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Preface 

The present monograph deals mainly with one aspect of stochastic branching models, 
namely their equilibrium distributions. Any model of this kind has the trivial equilibrium 
distribution, which is concentrated on the "void population". Unless, however, the 
branching model corresponds to an "independent substochastic translation" or may be 
reduced in a certain sense to this case (cf. section 2.9.), infinite populations occur with 
positive probability in any non-trivial equilibrium situation.The results presented here are 
thus in the intersection of two theories: stochastic infinite particle systems and branching 
models. 

From the point of view of stochastic infinite particle systems our model is elementary, 
because the independence hypotheses, which are characteristic of branching models, are 
rather restrictive. These restrictive hypotheses, however, admit a number of conclusions, 
which, at least partially, can serve as a "case study" for more complicated stochastic 
evolutions. 

On the other hand, from the viewpoint of classical branching models, the introduction 
of infinite particle systems leads to significant complications. Nevertheless the subject 
treated here should be regarded as a natural one in the theory of branching models. 

The theory of random point fields (and in particular that of infinitely divisible 
distributions of random point fields) is an important tool in the present investigations. 

The whole monograph is restricted to models in discrete time, in order to avoid 
questions connected with the existence and the description of stochastic branching 
dynamics in continuous time (cf. Ikeda, Nagasawa, Watanabe (1968,1969), Nagasawa 
(1977), Asmussen, Hering (1983)). 

Also, we do not touch upon the theory of measure valued branching processes. Parts 
of that theory are parallel to our setting (cf. Hermann (1981)), to which it is also connected 
through asymptotic considerations. 

From the historic viewpoint, the present investigations have two sources. The first is 
the theory of spatially homogeneous branching models, which has been presented in detail 
in Matthes, Kerstan, Mecke (1978) (quoted in the sequel by [MKM]). The second is the 
general theory of spatially inhomogeneous substochastic translations, especially the papers 
of Kerstan et al. (starting with Kerstan, Debes (1969)), Shiga and Takahashi (1974) and 
Liggett (1978). The spatially homogeneous branching models with different "types" of 
individuals (cf. eg. Prehn, Roder (1977)) can be considered as an intermediate stage 
between the spatially homogeneous case and the general case. The present text contains no 
specific chapter on the spatially homogeneous theory. This is for the sake of conciseness 
and also because a number of important questions in the spatially homogeneous case still 
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remain open. This case has yet to be studied from the point of view of the advanced 
general theory. A first impression of how the general theory developped here affects the 
spatially homogeneous case is provided by Fleischmann, Hermann, Matthes (1982). 

The results presented in this text considerably improve upon the hitherto existing 
publications on the subject. As a systematic presentation, it clarifies the theory, eliminates 
superfluous assumptions of past treatments, and creates some useful concepts such as that 
of a "family equilibrium distribution." Terminology and notation are modified in order to 
facilitate reading. Examples play an important role in the whole presentation, some of 
which are unbroken threads running throughout the text. In the first chapter basic facts 
from the theory of random point fields are reviewed, for the most part without proof, but 
with reference to [MKM] and to Kallenberg (1983) (cited by [K]). 

References and attributions of results are collected in an appendix "Comments and 
References", unless these results are "already standard" or are due to some of the present 
authors (whose relevant publications, however, are included in the list of references). 

We cordially thank Miss Irene Steininger for her patient and diligent work in preparing 
the camera-ready manuscript, and R. Siegmund-Schultze, whose contributions were 
essential for the development of the present theory. 

Berlin and Linz, March 1987 

The authors 
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1. AN INTRODUCTION TO 
RANDOM POINT FIELDS 

AND BRANCHING DYNAMICS 

Let as consider a system of particles or rather a population of individuals which are 
indistinguishable up to their location, and assume that the population is subject to a 
stoch'istic branching dynamics in discrete time in the following way: each individual in the 
population produces, independently of the other individuals, a random offspring, whose 
distribution depends on the individual's location, and the population in the subsequent 
generation is the superposition of all these offsprings. This monograph deals with the time 
evolution of such systems, in, particular investigating the structure of equilibrium 
distributions and establishing convergence-to-equilibrium results for certain initial 
distributions. 

As a "phase space" (i.e. the space which the particles or individuals live in) we admit 
an arbitrary complete, separable metric space [A, pA], A population of individuals in a 
phase space [A, pA] might be described by the set S of the individuals' locations. Thus, as 
a mathematical model of populations all those subsets S of A could be considered which 
obey the finiteness condition #(SnX) < for all bounded subsets X of A. Such a 
modelling, however, does not allow to describe populations with more than one individual 
at a site. Even if such multiplicities do not play much role in the modelling of "real" 
populations, they do occur in certain mathematical idealizations, e. g. in stochastic 
branching models with countable phase space. It is therefore appropriate to associate, with 
an individual at the site ae A, not the set {a} but the corresponding Dirac measure 8 a . The 
whole population is then described by the sum of those 8a 's, i.e. by a measure O on the 
CJ-algebra A of Borel subsets of the phase space. The multiplicity of individuals at some 
site ae A is now given by <t>({a}); this is how often the summand 5a occurs in <I>. 

