ARBEITSMETHODEN DER MODERNEN NATURWISSENSCHAFTEN HERAUSGEGEBEN VON PROFESSOR DR. KURT FISCHBECK

GRUNDLAGEN DER POLARIMETRIE

Gerätekunde und Meßtechnik

von

DR. PHIL. JOHANNES FLÜGGE

wissenschaftlichem Mitarbeiter der Fa. Carl Zeiss in Oberkochen und Göttingen

Mit 72 Abbildungen und 28 Tabellen

WALTER DE GRUYTER & CO. Berlin 1970

C

Archiv-Nr. 57 43 701. Printed in Germany.

Satz und Druck: Hubert & Co., Göttingen

Copyright 1970 by Walter de Gruyter & Co., vormals G. J. Göschen'sche Verlagshandlung J. Guttentag, Verlagsbuchhandlung — Georg Reimer — Karl J. Trübner — Veit & Comp., Berlin 30 — Alle Rechte, auch die des auszugsweisen Nachdruckes, der photomechanischen Wiedergabe, der Herstellung von Mikrofilmen und der Übersetzung vorbehalten.

Vorwort

Als optische Methode der analytischen Chemie gründet sich die Polarimetrie auf dem Biotschen Gesetz aus dem Jahre 1831. Sie ist also keine neue Technik. Aber die moderne Chemie bedient sich in jüngster Zeit mit großen Erfolgen polarimetrischer Verfahren auch bei der Erforschung des Moleküls und stellt neue und gesteigerte Anforderungen an das polarimetrische Instrumentarium. So gibt es heute Polarimeter von hoher Leistungsfähigkeit, nicht nur hinsichtlich der Genauigkeit, sondern auch und vor allem hinsichtlich der Anwendungsbreite und des Bedienungskomforts.

Da es im deutschen Schrifttum schon seit sehr langer Zeit kein selbständiges zusammenfassendes Werk über Polarimeter gibt, entspricht es vermutlich einem Bedürfnis, nun eine solche Darstellung herauszubringen, die die physikalischen Grundlagen behandelt sowie mit den modernen Geräten und der diesbezüglichen allgemeinen Meßtechnik bekannt macht. Auf bestehendes Schrifttum wird im Text mit laufenden Nummern in eckiger Klammer wiederholt hingewiesen, es kann im Kapitel 10 anhand der Nummern gefunden werden.

Das Polarimetrieren verlangt dem Benutzer von Polarimetern nicht geringe geräte- und meßtechnische Kenntnisse ab, und diese zu vermitteln, soweit sie bis zum Abschluß des Manuskripts im Sommer 1969 verfügbar sind, ist die Hauptaufgabe des vorliegenden Buches. Arbeitsvorschriften für das angewandte Polarimetrieren werden bewußt nicht gegeben, weil dies über den nach Inhalt und Umfang gesteckten Rahmen weit hinausgehen würde.

Der Verfasser erfreute sich der Unterstützung durch die im Text, in den Abbildungen und Tabellen genannten Herstellerfirmen von Polarimetern, was ihn zu großem Dank verpflichtet. Ganz besonders sei Herrn MEINRAD MÄCHLER in der Firma Carl Zeiss, Oberkochen, gedankt, der sich der Mühe unterzog, das Manuskript kritisch durchzusehen, und der aus seiner großen Erfahrung heraus wertvolle Anregungen beisteuerte.

Last not least bekundete Herr Professor Dr. K. FISCHBECK, Heidelberg, persönliches Interesse an diesem Buch und förderte in jeder Hinsicht seine Fertigstellung. Dafür ist der Verfasser Herrn Professor FISCHBECK zutiefst dankbar.

Schließlich sei auch dem Verlag für die verständnisvolle Bereitschaft zur Übernahme und technischen Ausführung des Werkes vielmals gedankt.

