Zur Benachrichtigung

Die Atomgewichtskommission der Internationalen Union für Chemie veröffentlicht alljährlich die dem augenblicklichen Stande der Forschung entsprechenden Atomgewichtszahlen. Die vorliegende Auflage ist mit den für 1941 gültigen Werten berechnet worden.

A. Thiel.

Man beachte die Vorbemerkungen!

Arbeitsmethoden der modernen Naturwissenschaften

F. W. KÜSTER

Logarithmische Rechentafeln

Laboratoriums-Taschenbuch für Chemiker, Pharmazeuten, Mediziner und Physiker

Neu bearbeitet von

DR. A. THIEL

o. ö. Professor der physikalischen Chemie Direktor des Physikalisch-chemischen Instituts der Universität Marburg

51. bis 55., verbesserte und vermehrte Auflage

Berlin 1941

WALTER DE GRUYTER & CO.

vormals G. J. Göschen'sche Verlagshandlung / J. Guttentag, Verlagsbuchhandlung / Georg Reimer / Karl J. Trübner / Veit & Comp.

Motto: "Der Mangel an mathematischer Bischung gibt sich durch nichts so auffallend zu erkennen, wie durch maßlose Schärfe im Zahlenrechnen."
C. F. Gauss.

Alle Rechte, insbesondere das der Übersetzung, vorbehalten
Copyright 1941 by Walter de Gruyter & Co.
vormals G. J. Göschen'sche Verlagshandlung — J. Guttentag, Verlagstuchhandlung — Georg Reimer — Karl J. Trübner — Veit & Comp.
Berlin W 35, Woyrschstraße 13

Archiv-Nr. 523441 Printed in Germany

Druck von Metzger & Wittig in Leipzig

VORWORT

zur

einundfünfzigsten bis fünfundfünfzigsten Auflage

Die 46. bis 50. Auflage ist in überraschend kurzer Zeit, in wenig mehr als einem Jahre, verbraucht worden. Hierin darf man wohl mit Recht ein Zeichen für die ungeahnte Ausdehnung des Arbeitsbereiches der Chemie unter den gegenwärtigen Umständen, insbesondere für die Vermehrung der Anzahl chemischer Laboratorien, erblicken. Der hierdurch neu entstehende Bedarf hat die Wirkung der Entvölkerung unserer Hochschullaboratorien durch den Wehrdienst der Studierenden weit überkompensiert.

Nachdem die letzte Auflage eine ansehnliche Zahl von Neuerungen und organisatorischen Veränderungen gebracht hatte, wäre für diesmal ein gewisser Stillstand verständlich gewesen. Wider Erwarten aber ist eine große Zahl wohlbegründeter Wünsche und Anregungen eingegangen, so daß ich deren Berücksichtigung nicht auf einen späteren Termin verschieben konnte, weil die Rechentafeln sonst hinter dem tatsächlichen Bedürfnis hergehinkt wären. So findet denn der Leser auch diesmal wieder zahlreiche Veränderungen, die — leider — auch eine merkliche Vermehrung des Umfanges mit sich gebracht haben.

Mit dankbarem Interesse habe ich auch von den Anregungen Kenntnis genommen, die in manchen Besprechungen der vorigen Auflage enthalten waren. Ich habe auch ihnen nach Möglichkeit Rechnung getragen. Warum ich manchen Wünschen nicht Folge geleistet habe, sei hier kurz dargelegt. Denn es wäre sehr bedauerlich, wenn in Zukunft solche Anregungen auch bei Gelegenheit von Besprechungen unterblieben, weil etwa der betreffende Referent den Eindruck

erhalten hat, daß der Autor wohlgemeinte und wohlbegründete Vorschläge aus Dickköpfigkeit oder Bequemlichkeit "überhört" hat.

So ist schon verschiedentlich der Wunsch geäußert worden, die Rechentafeln möchten auch den Rechenschieber eingehend berücksichtigen. Das ist aber schon seit längerer Zeit in den "Vorbemerkungen" geschehen. Eine Anleitung freilich zum Gebrauche dieses nützlichen Hilfsmittels zu bringen, hielt und halte ich nicht für eine Aufgabe der Rechentafeln: ebenso wie ich die Kenntnis des Gebrauches einer Logarithmentafel voraussetzen muß, verlasse ich mich auch auf die Vertrautheit des Benutzers mit der Handhabung des Rechenschiebers. Das ist eine grundsätzliche Einstellung, von der ich nicht abgehen könnte, ohne den Charakter der Rechentafeln völlig zu verändern.