Populations are thus modelled by measures <1> which take values in Z+ on bounded 
Borel subsets of the phase space; such measures are called counting measures. The 
superposition of populations is now described no more by the union of sets, but by the 
addition of the corresponding counting measures. The set of counting measures will be 
equipped with a natural topological and measurable structure. 

The metric pA comes into the above concepts only via the topology which it generates 
and the pA-boundedness of subsets of A. If two complete metrics coincide in these 
respects, then they are equivalent for the whole theory. 
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According to the above statements, random counting measures - also called random 
point fields - may be understood as special random measures. Many concepts and results 
from the theory of random point fields may be extended in a natural way to random 
measures. This is more than a formal generalization: it turns out - also in the present 
monograph - that the study of random counting measures leads to random measures in its 
own right, e. g. via the Cox transformation. 

A stochastic branching dynamics is constructed from a so called clustering field 
(K(apae A > w ^ e r e K(a) ' s the distribution of the random offspring of one individual at site 
ae A. The basic assumption for a stochastic branching dynamics is that the offsprings of 
the single individuals in the system are generated in a stochastically independent way 
according to the given clustering field. This independence assumption is the principal 
reason why favorite candidates for equilibrium distributions of stochastic branching 
dynamics are the so called infinitely divisible distributions. These are probability 
distributions of such random populations which may be represented as an independent 
superposition of an arbitrary number of identically distributed random populations. Via the 
canonical representation of infinitely divisible distributions, also infinite measures on the 
space of counting measures come into the theory. 

Chapter 1 is an introduction into those parts of the theory of random point fields which 
are relevant for our purposes. Concerning the proofs, we usually refer to the 
comprehensive monographs [MKM] or [K]. There, one finds also detailed historical 
remarks. 

In the subsequent chapters, basic concepts and standard results will be used sometimes 
without mentioning this introduction explicitely. It is also the purpose of the introduction 
to explain certain procedures in an exemplaric way, in particular the definition of new 
phase spaces (e. g. [A, p A ] in 1.6., [AA, PAA] in 1.7.) in order to draw new 
consequences from already known facts. 

The reader's attention should be drawn in particular to the presentation of Kallenberg's 
"backward technique" in 1.9., where special emphasis is put on the intuitive content of the 
formulae. 

1.1. Random Measures 

Let [A, pA ] be a complete separable metric space, called phase space, J? the 
corresponding a-field of all Borel subsets of A, and 25 the ring of all bounded sets X in 
J l Further, let N denote the set of all measures v on A taking only finite values on Any 
ve N may be viewed as a "mass allocation" on A. In the sequel, the set N will be 
furnished with order, topological and measurable structure. 

With the natural semi-ordering < of measures, N forms a conditionally complete 
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distributive lattice with zero measure o on SI as smallest element. The greatest lower 
bound resp. least upper bound of {a, p} in [N, <] is denoted by OAp resp. a v p . Any 
decreasing sequence (v„) of measures in N has a greatest lower bound v. In this case there 
holds vn(X) I v(X), Xe and we write vn 4- v. The least upper bound of any increasing 
sequence (yn) exists in [N, <] iff sup Yn(X) < + » , Xe <B. In this case there holds 

n—1,2.. 

Yn(X) T y(X), Xe JZ, and we write y n Ty. 

Let F denote the set of all .^-measurable mappings from A into [0,+°°], and Fc be the 
subset of all bounded, pA-continuous mappings f e F with bounded support supp f . For 
all f e F and all measures v on J? we put 

<v,f) : = Jf(a)v(da) . 

Let be the O-field on N generated by the mappings V—> v(X), Xe % and let t n de-

note the vague topology on N, i. e. the topology generated by all mappings v—*(y, f ) , 

f e F c ; N ) will stand for the corresponding convergence. 

1.1.1. [MKM, Prop. 3.2.1., 3.2.3.] [N, t n ] is a Polish space (i. e. xN is generated 
by a complete, separable metric). The corresponding a-algebra of Borel subsets coincides 
with !A£. 

For all measures v on JZ, the ring of all Xe ® with the property v(9X) = 0 is denoted 
by 0V . 

1.1.2. [MKM, Prop. 3.2.2.] v n — v iff v„(X) v (X) , Xe ® v . 

1.1.3. [MKM, Prop. 3.2.5.] A subset Y of N is TN-relatively compact iff it obeys, 
for all pA- bounded and closed subsets X of A, the following conditions: 

a) sup V(X) < +oo . 
veY 

b) For any e>0 there exists a pA-compact subset B of X such that s u p v ( X \ B ) < e . 
VeY 

N N 
v n T v as well as v n i v imply the convergence v n > v . Moreover, v n > V, 

Y , , - Y > V n - Y n . n=l,2,..„ leads to v < y . 

In virtue of 1.1.3. this yields 

1.1.4. For all o e N the set [v: v e N , V < o } is XN - compact. 

By a r andom measure with phase space [A, pA] we mean a random element of 
the measurable space [N, iVJ; this can be interpreted as a random mass allocation on the 
phase space. Any random measure induces a probability distribution on. ¡A£; the 
probability distributions and - more generally - the measures on !A£will be our primal 
object of interest for the rest of this section. 
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For all natural numbers k, v—>v®k is a mapping from N into the set of measures on 

A s the mapping V—>v®k(S) is immeasurable for all S e w e may form, for each 

measure H on iAC, the measure 

A % ( . ) := j v ® k ( . ) H ( d v ) 

on J?®k, which is called k**1 m o m e n t m e a s u r e of H. W e say that H is o f k**1 o r d e r if 

is finite for all X e *B. For k = l , we write AJJ instead of A ^ ^ and speak of the 

intensity m e a s u r e of H. For all f e F there holds 

< A H , f > = J i f ( a ) v ( d a ) H ( d v ) . 