Göttingen, im Frühjahr 1970

Dr. Johannes Flügge

Inhaltsverzeichnis

Vorwort	v		
Einleitung	XI		
1. Physikalische Grundlagen			
1.1. Optische Drehung und optische Aktivität	1		
1.2. Normale und anomale Rotationsdispersion	4		
1.3. Nicht-natürliche optische Drehung	6		
1.3.1. Linearer Dichroismus	6		
1.3.2. Magneto-optische Drehung (Faraday-Effekt)	6		
1.4. Bezogene Größen der optischen Drehung	8		
1.4.1. Die spezifische Drehung	8		
1.4.2. Die molare (molekulare) Drehung	10		
1.4.3. Abhängigkeiten der spezifischen Drehung	10		
1.4.3.1. Die Temperaturabhängigkeit der spezifischen Dre-			
hung	10		
1.4.3.2. Die Konzentrationsabhängigkeit der spezifischen			
Drenung	11		
Lösungsmittel	12		
1.4.3.4. Die Wellenlängenabhängigkeit der spezifischen Dre-			
hung	13		
1.4.3.4.1. Optische Rotationsdispersion (ORD) .	13		
1.4.3.4.2. Kurven normaler und anomaler UKD.	13		
1.4.3.5. Die Zeitschöngigkeit der enerifischen Drehung (Mu	10		
tarotation)	18		
2. Konstruktive Bauteile der Polarimeter (insbes. Kreispolarimeter)	20		
2.1. Polarisatoren	21		
2.1.1. Kalkspatpolarisatoren	21		
2.1.2. Polarisationsfilter	22		
2.1.3. Polarisationsgrad	22		
2.2. Analysatoren	23		
2.3. Teilungen	24		
2.4. Lichtquellen, Lichtfilter und Monochromatoren	25		
2.5. Polarimeterröhren: Ausführungen, Pflege, Füllen	28		
2.6. Optischer Aufbau eines Polarimeters	31		

T-1.1.	- 1 *	
Inhaltsverzei	chni	8

3.	Die	Mitwi	rkung de	s Gesichtssinnes bei visuellen Polarimetern	34
	3.1.	Die H	elligkeits	empfindung	34
	3.2.	Die A	daptation	1	3 5
	3.3.	Empfi	ndungsst	örungen	36
	3.4.	Die K	ontraster	npfindlichkeit und das Halbschattenprinzip	36
	3.5.	Techn	ische Ver	wirklichung des Halbschattenprinzips	40
		3.5.1.	Halbsch	attenprismen nach JELLET und nach BECHSTEIN	4 0
		3.5.2.	Halbpri	sma nach LIPPICH	41
		3.5.3.	Halbsch	attenplättchen nach LAURENT ($\lambda/2$ -Plättchen)	41
		3.5.4.	Dreiteili	ges oder zweiteiliges Halbschattenfeld?	43
4.	Gru	ndlage	n und al	lgemeine Technik des Polarimetrierens	46
	4.1.	Meßte	chnische	Bedienungsanleitung	46
	4.2.	Beispi	ele für ei	ne Drehungsmessung	47
	4.3.	Das B	iotsche G	esetz	49
		4.3.1.	Formuli	erungen des Biotschen Gesetzes	49
		4.3.2.	Anwend	ungen des Biotschen Gesetzes	51
			4.3.2.1.	Temperaturkorrektion	51
			4.3.2.2.	Konzentrationskorrektion	52
			4.3.2.3.	Das Biotsche Gesetz bei zwei optisch aktiven Sub- stanzen ohne optisch aktive Beimengungen in Lö- sung. Anwendung auf ein reaktionskinetisches Problem	53
			4.3.2.4.	Das Biotsche Gesetz bei Lösungen aus zwei optisch aktiven Substanzen mit optisch inaktiven Bei- mengungen.	54
			4.3.2.5.	Polarimetrischer Nachweis von Verunreinigungen ontisch aktiver Stoffe	55
			4.3.2.6.	Gültigkeit des Biotschen Gesetzes	58
		4.3.3.	Vermeid	ung von zeitraubenden Berechnungen nach dem	
			Biotsche	n Gesetz	58
			4.3.3.1.	Prozentbeobachtungsröhren	58
			4.3.3.2.		59
			4.3.3.3.	Zuckerskala (°S)	59
		4.3.4.	Bestimn metern	nung kleinster Konzentrationen mit Präzisionspolari-	59
5.	Bese	chreibu	ing von	Polarimetern	63
	5.1.	Visuel	le Kreisp	olarimeter	63
		5.1.1.	Kreispol	arimeter für einfache Drehwinkelmessungen	63
		5.1.2.	Kreispol	arimeter für präzise Drehwinkelmessungen (Lippich-	
			Polarime	eter)	65

