ARBEITSMETHODEN DER MODERNEN NATURWISSENSCHAFTEN

F. W. KÜSTER

LOGARITHMISCHE RECHENTAFELN

für Chemiker, Pharmazeuten, Mediziner und Physiker

begründet von F. W. Küster fortgeführt von A. Thiel, neu bearbeitet von

K. FISCHBECK

o. Prof. für Angewandte Physikalische Chemie an der Universität Heidelberg

84. bis 93., verbesserte und vermehrte Auflage

WALTER DE GRUYTER & CO.

vormals G. J. Göschen'sche Verlagshandlung — J. Guttentag, Verlagsbuchhandlung — Georg Reimer — Karl J. Trübner — Veit & Comp.

Berlin 1962

Copyright 1961 by Walter de Gruyter & Co. — vormals G. J. Göschen'sche Verlagshandlung — J. Guttentag, Verlagsbuchhandlung — Georg Reimer — Karl J. Trübner — Veit & Comp. — Berlin W 30 — Alle Rechte, insbesondere das der Übersetzung vorbehalten — Archiv-Nr. 52 34 61 — Printed in Germany — Satz: Walter de Gruyter & Co., Berlin W 30 — Druck: August Raabe, Berlin-Neukölln

Motto: "Der Mangel an mathematischer Bildung gibt sich durch nichts so auffallend zu erkennen, wie durch maßlose Schärfe im Zahlenrechnen."

C. F. Gauss

Die Atomgewichtskommission der Internationalen Union für Reine und Angewandte Chemie veröffentlicht von Zeit zu Zeit die dem augenblicklichen Stande der Forschung entsprechenden Atomgewichtszahlen. Die Zahlen der vorliegenden Auflage sind mit den für 1958/59 gültigen Werten berechnet worden.

K. Fischbeck

Man beachte die Vorbemerkungen

Vorwort

Ziel dieser Rechentafeln ist es, für die in chemischen Laboratorien häufig vorkommenden Rechnungen die erforderlichen Unterlagen in kürzester Form anwendungsbereit darzubieten. Darüber hinaus sollen auch die einzelnen Rechenmethoden so erläutert werden, daß dem Benutzer der Tafeln alle unnötigen, das Rechenverfahren selbst betreffenden Überlegungen erspart bleiben.

Diesem Ziel entsprechend werden die Rechentafeln von Auflage zu Auflage nach Inhalt nnd Darstellungsweise weiter ausgestaltet. Dabei sind zwei Gesichtspunkte maßgebend: Der Umfang des Buches soll möglichst nicht zunehmen, und es sollen keine Tabellen mit Eigenschaftswerten von Stoffen aufgenommen werden.

Die Absicht, den Umfang des Buches nicht wachsen zu lassen und den Inhalt trotzdem zu vermehren, hat sich bei der vorliegenden Auflage durch Herausnahme einiger entbehrlich erscheinender Teile abermals verwirklichen lassen.

Die Ausgestaltung des Inhalts erfolgt im allgemeinen auf Grund der von seiten der Benutzer an den Herausgeber herangetragenen Wünsche. Es mag allerdings vorkommen, daß solchen Anregungen nicht schon in der nächstfolgenden Auflage entsprochen werden kann, weil die Abänderung einzelner Tafeln oft mit Konsequenzen hinsichtlich anderer Tabellen und fast immer mit schwierig zu lösenden Raumfragen verbunden ist. Der Herausgeber bittet daher, eine verzögerte Annahme wohlbegründeter Vorschläge nicht als Interessenlosigkeit anzusehen. So ist es denn in der Tat gelungen, einigen schon zur vorangehenden Auflage gemachten Vorschläge jetzt zu entsprechen. Alle Anregungen aus dem großen Kreise der Benutzer unserer Rechentafeln werden auf das dankbarste begrüßt, zumal dann wenn sie, wie es erfreulicherweise mehr und mehr der Fall ist, auch aus den Kreisen der in der Technik tätigen Chemiker kommen.

X Vorwort

Die Tabelle der Atomgewichte wurde auf den Stand des Jahres 1959 gebracht und zwar nach dem letzten bis zum Abschluß der Neubearbeitung dieser Tafeln von der Internationalen Union für Reine und Angewandte Chemie veröffentlichten Bericht der Internationalen Atomgewichtskommission. Danach haben sich die den Chemiker angehenden Zahlen nicht geändert.

Zur Ergänzung der Tafel I wurde erstmals eine Tabelle der radioaktiven Elemente mit den Halbwertszeiten und Strahlungsarten der beständigsten Isotope aufgenommen.

Erneut kontrolliert und weiter vervollständigt wurden die Tafeln 1,2 sowie 2 und 3. Der Herausgeber schuldet einer großen Zahl von Kollegen besonderen Dank für die teils spontanen, teils erbetenen Empfehlungen von Substanzen und Faktoren, die in diese Tafeln neu aufgenommen wurden.

Gründlich überarbeitet wurde auch die Tafel 3,2 "Indirekte Analysen", deren Angaben zum Teil veraltet waren. Dabei konnte die Kaliumbestimmung mit Tetraphenylbor beachtet werden.

Die Berechtigung und Erweiterung der Tafel 8 "Elektrochemie" wurde möglich durch die tatkräftige und kollegiale Hilfe von K. Schwabe, Dresden, dem die Benutzer der Rechentafeln für die auf den heutigen Stand des Wissens gebrachten Zahlen dieser Tafeln dankbar sein werden. Auch der Herausgeber möchte an dieser Stelle seine herzliche Verbundenheit für die Zusammenarbeit ausdrücken.

Verändert haben sich die Werte der Tafel 8,3 "Potentialübersicht"; 8,4 "Ionen-Produkt des Wassers"; 8,6 "ph-Bestimmung" und 8,7 "Puffergemische". In die letzte wurden die vom Bureau of Standards (USA) ermittelten ph-Werte des Standard-Acetat-Gemisches für verschiedene Temperaturen eingefügt.

Der Abschnitt 9,4 "Redox-Indikatoren" mußte dementsprechend gekürzt werden.

Die Tafel 12,3D "Auflösung von Kettensätzen" wurde entfernt. Sollte das von Seiten der Benutzer bedauert werden, so wäre der Herausgeber für einen Hinweis dankbar. Statt dessen wurde eine neue Tafel "Rechnen mit kleinen Werten" eingefügt, die so angelegt ist, daß der Benutzer ermessen kann, wie groß der prozen-

Vorwort XI

tuale Fehler ist, den er begeht, wenn er Rechnungen, in denen kleine Werte vorkommen, in der angegebenen Weise vereinfacht.

Der Wunsch, die Tafel 13 "Auswertung von Röntgenaufnahmen" zu erweitern, konnte noch nicht erfüllt werden, weil der Herausgeber annimmt, daß dies den Umfang und damit den Preis der Rechentafeln zu Lasten der Benutzer, die von der Tafel 13 nicht Gebrauch machen, ohne Berechtigung erhöhen würde. Auch zu dieser Frage sind Zuschriften äußerst erwünscht.

Als neue Tafel findet man unter 14 eine Tabelle des Gauss'schen Fehler-Integrals, weil diese Zahlen infolge der Entwicklung der chemischen Verfahrenstechnik mehr und mehr zur Hand sein müssen. Die jüngere Generation unserer Kollegen wird es vielleicht begrüßen, wenn diese Zahlen jederzeit griffbereit sind.