If H is interpreted as the law of a random mass allocation, then A j ^ X ) is the expectation of 

the random mass in X . For simplicity, w e further put := . 
H 

Let G denote the linear space of all finite signed measures on Together with the 

c o n v o l u t i o n o p e r a t i o n 

G ^ G j S ^ G j S G j X i V j + v ^ O ) ( G p G j e G ) , 

G becomes a commutative real algebra with unit element 8 0 . For all G e G and k e Z + , 

w e denote the k-th convolution power of G by G k . In particular, there holds G° = 8 0 . 

For abbreviation, w e put, for all X e A and all measures v o n j?, 

x v : = v ( ( . ) n X ) . 

For all X e % the mapping 

G - » X G := ( ? ( x v e (.)) 

is a homomorphism of the algebra G into itself. 

W e wil l a lways write llqll for the total var iat ion of a finite signed measure q on an 

arbitrary measurable space. 

With the norm IIII, G is a complete normed algebra. Instead of llxGII w e also write 

XIIGII ( G e G , X e J%). G + denotes the set of all finite measures on ¡ft[,lG stands for 

the weak topology on G + , and => for the corresponding convergence. [G + , T G J is again 

a Polish space. 

For all finite sequences X j , . . . , X m of sets in ® and all G e G w e put 

G x x := G([v(Xj) , . . . , v (X m ) ] e (.)) . 

Obviously there holds 

( G , * G 2 ) X i X m = ( G , ) X i X m * ( G 2 ) X i X m ( G L G 2 e G + ) , 

where * on the right hand side means the usual convolution of finite measures on the 

0-algebra (B+)®1" of Borel sets on R + m . 
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1.1.5. [MKM, Prop. 7.2.4.] In G+ there holds Gn => G iff for all finite sequences 
Xj , . . . , ^ of sets in ®G the weak convergence 

<Gn>X„...,XI„=*GX1 X 1 m 1* ' m 

in the space of all finite measures on (¿J^®"1 takes place. 

Due to ®Gi» = ®Gi n there follows 

1.1.6. In G + , Gn => G and Hn => H imply that G^H,, => G*H . 

Moreover, from 1.1.5. it is easy to conclude 

1.1.7. Gn => G and X e ®G imply that AG(X) < liminf AG (X). 
n — n 

Another consequence of 1.1.5. is 

1.1.8. For all measures G, G p G2,... of first order in G+ such that Gn => G, the 
N vague convergence AG » AG takes place iff for all X € H the condition n 
sup J v(X) G (dv) » 0 n=l$,... (v:v(X)>c} " c-x» 

is fulfilled. 

Let V denote the set of all probability distributions on iA£and V be the smallest 
o-algebra of subsets of V with respect to which all mappings Q(Y) , YeiAC, are 
measurable. V is a weakly closed subset of G+, and the <T-algebra V coincides with the 
o-algebra of Borel subsets of V with respect to the weak topology Ty, i.e. t he restriction 
of t g to V. Obviously, V—> 8V is a homeomorphic imbedding of [N, xN] into [V, ty]. 
The following simple estimate will sometimes be useful: 

1.1.9. For all Qj, Q2e V and all Xe A there holds 

xIIQrQ2ll < 2 (Qj(v(X)>0) + Q2(v(X)>0)) 

<2 (AQi(X) + AQ2(X)) . 

Together with Q, obviously all of the QX j are probability distributions. In this 
case, these are called finite dimensional distributions of Q. On the other hand, with 
any probability distribution p on (B+)®m we may associate via 

Q: = P ( X x ^ e O ) l<i<m 

the distribution of a random measure with phase space {l,...,m}, for which then holds 

P = Q|1) (m) • 

Hence one may identify random elements of R+
m in a natural way with random measures 

on the phase space {l,...,m}. 

13 



In V, a semi-order £ will be introduced as fol lows: we say that Q j £ Q 2 if there 

exists a distribution H on with the properties 

H(V; e (.)) = Qj for i = 1,2 ; H(v ,<v 2 ) = 1 . 

This is equivalent to the existence of an V - measurable mapping v—> L(v) f rom N 

into V with the property Q , = J L(v) (.) Q 2 (dv) ; (L(v)) (y < v ) = 1 for all v e N. 

1.1.10. V n => V, Q n => Q and V n I Q n for n = 1,2,... imply that V i Q. 

If A coincides with {l, . . . ,m} and V is identified in the above mentioned sense with 

the set of all d is t r ibut ions on ( B + ) ® m , then < is j u s t the we l l -known relat ion 

"stochastically smaller" (cf. [Stoyan (1983)]), which we continue to denote by < : 

P j i P2 iff there exists a distribution q on ( f l + )® 2 m such that 

q a x j , . . . ^ ] 6 (.)) = P l ; q ( [x m + 1 , . . . , x 2 m ] e (.)) = p 2 ; q(X i < x i + m for 1 < i < m) =1. 

