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P R E F A C E 

This volume constitutes of the proceedings of the International Work-

shop on Parallel Algorithms and Architectures held in Suhl, German 

Democratic Republic, May 25-29, 1987. 

The aim of the conference is to support research activities on parallel 

architectures and algorithms. The program consists of invited lectures 

given by acknoledged scientists as well as short communications. It 

covers both theoretical and practical aspects of parallel computing. 

The main topics of the workshop are 

- Models of parallel computations; 

-New algorithms for individual problems, e.g. from graph theory, 

logic programming, combinatorics and computational geometry; 

- Hardware algorithms, parallel architectures. 
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H.Thiele (Berlin), C.D.Thomborson (Duluth), G.Wechsung (Jena), 

C.K.Yap (New York). 

The workshop was organized by the Department of Mathematics of 

Humboldt-University (Berlin) and chaired by A.Albrecht and H.Oung. 

We would like to take this opportunity to express our sincere gratitude 

to the Organizing Secretary of the workshop T.Zeugmann for his 

engagement and excellent work. 

We are all very grateful for the special support given by the local 

organizers in Suhl who contributed their generous help in arranging 

the workshop. 

Finally we would like to thank the publishers for their assistance 
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Deterministic Simulation 
of Idealized Parallel Computers 

on More Realistic Ones 

by 

H. Alt' / T. Hagerup** / K. Mehlhorn•* / F.P. Preparata' 

Fachbereich Mathematik, Freie Universität Berlin, Arnimallee 2-6, D-1000 Berlin 33, FRG. Part af 
the research was done while the author was a member of the Mathematical Sciences Research Institute, 
Berkeley, U.S.A. 
Fachbereich 10, Informatik, Universität des Saarlandes, D-6600 Saarbrücken, FRG. 
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801, U.S.A. 

Abs t rac t : We describe a non-uniform deterministic simulation of PRAMs on module parallel comput-
ers (MPCs) and on processor networks of bounded degree. The simulating machines have the same number 
n of processors as the simulated PRAM, and if the size of the PRAM's shared memory is polynomial in n, 
each PRAM step is simulated by O(logn) MPC steps or by 0((logn)2) steps of the bounded-degree net-
work. This improves upon a previous result by Upfal and Wigderson. We also prove an il((log n)2/log log rv) 
lower bound on the number of steps needed to simulate one PRAM step on a bounded-degree network 
under the assumption that the communication in the network is point-to-point. 

As an important part of the simulation of PRAMs on MPCs, we use a new technique for dynamically 
averaging out a given work load among a set of processors operating in parallel. 

A preliminary version of this work was presented at MFCS 86, Bratislava. The full version is available 
from the authors and will appear in SLAM Journal of Computing. 

This work was supported by the DFG, SFB 124, TP B2, VLSI Entwurf und Parallelität, and by NSF 
Grant ECS-84-10902. 
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1. Introduction and Models of Computation 

Moat parallel algorithms in the literature are designed to run on a PRAM (parallel RAM). The 
PRAM model was introduced by Fortune and Wyllie [FW]. A PRAM consists of some finite number n 
of sequential processors (RAMs), all of which operate synchronously on a common memory consisting of, 
say, m storage cells (also called "variables"), cf. fig. 1. 

Pi«. 1. The PRAM model. P 1 ( . . . , P n ere processore. 

In every step of the PRAM, each of its processors executes a private RAM instruction. In particular, the 
processors may all simultaneously access (read from or write into) the common memory. Various types of 
PRAMs have been defined, differing in the conventions UBed to deal with read/write conflicts, i.e., attempts 
by several processors to access the same variable in the same step. In the most restrictive model, exclusive 
read-exclusive write or EREW PRAMs, no variable may be accessed by more than one processor in a 
given step. In contrast, CRCW (concurrent read-concurrent write) PRAMs allow simultaneous reading as 
well as simultaneous writing of each variable, with some rule defining the exact semantics of simultaneous 
writing. 