Mehrere Abschnitte der Erläuterungen wurden gründlich überarbeitet und konnten kürzer gefaßt werden, um Raum für Einfügungen zu gewinnen. Schließlich sei erwähnt, daß die neue Schreibweise Oxid statt Oxyd eingeführt wurde, wenngleich die Sprechweise sich dem nur langsam anpassen wird.

Durch Vorschläge, Hinweise, Empfehlungen, Beratung und Mitteilung von Druckfehlern haben in den letzten drei Jahren wieder zahlreiche Benutzer der Rechentafeln die Entwicklung dieses Buches gefördert, die Bearbeitung der Neuauflage beschleunigt und dem Herausgeber manche Entscheidung erleichtert. Es waren dies:

Th. Anderle, Fürstenfeld/Steiermark; Herr Behne, Essen; H. Bielen, Bonn; F. Dez, Berlin; G. Faust, Gelsenkirchen-Buer; J. Fischer, Frankfurt a. M.; P. Flögel, Berlin; O. Fuchs, Konstanz; W. Groth, Frankfurt a. M.; H. Grothoff, Gelsenkirchen-Buer; E. Gudowius, Hannover; A. Gubin, Oberhausen-Holten; J. Hansen-Schmidt, Hamburg; K.-H. Hohl, Berlin; F. Hüper, Hannover; A. Husmann, Hannover; K. Isermayer, Rheinberg/Rhld.; H. Jenemann, Mainz; H. Kaiser, Puerto La Cruz/Venezuela; H. Klenke, Horst/Elmshorn; G. Kloz, Berlin; D. Krause, Dresden; Elisabeth Land, Hamburg; H. Lehne, Hamburg; G. Lochmann, Heidenheim/Brenz; Herr Mayer und seine Mitarbeiter, Schkopau; E. Müller, Würzburg; A. Neuberger, Duisburg; P. Olschewski, Wunstorf;

XII Vorwort

W. Paterno, Eßlingen; O. Pfundt, Göttingen; E. Ritschel, Hannover; W. Rüdorff, Tübingen; B. Sauer, Wiesbaden; P. W. Schenk, Berlin; H. P. Schilbach, Aachen; W. Schneider, Wiesbaden; K. Schwabe, Dresden; G. Smeyts, Longst-Kierst; Herr Stählin, München; V. Steinbrecht, Hannover; H. Tollert, Philippsthal; W. Wächter, Wunstorf; R. Wagner, Stuttgart; Herr Wenzel, Dresden; A. Zündel, Asnières/Paris.

Ihnen allen sei unser aufrichtiger Dank für die wertvolle Mitarbeit zum Ausdruck gebracht.

Möge auch diese nun wieder in die Welt hinausgehende Auflage neue Freunde gewinnen, und mögen die alten Freunde den Rechentafeln die Treue bewahren. Zum Schluß sei die Bitte um weitere Unterstützung an alle Fachkollegen gerichtet. Nur im Erfahrungsaustausch mit den Benutzern kann das Werk so fortgeführt werden, daß es jedem Benutzer die Arbeit erleichtert und ihm Zeitgewinn bringt.

Heidelberg, Sommer 1961 Ludolf-Krehl-Straße 29 K. Fischbeck

INHALT

Index	Tafeln	
AG	I Atom- und Molekulargewichte I,I Atomgewichte der Elemente nebst Logarithmen	7
MG	1,2 Gewichte und Logarithmen häufig gebrauchter Atome, Atomgruppen, Moleküle und Äquivalente (sowie niederer	
	Multipla)	10 29
Titr	2 Äquivalente	
	2,1 Maßanalytische Äquivalente nebst Logarithmen	31
	2,2 Korrektionen für den Luftauftrieb bei genauen Wägungen	41
	2,3 Maßanalytische Äquivalente nebst Logarithmen. "Luft-	•
	gewichte"	42
An	3 Stöchiometrische Faktoren	
	3,1 Analytische und stöchiometrische Faktoren nebst Loga-	
	rithmen	43
	3,2 Indirekte Analysen	7 7
	3,3 Kryoskopische Analyse nach Ibing-Ebert	79
Red	4 Gasreduktion	
	4,1 Gas-Reduktions-Tabelle	80
	4,2 Barometer-Korrektionen	104
	4,3 Temperaturabrundungen und dazugehörige Druckkorrek-	
	tionen	105
	4,4 Tabelle der A-Werte	106
	4,5 Molvolumina idealer Gase	107
	4,6 Volumetrische Bestimmung wichtiger Gase	109
	4.7 Volumetrische Bestimmung gasentwickelnder Stoffe	110
	4,8 Umrechnung von Vol0/00 in mg/cbm (und umgekehrt)	
	bei Gasgemischen	III

XIV	Inhalt	
Index		Seite
Mol	5 Molekulargewichtsbestimmung	
	5,1 Molekulargewichtsbestimmung durch Luftverdrängung.	113
	5,2 Molekulargewichtsbestimmung durch Gefrierpunkts-	
	erniedrigung oder Siedepunktserhöhung	113
Pyk	6 Pyknometrie	
	6,1 Bestimmung der Dichte (q_t^0) einer Flüssigkeit durch	
	Wägung in Luft	114
	6,2 Dichte des Wassers (ϱ_w) bei verschiedenen Temperaturen	
	(t ⁰) nebst Logarithmen	115
	6,3 Volumbestimmung durch Auswägen I	116
	6,4 Volumbestimmung durch Auswägen II	118
	6,5 Volumbestimmung durch Auswägen III	120
	6,6 Maßanalytische Temperaturkorrektionen	121
Norm	•	
	7,1 Dichte und Gehalt von Lösungen	122
	7,2 Temperatur und Dichte des Quecksilbers	128
	7,3 Logarithmen der Werte von $\frac{n^2-1}{n^2+2}$	129
	7,4 Löslichkeit wichtiger Stoffe bei 200	130
El	8 Elektrochemie	
	8,1 Wheatstonesche Brücke. Logarithmen der Werte von	
	a: (1000 — a) für a von 1 bis 999	132
	8,2 Elektrochemische Äquivalente. Normalelemente	134
	8,3 Potentialübersicht	135
	8,4 Ionenprodukt des Wassers	137
	8,5 Aktivität und Aktivitätskoeffizient	138
	8.6 p_H -Bestimmung	140
	8,7 Puffergemische	146
Ind.	9 Indikatoren, Kolorimetrie	
	9,1 Indikatoren für die Maßanalyse	149
	9,2 Optische p _H -Bestimmung	149
	9.3 Dissoziationsgrade	152
	9,4 Redox-Indikatoren	¹ 54
Th	10 Thermochemie	
	10,1 Temperaturskalen	156
	10,2 Umrechnung von Fahrenheitgraden in Celsiusgraden und	
	umgekehrt	157