By means of 1.1.10. there results 

1 .1 .11. In V there holds V £ Q iff for all f inite sequences X j , . . . , X m of sets in ® 

the inequality ^ ^ 

, , , x i X m ~ ^ X l - - X m 
holds true. 

Now let (Qj); e i be some at most countable family of distributions on For 1=0 we 

define as the unit element 8 0 of G. Otherwise we form H := (X) Qj and put 
i e I iel 

* Q i : = H ( ( Z V i ) e (.)) , iel lei 
provided that H ((Zv:) e N ) = l . ( W i t h this definition, ^ Q - is the distribution of the 

iel iel 

sum of independent random measures with distribution Q j , i e I.) The intensity measure of 

Q = is A 0 = X A n . On the other hand, the convolution ^ Q : certainly exists if iel ^ iel ^ iel 

X A 0 belongs to N. 
iel 

If V is a distribution on and k is a natural number, then there exists at most one 

convolution root of V in, V. If there exists a k-th convolution root for any k e Z + , then V is 

called inf ini te ly divisible. Let I denote the set of all infinitely divisible V in V. 

With any measure G in G + , we associate in form of the "Poissonian mixture" 

•r - G ( N ) £ ( k ! ) - l G k 
^ kX) 

a distribution in I, satisfying the relations 

'ECl*'
EG2='

EC1+G2
 F O R A 1 1 G j , G 2 g G + ; A ^ = A g for all G e G + . 

In view of )\(o)) w e m a y restrict ourselves here to measures G in G + which have 

no mass in o . 
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Let U denote the set of all possibly infinite measures on satisfying the conditions 

U({o}) = 0 ; J ( l -e-vW) U(dv) < oo for all Xe ® . 

It can be shown that for an arbitrary at most countable family (GJ)I(EL of measures in G + 

with the property G:({o}) = 0 , ie I , the convolution V:= sjs exists iff U :=X G 
i e l ^ i ie 1 1 

belongs to U. In this case, V depends only on U and not on the special representation of 

U. Taking into consideration that any UeU has such a representation U = E G : , w e iel 
may define, for all UeU, the distribution by "Ey := V. Again there holds 

1.1.12. £ U i * £ U 2 = % i + u 2 ( U ^ U J E U ) ; A % = A v ( U E U ) . 

Hence all distributions "Ey, Ug U, are infinitely divisible. 

In view of 8V = (Sfc-iv)k for ve N, k = 1,2,..., also 8V, V€ N, is an element of I. 

From the two above mentioned special types of infinitely divisible distributions on 
all distributions in I may be obtained in the following way: 

1.1.13. [K, Prop.6.1.] The mapping [V,U]^> S ^ i E y establishes a 1-1 
correspondence between NxU and I, the (unique) factorization 

V = 8 v * £ u ( veN.UeU) 

is called canonical representation of V, and the measure U figuring there is called 

canonical measure of V, written as U=V. Obviously there holds A v = v + A ~ . 

1.2. Random Point Fields 

A measure in N is called counting measure if it takes only nonnegative integer 
values on S . The set of all counting measures in N will be denoted by M. 

1.2.1. [MKM, Prop. 1.1.2.] Any Oe M is of the form <D = I <D({a)} 8„. 
ae supp4> 

Hence any counting measure <I> may be interpreted as an (at most countable) system of 
identical particles or individuals in the phase space [A, pA]. For all Xe ¡A, 4>(X) "counts" 
the number of particles in the system which are situated in X. Specifically, <I>( {a}) is the 
number of particles at the site ae A. If, for all ae A, <3>({a}) is either zero or one, then <I> is 
called simple. Obviously, the mapping suppO establishes a 1-1 correspondence 
between the set of all simple counting measures and the system of all subsets X of A with 
the property #(XnS) < Se (8 . 
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Being a subset of N, the set M inherits the order, topological and measurable structure 
of N defined in 1.1. Let M be the o-algebra on M generated by the mappings <J>(X), 
Xe ®, and let xM denote the vague topology on M, i. e. the topology generated by all 

M 
the mappings > {<£, f), f e F c ; > will stand for the corresponding convergence. 

Obviously, t M is the restriction of t n to M, and iW is the restriction of !A£ to M. 

1.2.2. [MKM, Prop. 3.2.4.] The set M is xN-closed. 

This together with 1.1.1. shows: 

1.2.3. [M,Tm] is a Polish space. The corresponding o-algebra of Borel subsets 
coincides with tM. 

