any
positive real number a let A(a) be the d — 1 dimensional volume of the intersection



of {£ : ¢-z = a} and P. The Brunn-Minkowski theorem asserts that the d — 1 st
root of A(-) is a concave function. From this it follows that for any a in the interval

P 4,
A\ 91
> (3) 4@
Integrating A(a) from X to § and using the above we get that

d
9:6) - 90 s 223 ((;) - 1)

Further, since there is some point g in P with ¢ ¢ = 0, the convex hull of ¢ and
Pn{z:c-z = A} contributes at least A(A)A/d to g.(A), 80 we have

9:(X) = A(A)A/d
These two inequalities together give us the proposition.
0

Let F; ={z:¢;-2 <d;} i=1,2,...k be the defining inequalities of P where
the ¢; are unit vectors. We call a hyperplane of the form {z : ¢; - z = d; — 2*/%¢}
where k is a natural number, a “copy” of F; provided it intersects P. If any subset
of d of the hyperplanes among the facets or their copies intersect at a point, we
call the point a “grid point”. It is clear that the number of grid points is at most
C(P)(log 1)? for some constant C(P) independent of ¢. The facets and their copies
subdivide the polytope P into what we may call “regions” - each region is a set
of the form {z : d; — 25/9 > ¢; -z > d; — 2%+1/3 for i = 1,2,...k} where the k;
are some natural numbers. It is clear that each region is the convex hull of some
grid points. Finally, define for each z in P the unit vector c¢(z) to be such that
fez)(2) = min {fe(z) : ¢ a unit vector }. The proof of the following proposition
follows closely the lines of a proof of Lov4sz and Scarf (1986).

Proposition 2 If a point z of P lies at distance at least 2'/4¢ from every facet, then
there is a grid point y such that

fe=)2) 2 feyy(2)/2

Proof Under the hypothesis, it is clear that z is in an interior region R. Suppose
R is the convex hull of grid points g1,42,...yx. One of the y; - call it y for short
satisfies
Fe(=)(2) = fo(o)(@)
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Further,
fa)¥) 2 fen(¥)
Suppose the straight line from z fo y intersects the boundary of P at z. By the
definition of “copies”, it is clear that |z — z| < 21/¢|y — z|. So by proposition 1, we
have
Fen(¥) 2 fe)(2)/2
The three inequalities together establish the proposition.

Now we go back to the proof of the theorem. Let {f.,) : y & grid point } be

{fD, f@ .. ("} where s < C(P)(log 1)*.
TV = {z: f)z) £2¢} fori =1,2,...s

If z € P is at least 2!/%¢ away from the boundary of P and z ¢ T fori =1,2,...s,
we wish to assert that = is € central for P. This is because, for such z, there exists
some grid point y such that fe(z)(2) > fe(y)(2)/2 > ¢, whence of course fc(z) > ¢ for
every unit vector ¢. Obviously, u(T()) = 2¢ (here u denotes the volume) for each i,
further, the the volume of the set of points at distance at most ¢ from the boundary
of P is at most C(P)'¢ for some constant C(P)'. Thus the volume of the set of non

e-central points in P is at most 2¢s + ¢C(P)' < C(P)"¢(log 1)?. So we have proved
the theorem.

3. Probablilstic results

The following simple lemma together with the theorem of the last section gives
us the probabilistic resulis.

Lemma 1 Suppose n points are picked at random independently from a polytope
P in R?* and suppose E,, denotes their convex hull. If z is an € -central point of P,.
then the probability that z does not belong to E, is at most (,°,)(1 — e)"~¢+1.

Proof : If z is not in E,, then it lies on a facet F of the convex hull of E, U {z}.
F contains at least d — 1 of n randomly picked points. Since z is ¢ central for P, the
volume of P on either side of F is at most 1 — €. Thus the lemma folows.

We use the lemma as follows : Let ¢t = %mdchomc*a&fﬂ. Then a

calculation shows that if  is ¢ central for P, then the probability that z ¢ E, is at
most 1/n?.



Thus the expected volume of P\ E, is at most J; plus the volume of the non ¢
central region. The latter is at most C(P)(d + 1)(logn)?*! /(n — d + 1) as a simple
calculation shows. Summing, we get that the expected volume of P\ E,, is at most
C(P)(logn)i*t! /n for n 2 2d for a suitable C(P).