Inhalt	ΧV
Index	Seite
10,3 Thermometrische Fixpunkte	. 158
10,4 Fadenkorrektionen für Quecksilberthermometer	. 159
10,5 Siedepunktskorrektion	. 160
10,6 Berechnung chemischer Gleichgewichte aus therme	
chemischen Daten	. 162
10,7 Reziproken-Tafel	. 166
EKU 11 Einheiten und Zeichen	
II,I Formelzeichen	. 168
11,2 Einige mathematische Zeichen	. 171
11,3 Maßeinheiten	. 173
11,4 Häufig gebrauchte Einheiten, Konstanten und Umrech	1-
nungsgrößen	. 174
11,5 Nichtmetrische Maßeinheiten	. 179
11,6 Nomenklatur chemischer Verbindungen	. 181
A. Anorganische Verbindungen	. 181
B. Bezifferung zyklischer organischer Verbindungen .	. 185
Rech 12 Rechenverfahren	
12,1 Fehlerrechnung	. 188
12,2 Ausgleichrechnung	. 190
12,3 Rechenhilfen	. 192
A Kreuzregel	
B Umrechnung von Molprozenten in Gewichtsprozen	:е
und umgekehrt	. 192
C Abgleichungs- und Differenzverfahren	. 193
D Rechnen mit kleinen Werten	. 194
E Lösung quadratischer Gleichungen	. 196
F Lösung kubischer Gleichungen	. 196
G Häufig gebrauchte Zahlenwerte	. 196
H Rechnen mit Faktoren-Leitern	. 197
Rö 13 Auswertung von Röntgenaufnahmen	
13,1 Wellenlängen der gebräuchlichsten Strahlungen	. 198
13,2 Goniometrische Tabellen	. 199
13.3 Quadratische Formen für das kubische System	. 209
Di 14 Diffusion	
14,1 Fehler-Integral nach Gauss	. 211
Erl Erläuterungen	. 215

XVI	Inhalt	
Index		Seite
Man	Fünfziffrige Mantissen zu den dekadischen Logarithmen aller vierziffrigen Zahlen von 1000 bis 9999 mit Propor-	
	tionalteilen, für beliebige Numeri	271
	Notizen	298
	Sachregister	299
	Vierziffrige Mantissen zu den dreiziffrigen Zahlen von 100 bis 999 und fünfziffrige Mantissen zu den vierziffrigen Zahlen von 1000 bis 2000in der Deckelta	ısche

VORBEMERKUNGEN

- I. Die Stellenzahl von Meßergebnissen, also auch von Analysenresultaten, soll die Genauigkeit der Messung erkennen lassen. Die vorletzte Stelle soll als sicher und die letzte angegebene Stelle soll als unsicher gelten. Dementsprechend ist auf- oder abzurunden.
- 2. Als Regel für die Aufrundung gilt¹), daß die vorhergehende Ziffer um 1 erhöht wird, wenn der wegfallende Rest mehr als eine halbe Einheit der letzten stehenbleibenden Stelle ausmacht. Ist der wegfallende Rest kleiner als die halbe Einheit der letzten stehenbleibenden Stelle, so wird abgerundet. Beträgt der Rest genau eine halbe Einheit, so wird die Erhöhung der vorhergehenden Stelle nur vorgenommen, falls sie eine ungerade Zahl enthält. Bei der Auf- und Abrundung auf 3 Stellen geht demnach über:

```
1,2348 in 1,23; 1,2352 in 1,24; 1,2350 in 1,24; 1,2250 in 1,22.
```

Aufgewertete Ziffern kann man durch Unterstreichung (1,24), abgewertete durch einen darüber gesetzten Punkt (1,22) kennzeichnen.

- 3. Mißbräuchliche Aufführung bedeutungsloser Ziffern wird am besten durch logarithmische Berechnung verhütet (vgl. die Erläuterungen zu den Tafeln 1 bis 3). Bei häufiger Wiederholung der gleichen Operation ist der Rechenschieber bequemer. Man beachte jedoch die gegenüber der Tafel geringere Genauigkeit des Rechenschiebers.
- 4. Darstellung von Analysenergebnissen. Meist ist durch die Analyse zu ermitteln, wieviel Gewichtsteile des gesuchten Stoffes in 100 Gewichtsteilen Substanz enthalten sind. Das Ergebnis der Analyse wird dann in Gewichtsprozenten der analysierten Substanz ausgedrückt. In anderen Fällen wird die in einem bestimmten Volum einer Flüssigkeit enthaltene Menge eines Stoffes ermittelt und das Ergebnis in Gramm (oder Milligramm) auf ein Liter der analysierten Flüssigkeit angegeben²).

Vgl. dazu die Deutschen Normen DIN 1333 vom Dezember 1954. Beuth-Vertrieb, Köln, Friesenplatz 16.

²) In der biochemisch-medizinischen Literatur hat sich die Angabe nach mg in 100 g oder ccm und bei geringeren Gehalten nach γ (= μ g) in 100 g oder ccm eingebürgert. Die Gewohnheit, solche Angaben in der

¹ Küster-Thiel-Fischbeck, Rechentafeln

Schließlich ist es oft erforderlich, die Äquivalenzbeziehungen von Lösungen zu bestimmen. Zu diesem Zwecke stellt man das Analysenergebnis in mol (d. h. in Vielfachen des Molekulargewichtes in g) oder in val (d. h. in Vielfachen des Äquivalentgewichtes in g) auf 100 g oder auf 1 kg einer festen oder auf ein Liter einer flüssigen Substanz dar.

Das "Mol" ist eine reine dimensionslose Zahl im gleichen Sinne wie das "Dutzend" oder das Schock. Ein Mol enthält ziemlich genau 6mal 10²³ gleiche oder — in Mischungen — ungleiche Partikel von beliebiger Art. Man spricht daher mit Recht auch von einem Mol Lichtquanten. Das Molekulargewicht hingegen ist je nach der Art der Partikel, um die es sich handelt, ein verschieden großes Gewicht. Genauso wie das Dutzendgewicht der Hühnereier schwerer ist als das Dutzendgewicht der Taubeneier, ist auch das Molekulargewicht des Sauerstoffs größer als das Molekulargewicht des Wasserstoffs. Dieser Hinweis scheint notwendig zu sein, weil eine gewisse Verwirrung entstehen könnte durch den Versuch, das "Mol" als eine neue Grundgröße neben Masse, Länge und Zeit einzuführen.

5. Darstellung des Gehaltes von Lösungen. Die Menge eines Bestandteils in einer bestimmten Menge einer Lösung wird bezeichnet als der Gehalt einer Lösung (oder Mischung oder Verbindung) an einem Bestandteil oder als die Konzentration eines Bestandteils in einer Lösung.

In besonderen Fällen wird die Konzentration einer Lösung auch durch die Menge des Gelösten in einer bestimmten Menge des Lösungsmittels ausgedrückt.

Sowohl die Menge des Bestandteils als auch die Menge der Lösung (oder des Lösungsmittels) kann in Masseneinheiten oder in Raumeinheiten oder in Molzahlen angegeben werden.

Werden beide in Masseneinheiten oder beide in Raumeinheiten oder beide in Molzahlen angegeben, so ist die Konzentration eine Dimensionslose. Wird aber die Menge des Bestandteils in Masseneinheiten, die der Lösung in Raumeinheiten angegeben, so hat die Konzentration die Dimension $[l^{-3}m]$. Wird erstere in Molzahlen angegeben, so hat die Konzentration die Dimension $[l^{-3}]$.

Form $\operatorname{mg-0_0}$ bzw. γ -0₀ zu schreiben (und zu sprechen) ist völlig inkorrekt und sollte nicht nur vermieden, sondern auch bekämpft werden. Es wurde vorgeschlagen, statt dieses auf assoziativem Denken beruhenden Unsinns auf die Prozentrechnung zu verzichten und die kleinen Konzentrationen in Gewichtsteile auf eine Million Gewichtsteile der Mischung anzugeben und dafür, dem internationalen Brauch folgend, das Zeichen ppm zu verwenden.

In diesen Fällen kann statt der Konzentration auch deren Kehrwert, die Verdünnung, angegeben werden, d. i. das Volumen der Lösung, das Ig oder I mol des Bestandteils enthält; Dimension: $[l^3 m^{-1}]$ oder $[l^3]$.

Konzentrationsangaben, die nur in Masseneinheiten oder nur in Molzahlen ausgedrückt sind, haben den Vorzug, von der Temperatur unabhängig zu sein.