		5.1.3.	Die wesent nach den P	lichen Eigenschaften einiger visueller Polarimeter rospekten der Hersteller	66
	5.2.	Photoe	lektrische I	Polarimeter	67
		5.2.1.	Der Weg zu	ur photoelektrischen Polarimetrie	67
		5.2.2.	Verfahren o	der photoelektrischen Polarimetrie	67
			5.2.2.1. Pl	notometrische Verfahren ohne Winkelmessung	70
			5.2.2.2. Pl	notometrische Verfahren mit Winkelmessung	72
			5.2.2.3. H be	albschattenmethoden mit Winkelmessung, ins-	74
		5.2.3.	Beschreibu	ng photoelektrischer Polarimeter	81
		-	5.2.3.1. G	enerelle technische Ausführung	81
			5.	2.3.1.1. Die Lichtquellen	81
			5.	2.3.1.2. Die Einstellgenauigkeit	82
			5.	2.3.1.3. Die Modulation des linear polarisierten	00
			5	2 3 1 4 Finstellung und Ablesung der Dreb.	82
			0.	werte	83.
			5.	2.3.1.5. Küvetten	84
			5.2.3.2. D	ie wesentlichen Eigenschaften einiger photoelek- ischer Polarimeter nach den Prospekten der Her-	
			\mathbf{st}	eller	88
			5.2.3.3. In ele	stitutsmäßige Einzelausführungen von photo- ektrischen Polarimetern	88
		5.2.4.	Registriere	nde Spektralpolarimeter	88
			5.2.4.1. A	us der Vorgeschichte der Spektralpolarimeter	89
			5.2.4.2. Sp	pezielle technische Ausführung von Spektral- darimetern	90
			5.2.4.3. D	ie wesentlichen Eigenschaften einiger Spektral-	
			po	blarimeter nach den Prospekten der Hersteller .	92
6.	Ellij	psomet	rie mit Pol	arimetern	93
	6.1.	Grund	formeln der	Ellipsometrie bei Phasensprung in Reflexion an	
		dünne	n Schichten		93
	6.2.	Gegen	überstellung	g von ORD und CD	95
	6. 3 .	Wesen	der Ellipso	metrie	96
		6.3.1.	Definition (der Elliptizität •	96
		6. 3 .2.	Drehungsm Substanz	neßgenauigkeit an einer zirkular-dichroitischen	98
		6.3.3.	Das $\lambda/4$ -Pla	ättchen	98
		6.3.4.	Die Umwa tisch polari	ndlung von linear polarisierter Strahlung in ellip- isierte Strahlung durch ein $\lambda/4$ -Plättchen, Prak-	
			tische Anw	endung bei der Ellipsometrie	100
		6.3.5.	Die Umwaz ein $\lambda/4$ -Plä	ndlung von elliptisch polarisierter Strahlung durch ttchen	102