PRAMs are very convenient for expressing parallel algorithms since one may concentrate on the 
problem of "parallelizing", i.e., decomposing the problem at hand into simultaneously executable tasks, 
without having to worry about the communication between these tasks. Indeed, any intermediate result 
computed by one of the processors will be available to all the others in the next step, due to the Bhared 
memory. Unfortunately, the PRAM is not a very realistic model of parallel computation. Present and 
foreseeable technology does not seem to make it possible for more than a constant number of processors 
to simultaneously access the same memory module. A model of computation that takes this problem into 
account is the MPC (module parallel computer, [MV]), cf. fig. 2. 

Fig. 2. The MPC model. Px Pn are processors, M 1 , . . . , Afn memory modules. 

An MPC consists of n processors (RAMs), each equipped with a memory module. Every processor may 
access every memory module via a complete network connecting the processors. However, the memory 
modules are sequential devices, i.e., able to satisfy only one request at a time. More precisely, a memory 
module Af operates as follows: If several processors try in the same step to access a variable stored in M, 
exactly one of the processors is allowed to carry out its read or write instruction; the remaining access 
requests are discarded. All processors are informed of the success or failure of their access attempts. We 
make no assumptions about how the single successful processor is selected from among the processors 
competing to access M . 

The MPC model is still not realistic for large n because of the postulated complete network connecting 
the processors. This leads us to consider a third model which we shall call the net work model. Here the 
processors are connected via a network of bounded degree, i.e., each processor is linked directly to only a 
constant number of other processors, cf. fig. 3. 
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Flf. S. The natwork model. Pt,..., P„ arc proceasora, M,,..., Mn memory modula. 

Since each step of a completely interconnected processor network may be simulated by 0(log n) steps of a 
bounded-degree network ([AKS], [L]), efficient algorithms for the MPC model translate into asymptoti-
cally efficient algorithms for the network model. 

The simulation of the idealized parallel machine, the PRAM, on the more realistic one, the MPC, has 
been considered in several previous papers. A naive approach represents each variable z of the PRAM 
by one variable V>(x) of the MPC. Now if a PRAM step accesses the variables xj, collisions may 
occur in the simulating machine because ^(zj) , . . . , i>(xt) are not necessarily located in distinct memory 
modules. If m < », the m variables may be allocated to m different memory modules, and a trivial 
0(I)-time simulation is possible. However, we are concerned with the case in which m is considerably 
larger than n. Here a msjor problem is to find a memory correspondence between the PRAM and the 
MPC such that, for all possible access patterns of the PRAM, the maximum number of variables requested 
from a single MPC memory module is kept low. Note that, for specific PRAM algorithms such as matrix 
multiplication, there may be very efficient ways of assigning variables to modules; we refer the reader to 
Section 4 of the survey paper by Kuck [K]. Here we are interested in universal simulations which work 
efficiently no matter which algorithm is executed by the PRAM. 

Some results have been obtained previously using probabilistic methods: Mehlhorn and Vishkin [MV] 
used universal hashing to define the memory correspondence. They obtained several upper bounds, for 
example an average of 0(log n) MPC steps to simulate one PRAM step, with the total amount of memory 
used by the MPC larger than the PRAM memory by a factor of O(logn). Upfal [U] found a probabilistic 
simulation of 0((log n)2) average time for one PRAM step on a bounded-degree network; this was recently 
improved to 0(log n) by Karlin and Upfal [KU]. 

This paper is concerned with deterministic simulations. We define the slow-down of a simulation as the 
number of steps needed by the simulating machine in the worst case to simulate one step of the simulated 
machine. Note that if m > n2 , the simple scheme outlined above (z is represented by V(z)) performs 
poorly: An adversary could make the PRAM step access n variables z j , . . . ,x„ with V(zi)> • • • ,0 ( in ) all 
in the same module. Hence the slow-down is Q(n). This reasoning shows that each PRAM variable must 
be represented by several "copies" stored in different modules. Mehlhorn and Vishkin [MV] showed that 
read instructions can be handled very efficiently using this idea. However, they did not know how to 
deal with write instructions. In a beautiful paper Upfal and Wigderson [UW] resolved this problem and 
exhibited a simulation which uses B(logn) copies of each PRAM variable. If m is polynomial in n, the 
slow-down is O(logn(loglogn)2). They also showed an O(log n/ log log n) lower bound on the slow-down 
for a large class of simulations. 