The mapping a —> 8 a provides a homeomorphic imbedding of the phase space into 
N 

[M , tm]. One may conclude easily from 1.1.2. that vague convergence vn » v in 
[N , tn] can be characterized as follows : Let (Xm) be some ascending sequence in 2?v 

N 
such that any X e ® is covered by some Xm . Then vn >v is equivalent to the weak 
convergence of ( x vn) towards ( x v) in the space of finite measures on ¡A for all me Z. . 

m m 

On the other hand , weak convergence of finite counting measures can be characterized 
in an intuitive way: 

1.2.4. [Kerstan, Matthes, Mecke(1982), Prop. 1.9.10.] In the set of finite counting 
measures on J?, weak convergence <I>n=><t> takes place iff, for all suitably large natural 
numbers n, <l>n(A) = <5(A), and there exist representations <l>n = X 8. such that 

l<i<k n.i 
a„; » a:, l<i<k, andC> = X 8. • 

' n — 1 l<f<k "i 

By a random point field (or random counting measure) with phase space [A,pA] 
we mean a random element of the measurable space [M, M ] . Because of Me and 
M - M n ? ( we may interpret the random point fields as random measures whose 
realizations are almost surely counting measures. Any random point field induces a 
distribution on iW; for the rest of this section we will deal with distributions and, more 
generally, with measures on iM\ 

Let E denote the linear space of all finite signed measures on 9vi. Together with the 
convolution operation 

E,*E2 := (E,®E2)((<V<I>2)e(.)) ( E p E ^ E ) 

and the variation norm IIII , E becomes a commutative, complete normed real algebra, 
which may be identified with the subalgebra of G consisting of all G which are 
concentrated on M. In the same way, the set E + of all finite measures on iW will be 
viewed as a subset of G + . 
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Let XE denote the weak topology on E+ and => the corresponding convergence. The 

set E+ is Tg -closed, and xE coincides with the restriction of XG to E+. 

1.2.5. [MKM, Prop. 3.2.7.] A subset L of E+ is XE -relatively compact iff it has the 
following two properties: 

a) su£ L(M)<+°°, 

b) for each closed set X in $ and each T|>0 there exists a natural number n x ^ as well 
as a compact subset B x ^ of X such that 

sug L(«fr(X) > nXT1) < n ; su£L(<D(X\Bx n)>0) < T\ . 

Let P denote the set of all distributions on iW and P denote the O-algebra generated 
by the mappings P —* P(Y), Ye 9tL In the above mentioned sense P is viewed as a subset 
of V, which leads to the equality P = PnV. 

Tp denotes the weak topology on P, i. e. the restriction of XE to the xE -closed set P. 

The o-algebra of Borel subsets of the Polish space [P, Xp] coincides with P. 

1.2.6. [MKM, Prop. 3.2.8.] If L is a subset of P such that ( A L } L e L is a 
xN-relatively compact subset of N, then L itself is Xp-relatively compact 

In view of 1.1.4. this leads to 

1.2.7. For all oeN, [P:PeP, Ap<o) is xp-compact. 

Note that, for Pe P , the finite dimensional distributions P x x may be 

viewed as distributions on 2^Z+
m); on the other hand the distributions on 2^Z+

m) can be 
identified with the distributions of random point fields with phase space {1 ,...,m). 

If a distribution P on M has, for a natural number k, a k-th convolution root L in P, 

then we write may happen that a k-th convolution root of P exists in V but not 

in P. For any counting measure O, is an element of I, but exists iff for all points 
a G supp<t> the number 4>({a]) is an integer multiple of k. T will denote the set of all 
distributions on M which are infinitely divisible in P, i. e. the set of all Pe P for 

which all convolution roots kVp7k=l,2,..., exist. The set T is contained in I, but, as 

mentioned above, is different from I n P . 

1.2.8. [MKM, Prop. 3.2.11.] The set T is Xp-closed. 
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Let W denote the set of all possibly infinite measures W on tM obeying the two 

conditions W({o}) = 0 ; W(y(X)>0) < +~> for all Xe S . 

As a counterpart to 1.1.13. there holds: 

1.2.9. [MKM, Prop. 2.1.10.] The mapping W —> %fj provides a 1-1 correspondence 
between the sets W and T. 

Obviously W may be identified with the set of those Ue U which are concentrated on 

M. Instead of P=£ v v we also write W=:P, calling P the canonical measure of P. 

For all Pe T and re R . , one puts P r := £ , thus obtaining a one-parameter convolu-
iP 

tion semigroup ( P ^ r (cf. section 2.4. in [MKM]). 

Because of A_ = A D , a distribution P in T is of first order iff its canonical measure 
P p 

is of first order. Further note that a measure H on iWof first order is contained in W iff it 

has no mass in o . 

1.2.10. [MKM, Prop. 2.2.4.] For all P e T and all Xe A , also X P is an element of T 
and there holds ^ 

(^P) = P ( x V e ( . ) , V ( X ) > 0 ) . 

In virtue of 1.2.10. and the definition of W -> for any given P e T and XeA 
such that P(<I>(X)=0) = exp(-P(\j/(X)>0)) > 0 , the distribution X P may be represented 
as Poissonian mixture 

X P = e ' Q M j , (k!)"1Qk , Q : =P(X»P€(.), 4»(X)>0) 

1.2.11. [MKM, Prop. 2.2.6.] For all distributions P e T of first order there holds 
A ( 2 ) p = A (2 )_ + A p g ) A p . 

With any measure ve N we associate via 
Gv :=v(8ae(.)) 

a measure Qy e W with intensity measure v, and call 

n v 
the Poisson distribution with intensity measure v. 