Inhaltsverzeichnis

	6.4.	Polari	metrie zirkular-dichroitischer Substanzen	105
		6.4.1.	Drehwertmessungen an zirkular-dichroitischen Substanzen	
			mit dem Lippichschen Halbschattenpolarimeter	105
		6.4.2.	Messung der Elliptizität mit dem Lippichschen Halb-	107
		613	Weitere Möglichkeiten zur Umwendlung von lineer poleri-	107
		0.4.9.	sierten Schwingungen in elliptisch polarisierte Schwingungen	110
			6.4.3.1. Der Fresnelsche Rhombus	110
			6.4.3.2. Der Babinet-Soleil-Kompensator	111
			6.4.3.3. Die Billingszelle	112
		6.4.4.	Beispiele für Spektralkurven der optischen Drehung und des Zirkulardichroismus	116
		6.4.5.	Schlußbemerkung zur Ellipsometrie mit $\lambda/4$ -Plättchen	116
7.	Saco	harim	eter	119
	7 1	Die in	ternationale Zuckerskala	119
		711	Grundlage der Zugkerskale	190
		7 1 9	Die Besigmeerungen von Barres und Lactreen	190
		7.1.2.	Die 1026 wereinkerte internetionale Zuckerskele	100
		7.1.3.	Kelikeisenen Sasakarimatonale Zuckerskala	122
		7.1.4.	sation, Grundformel der Zuckerskala 1966	123
		7.1.5.	Vergleich der Zuckerskala 1966 mit der früheren	125
		7.1.6.	Die derzeitige Festlegung der internationalen Zuckerskala	
			seit 1966	125
	7.2.	Quarz	kontrollplatten	126
		7.2.1.	Zuckerwerte	126
		7.2.2.	Eigenschaften der Quarze	126
		7.2.3.	Gestaltung und Abmessungen	127
		7.2.4.	Maximale Fehlergrenzen	127
		7.2.5.	Fassung der Quarzkontrollplatten	127
		7.2.6.	Bezeichnungen	128
	7.3.	Polari	meterröhren für die Saccharimetrie	128
		7.3.1.	Allgemeines	128
		7.3.2.	Röhrenlängen	128
		7.3.3.	Innendurchmesser der Röhren	`129
		7.3.4.	Beschicken von Durchflußröhren mit neuer Lösung	129
		7.3.5.	Stirnflächen der Röhrenenden	129
		7.3.6.	Röhrenfassungen	130
		7.3.7.	Abschlußgläser	130
		7.3.8.	Einsatzbereitschaft	130
		7.3.9.	Bezeichnungen	130
			v	

Inhaltsverzeichnis

	7.4. Anforderungen an polarimetrische Saccharimeter	131
	7.4.1. Anwendungsbereich	131
	7.4.2. Allgemeines	132
	7.4.3. Skala	132
	7.4.4. Werkstoffe	132
	7.4.5. Konstruktion	133
	7.4.6. Genauigkeitsklassen und Fehlertoleranzen	134
	7.4.7. Bezeichnungen	134
	7.5. Saccharimeter-Konstruktionen	135
	7.5.1. Quarzkeil-Saccharimeter	135
	7.5.1.1. Die Quarzkeil-Kompensation	135
	7.5.1.2. Die Temperaturkorrektion bei Quarzkeil-Sacchari-	126
	7.5.1.3. Beschreibung von visuellen Quarzkeil-Sacchari-	100
	metern	138
	7.5.1.4. Tropen-Erfordernisse	139
	7.5.2. Photoelektrische Saccharimeter	140
	7.5.3. Die wesentlichen Eigenschaften einiger photoelektrischer	
	Saccharimeter nach den Prospekten der Hersteller	143
8.	Magneto-optische Drehung und magneto-optische Rotationsdisper-	
	sion. Magnetischer Zirkulardichroismus	144
9.	Theorie der Meßfehler	150
	9.1. Zufällige Fehler	150
	9.2. Fehlerfortpflanzung	152
10.	Schrifttum	154
	10.1. Bücher	154
	10.2. Zeitschriften	155
	Destates	
11.	register	194

х

Einleitung

Die Polarimetrie ist eine der quantitativen optischen Methoden der Chemie, die der chemischen Gewichtsanalyse an Empfindlichkeit überlegen sind. Die Anwendung der Polarimetrie ist allerdings auf Stoffe beschränkt, die man als "optisch aktiv" bezeichnet, d. h. auf Stoffe, die optisches Drehungsvermögen aufweisen, eine physikalische Eigenschaft, die auf Wechselwirkungen zwischen polarisierten, speziell linear polarisierten Wellen und dem Aufbau des elektrischen Ladungssystems im Molekül beruht. Darüber wird weiter unten einiges ausgesagt.