Using similar techniques, this paper improves the upper bound to 0(log m). If m is polynomial in n, 
this is 0(log n). Consequently, a PRAM step may be simulated in 0(log n log m) time on a bounded-degree 
network. On the other hand, we show that O(log n log m/log log m) time is necessary under certain assump-
tions on any bounded-degree network whose communication is restricted to be point-to-point. A similar 
result was also obtained by Karlin and Upfal [KU]. The assumption of point-to-point communication is 
not satisfied by our simulation algorithm which uses more general communication patterns. 

The PRAM simulations which we consider will be based on emulations of the PRAM's shared mem-
ory. We conceptually retain the n PRAM processors while replacing (or, equivalently, implementing) 
the PRAM's (physically infeasible) shared memory by a (more feasible) suitably programmed MPC or 
bounded-degree network with n processors, called the emulating processors. Each PRAM processor, which 
was formerly connected to the shared memory, is now instead connected to one of the emulating proces-
sors called its associated processor, each emulating processor being associated with exactly one PRAM 
processor, cf. fig. 4. We require the change to be completely transparent, i.e., all PRAM programs must 
run without change (though possibly slower) on the modified machine. 
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Emulating processor network 
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Fig. 4. Emulation of the shared memory of a PRAM. 
For I = i , . . . , n, la a PRAM processor and P[ its associated emulating processor. 

Note that although the most direct PRAM simulation implied by a memory emulation as above uses a 
total of 2n processors, it is a trivial matter to reduce the number of processors to n by coalescing each 
pair of associated processors into a single processor. For expository reasons we prefer to keep the clean 
separation between PRAM processors and (emulated) shared memory. 

Our simulation algorithms are non-uniform. This means that they are not given explicitly. Instead 
we merely prove that algorithms with the desired properties exist. For fixed values of n and m, such 
algorithms may be found by exhaustive search in a large but finite set. We return to this question in the 
concluding section. 

It has been known since Adleman's work [A] that probabilistic algorithms may be converted into non-
uniform deterministic ones. Hence the result by Karlin and Upfal [KU] automatically translates into a 
non-uniform deterministic simulation of PRAMs on a bounded-degree network. However, if the translation 
is based on Karlin and Upfal's analysis of their algorithm and uses known techniques, it introduces an 
Q(n)-increase in the product of time and number of processors [R, Theorem 6]. Since it is not difficult 
to devise a uniform deterministic simulation which uses 0(n2 / ( logn)2) processors and has a slow-down 
of O(logn) (the construction is similar to one presented in the remark ending Section 3), deterministic 
algorithms derived from Karlin and Upfal's probabilistic simulation are of little interest. The same is true 
of all other known probabilistic solutions. 

The remaining part of the paper is structured as follows: In Section 2 we describe our simulation 
of PRAMs on MPCs and show that its slow-down is 0(logm). As part of the development of the al-
gorithm, we define and solve a so-called "redistribution problem". Section 3 considers the simulation 
of PRAMs on bounded-degree networks and establishes upper and lower bounds of O(lognlogm) and 
n(lognlogm/loglogm), respectively. In Section 4 we return to the redistribution problem and prove a 
stronger result than what was needed in Section 2. Finally, Section 5 addresses some interesting and 
important open issues. Sections 2 to 5 can be found in the full paper. 
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1. Abstract 

Suppose we pick independently n random points X\, Xi,..., Xn from a d dimen-
sional polytope P. (i.e., Xi are independent identically distributed random variables 
each with density = 1 /vohime(P) in P and 0 outside.) Let En be the convex hull of 
Xi,X2,.. .Xn. The following questions arise naturally : 

1) What is the value of V„ the expected ratio of the volume of P \ En to the 
volume of P I 

2) What is the expected number of extreme points of the polytope En ? 