To get the expected number of extreme points of E,,, note that the probability
that one of the chosen n points is extreme equal to the probability that it does not
belong to E,_;. Thus the central region contributes at most n/(n — 1) < 1 to the
expected number of extreme points , while the non central region contributes at most
n times its expected volume overall at most O((logn)*+!) . So we have proved the
theorem promised in the introduction.

Theorem 2  Suppose P is a polytope in R® and E, is the convex hull of n randomly
and independently picked points in P . Then the expected volume of P \ E,, is
O((logn)?*!/n) and the expected number of extreme points of E,, is O((log n)*+?)
where the hidden constants depend only upon P and d.

4. Lower bounds

We prove lower bounds on the volume of the non e central region. These, we
will see, also imply lower bounds on V,, and M,.

Theorem 8 If P is a polytope of nonzero volume in RS, such that P has at least
one vertex with precisly d neighbouring vertices, then there exists a constant e(P)
depending only upon P such that for any ¢, the volume of the set of points that are
not ¢ central to P is at least e(P)e(log L)¢~! times the volume of P.

Proof. : First, we give the argument for P = the cube {z : 0 < z; < 1lfori =
1,2,...d}. For any poiat p = (p1,p2,...,Pd) in the cube, consider the hyper-
plane {z : }.z;/pi = d}. This hyperplane, call it H, passes through p. Fur-
ther the region in the cube “below” H is contained in the simplex with vertices
(0,0,...,0),(dp:,0,0,...,0),(0,dps2,0,...,0),...,(0,0,...,0,dps), whose volume is
d*[] p:/d!. Thus if the product of the p; is less than dle/d?, then p is not e central
to P. The following claim finishes the proof of the lemma in the case of cubes.

Claim : The volume of the set S§3(6) = {p € R®: 0 < p; < 1,[[p: < 6} is at
least 8(log 1)4—/(d ~ 1)L



Proof. : The proof is by induction on d. For d = 1, it is clear. In general, let v(d, §)
be the volume of S¢(§). Then, we have

od,8) =5+ / e A

m=delta

Now the claim follows by induction.

Suppose now P is any polytope with a vertex p of degree d. By trnaslating P,
assume that p = 0. Let p',p%,...p% be the vertices adjacent to 0. Then the paral-
lelopiped Q = {z : z = 3 Xip%;0 < \; < 1/d}, is contained in P and furthermore,
P ig contained in the cone {z : ¢ = A;p*,X; = 0}. Soif a point z in @ has a hy-
perplane passing through it so that the volume of the cone below the hyperplane is
less than € times the volume of P, then clearly, z is not € central to P. Let v be a
linear transformation that sends @ to the unit cube. 7 preserves ratios of volumes,
so the theorem follows from the argument for cubes plus the fact that the ratio of
the volume of Q to the volume of P is a constant that depends only upon P.

To derive lower bounds on M,,V,,, we prove the simple converse to Lemma 1.

Proposition 3 If z is not e central to P, then the probability that z does not belong
to E,, is at least (1 — ¢)".

Proof. : The proof is straight forward and is ommited.

Now we choose € = {/n for an as yet unspecified constant {. Then the non e
central points comprise a set of volume at least e(P)(logn)?~!/n) for some constant
¢(P) depending only upon P (and t which is but a constant) . For each z such that
z i3 not ¢ central to P, the probability that z is not in E, is at least ™% = O(1) for
¢ independent of n. So the expected volume of P\ E, is at least O((logn)?~!/n).
The lower bound on M, is proved as follows. By Chernoff bounds, the probability
that the number of non-¢ central points out of the n randomly picked points is less
than s = e(P)(logn)?~1(1—e~1)/(2n) is at most 1/2 (this is a very crude estimate).
Thus with probability at least a half s or more points are picked from the non central
region. Each such point is an extreme point of E,, with probability a constant greater
than 0. So we have shown the following :

Theorem 4 Let E,, be the convex hull of n indpendently and randomly picked
points from a d dimensional polytope P in R®, that has at least one vertex with
precisely d adjacent vertices. The expected value of the ratio of the volume of P\ E,,
to the volume of P is at least ((logn)?=!/n) ; the expected number of extreme