Auch die Umwandlung mancher Tafeln in Schaubilder, ähnlich dem Beispiele des Potentialdiagramms (S. 147), ist angeregt worden. Sofern durch eine solche Umstellung die Genauigkeit der unmittelbar zu entnehmenden Daten nicht in unzulässiger Weise verringert wird, ist eine solche Änderung natürlich möglich und in mancher Hinsicht auch praktisch. Als Gegengrund muß ich anführen, daß erfahrungsgemäß Schaubilder im Gebrauche (durch die häufige Berührung mit dem suchenden Finger) allzu schnell schadhaft und damit unleserlich werden, was bei Tabellen nicht in diesem Maße vorkommt. Aus diesem Grunde (neben anderen) habe ich in die vorige Auflage die Puffergemischtabellen (nach Sörensen) aufgenommen. Jedenfalls bedarf die in Rede stehende Umstellung einer sorgfältigeren Vorbereitung und gründlicheren Durchdenkung, als sie im Augenblicke (aus Zeitmangel) möglich war. Für die Zukunft wird dieser Gegenstand jedenfalls im Auge behalten werden.

Weiterhin ist der Wunsch geäußert worden, die Erläuterungen als selbständigen Teil ganz zu streichen und ihren Inhalt mit dem der eigentlichen Tafeln zu vereinigen. Seine Erfüllung würde ohne Zweifel die Übersichtlichkeit des Ganzen schädigen, auch durch das

dann unvermeidliche Auftreten einer größeren Zahl nur teilweise gefüllter Seiten den Umfang des Buches unnütz anschwellen lassen. So glaube ich denn von einer solchen Maßnahme zur Zeit jedenfalls absehen zu müssen. Ob die von der gleichen Seite gewünschte Zerlegung des Buches in herausnehmbare Blätter (nach dem Ringbuchsystem) die Zustimmung der Mehrzahl der Fachgenossen finden würde, scheint mir mehr als fraglich. Die Lebensdauer des Buches würde vermutlich durch eine solche Zerlegung stark verringert werden (von anderen Begleiterscheinungen ganz zu schweigen). Sollte also diese Maßnahme nicht allgemeiner verlangt werden (zu Äußerungen in dieser Richtung möge die vorliegende Erörterung Anregung geben!), so würde ich mich nicht zu einer so einschneidenden Änderung entschließen können.

Meine Bemühungen um eine Einschränkung des Umfanges oder doch eine Verhütung seines weiteren Anwachsens, die zur Streichung der in der vorletzten Auflage noch enthalten gewesenen Baumé-Grad-Tabelle geführt haben, sind gerade in diesem Falle nicht auf die Gegenliebe der Fachgenossen gestoßen. Es ist mir vorgestellt worden, daß natürlich jetzt nicht mehr nach jenem veralteten System gemessen wird, daß man aber bei der Lektüre älterer Arbeiten häufig den Wunsch hat, solche Daten sofort und bequem in moderne Angaben umrechnen zu können. Ja, es wurde bei dieser Gelegenheit sogar der Wunsch nach Aufnahme weiterer veralteter Maßeinheiten geäußert, auf die man häufig in älteren Abhandlungen stößt. Die Rechentafeln dürften auch auf diesem Gebiete ihre Benutzer, die nun schon etwas verwöhnt seien, nicht im Stiche lassen. Solche Äußerungen gerade aus dem Kreise der technischen Chemiker. die eigentlich immer gehetzt sind und jede dargebotene Zeitersparnis und Bequemlichkeit doppelt dankbar begrüßen, haben mich seinerzeit zur Aufnahme einer Tabelle zur Umrechnung von Fahrenheit-Graden in Grade Celsius veranlaßt. Grundsätzlich pflege ich bei dem Zusammentreffen positiver und negativer Wünsche in demselben

Punkte (das ziemlich oft vorkommt) mich im Sinne des positiven Bedürfnisses zu entscheiden. So habe ich mich auch diesmal (auf besonderen Wunsch) zur Aufnahme eines "Altertumsmuseums", einer Zusammenstellung veralteter Maßeinheiten, denen man aber in älteren Arbeiten noch begegnet, entschlossen.