We show an upper bounds of ^p^(logn)d+1 on Vn and C(P)(logn)i+1 on Mn 

where C(P) is a constant that depends only on P (not on n). In both cases elementary 
arguments will only give a bound that replaces the power of log n )>y a power (less 
than one) of n. Previously, similar results were known only for the case of d = 2. 
(Buchta (1984) and R6nyi and Solanke (1963, 1964)). There has been substantial 
amount of work on the problem for spheres as well as for other quantities depending 
on En in two dimensions, (see for example W.M. Schmidt (1968), G.Buchta, J.Muller 
and R.F.Tichy (1985), P.M.Gruber (1983) and I.Biriny and Z.Furedi (1986)) In case 
the polytope P has at least one vertex with exactly d adjacent vertices, we prove lower 
bounds of 

d(P)(Zoj n)<i_1 /n on V„ and d(P){logn)d~l on Mn. 

Using the bounds,we are able to show that certain simple divide and conquer 
algorithms for finding the set of all extreme points have good sequential (linear time) 
and parallel (polylog time) complexitites in the expected case when the points are 
chosen at random independently from a polytope in a fixed number of dimensions. 

The results are based on a natural notion of centrality which we introduce for 
convex sets. 

2. The volume of the central region 

Deflniton : For any positive real number e and a convex set P, a point p in P 
is e-central for P, if for any hyperplane H through p, the volume of P in each of the 
half spaces determined by H is at least e times the total volume of P. 
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Clearly, no point is more than | central and the center of gravity is the only \ 
central point. It is also clear that if p is e central then it is S central for any S < e. 
We show below that the volume of the subset of points that are not e central cannot 
be too high. (It is obvious that the set of non e central points is Lesbeg measurable; 
we use volume to denote the Lesbeg measure.) 

Theorem 1 For any polytope P in Rd, there is a constant C(P) depending only 
upon P and d such *hnt /or every positive t, the volume of the set of non e central 
points is at most 

Remark It is possible to see that the volume of noncentral points is at most 
C(P)(e)1/<i times the volume of P by elementary arguments - any point at distance 
at least c.(e)1/'' fr«m the boundary of P has a sphere around it of radius c . ( f ) 1 ^ , 
any hyperplane through the point leaves a half of this sphere (which is of sufficient 
volume) in either half space. Note that the bound in the theorem is stronger - there 
e is multiplied by a power of log j whereas the elementary argument gives a bound 
where e is multiplied by a power of j . 

Remark The theorem is not true when P is a general convex set. For example 
it is easy to show that when P is a sphere, the e central region is a concentric sphere 
of radius (1 — Ci t 1 ^) times the radius of the original sphere whence the volume of 
the smaller sphere is 1 — O^e1^) times that of the whole sphere. 

P roof : With each unit vector c in Rd, we can associate a function fc:Rd—>R 
as follows : fc(x) = the volume of the set {y : c • y > c • x} , i.e., fc(:t) is the volume 
of the half space above x determined by the hyperplane orthogonal to c through x. 
Further let c„ be the minimum of the linear functional c • x over P. It will be useful 
to define also gc : R —> R+ as <?c(A) = the volume of the set {x : c • x < c0 + A}. 
The following is a direct consequence of the Brunn-Minkowski theorem (Bonnesen 
and Fenchel (1934) ). 

Proposition 1 Suppose A, 8 are real numbers such that 0 < A <6. Then, with the 
notation of the last paragraph, 

Proof : Without loss of generality, we may translate P so that c0 = 0. For any 
positive real number a let A(a) be the d— 1 dimensional volume of the intersection 

C(P) e (log \)A • volume of P 

ia 



of {x : c • x = a} and P. The Brunn-Minkowski theorem asserts that the d — 1 st 
root of il(-) is a concave function. Prom this it follows that for any a in the interval 

l> si, 

A(A) > A(a) 

Integrating j4(a) from A to 6 and using the above we get that 

( ( I ) ' - . ) 

Further, since there is some point q in P with c • q = 0, the convex hull of q and 
P n {x : c • x = A} contributes at least A ( X ) \ / d to pe(A), so we have 

ffc(A) > A(X)\/d 

These two inequalities together give us the proposition. 