Bei linear polarisierter Strahlung schwingt der elektrische Feldvektor in einer bestimmten Ebene, während natürliche Strahlung alle möglichen Schwingungszustände zwischen linearer Polarisation und zirkularer Polarisation als den beiden Grenzfällen allgemein elliptischer Polarisation aufweist, wobei statistisch die größte Häufigkeit bei den elliptischen Schwingungen des elektrischen Feldvektors liegt und die Schwingungsellipsen hinsichtlich ihrer Elliptizität, azimutalen Orientierung, Größe und Umlaufsrichtung in ihrer Aufeinanderfolge entlang der Fortpflanzungsrichtung ganz unregelmäßig verteilt sind.

Substanzen mit optischem Drehungsvermögen erteilen linear polarisierten Wellen eine Drehung der Schwingungsebene, die, wenn die optisch aktive Substanz homogen ist, mit der durchstrahlten Wegstrecke gleichförmig zunimmt. Solche Stoffe sind insbesondere "natürlich" optisch aktiv, wenn die Drehung nicht erst durch von außen induzierte Kräfte (wie bei der magneto-optischen Drehung, vgl. S. 6) hervorgerufen wird.

1. Physikalische Grundlagen

1.1. Optische Drehung und optische Aktivität

Die optische Drehung ist eine Erscheinungsform optischer Anisotropie. Anisotrop sind Stoffe, bei denen physikalische Größen, wie z.B. der Ausdehnungskoeffizient, Elastizitätswerte, die elektrische Leitfähigkeit, die Lichtgeschwindigkeit, die Lichtabsorption u. a., richtungsabhängig sind. Optische Anisotropie äußert sich z.B. als Doppelbrechung: Lichtwellen werden beim Eintritt in den anisotropen Stoff in zwei Wellen von unterschiedlicher Geschwindigkeit, d. h. mit unterschiedlichen Brechungszahlen aufgespalten.

Es gibt *lineare* Doppelbrechung und *zirkulare* Doppelbrechung. Bei der erstgenannten sind die beiden aufgespaltenen und unterschiedlich schnell fortschreitenden Wellen linear polarisiert mit zueinander senkrechten Schwingungsrichtungen. Bei der zirkularen Doppelbrechung sind die beiden aufgespaltenen und unterschiedlich schnell fortschreitenden Wellen gegensinnig zirkular polarisiert, d. h. in jeder kreist der elektrische Feldvektor um den Strahl, der eine rechts herum, der andere links herum.

Linear polarisierte Schwingungen können resultierend gedacht werden aus einer rechts-zirkularen und einer links-zirkularen Komponente, beide von gleicher Amplitude und Kreisfrequenz (Abb. 1). Eine anisotrope

Abb. 1: Erzeugung einer linearen Schwingung Paus zwei gegensinnigen zirkularen Schwingungskomponenten Z_R und Z_L

Substanz mit zirkularer Doppelbrechung erteilt den beiden Zirkularkomponenten auf dem Wege durch die Substanz wegen der unterschiedlichen Fortpflanzungsgeschwindigkeiten einen angularen Gangunterschied γ (Abb. 2), demzufolge sich die Zirkularkomponenten beim Austritt aus der Substanz zwar wieder zu linearen Schwingungen zusammen-

Flügge, Grundlagen der Polarimetrie

setzen, aber mit einer um den Winkel $\alpha=\gamma/2$ gedrehten Schwingungsrichtung.