1.2.12. [MKM, Prop. 2.2.14.] For all veN, a distribution P on coincides with 
n v iff for any finite sequence X , Xn, of pairwise disjoint sets in ® there holds 

X1 2 ^(X,) ^ (X^ 

1.2.13. [MKM, Prop. 3.3.7.] The mapping v IIV provides a homeomorphic 

imbedding from [N, xN] into [P, TP]. 
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With any G e G , we associate via 

3 ( G ) : = J n v ( . ) G ( d v ) 

a signed measure 3 ( G ) on M , the so called Cox t r a n s f o r m of G. 

1 . 2 . 1 4 . [ M K M , Prop. 7 .1 .2 . ] The Cox transform 3 is an isomorphism from the 
algebra G onto a subalgebra of E . 

Obviously, 3 ( G ) is in E + resp. in P, i f G is in G + resp. in V. In this case there holds 
^ 3 ( G ) = ^G • Distributions of the form 3 ( G ) , G e V, are called C o x distr ibutions. 

1 .2 .15 . [MKM, Prop. 7 . 2 . 1 . , 7 .2 .2.] The Cox transform 3 provides a homeo-

morphism from [G + , Tq ] into a closed subset of [ E + , i E ). 

Any counting measure <D may be written in the form <l> = L 5 . . 
iel i 

For all natural numbers k we put 

0 « : = I 5[a a 1 
i j i^eI pairwise distinct i j " " 

Obviously there holds <I>(k) < 0 ® k . 

1 .2 .16. For all simple i> e M we have 

<1,00 = <D®k ( ( . ) n { [ x j , . . . , x k ] e A k : X j * X j for l < i < j < k } ) . 

Let p z be the metric of Z + defined by p z (i , j) = 0 i f i=j and 1 if i * j , and denote, for 

the moment, the direct product of [A, p A ] and [Z + , p z ] by [A ' , p A - ] . (All objects 

belonging to the new phase space A ' will be distinguished by a prime.) 

1 . 2 . 1 7 . T h e mapping 

:= £ £ 8 f a i l 
aesupp<l> 0<j«I>({a)) ld,J J 

is a bijective and in both directions continuous mapping from M onto the set o f simple 

counting measures in M ' . 

Noting that <J>® may be reconstructed from in easy way, we conclude from 

1.2.16. and 1.2.17. that the mapping 4><k>(S) is immeasurable for all S e A ® k . 

Hence we may form, for any measure H on iM and all natural numbers k, by 

r<k)H:=J<I>(k>(.)H(d<t>) 

the k-th fac tor ia l moment measure r ^ ^ of H. Obviously there holds 

1.2 .18. A H = r i ' ) H , A ( 2 ) H = r ® H + / 8 [ A , A ] ( . ) A H ( d a ) . 

Together with 1.2.11. this implies 

1.2.19. For all distributions P of fist order in T there holds 

r<2) D =r<2) -+Ap®Ap . 
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1.3. The Laplace Transformation 

For all Ge G + we define via 

LQ($) := Jexp(-(v,f))G(dv) ( feF) 

its Laplace transform LQ (where exp(-«°): = 0). It is immediate from the definition that 

^c1G1 +c2G2( f) = c iA3 1 ( f ) + c2£ t 3 2(f) ( feF ; c,, c 2 e R + ; Gj, G 2 e G + ) . 

1.3.2. £ G i . G 2 ( f ) = £ G ] ( f ) . i : G 2 ( f ) (fe F ; Gj, G 2 e G + ) . 

The mapping G —* LQ is 1-1; there even holds 

1.3.3. For all G1 ( G 2 e G + , 

Ai1(f) = V f ) ( f e Fc> implies that Gj = G2 . 

By the Laplace transformation, weak convergence in G + is carried into pointwise con-
vergence for all fe F c . Sharpening 1.3.3., there holds 

1.3.4. [K, Prop. 4.2.] For all G, G p G2>... in G + , weak convergence G n => G is 
equivalent to the validity of 

L ^ (f) LQ(S) ( feF ) . 
n 

For all measures v on Si, let F v denote the set of all fe F with the property (v, f) < . 
For all Ge G + and all f, ge F A q there holds 

I iexpKv, f ) ) G(dv) - iexp (-<v, g))G(dv) I 

< JI (v, f H v , g) I G(dv) < J<v, lf-gl> G(dv) , 

which leads to the elementary inequality 

1.3.5. For all Ge G and all f, ge F . there holds 
G 

1 ^ ( 0 - ^ ) 1 < < a g , If-gl) . 

For all GeG + and all Xj , . . . ,Xme®we obtain for all s , , . . ,smeR + : 

A j x x ( s l ' - ' s m> 
l''"* m 

= j ( e X P ^ J ^ ) G X , Xm(d[x1,...,xm]) = / G ( i s | n s i l x . ) . 