• 

Let Fi = {z : Cj • x < ¿¡} » = 1 ,2 , . . . k be the defining inequalities of P where 
the Ci are unit vectors. We call a hyperplane of the form {z : a • x = di — 2k?de} 

where k is a natural number, a "copy" of Fi provided it intersects P. If any subset 
of d of the hyperplanes among the facets or their copies intersect at a point, we 
call the point a "grid point". It is clear that the number of grid points is at most 
C(P)(log for some constant C(P) independent of e. The facets and their copies 
subdivide the polytope P into what we may call "regions" - each region is a set 
of the form {x : d{ - 2k'<d > a • x > d{ - 2*'+1/d for i = 1,2,. . .fc} where the k{ 

are some natural numbers. It is clear that each region is the convex hull of some 
grid points. Finally, define for each x in P the unit vector c(x) to be such that 
/c(x)(®) = min { f c ( x ) : c a unit vector }. The proof of the following proposition 
follows closely the lines of a proof of Lov&sz and Scarf (1986). 

Proposition 2 I f & point x oiP lies at distance at least 2 1 ! * t from every facet, then 

there is a grid point y such that 

/«(.)(X) > Uy)(x)/2 

Proof Under the hypothesis, it is clear that x is in an interior region R. Suppose 
R is the convex hull of grid points J/i, Jfc, • • • 2/* • One of the }/< - call it y for short 
satisfies 

Jc(.)(x) > /c<»)(y) 



Further, 

/c(*)(v) > fc(y)(v) 

Suppose the straight line from x to y intersects the boundary of P at z. By the 
definition of "copies", it is dear that \x — z\ < 21ld |y - z\. So by proposition 1, we 
have 

M,){V) > /c(,)(*)/2 

The three inequalities together establish the proposition. 

Now we go back to the proof of the theorem. Let {fc(y) • y a grid point } be 
{ f W , f W • • • / ( , ) } where * < C(P)(log £)<. 

T ^ = {x : / ( i ) (x ) £ 2e} for i = 1 ,2 , . . . s 

If x 6 P is at least 21/<<e away from the boundary of P and x $ for i = 1 ,2 , . . . s, 
we wish to assert that x is e central for P. This is because, for such x, there exists 
some grid point y such that }c(x){x) > / c( ,)(x)/2 > e, whence of course fc(x) > t for 
every unit vector c. Obviously, = 2e (here ft denotes the volume) for each i, 
further, the the volume of the set of points at distance at most e from the boundary 
of P is at most C(P)'e for some constant C(P)'. Thus the volume of the set of non 
e-central points in P is at most 2es + eC(P)' < C(P)"t(log So we have proved 
the theorem. 

3. P robab i l i s t i c r e su l t s 

The following simple lemma together with the theorem of the last section gives 
us the probabilistic results. 

lemma 1 Suppose n points are picked at random independently from a polytope 
P in Rd and suppose En denotes their convex hull. If x is an e -central point of P, • 
then the probability that x does not belong to En is at most (J"1)(l — e)n-<'+1. 

Proof: If x is not in En, then it lies on a facet F of the convex hull of En U {z}. 
F contains at least d - 1 of n randomly picked points. Since x is e central for P, the 
volume of P on either side of F is at most 1 — e. Thus the lemma folows. 

We use the lemma as follows : Let t = n(,dtl) and choose e - ^ " . Then a n—d+1 n 
calculation shows that if x is e central for P, then the probability that x £ En is at 
most 1/n 2 . 
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Thus the expected volume of P \ E n is at most £ plus the volume of the non e 
central region. The latter is at most C(P)(d + l)[logn)d+1/(n - d + 1) as a simple 
calculation shows. Summing, we get that the expected volume of P \ E n is at most 
C(P){logn)i+1/n for n>2d for a suitable C(P). 

To get the expected number of extreme points of En, note that the probability 
that one of the chosen n points is extreme equal to the probability that it does not 
belong to i. Thus the central region contributes at most n/(n — 1)J < 1 to the 
expected number of extreme points , while the non central region contributes at most 
n times its expected volume overall at most 0((log n)d+1) . So we have proved the 
theorem promised in the introduction. 