Diese Maßnahme und die Berücksichtigung einer Reihe anderer Wünsche, die ich als berechtigt anerkennen mußte, haben (wie oben bereits erwähnt) wiederum zu einer Vermehrung des Umfanges geführt. Ich hatte die Absicht, die unwillkommenen Folgen dieser an sich bedauerlichen, aber anscheinend im Zuge einer unvermeidbaren Entwickelung liegenden Erscheinung für den praktischen Gebrauch des Buches dadurch zu mildern, daß ich die Rechentafeln in zwei getrennte Teile zerlegte, von denen der (umfangreichere) I. Teil die eigentlichen Tafeln, der II. Teil die Vorbemerkungen und die Erläuterungen enthalten sollte. Diese Absicht stützte sich auf die Erwägung, daß man im Laboratorium im allgemeinen nur den Tafelteil neben sich auf dem Tisch liegen hat oder in die Tasche steckt, während die Erläuterungen meist wohl abseits von der eigentlichen Arbeitsstätte benutzt werden und daher nicht unbedingt mit dem Tafelteil in einem Bande vereinigt sein müssen. Die besonderen Verhältnisse der Kriegswirtschaft haben aber die Ausführung dieser Absicht vorläufig verhindert, und so müssen die Benutzer der neuen Auflage vorerst noch die aus dem nochmaligen Anschwellen des Umfanges resultierenden Unbequemlichkeiten in Kauf nehmen. Bis zum Erscheinen einer neuen Auflage läßt sich so auch die Frage klären, ob eine Zweiteilung in dem genannten Sinne von den Benutzern des Buches begrüßt werden würde; ich wäre für Äußerungen zu dieser Frage dankbar.

Aus Gründen der Kriegswirtschaft hat auch die Indexleiste verändert werden müssen. Sie ist jetzt nicht mehr an der Oberkante, sondern an der rechten Seite des Buches angebracht. Auch diese Maßnahme ist als hoffentlich vorübergehende Erscheinung zu betrachten.

Die sonstigen Änderungen der vorliegenden neuen Auflage sind im wesentlichen folgende:

Die Tafel 1 hat eine neue Spalte erhalten, in der die "Häufigkeit" der Elemente in der analytisch erfaßten Erdrinde (nebst Wasser und Luft) angegeben ist. Von den für 1941 (gegenüber 1939) in der Atomgewichtstabelle enthaltenen Neuerungen wirkt sich nur die Änderung von H = 1,0081 in H = 1,0080 in größerem Umfange (vor allem in der Tafel 2) aus. Sie ist selbstverständlich ohne jede praktische Bedeutung.

Einige Ergänzungen haben die Tafeln 3, 4 und 5 erfahren.

Hinter der Tafel 6 (Indirekte Analyse) ist als neue Tafel (6a) die Anleitung zu einer neuartigen Analysenmethode aufgenommen worden, die eine interessante und aussichtsreiche Verwertung kryoskopischer Messungen darstellt.

Auch hinter Tafel 10 folgt eine neue Tafel mit der Nummer 11, die für das Gebiet des Gasschutzes wichtige Daten bringt. Sie ist aus dem Bedürfnis der Praxis hervorgegangen und wird auch im Unterrichte, der dieses Gebiet ja neuerdings ebenfalls berücksichtigt, nützliche Dienste leisten können, obwohl sie in erster Linie technischen Interessen dient. Die folgenden Tafeln (bis 16) haben demzufolge eine um eins höhere Nummer erhalten.

Auf die nunmehrige Tafel 17 folgt die kurze neue Tafel 18, deren Inhalt aus den bisherigen "Zusätzen", wo er etwas unglücklich untergebracht war, an diese passendere Stelle gerückt worden ist.

Die Nummern der nächstfolgenden Tafeln erhöhen sich also jedesmal um zwei (bis 23, jetzt 25). Die Zahlenwerte der Tafel 22 B (Potentiale) bedürfen einer gründlichen Revision. Diese soll in Kürze in größerem Rahmen erfolgen. Da ihre Ergebnisse noch nicht vorliegen, mußte es vorläufig bei den bisherigen Werten sein Bewenden haben.