Die Drehung kann bei Beobachtung gegen die Lichtrichtung im Uhrzeigersinn oder gegen den Uhrzeigersinn gerichtet sein, dies hängt von

Abb. 2: Vereinigung einer rechtszirkularen Schwingung Z'_R mit einer um den Winkel γ verzögerten linkszirkularen Schwingung Z'_L zu einer um den Winkel $\alpha = \gamma/2$ gedrehten linearen Schwingung P'

der Substanz ab. Man spricht daher von *rechtsdrehenden* (im Uhrzeigersinn) und *linksdrehenden* (gegen den Uhrzeigersinn) Stoffen, die Drehungswinkel der ersteren werden mit Pluszeichen, die der letzteren mit Minuszeichen versehen. Rechtsdrehende Stoffe nennt man auch *dextrogyr*, abgekürzt d, linksdrehende Stoffe *lävogyr*, abgekürzt l. Man unterscheidet daher z. B. d-Quarz von l-Quarz.

Das optische Drehungsvermögen oder, wie man auch sagt, die natürliche optische Aktivität ist mit dem Aufbau des Ladungssystems des Moleküls der optisch aktiven Substanz eng verknüpft. Besitzt eine Substanz optisches Drehungsvermögen, so ist dies ein wichtiger Hinweis auf eine besondere Art jenes Aufbaus. In jedem Fall deutet optische Aktivität auf das Fehlen von Symmetriezentrum und Symmetrieebenen im Ladungsaufbau, dabei können aber Symmetrieachsen vorhanden sein. Man nennt solche Moleküle dissymmetrisch. Das ist z.B. bei Molekülen

Abb. 3: Optisch aktive Tetraederbindung eines asymmetrischen Kohlenstoffatoms C

mit "asymmetrischem" Kohlenstoffatom C der Fall, dessen vier Valenzen durch vier voneinander verschiedene Atome oder Radikale $(R_1 \ldots R_4)$ in den vier Ecken eines Tetraeders abgesättigt sind (Abb. 3). In analoger

Optische Drehung und optische Aktivität

Weise gilt dies von Verbindungen mit vierwertigem S, Se, Si, Sn oder fünfwertigem P.

Ferner tritt optische Aktivität bei mangelnder Komplanarität in *Ring-verbindungen* auf, z.B. beim Cyclohexan-Derivat 4-Methylcyclohexyliden-essigsäure nach Abbildung 4, bei dem die Gruppe

in der gleichen Ebene wie der Cyclohexanring liegt, während CH_3 und H in einer zum Ring senkrechten Ebene liegen, so daß das Molekül keine Symmetrieebene hat.

Abb. 4: Beispiel eines optisch aktiven Moleküls mit Ringbindung, räumlich dargestellt

Schließlich sind gewisse Makro-Moleküle, die man als *Helix* bezeichnet, optisch aktiv. Eine Helix ist eine Molekülstruktur, die einen schraubenförmig gewundenen Faden bildet, so z.B. bei den Polypeptiden, Proteinen usw.

Wenn ein Molekül eine gerade Anzahl asymmetrischer Kohlenstoffatome enthält, jedoch in antisymmetrischer Anordnung, so ist die Asymmetrie kompensiert, d.h. das Molekül ist nicht optisch aktiv (z.B. die optisch nicht aktive Meso-Weinsäure gegenüber der optisch aktiven Weinsäure, Abb. 5).

Abb. 5: Von links nach rechts: (--)-Weinsäure; (+)-Weinsäure; optisch inaktive Meso-Weinsäure

Dissymmetrische Moleküle sind in zwei *isomeren* Formen möglich, die sich wie Bild und Spiegelbild verhalten. Man spricht von *Antipoden*. Antipoden haben dem Betrage nach die gleiche optische Drehung, aber von entgegengesetztem Vorzeichen.