Theorem 2 Suppose P is a polytope in B? and E„ is the convex hull of n randomly 
and independently picked points in P . Then the expected volume of P \ En is 
0((log n)d+1 /n) and the expected number of extreme points of En is 0((log n)d+1) 
where the hidden constants depend only upon P and d. 

4. Lower bounds 

We prove lower bounds on the volume of the non e central region. These, we 
will see, also imply lower bounds on Vn and Mn. 

Theorem 3 If P is a polytope of nonzero volume in Rd, such that P has at least 
one vertex with precisly d neighbouring vertices, then there exists a constant e(P) 
depending only upon P such that for any e, the volume of the set of points that are 
not e central to P is at least e(P)e(log 7)<i~1 times the volume of P. 

Proof. : First, we give the argument for P = the cube {x : 0 < Xi < 1 for i = 
1 ,2 , . . .d} . For any point p = (pi,p2,• • • ,Pd) in the cube, consider the hyper-
plane { s : Yl x ' /Pi = This hyperplane, call it H, passes through p. Fur-
ther the region in the cube "below" H is contained in the simplex with vertices 
(0 ,0 , . . . ,0 ) , (dpi,0,0,..., 0), (0, dpi,0,...,0),..., (0 ,0 , . . . , 0 , dpd), whose volume is 
dd f j Pi/dl. Thus if the product of the Pi is less than dh/dd, then p is not e central 
to P. The following claim finishes the proof of the lemma in the case of cubes. 

Claim : The volume of the set Sd(S) = {p 6 Rd : 0 < p{ < 1,1]Pi < is at 
least S(log |)<1_1/(<i — 1)!. 
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Prooi. : The proof is by induction on d. For d = 1, it is clear. In general, let v(d,S) 
be the volume of Si(6). Then, we have 

Now the claim follows by induction. 

Suppose now P is any polytope with a vertex p of degree d. By trnaslating P, 
assume that p = 0. Let p 1 , ? 2 , . . .pd be the vertices adjacent to 0. Then the paral-
lelopiped Q = {x : x = £Ajp*;0 < Xi < 1/d}, is contained in P and furthermore, 
P is contained in the cone {x : x = A<j>\Aj > 0}. So if a point x in Q has a hy-
perplane passing through it so that the volume of the cone below the hyperplane is 
less than e times the volume of P, then clearly, x is not t central to P. Let r be a 
linear transformation that sends Q to the unit cube, r preserves ratios of volumes, 
so the theorem follows from the argument for cubes plus the fact that the ratio of 
the volume of Q to the volume of P is a constant that depends only upon P. 

To derive lower bounds on Mn ,V„, we prove the simple converse to Lemma 1. 

Proposition 3 IIx is not e central to P, then the probability that x does not belong 
to En is at least (1 - e)n. 

Prooi. : The proof is straight forward and is ommited. 

Now we choose e = i /n for an as yet unspecified constant t. Then the non e 
central points comprise a set of volume at least e(P)(logn)d~1/n) for some constant 
e(P) depending only upon P (and t which is but a constant) . For each x such that 
x is not e central to P, the probability that x is not in En is at least e~' = 0(1) for 
t independent of n. So the expected volume of P \ E„ is at least 0((log n)<i~1/n)-
The lower bound on Mn is proved as follows. By Chernoff bounds, the probability 
that the number of non-e central points out of the n randomly picked points is less 
than a = e(P)(logn)li_1(l - e - 1 ) / (2n) is at most 1/2 (this is a very crude estimate). 
Thus with probability at least a half s or more points are picked from the non central 
region. Each such point is an extreme point of En with probability a constant greater 
than 0. So we have shown the following : 

Theorem 4 Let En be the convex hull ol n indpendently and randomly picked 
points from a d dimensional polytope P in Rd, that has at least one vertex with 
precisely d adjacent vertices. The expected value ot the ratio ol the volume oIP\En 

to the volume ol P is at least il((logn)d~1/n) ; the expected number ol extreme 