Tafel 25 (früher 23) ist stark umgearbeitet, ergänzt und moderni-

IO Vorwort

siert worden, der neueren Entwickelung der Organisationsarbeit auf diesem Gebiete entsprechend.

Es folgen nunmehr die neuen Tafeln 26, 27 und 28.

Tafel 26 bringt in erweiterter und durch Unterteilung übersichtlicher gemachter Form den Inhalt der früheren Tafel 27 (in Erfüllung hierauf bezüglicher Wünsche) nebst einer Umrechnungstabelle für Energieeinheiten.

Tafel 27 enthält das "Altertumsmuseum". Wenn auch mit Sicherheit erwartet werden darf, daß der Zeitpunkt nicht mehr fern ist, zu dem die bisherigen Reservate der angelsächsischen Länder endgültig fallen werden und die Benutzung nichtmetrischer Größen damit gänzlich außer Gebrauch kommen wird, so ist doch der Inhalt der Tafel 27 bei der Lektüre älterer Literatur gewiß oft willkommen. Die neuere wissenschaftliche Literatur benutzt ja auch in England und Amerika längst ausschließlich Einheiten des metrischen Systems.

Tafel 28 bringt im Einvernehmen mit der Gmelin-Redaktion (bzw. der Deutschen Chemischen Gesellschaft) die wichtigsten Beispiele für die neuere Nomenklatur anorganischer Verbindungen. Wenn diese Nomenklatur sich allgemein eingebürgert haben wird, kann die Tafel 28 natürlich wieder verschwinden. Gegenwärtig wird sie vielen, die sich mit den genannten Neuerungen vertraut machen wollen, eine willkommene Hilfe sein. Die vorliegende Auflage verwendet selbst bereits durchweg diese neuere Nomenklatur.

Von den folgenden Tafeln ist die jetzige Tafel 31 (früher 26) um eine neue Rechenhilfe in Gestalt der Behandlung von Kettensätzen bereichert worden.

Als letzte Tafel (32) ist auf besonderen Wunsch eine Anleitung zur Auswertung von Röntgenaufnahmen für die Strukturanalyse aufgenommen worden, also ein ganz modernes Hilfsmittel. Bei der Verbreitung, die solche Untersuchungen in der Neuzeit erreicht haben, ist vermutlich ein stetig wachsender Kreis von Benutzern an dieser Tafel interessiert. Vorwort II

Weiterhin stellt sich auch die vierstellige Logarithmentafel in ganz neuer Gestalt vor. Ich habe mich davon überzeugen müssen, daß die zur Erzielung eines klareren Druckes (auf glattem Karton) vorgenommene Zerlegung der bisher zweiblätterigen Tafel in zwei einzelne Blätter wieder den Übelstand nach sich gezogen hat, daß man ein solches Blatt häufig umwenden muß, wenn man Logarithmen oder Numeri aufsucht. Ich bin daher zu der ursprünglichen Form des geknickten Doppelblattes zurückgekehrt und habe mich bemüht, gleichwohl einen klareren Druck zu bringen. Weggefallen ist die Tafel der Antilogarithmen, die ich (wohl mit den meisten Fachgenossen) für überflüssig halte. Denn in der Schule lernt man auch das Aufschlagen der Numeri stets an einer gewöhnlichen Mantissentafel, und es ist kein Grund einzusehen, weshalb man das später in der Praxis nicht ebenso machen sollte. Ich selbst habe jedenfalls in mehr als einem halben Jahrhundert Rechenpraxis kein einziges Mal die Tafel der Antilogarithmen benutzt.

Der auf diese Weise ersparte Raum auf der Rückseite der vierstelligen Mantissentafel ist zur Aufnahme einer abgekürzten fünfstelligen Mantissentafel (mit ausgerechneten Proportionalteilen) für die Zahlen von 1000 bis 2000 benutzt worden, also für ein Zahlengebiet, in dem man oft das Rechnen mit vierstelligen Logarithmen als etwas unbequem empfindet. Diese Tafel ist rot umrandet.