Eine Substanz mit Molekülen nur der einen Antipodenform hat die optische Drehung dieser Antipode. Eine Substanz, die im Verhältnis 1:1 aus Molekülen beider Antipoden besteht, hat die Drehung Null. Man spricht dann von einem *Racemat*. Das Fehlen von optischer Drehung ist also kein Beweis dafür, daß die Moleküle nicht dissymmetrisch sind.

Die optische Aktivität hängt somit einerseits von der Polarisierbarkeit der Moleküle ab, andererseits von der geometrischen Konfiguration der die Aktivität erzeugenden schwingenden Gebilde, so daß man umgekehrt die optische Drehung dazu benutzen kann, Aufschluß über die Lage der Resonatoren im Molekül zu gewinnen. Die Theorie der optischen Drehung ist insbesondere von W. KUHN in mehreren Arbeiten [71], [72] behandelt worden. Sie sind in [15] zusammengefaßt. Auch ist sie zu finden bei BORN [2] und WEISSBERGER [23].

1.2. Normale und anomale Rotationsdispersion

Die optische Drehung eines Stoffes zeigt spektrale Dispersion, d.h. die Drehung ist wellenlängenabhängig. Man spricht von optischer *Rotationsdispersion* und kürzt sie mit den drei Buchstaben ORD ab.

Bei normaler ORD wächst die Drehung in zunehmendem Maße nach kürzeren Wellenlängen hin. Tritt in begrenzten Spektralbereichen entgegengesetzte ORD auf, so spricht man von anomaler ORD. Diese tritt als Folge von zirkularem Dichroismus auf. Als Dichroismus bezeichnet man eine Erscheinungsform optischer Anisotropie, die sich als anisotrope Absorption äußert. Bei linearem Dichroismus werden zwei senkrecht zueinander linear polarisierte Schwingungen verschieden stark absorbiert, bei zirkularem Dichroismus werden rechts- und linkszirkular polarisiertes Licht unterschiedlich absorbiert. Zirkular dichroitisch ist ein optisch aktiver Stoff im Bereich bestimmter Absorptionsbanden im Spektrum. Die sich als optische Aktivität äußernde Asymmetrie in der Molekülstruktur induziert in einer benachbarten chromophoren Gruppe (Atomgruppe des Moleküls, von der die Absorption abhängt) eine asymmetrische Störung, wodurch gewisse Absorptionsbanden stark optisch aktiv werden.

Als Folge davon wird die optische Drehung von linear polarisiertem Licht im Wirkungsbereich solcher Absorptionsbanden anomal verändert, zugleich wird das linear polarisierte Licht schwach elliptisch polarisiert (Cotton-Effekt [41], [42] Abb. 6).

Normale und anomale Rotationsdispersion

Der Befund von Abb. 6 stellt sich analytisch wie folgt dar: In die Schwingungsrichtung P des linear polarisierten Lichts falle die y-Achse eines ebenen rechtwinkligen Koordinatensystems x, y. Dann lauten die Gleichungen der linkszirkularen Schwingung Z'_L :

$$x_L = -r_L \cdot \sin \omega t, \quad y_L = +r_L \cdot \cos \omega t, \tag{1}$$

der rechts-zirkularen Schwingung Z'_R :

$$x_R = + r_R \cdot \sin(\omega t - \gamma),$$

$$y_R = + r_R \cdot \cos(\omega t - \gamma).$$
(2)

 Z'_L und Z'_R setzen sich zusammen zu der Schwingung E mit

$$x_E = x_R + x_L$$
, $y_E = y_R + y_L$.

E ist eine elliptische Schwingung mit der Halbachse $r_L + r_R$ im Winkel $\alpha = \gamma/2$ und der Halbachse $r_L - r_R$ im Winkel $90^\circ + \alpha$ $= 90^\circ + \gamma/2$.