Zur Bezeichnung der Stoffmengen dienen	Einheits- zeichen
das Gramm oder das Kilogramm	g, kg
Moleküle enthält	mol mmol
das Val, d. h. diejenige Menge eines Stoffes, die 6,0237 · 10 ²³ Äquivalente enthält	val
das Millival, der tausendste Teil des Vals	mval
das Gramm-Atom, d. h. diejenige Menge eines Elementes, die 6,0237 · 10 ²³ Atome enthält	g-atom
das Milliliter (Kubikzentimeter) oder das Liter	ml,cm³,l

Die millionsten Teile der Einheiten werden sinngemäß als Mikromol, Mikroval (μ mol, μ val) usw. bezeichnet.

Von den zahlreichen durch Verknüpfung dieser Einheiten möglichen Arten der Konzentrationsangabe sind, falls nicht besondere Gegengründe vorliegen, nur die folgenden zu benutzen:

	Benennung	Einheitszeichen
1. Gramm Bestandteil in 100 g Lösung	Gewichtsprozent Gew.%	% oder g/100 g
100 ml Lösung	Volumprozent $Vol.\%$	ml/100 ml
I l Lösung 4. Mol Bestandteil in I l	-	g/l
Lösung oder Liter Lösung auf	Molarität	mol/l
ı mol Bestandteil 5. Val Bestandteil in ı l	Verdünnung	l/mol
Lösung oder Liter Lösung auf	Normalität	val/l
ı val Bestandteil 6. Mol Bestandteil auf ı kg	Verdünnung	l/val
Lösungsmittel	Molalität	mol/kg Lösungsmittel

•	Mol Bestandteil in 100 Gesamt-Mol Lösung oder der hundertste Teil der Zahl der Molprozente Gramm-Atom
	Bestandteil in 100 Ge-
	samt-Gramm-Atom der
	Lösung
	oder der hundertste Teil
	der Zahl der Atompro-
	zente
9.	Millimol Bestandteil in
	ı kg Lösung
10.	Millival Bestandteil in
	ı kg Lösung

Benennung	Einheitszeichen
Molprozent	mol/100 Gesamtmol
Molenbruch	mol/Gesamtmol
Atomprozent	g-atom/100 Gesamt-g-atom
-	g-atom/Gesamt-g-atom
_	mmol/kg
_	mval/kg

Umrechnungsformeln finden sich in Tafel 12,3 (S. 194).

- 6. Die mit den verschiedenen Systemen der Grundeinheiten verbundenen Schwierigkeiten beginnen erst, wenn bessere Genauigkeiten als zehntel Prozente für notwendig erachtet werden. Ist das der Fall, so halte man sich an das sehr empfehlenswerte Buch von U. Stille, "Messen und Rechnen in der Physik", Braunschweig (1955).
- 7. Für die Schreibweise physikalischer Gleichungen (und einzelner Ausdrücke) gilt gemäß Normblatt DIN 1302 und 1338 allgemein folgendes: Formelzeichen (Druck, Temperatur, Volum usw.) werden stets in Kursivdruck gesetzt, also z.B. p, t, V usw. Die Zeichen für Einheiten (Zentimeter, Sekunde, Gramm usw.) werden in geraden Typen gedruckt, also cm, s, g usw.

Eine Größe besteht aus den Faktoren Zahlenwert und Einheit, z. B. Dichte = Zahlenwert × Dichteeinheit oder ϱ_{20} • = 2,5 g/ml = 2,5 gml⁻¹. Wird der Zahlenwert in Buchstaben angegeben (wie in allgemeinen Beispielen), so wird dieser Buchstabe kursiv gedruckt (Beispiel: ϱ_{20} • = a gml⁻¹).

TAFELN

1,1.	Atomge	wichte der Ele	mente nebst Logar	ithmen Tafe	el I 7
Ac	89		Actinium	[227]	35603
Ag	47	4.10-6	Silber	107,880	03294
Al	13	7,51	Aluminium	26,98	43104
Am	95		Americium	[243]	38561
Ar	18	3,6.10-4	Argon	39,944	60145
As	33	5,5.10-4	Arsen	74,91	87454
At	85	_	Astat	[210]	32222
Au	79	5.10-7	Gold	197,0	29447
В	5	$I,4 \cdot I0^{-3}$	Bor	10,82	03423
Ba	56	$4,7 \cdot 10^{-2}$	Barium	137,36	13786
Be	4	5.10-4	Beryllium	9,013	95487
Bi	83	3,4.10-6	Wismut	209,00	32015
Bk	97	_	Berkelium	[249]*	39620
Br	35	6.10-4	Brom	79,916	90263
C	6	8,7.10-2	Kohlenstoff	12,011	07958
Ca	20	3,39	Calcium	40,08	60293
Cd	48	$I, I \cdot IO^{-5}$	Cadmium	112,41	05081
Ce	58	2,2.10-3	Cer	140,13	14653
Cf	98		Californium	[251]*	39967
C1	17	0,19	Chlor	35,457	54970
Cm	96	_	Curium	[247]	39270
Co	27	1,8.10-3	Kobalt	58,94	77041
Cr	24	3,3.10-2	Chrom	52,01	71609
Cs	55	7.10-5	Cäsium	132,91	12356
Cu	29	$I, O \cdot IO^{-2}$	Kupfer	63,54	80305
Dy	66	5.10-4	Dysprosium	162,51	21088
Er	68	4.10-4	Erbium	167,27	22342
Es	99	_	Einsteinium	[254]	40483
Eu	63	1,4.10-5	Europium	152,0	18184
\mathbf{F}	9	2,7.10-2	Fluor	19,00	27875
Fe	26	4.7	Eisen	55,85	74702
Fm	100	_	Fermium	[253]	40312
Fr	87	_	Francium	[223]	34830
Ga	31	5.10-+	Gallium	69,72	84336
Gd	64	5.10-4	Gadolinium	157,26	19662
Ge	32	I·10-4	Germanium	72,60	86094
H	I	0,88	Wasserstoff	1,0080	00346
He	2	4,2 · 10-7	Helium	4,003	60239
Hf	72	2,5.10-3	Hafnium	178,50	25164
Hg	80	2,7.10-6	Quecksilber	200,61	30235

Ordnungszahlen und Atomgewichte rot, "Häufigkeit" (kursiv) und Logarithmen schwarz — Erläuterungen siehe Seite 215