Hence follows 

1.3.6. For all G, Gj, G2, ...e G + and all finite sequences X1,...,Xm of sets in 

(Gn)x, X GX, X m 1* ' m 1 m is equivalent to \ 
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Assume now that in G + the convergence relation Gn => G holds true, and that, for 

some V G N , the inequalities AQ < V , n = 1, 2, . . . , are fulfilled. Subject to these 
n 

assumptions, also AQ < v holds true. Furthermore, for any fe F v and any e>0 there exists 
some g e F c such that (v, | f-g |) < e, and we obtain by 1.3.4. and 1.3.5. 

limsup | LQ (f) - L A i ) I 
n — n 

< limsup | Z^j (f) - <8> I + , i m I A3 (g)"Aj(g)l + 1 - ^ ( 0 - ^ ( 8 ) 1 
n-x~ n n n-»~ n 

< limsup ( V , , lf-gl) + 0 + (A r If-gl) < 2<v, lf-gl> I < 2e . 
n-»~ n 

Hence we recognise the validity of 

1.3.7. If in G + the weak convergence Gn => G takes place, and if for some ve N the 
inequalities AQ < v, n=l,2,..., are fulfilled, then there holds 

n 

A J ^ O - ^ A J ( 0 ( f e F v ) • 

In view of 1.3.6. one further gets: 

1.3.8. Subject to the assumptions of 1.3.7. there holds (G_) x x => G x x 
M J»-*-» M 

for any finite sequence X j ,...,Xm of sets in 

The canonical representation of infinitely divisible distributions on now takes the 
following form: 

1.3.9. [K, Prop. 6.1.] For all v e N and all UeU there holds 

(f) = exp(-(v, f)-J(l-exp(-(Y,f»)U(dY)) . 

Hence results 

1.3.10. For all Pe T one has 

Lfki) = exp(-J(l-exp(-(\)/,f)))P(d\|f)) ( feF) . 

Particulary there hold 

1.3.11. L n j f ) = exp(-J(l-exp(-f(a)))v(da)) (veN; f eF ) . 

1.3.12. £ 3 ( Q ) ( f ) = A J ( l - e x p ( - 0 ) (Qe V; feF) . 

In V, 1.3.2. generalizes to infinite convolution products: 

1.3.13. In V, the relation Q = * Q j implies 
iel 

i ^ ( f ) = nXQ.(f) ( feF) . 
iel 1 

For some computations, the set F will be too large and will be replaced by the set F b of 

all ^-measurable bounded nonnegative real-valued functions on A with bounded support. 

Obviously there holds 
0 < £ Q ( f ) < l ( Q e V ; f e F b ) . 
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1.4. Clustering Fields and Branching Dynamics 

Let [A', pA-] be some other complete, separable metric space. All objects which refer 
to the phase space [A', pA-] will be indicated by a prime (e.g. A', 

A clustering field on [A, p A ] with phase space [A', p A - ] is an 
measurable mapping K̂  ^ from A into P': with each site in A one associates a distribution 
of a random element (a "cluster") xa in [M\ !W]. Xa may be interpreted as random 
offspring of an individual at site a. A clustering field K will be called stochastic resp. 
substochastic if K(a)(%(A)=l) = 1 resp. K(a)(x(A)<l) = 1 for all aeA . 

Having in mind the interpretation of K ^ as an "individual's random offspring 
distribution", we put for <I> = £ 8. 

iel l 

if the convolution on the right hand side exists. Of course one may avoid a particular in-
dexing of points in 4>, putting 

Our definition of the "population's random offspring distribution" K ^ is based on an 
assumption which is typical for stochastic branching models , namely , that the ran-
dom offspring x of the population 0 is an independent superposition X Xa.0^ random 

iel I 

offsprings xa . of the individuals in 4>, the family (xa.) ieI being distributed according to 

(g)K(ai) , i.e. the offsprings of the different individuals in <t> are generated in a 
iel 
stochastically independent way according to the given clustering field K. If K is stochastic 
rep. substochastic, then the random offspring x arises from via a so called stochastic 
resp. substochastic translation. 

If, for some <t>e M, K ^ does not exist, then this means that the superposition % a. 

violates, with positive probability, the finiteness condition which is characteristic for 
measures in N, i. e. in this case there exists an Xe B such that 

( ( S h ^ K l X a X X ) =-»~) > 0 . 
iel 

Let ^ denote the set of all <l>e M for which K ^ is defined (which are, so speak, 
"sufficiently thin"). 

1.4.1. [MKM, Prop. 4.1.2.] Let K be a clustering field on [A, pA] with phase space 

[A',pA-]-Then 4>eM belongs to ^M iff <<P, K( )(x(X)>0)> < +<~ for all Xg 

Obviously, KM is a descending set relative to the natural semi-order < . 1.4.1. shows 
that JJM belongs to iW; there even holds 
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1.4.2. [MKM, Prop. 4.1.3.] Subject to the assumptions of 1.4.1., <&—> k ^ is an 
94, P'-measurable mapping from ̂  into P'. 

The mapping K ^ i s called stochastic branching dynamics on [M, fM] 
induced by the clustering field K. If H is some measure on with the property 
H(4> £ |CM) = 0, then we form via 

Hk :=|Kw(.)H(d4>) 

the "clustered" measure HK on 5lf. If a distribution Pe P is interpreted as a distribution of 
a random population 4>0 of individuals in the phase space [A, pA], then PK, if it exists, 

may be interpreted as distribution of the succeeding generation 4>,. 

The set {P:P€P, P ^ ) = 1} of those distributions P on iW, for which PK exists, 
belongs to P. There even holds 

1.4.3. [MKM, Prop. 4.2.4.] Subject to the assumptions of 1.4.1. , P-* PK is a 
P ,P'-measurable mapping from {P: P e P , P i ^ = 1)} into P'. 