Abb. 6: Zusammensetzung zweier frequenzgleicher gegensinnig zirkularer Schwingungen Z'_L und Z'_R mit Phasendifferenz γ und zirkularem Dichroismus zu einer um den Winkel $\alpha = \gamma/2$ gedrehten elliptischen Schwingung E

Hiermit sind der Drehwinkel α und durch das Halbachsenverhältnis die *Elliptizität* bestimmt; letztere ist durch einen Winkel ϑ ausdrückbar gemäß der Definition

$$\tan\vartheta = \frac{r_L - r_R}{r_L + r_R}.$$
(3)

 r_L ist in Abbildung 6 größer als r_R infolge des zirkularen Dichroismus. Das Verhältnis r_L/r_R ist um so größer, je länger die durchstrahlte Schichtlänge der optisch aktiven Substanz bei zirkularem Dichroismus ist, d.h. je stärker die Absorption der rechts-zirkularen Schwingung relativ zur links-zirkularen Schwingung wird.

Auch γ wird mit zunehmender Schichtlänge größer. Also wachsen sowohl α als auch tan ϑ proportional mit der Schichtlänge.

Die optisch aktiven Absorptionsbanden liegen für die meisten Substanzen im Ultraviolett (Beispiel: die allermeisten gesättigten Ketone zeigen Cotton-Effekt im spektralen Bereich zwischen 270 und 320 nm). Nicht alle Absorptionsbanden sind optisch aktiv, nicht alle zeigen daher Cotton-Effekt. Aber Cotton-Effekt ist immer mit Absorption und Elliptizität verbunden.

1.3. Nicht-natürliche optische Drehung

1.3.1. Linearer Dichroismus

Gewisse Kristalle haben linearen Dichroismus. Die in den Hauptschwingungsrichtungen x, y des Kristalls schwingenden Wellenkomponenten werden verschieden stark absorbiert (Prinzip der Polarisationsfilter). Tritt linear polarisiertes Licht P in einen solchen Kristall ein, so verläßt es ihn mit gedrehter Schwingungsrichtung P' (Abb. 7).

Abb. 7: Optische Drehung α linear polarisierten Lichts $P \rightarrow P'$ bei linearem Dichroismus

1.3.2. Magneto-optische Drehung (Faraday-Effekt)

Alle Substanzen bekommen optisches Drehungsvermögen in einem Magnetfeld, dessen Kraftfluß in der Richtung des Lichtdurchgangs oder in Gegenrichtung eine nicht verschwindende Komponente hat, insbesondere also, wenn die magnetischen Kraftlinien parallel oder antiparallel zum Lichtdurchgang sind. Man nennt diese Wirkung des Magnetfeldes "*Faraday-Effekt*" [48], [49]. Die durch das Magnetfeld induzierte optische Drehung heißt daher auch magneto-optische Drehung. Der Betrag ihres Drehwinkels α ist zur Stärke H des Magnetfeldes in Licht-richtung und zur Länge l des Lichtweges proportional:

$$\alpha = \omega \cdot l \cdot H. \tag{4}$$

Der Richtungssinn der Drehung kehrt sich um, wenn das Magnetfeld umgepolt wird.

Die Proportionalitätskonstante ω heißt Verdetsche Konstante. In Tabelle 1 sind Verdetsche Konstanten ω in Winkelminuten für 1 m Lichtweg und für die magnetische Feldstärke 1 A \cdot m⁻¹ zusammengestellt.

Das horizontale erdmagnetische Nord-Süd-Feld hat in Mitteleuropa die Feldstärke 15,4 A \cdot m⁻¹. Für Wasser ergibt sich somit (bei 20° C und $\lambda = 589,3$ nm) nach 0,4 m Lichtweg die Drehung $\alpha = +0,0164 \times 0,4 \times$ 15,4 Winkelminuten, d.h. $\alpha = +0,10' = 0,0017^{\circ}$. Bei präzisionspolarimetrischen Messungen muß man also gegebenenfalls das Polarimeter