8	Tai	fel I	1,1. Atom	gewichte der l	Elemente
Ho	67	7.10-5	Holmium	164,94	21733
In	49	I · 10-5	Indium	114,82	06002
Ir	77	$I \cdot IO^{-6}$	Iridium	192,2	28375
J	53	6.10-	Jod	126,91	10350
K	19	2,40	Kalium	39,100	59218
Kr	36	1,9.10-8	Krypton	83,80	92324
La	57	5.10-4	Lanthan	138,92	14277
Li	3	5.10-3	Lithium	6,940	84136
Lu	71	I · IO-⁴	Lutetium	174,99	24301
Md	IOI		Mendelevium	[256]	40824
Mg	12	1,94	Magnesium	24,32	38596
Mn	25	8,5.10-2	Mangan	54,94	73989
Mo	42	7,2.10-4	Molybdän	95,95	98204
N	7	3,0.10-2	Stickstoff	14,008	14638
Na	II	2,64	Natrium	22,991	36156
Nb	41	4.10-5	Niob	92,91	96806
Nd	60	$I, 2 \cdot I0^{-3}$	Neodym	144,27	15918
Ne	IO	5.10-7	Neon	20,183	30499
Ni	28	1,8.10-2	Nickel	58,71	76871
No	102	_	Nobelium	[253]	40312
Np	93	_	Neptunium	[237]	37475
O	8	49,5	Sauerstoff	16,0000	20412
Os	76	5.10-6	Osmium	190,2	27921
P	15	0,12	Phosphor	30,975	49101
Pa	91	2,6.10-12	Protactinium	[231]	36361
Pb	82	$2 \cdot IO^{-3}$	Blei	207,21	31641
Pd	46	5.10-6	Palladium	106,4	02694
Pm	61	_	Promethium	[147]*	16732
Po	84	-	Polonium	[210]*	32222
Pr	59	3,5.10-4	Praseodym	140,92	14897
Pt	78	2.10-5	Platin	195,09	29024
Pu	94	_	Plutonium	[242]	38382
Ra	88	7.10-12	Radium	226,05	35421
Rb	37	3,4.10-3	Rubidium	85,48	93186
Re	75	I · 10-7	Rhenium	186,22	27003
Rh	45	$I \cdot IO^{-6}$	Rhodium	102,91	01246
Rn	86	4.10-17	Radon	[222]	34635
Ru	44	5.10-6	Ruthenium	101,1	00475
S	16	4,8.10-2	Schwefel	32,0661)	50604

¹⁾ Infolge der naturgegebenen Schwankungen des Isotopenverhältnisses ± 0,003. Ordnungszahlen und Atomgewichte rot, "Häufigkeit" (kursiv) und Logarithmen schwarz — Erläuterungen siehe Seite 215

nebst	Logari	thmen		Tafel 1	9
Sb	51	2,3.10-5	Antimon	121,76	08550
Sc	21	6.10-4	Scandium	44,96	65283
Se	34	8.10-5	Selen	78,96	89741
Si	14	25,75	Silicium	28,09	44855
Sm	62	5.10-4	Samarium	150,35	17710
Sn	50	6.10-4	Zinn	118,70	07445
Sr	38	1,7.10-2	Strontium	87,63	94265
Ta	73	1,2.10-5	Tantal	180,95	25756
Tb	65	7.10-5	Terbium	158,93	19121
Tc	43	_	Technetium	[99]*	99564
Te	52	I·10-6	Tellur	127,61	10589
Th	90	2,5.10-3	Thorium	232,05	36558
Ti	22	0,58	Titan	47,90	68034
Tl	81	I·10-5	Thallium	204,39	31046
Tm	69	7.10-5	Thulium	168,94	22773
U	92	2.10-5	Uran	238,07	37671
V	23	1,6.10-2	Vanadium	50,95	70714
W	74	5,5.10-3	Wolfram	183,86	26449
Xe	54	2,4.10-9	Xenon	131,30	11826
Y	39	5.10-3	Yttrium	88,92	94900
Yb	70	5.10-4	Ytterbium	173,04	23815
Zn	30	2.10-2	Zink	65,38	81544
Zr	40	2,3.10-2	Zirkonium	91,22	96009

Radioaktive Elemente

Zeichen	Ord- nungs- zahl	Massen- zahl	Halbwerts- zeit	Strahlung
Ac	89	227	22 a	β-, α
Am	95	243	7.6 · 103 a	a
At	85	210	8,3 a	a
Bk	77	249	290 d	β-
Cf	98	251	660 d	β-
Cm	96	247	4 · 107 a	OK
Es	99	254	280 d	a
Fm	100	253	4,5 d	a
Fr	87	223	21 min	β-
Md	101	256	0,5 h	
Np	91	237	2,2 · 106 a	α
No	102	200		_
Pa	91	231	3,4 · 104 a	a
Pm	61	147	2,6 a	B
Po	84	210	140 d	a
Pu	94	242	1,8 · 103 a	OK.
Ra	88	226	1622 a	α
Rn	86	222	3,8 d	a
Tc	43	99	2,2 · 108 a	_
Th	90	232	1,4 · 1010 a	a
U	92	238	4.5 · 10 a	OS.

Tafel 1 1,2. Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

	Gewicht	lg		Gewicht	lg
Ag	107,880	03294	2 Al ₂ O ₃	203,92	30946
2 Ag	215,760	33397	3Al ₂ O ₃	305,88	48555
3Ag	323,640	51006	$Al_2O_3 \cdot 2SiO_2 \cdot $		
AgBr	187,796	27369	2H ₂ O	258,17	41 191
AgCN	133,899	12678	Al(OH) ₃	78,00	89200
AgCNS	165,965	22002	AlPO ₄	121,96	08622
Ag ₂ CO ₃	275,771	44055	$Al_2(SO_4)_3$	342,16	53423
AgCl	143,337	15636	$Al_2(SO_4)_3 \cdot 18H_2O$		82377
Ag J	234,79	37068			
$AgNO_3$	169,888	23016			
Ag ₂ O	231,760	36504			
Ag_2S	247,826	39415	As	74,91	87454
Ag ₂ SO ₄	311,826	49391	½ As	37,455	57351
Ag ₂ CrO ₄	331,77	52084	2As	149,82	17557
Ag ₂ Cr ₂ O ₇	431,78	63526	3As	224,73	35166
$AgVO_3$	206,83	31561	As ₂ O ₃	197,82	29627
Ag_3VO_4	438,59	64206	$\frac{1}{4}$ As ₂ O ₃	49,455	69421
			As ₂ O ₅	229,82	36139
A1	26,98	43104	AsO ₃	122,91	08959
¹ / ₃ Al	8,993	95390	As ₂ O ₇	261,82	41800
2 Al	53,96	73207	AsO ₄	138,91	14273
3Al	80,94	90816	As_2S_3	246,02	39097
4Al	107,92	03310	As ₂ S ₅	310,15	49157
5 Al	134,90	13001			
6Al	161,88	20919			
$Al(C_9H_6ON)_3^1)$	459,45	66224			
AlCl ₃	133,35	12500			
$AlCl_3 \cdot 6H_2O \dots$	241,45	38283			
AlF_3	83,98	92418	Au	197,0	29447
2 AlF ₃	167,96	22521	2 Au	394,0	59550
3AlF ₃	251,94	40130	3Au	591,0	77159
	180,08	25720	AuCl ₃	303,37	48198
AlNa ₃ F ₄	163,97	21477	AuHCl ₄	339,84	53127
Al_2O_3	101,96	00843			
$\frac{1}{6}$ Al ₂ O ₃	16,993	23027			
$\frac{1}{2}$ Al ₂ O ₃	50,980	70740			

¹⁾ Oxin (Ox)

II

MG

Tafel 1 gruppen, Moleküle und Äquivalente (sowie niederer Multipla)