The clustering operation is monotone in the following sense: 

1.4.4. Let Pj, P2be distributions in P such that Pj i P2 and (P2)Kexists. Then 
also (Pj)K exists, and (P,)K <(P2)K. 

Clustering commutes with convolution: 

1.4.5. [MKM, Prop. 4.3.1.] If K is a clustering field on [A, pA] with phase space 
[A', pA-], and (Pj) iej is an at most countable family of distribution on 9/t whose 
convolution P exists, then there holds 

PK= * (Pi>K > K i e , IK 
where the existence of one side implies the existence of the other. 

A simple but frequently used tool in dealing with clustered infinitely divisible 
distributions is the so called "clustering theorem": 

1.4.6. [MKM, Prop. 4.3.3.] Let P be a distribution in T and K be a clustering field 

on [A, pA] with phase space [A', pA- ]. Then PK exists iff PK exists and PK((.)\{<?}) be-
longs to W'. In this case PK belongs to T'.and there holds 

P^=PK((.)\{o}) . 

By 1.3.13. there follows 

1.4.7. If P is a distribution on M and K is a clustering field on [A, pA] with phase 
space [A', pA-] such that PK exists, then there holds 

Lp (f) = £p(-ln£K (f)) , f e F , where In 0 : = - » . 
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In view of 1.3.11. one gets 

1.4.8. If, under the assumptions of 1.4.7., P is a Poisson distribution Ily, then one 
has 

¿ ^ ( f ^ e x p ^ v , 1 - 1 ^ ( 0 » (feF) . 

Let now, in addition to [A, pA] and [A', pA-], a third complete separable metric space 
[A", pA--] be given. If k is a clustering field on [A, pA] with phase space [A', pA-] and to 
is a clustering field on [A', pA-] with phase space [A", pA~] such that (^„p^ exists for all 
as A, then we put 

(cooK)(a) := ( k ^ (aeA) , 

thus obtaining, in virtue of 1.4.2. and 1.4.3., a clustering field COoK on [A, pA] with 
phase space [A", p A - ]. We may interprete (g jok)^ as distribution of the random 
"grandchildren's generation" of a population 4>, i. e. COoK may be conceived as a 
composition of the stochastic branching dynamics K and (0. 

1.4.9. [MKM, Prop. 4.3.4.] Let H be a measure on iW, K be a clustering field on 
[A,pA] with phase space [A', pA-] and © be a clustering field on [A', pA- ] with phase 
space [A", pA--]. If both the clustering field tOoK and the measure HK exist, then there 
holds 

(HK)<o = Hm 0K , 
where the existence of one side entails the existence of the other. 

In the special case [A', pA-] = [A, pA] we simply speak of clustering fields Kon 
[A, pA]. 

For a clustering field K on [A, pA], we introduce step by step its clustering powers 
KM,neZ+: 

Kt°)(a) := 8g (aeA) ; Ktn+1l :=kokW (neZ+) . 

It can easily be shown by 1.4.9. that 

K W O K01 = K N 1 ( j ,meZ + ) , 

provided that all clustering powers of K exist. 
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1.5. Intensity Kernels 

A kernel from a measurable space [E l t £ t ] to a measurable space [E2, is a 
mapping K from EjX E2 into [0, with the two properties 

a) For all eeE1 ? K(e,(.)) is a measure on E2. 
b) For all Xe K((.),X) is an E{ -measurable mapping from E j into [0, +~>], 

For any measure yon Ex and any ^-measurable mapping f from E2 into [0, +«•], one 
puts 

(T»K)(.):=iK(e.(.))V(de) ; (K*f)(.) :=Jf(z)K((.),dz) , 

thus obtaining a measure Y*K on E2 and an -measurable mapping K*f from E j into 

[0,+oo]. There always holds 
1.5.1. Jf(z)(Y*K)(dz) = J(K*0(e)7(de) . 

If J is a kernel from [E^, E2] to a measurable space [E3, E3], then we obtain via 

(K*J)(e,(.)):=K(e,(.))*J (eeE,) 

a kernel K*J from [E,, E J to [Ej, £3]. 

A kernel K is called stochastic resp. substochastic if for all e e E j there hold 
K(e,E2) = 1 resp. K(e32) ^ 1. 

If K is a kernel from [E, E] to [E, E\, then the kernels K [ n ] , n€ Z + , are defined by 

Kt°J(a,(.)): = 8 a (aeA) ; K t N + 1 L:= K + k W (neZ+) . 

Obviously there holds 
K[m]+K[k] = K[m+k] (m.ke Z+) . 

For any clustering field K on [A, pA] with phase space [A', p A ], we define a kernel JK 

from [A, A] to [A', X ] by 

JK(a,(.)):=AK(a) , 

calling JK the intensity kernel of K . 

If a measure L on M is "clustered" by K, then this corresponds, on the level of 
intensity measures, to a transformation of AL by J K : 

1.5.2. [MKM, Prop. 4.2.2.] If K is a clustering field on [A, pA] with phase space 
[A', pA- ] and L is a measure on iW such that LK exists, then 

A L K = A L * J K -

Conversely, we can conclude the existence of LK by inspection of JK and AL: 
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