	Gewicht	lg		Gewicht	lg
В	10,82	03423	Be	9,013	95487
2B	21,64	33526	2Be	18,026	25590
3B	32,46	51135	4Be	36,052	55 693
4B	43,28	63629	$BeCO_3 \dots$	69,024	83900
5B	54,10	73320	BeF_2	47,013	67222
6B	64,92	81238	$Be(NO_3)_2 \cdot 3H_2O$	187,077	27202
BF_3	67,82	83136	BeO	25,013	39817
BO ₂	42,82	63165	$\mathrm{Be_2P_2O_7}$	191,98	28326
BO_3	58,82	76953			9,590
B_2O_3	69,64	84286	Bi	209,00	32015
B_4O_7	155,28	19112	2Bi	418,00	62118
			BiC ₆ H ₃ O ₃	410,00	02110
			$\left\{\begin{array}{c} \text{Pyrogallol} \\ \text{Pyrogallol} \end{array}\right\}$	332,09	52126
Ba	137,36	13786	$Bi(C_{12}H_{10}ONS)_3$		
¹2Ba	68,680	83683	$H_2O(Thionalid)$	875,87	94244
2Ba	274,72	43889	BiCr(CNS) ₆	609,52	78499
3Ba	412,08	61498	Bi ₂ O ₃	466,00	66839
BaCO ₃	197,37	29528	$Bi(NO_3)_3 \cdot 5H_2O$.	485,10	68583
BaCl ₂	208,27	31863	BiOCl	260,46	41 574
BaCl ₂ ·2H ₂ O	244,31	38794	$(BiO)_2Cr_2O_7 \dots$	666,02	82349
BaCrO ₄		40376	$Bi(Ox)_3$ (Oxin)	641,47	80718
BaF ₂	175,36	24393	$Bi(Ox)_3 \cdot H_2O \dots$	659,49	81921
$Ba(\tilde{NO}_3)_2 \dots$	261,38	41727	BiPO ₄	303,98	48284
BaO	153,36	18571	$\operatorname{Bi}_{2}\operatorname{S}_{3}$	514,20	71113
½BaO	76,680	88468	$Bi_2(SeO_3)_3$	798,88	90248
BaO,	169,36	22881	D12(0003/3	790,00	90240
Ba(OH) ₂	171,38	23395			
$Ba(OH)_2 \cdot 8H_2O$	315,51	49901			
$\frac{1}{2}$ [Ba(OH) ₂ ·8H ₂ O]	157,752	19798	D	-	
BaS	169,43	22898	Br	79,916	90263
Ba _{1/2} SO ₃	148,75	17246	2Br	159,832	20366
2 Bay, SO ₃	297,50	47349	3Br	239,748	37975
$_3Ba_{1/2}SO_3 \ldots$	446,25	64958	4Br	319,664	50269
BaSO ₃	217,43	33731	5Br	399,580	60160
$Ba(HSO_3)_2 \dots$	299,51	47641	6Br	479,496	68078
BaSO ₄	233,43	36815	BrO ₃	127,916	10692
BaSiF ₆	279,45	44630	$\frac{1}{6}$ BrO ₃	21,319	32877
•	7 57 13	11-3-			

Tafel 1 1,2. Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

	Gewicht	lg		Gewicht	lg
C	12,011	07958	C_2H_5Br	108,978	03734
2C	24,022	38061	C ₂ H ₅ Cl	64,519	80960
3C	36,033	55670	C_2H_5F	48,06	68178
4C	48,044	68164	C_2H_5J	155,97	19304
5C	60,055	77855	C_2H_5O	45,062	65381
6C	72,066	85773	C_5H_5N (Py)	79,103	89810
CCl ₃ NO ₂	164,390	21587	C ₆ H ₅	77,106	88700
CH2	14,027	14697	2 Č ₆ H ₅	154,21	18812
2CH ₂	28,054	44799	3C ₆ H ₅	231,32	36422
3CH2	42,081	62409	C_6H_6	78,114	89273
4CH ₂	56,108	74902	C_7H_5O	105,117	02167
5CH2	70,135	84593	2C ₇ H ₅ O	210,23	32270
6CH,	84,162	92512	$3C_7H_5O$	315,35	49870
CH ₂ O	30,027	47751	CoHoON (Ox)	144,155	15883
CH ₃	15,035	17710	C ₉ H ₇ ON (OxH).	145,163	16186
2CH ₃	30,070	47813	C ₁₀ H ₈ (Naphth.)	128,17	10770
3CH ₃	45,105	65423	$C_{10}^{10}H_7$	127,17	10430
4CH ₃	60,140	77916	$C_{10}^{10}H_{6}$	126,16	10092
5CH3	75,175	87607	$C_{10}^{10}H_5$	125,15	09743
6CH ₃	90,210	95526	C10H4	124,14	09391
CH4	16,043	20529	$C_{10}^{10}H_{16}O_{8}N_{2}$	292,25	46 576
CH ₃ Br	94,951	97749	$C_{12}H_{14}N_2SO_4$	282,33	45 075
CH₃Cl	50,500	70323	C14H8O2 (Anthrach.)	208,22	31852
CH ₃ F	34,03	53186	$C_{14}H_7O_2$	207,21	31641
СН ₃ Ј	141,94	15211	$C_{14}^{14}H_{6}^{\prime}O_{2}^{2}$	206,20	31 420
CH ₃ O	31,035	49185	$C_{14}^{14}H_5^{\bullet}O_2$	205,19	31216
C,H,	26,038	41561	$C_{14}^{14}H_4^3O_2$	204,18	31 003
C_2H_5	29,062	46333	C ₂₀ H ₁₆ N ₄ (Nitron)		49468
2 C ₂ H ₅	58,124	76436	C20H16N4 HNO3	375,40	57 449
$3C_2H_5$	87,186	94045	CN	26,019	41 529
$4C_2H_5$	116,248	06539	2CN	52,038	71632
$5C_2H_5$	145,31	16230	3CN	78,057	89241
$6C_2H_5$	174,37	24148	4CN	104,076	01735
C_2H_3O	43,046	63393	5CN	130,095	11426
2C ₂ H ₃ O	86,092	93496	6CN	156,114	19344
$3C_2H_3O$	129,138	11105	CNJ	152,93	18440
$C_2H_3O_2$	59,046	77119	01.5	-5-,95	10445
~2~~3~2	39,040	//119			

Tafel I gruppen, Moleküle und Äquivalente (sowie niederer Multipla)

CNS CO CO ₂	58,085	76406			
CO ₂		70400	CaCl ₂ O (Chlor-	6	
CO ₂	28,011	44733	kalk)	126,99	10377
	44,011	64356	½ CaĆl₂O	63,497	80275
½CO ₂	22,005	34252	CaF ₂	78,08	89254
2CO ₂	88,022	94459	Ca(HCO ₃) ₂	162,12	20983
3CO ₂	132,033	12068	$\frac{1}{2}$ [Ca(HCO_3) ₂].	81,059	90880
CO ₃	60,011	77823	CaO	56,08	74881
½CO₃		47721	½CaO	28,040	44778
2CO ₃	120,022	07926	2CaO	112,16	04984
3CO ₃		25535	3CaO	168,24	22593
CO ₂ H s. a. HCO ₂	45,019	65340	4CaO	224,32	35087
C_2O_4		94459	5CaO	280,40	44778
$CO(NH_2)_2$	60,059	77858	6CaO	336,48	52696
CS ₂	76,143	88163	Ca(OH) ₂	74,10	86982
-	,		½[Ca(OH),]	37,05	56877
			$Ca(NO_3)_2 \dots$	164,10	21511
			CaHPO ₄	136,06	13374
			CaHPO ₄ ·2H ₂ O.	172,10	23578
Ca	40,08	60293	Ca(HSO ₃) ₂	202,23	30584
½ Ca	20,04	30190	$CaH_4(PO_4)_2$	234,06	36933
2Ca	80,16	90396	$CaH_4(PO_4)_2 \cdot H_2O$	252,08	40154
3Ca	120,24	08005	$Ca_3(PO_4)_2 \dots$	310,19	49163
4Ca	160,32	20499	$[Ca_3(PO_4)_2]_3$ \	1004,7	00204
5Ca	200,40	30190	$Ca(OH)_2 \dots \int$	1004,7	
6Ca	240,48	38108	CaS	72,15	85821
CaC ₂	64,10	80686	CaSO ₃	120,15	07972
$CaC_4H_4O_6 \cdot 4aq$	260,22	41 534	$Ca_{1/2}SO_3$	100,11	00046
CaCN ₂	80,11	90369	2 Ca _{1/2} SO ₃	200,21	30149
CaCO ₃	100,09	00039	3Ca _{1/2} SO ₃	300,32	47758
½CaCO ₃	50,045	69936	CaSO ₄	136,15	13402
CaC ₂ O ₄ ·H ₂ O	146,12	16480	$CaSO_4 \cdot \frac{1}{2}H_2O$	145,16	16184
$Ca(C_{10}H_7O_5N_4)_2\cdot$	710,60	85163	CaSO ₄ ·2H ₂ O	172,18	23598
8H2O (Pikrolons.)			CaSiO ₃	116,17	06509
CaCl ₂ ······	110,99	04528			
CaCl ₂ ·2H ₂ O		16739			
$CaCl_2 \cdot 6H_2O$	219,09	34062			
Ca(OCl) ₂	142,99	15531			

Tafel 1 1,2. Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

	Gewicht	lg		Gewicht	lg
Cd	112,41	05081	Cl	35,457	54970
½Cd	56,205	74978	2Cl	70,914	85073
2Cd	224,82	35184	3C1	106,371	02682
$Cd(C_7H_4NS_2)_2$ }		64827	4C1	141,828	15176
(Mercaptobenzth.)	444,91	04027	5C1	177,285	24867
$Cd(C_7H_6O_2N)_2$ }	384,67	58509	6Cl	212,742	32785
(Anthranils.)	304,0/	20,209	ClO	51,457	71144
$Cd(C_{10}H_6O_2N)_2$	456,74	65967	Cl ₂ O ₅	150,914	17873
(Chinaldins.)	450,74	03907	ClO ₃	83,457	92146
CdCl ₂	183,32	26322	1 ClO₃	13,910	14331
CdO	128,41	10860	ClO ₄	99,457	99764
$Cd(Ox)_2$ (Oxin)	400,72	60284			
$Cd(Ox)_2 \cdot 1,5H_2O$	427,74	63118			
$Cd_2P_2O_7$	398,77	60072			
$CdPy_2(CNS)_2^1$.	386,79	58748	Co	58,94	77041
$CdPy_4(CNS)_2$	544,99	73639	₿Со	29,470	46938
CdS	144,48	15981		117,88	07 144
CdSO ₄	208,48	31906		208,76	31965
CdSO ₄ · ⁸ ₃ H ₂ O	256,52	40912	CoAsS	165,92	21990
			$Co(C_7H_6O_2N)_2^2$	331,21	52018
			ColC HO	Control of the Control	A CONTRACTOR OF THE PARTY OF TH
			$(NO)]_3 \cdot 2 H_2O^3)$	611,47	78638
Ce	140,13	14653	Cold HO		
2Ce	280,26	44756	$(NO_2)_{3}^{4}$	623,44	79479
3Ce	420,39	62365	$CoCl_2 \cdot 6H_2O \dots$	237,95	37649
$Ce_2(C_2O_4)_3$	544,33	73586	$Co(NO_3)_2 \cdot 6H_2O$	291,05	46397
CeCl ₃	246,50	39182	CoO	74,94	87471
CeF ₃	197,13	29475	Co ₃ O ₄	240,82	38169
Ce ₃ O ₄	484,39	68520	$Co(Ox)_2 \cdot 2aq$		-
$Ce_2^3O_3$	328,26	51 622	(Oxin)	383,28	58352
CeO ₂	172,13	23586	$Co_2P_2O_7$	291,83	46513
CeO_3	188,13	27446	CoSO ₄	155,01	19036
$Ce_2(SO_4)_3 \cdot 8H_2O$	712,59	85 284	CoSO ₄ ·7H ₂ O	281,12	44889
$Ce(SO_4)_2 \dots$	332,26	52148	7 1120	201,12	74009
$Ce(SO_4)_2 \cdot 4H_2O$	404,33	60674			
00(004/2 41120	404,33	000/4			

¹⁾ Py = Pyridin

 ²⁾ Anthranilsäure
 4) α-Nitro-β-naphthol

³⁾ α -Nitroso- β -naphthol

Tafel 1 gruppen, Moleküle und Äquivalente (sowie niederer Multipla)

	Gewicht	lg		Gewicht	lg.
Cr	52,01	71609	Cu ₂ O	143,08	15558
2Cr	104,02	01712	CuO	79,54	90059
3Cr	156,03	19321	½CuO	39,77	59956
CrO	68,01	83257	2CuO	159,08	20162
Cr ₃ O ₄	220,03	34248	3CuO	238,62	37771
Cr_2O_3	152,02	18190	Cu(Ox) ₂ (Oxin)	351,86	54637
$\frac{1}{2} \operatorname{Cr_2O_3}$	76,010	88087	Cu ₂ S	159,15	20180
2 Cr ₂ O ₃	304,04	48293	CuS	95,606	98049
3Cr ₂ O ₃	456,06	65902	CuSO ₄	159,606	20305
CrO ₃	100,01	00004	CuSO ₄ ·5H ₂ O	249,69	39740
2CrO ₃	200,02	30107			
Cr ₂ O ₇	216,02	33449			
¹ / ₆ Cr ₂ O ₇	36,003	55634	D	2,0136	20.207
CrO ₄	116,01	06450	D ₂ O	20,0272	30397 30162
CrPO ₄	146,99	16729	$D_2 \cup \dots$	20,02/2	30102
Cs	132,91	12356			
2Cs	265,82	42459	Er	167,7	22342
Cs ₂ O	281,82	44997	2 Er	335,4	52445
Cs ₂ SO ₄	361,89	55858	Er ₂ O ₃	383,4	58268
Cu	63,54	80305			
½Cu	31,77	50202	F	TO 00	27875
2Cu	127,08	10408	2F	19,00	
3Cu	190,62	28017	3F		57978
CuCNS	121,63	08504	4F	57,00 76,00	75587 88081
CuCO ₃ · Cu(OH) ₂	221,107	34460	5F	95,00	
$Cu(C_7H_6O_2N)_2^{1/2}$	335,81	52609	6F	114,00	97772 05690
Cu(C ₁₀ H ₆ O ₂ N) ₂ ·			01	114,00	05090
$H_{2}O^{2}$	425,89	62930			
Cu(C ₁₂ H ₁₀ ONS) ₂ ·			Fe	55,85	74702
H ₂ O ³)	514,13	71107	2Fe	111,70	04805
CuC ₁₄ H' ₁₁ O ₂ N ⁴)	288,79	46058	3Fe	167,55	22414
CuCl ₂	134,45	12856	4Fe		
CuFeS ₂	183,52	26368	5Fe	223,40	34908
2	3134		6Fe	279,25	44599
			01.6	335,04	52517

Salicylaldoxim und Anthranilsäure
 Chinaldinsäure
 Thionalid
 Benzoinoxim (Cupron)

Tafel 1 1,2. Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

	Gewicht	lg		Gewicht	lg
FeAs ₂	205,67	31317	H	1,0080	00346
FeAsS	162,83	21172	2 H	2,0160	30449
$Fe(CN)_6$	211,96	32626	3H	3,0240	48058
FeCO ₃	115,86	06394	4H	4,0320	60552
$FeCl_2$	126,76	10297	5H	5,0400	70243
$FeCl_2 \cdot 4H_2O \dots$	198,83	29848	6H	6,0480	78161
$FeCl_3$	162,22	21010	H_3AsO_4	141,93	15207
$FeCl_3 \cdot 6H_2O \dots$	270,32	43188	HBO_2	43,83	64175
$Fe(CrO_2)_2$	223,87	35000	H_3BO_3	61,84	79127
$Fe(HCO_3)_2 \dots$	177,89	25015	HBr	80,924	90808
FeJ_2	309,67	49090	$H \cdot CHO_2 \cdot \dots$	46,027	66301
FeO	71,85	85643	$H \cdot C_2 H_3 O_2$	60,054	77854
2FeO	143,70	15746	HCN	27,027	43180
3FeO	215,55	33355	H_2CN_2	42,043	62369
Fe_3O_4	231,55	36465	$(\tilde{H_2}C\tilde{N_2})_2 \dots$	84,086	92472
Fe_2O_3	159,70	20330	H ₆ C ₂ N ₄ O (Dic.)	102,102	00903
$\frac{1}{6} \operatorname{Fe_2O_3}$	26,617	42516	HCNS	59,093	77154
$\frac{1}{2}$ Fe ₂ O ₃	79,850	90227	HCO ₂	45,019	65340
$2 \operatorname{Fe_2O_3}$	319,40	50433	2 HCO ₂	90,038	95443
$3 \operatorname{Fe_2O_3} \dots$	479,10	68043	3HCO ₂	135,057	13052
$Fe(OH)_3 \dots$	106,87	02886	4HCO ₂	180,076	25546
2 Fe(OH) ₃	213,75	32991	5HCO ₂	225,095	35237
$Fe(Ox)_3 (Oxin)$	488,32	68870	6HCO ₂	270,114	43155
FePO ₄	150,83	17849	HCO ₃	61,019	78546
FeS	87,92	94409	$H_2CO_3 \dots$	62,027	79258
FeS ₂	119,98	07912	$H_2C_2O_4$	90,038	95443
FeSO ₄	151,92	18160	$H_2C_2O_4 \cdot 2H_2O$	126,070	10061
$FeSO_4 \cdot 7H_2O$	278,03	44409	$\frac{1}{2}[H_{2}C_{2}O_{4} \cdot 2H_{2}O]$	63,035	79959
$Fe_2(SO_4)_3 \ldots$	399,90	60195	H·C ₃ H ₅ O ₃ (Milch.)	90,081	95463
$Fe_2(SO_4)_3 \cdot 9H_2O$	562,04	74977	H2 · C4H4O4 (Bernst.)	118,092	07222
			H2 · C4H4O5 (Apfel.)	134,092	12740
			H2 · C4H4O6 (Wein.)	150,092	17636
			H3.C6H5O7 (Citr.)	192,130	28360
				210,166	32256
			H·C ₇ H ₅ O ₂ (Benz.)	122,125	08680
				138,125	14027
				282,47	45 097
			10 00 2 '		

Tafel 1 gruppen, Moleküle und Äquivalente (sowie niederer Multipla)

2 HCl		Gewicht	lg		Gewicht	lg
2 HCl		36,465	56188	H ₂ SO ₄	98,082	99159
3HCl HClO	2 HCl		86291	$\frac{1}{2}$ H ₂ SO ₄	49,041	69056
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3HCl		03900	2H ₂ SO ₄	196,164	29262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HClO		71987	3H ₂ SO ₄	294,246	46871
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HClO ₃		92668	$H_2S_2O_8$	194,148	28813
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HClO ₄	100,465	00201	$\frac{1}{2}$ H_2 S_2 O_8	97,074	98710
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_2CrO_4	118,03	07199		144,98	16130
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_2Cr_2O_7$	218,04	33854		144,11	15868
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The Control of the Co		30125	H_2SiO_3	78,11	89271
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_3Fe(CN)_6 \dots$		33242			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	нј			Нα	200 ST	20.225
HNO ₃	HJO_3			2На		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$HNO_2 \dots \dots$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		63,016			252 65	
HO	2HNO ₃			Hg(C-H-O-N)-1)	172.88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		189,048				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			23065		100000000000000000000000000000000000000	
2H ₂ O 36,0320 55669 HgPy ₂ Cr ₂ O ₇ ³) 574,84 759,83						
3H ₂ O	H ₂ O		95463			33568
3H2O 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 72,0640 73,070 72,0640 73,070 73,070 73,070 73,070 73,070 73,070 73,070 73,070 73,060 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 73,000 7	2H ₂ O					75954
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						36675
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4H ₂ O			6-	-5-,	373
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5H ₂ O	90,080	95403			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U O		03361			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				T	T06.0T	70250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HPO					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H.PO.					88 165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		400.85				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H-S				The second secon	24282
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		34,002	33~33	J = 3	-/4/91	-4-02
H_2SO_3 82,082 91425			05747			
	H _s SO _s					
1) Anthranilsäure 2) Thionalid 3) Pyridin					3\ Did!-	1

² Küster-Thiel-Fischbeck, Rechentafeln

Tafel 1 1,2. Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

K 2K	39,100				
2K		59218	KF	58,10	76418
	78,200	89321	$K_3Fe(CN)_6 \dots$	329,26	51754
3 K	117,300	06930	K ₄ Fe(CN) ₆	368,36	56628
4K	156,400	19424	K4Fe(CN)6·3H2O	422,4I	62574
5 K	195,500	29115	KFe(SO4)2 · 12aq	503,27	70180
6K	234,600	37033	KH ₂ AsO ₄	180,03	25535
$KAl(SO_4)_2 \cdot 1$	N=0.00		$KHCO_3$	100,119	00052
12H2O	474,40	67615	$KHC_4H_4O_6$	188,184	27458
KAlSi ₃ O ₈	278,35	44459	$\mathrm{KH_{3}(C_{2}O_{4})_{2} \cdot 2aq}$		40518
2KAlSi ₃ O ₈	556,7	74562	$\frac{1}{3}[KH_3(C_2O_4)_2]$	84,733	92805
KBF ₄		10010	2 H ₂ O] J	04,/33	,
KBr	119,016	07561	KHC ₈ H ₄ O ₄ (Phth.)	204,228	31012
KBrO ₃	167,016	22276	$KH(JO_3)_2 \dots$	389,93	59098
1 KBrO3	27,836	44461	$\frac{1}{12}[KH(JO_3)_2]$	32,494	51180
	358,34	55430	KH_2PO_4	136,09	13383
$K(C_6H_5)_4B$ $KCN \dots$	65,119	81371	кј	166,01	22013
KCNS	97,185	98760	$\mathrm{KJO_{3}}$	214,01	33043
K_2CO_3		14054	½ K JO₃	35,668	55228
$\frac{1}{2}$ K ₂ CO ₃	69,106	83952	KMnO ₄	158,04	19877
$K_2CO_3 \cdot 2H_2O$		24116	¹ / ₅ KMnO ₄	31,608	49980
KČl Ž	74,557	87249	2 KMnO ₄	316,08	49980
KClO ₃	122,557	08834	KNO ₂	85,108	92997
₹KClO₃	20,426	31019	KNO ₃	101,108	00479
KČIO ₄		14163	KNaC4H4O6 · 4aq	282,24	45064
	452,29	65542	K2Ni(SO4)2 · 6aq	437,14	62064
K ₂ Co(SO ₄) ₂ ·6aq		64085			
	194,21	28827			
$K_2Cr_2O_7$	294,22	46867			
$\frac{1}{6}$ K_2 Cr_2 O_7	49,036	69050			2
$\frac{1}{2}$ K_2 Cr_2 O_7	147.11	16764			
KCr(SO4)2.12H2O	400.43	69848			
K2Cu(SO4)2.6aq	441.07	64539			
2(4/21	11 /3/	1007			