Ich hoffe, daß die lose Logarithmentafel sich in ihrer neuen Gestalt bewährt und die Zufriedenheit der Benutzer erwirbt. Sollte der eine oder andere von ihnen die bisherige Form der vierstelligen Logarithmentafel mit Antilogarithmen (und zwar entweder als Doppelblatt oder in Gestalt zweier getrennter Blätter) vorziehen, so kann er diese vom Verlag (oder durch jedes Sortiment) zum Preise von —.50 RM. gesondert beziehen.

Endlich ist dem Buche nun auch ein Sachregister beigegeben worden, das vermutlich schon häufiger vermißt worden ist, bei dem jetzigen Umfange des Inhaltes aber kaum mehr entbehrlich erscheint. I2 Vorwort

Wohlbegründete Wünsche bezüglich der Einbandfarbe waren leider zur Zeit unerfüllbar, sollen aber nach Kriegsende berücksichtigt werden.

Zahlreichen Fachgenossen habe ich wiederum für die Nachweisung von Fehlern, für Anregungen und Verbesserungsvorschläge, ja sogar für eigene Beiträge zum Inhalte der neuen Auflage zu danken. Es sind das die Herren Oberregierungsrat Professor Dr. F. Adickes-Berlin, Dozent Dr. E. Asmus-Marburg, Dr. G. Bruhns-Charlottenburg, Dr. R. Cecconi-Sondrio, Dr. G. Dahmer-Bad Soden i. T., Professor Dr. O. Fuchs-Frankfurt, Professor Dr. O. Hönigschmid-München, Dr. G. Ibing-Bottrop, Dr. K. Jülicher-Berlin, Dr. B. Klarmann-Frankfurt-Griesheim, Professor Dr. H. Meerwein-Marburg, Dr. E. Milde-Beuthen O./S., Professor Dr. Fr. Müller-Dresden, Dr. E. Pietsch-Berlin, Ing.-Chem. E. O. Primbsch-Rendsburg, Dipl.-Chem. Schaarschmidt-Beuel, Dr. E. Schneider-Berlin, Chemiker W. Seyfarth-Hörselgau, Chefchemiker Dr. G. Stampe-Lübeck, Dr. R. Thilenius-Frankfurt, cand. chem. G. Vornweg-Lübeck, Professor Dr. J. Wallot-Berlin, Dozent Dr. Fr. Weibke (†)-Stuttgart, Dr. F. Wittka-Mailand und Dozent Dr. P. Wulff-Frankfurt.

Indem ich nun die neue Auflage in die Welt hinausgehen lasse, wende ich mich wiederum an alle Freunde des Buches mit der Bitte um weitere Unterstützung in meinem Bemühen, jede neue Auflage immer praktischer und nützlicher als die vorangegangene zu gestalten und so für sie nicht nur neue Freunde hinzuzugewinnen, sondern auch die alten zu veranlassen, ihren älteren Auflagen im Bücherschranke "das Gnadenbrot zu gönnen" und im täglichen Gebrauche sich jeweils des jüngsten Sprößlings der nun schon recht umfangreichen Buchfamilie zu bedienen.

Marburg (Lahn), Weißenburgstraße 36, im Mai 1941.

A. Thiel

INHALT

			Seite
vorber	пегк	ungen	16
		Tafeln	
ndex	_	Annual In Element of A. Francis	
AG MG		Atomgewichte der Elemente nebst Logarithmen	22
MG	2.	Gewichte und Logarithmen häufig gebrauchter Atome, Atom- gruppen, Molekeln und Äquivalente (sowie niederer Multipla)	24
	2	Höhere Multipla einiger Atom- und Molekelgewichte nebst den	24
	3.	dazu gehörenden Logarithmen	44
Titr	4.		46
	4.	B. Korrektionen für den Luftauftrieb bei genauen Wägungen	54
		C. Maßanalytische Äquivalentgewichte nebst Logarithmen.	٠.
		"Luftgewichte"	55
$\mathbf{A}\mathbf{n}$	5.	Analytische und stöchiometrische "Faktoren" nebst Loga-	
		rithmen	56
		Berechnung "indirekter" Analysen	90
	6a.	Kryoskopische Analyse nach Ibing-Ebert	92
N_2	7.	Volumetrische Bestimmung des Stickstoffs und anderer Gase;	
		Gas-Reduktions-Tabelle	94 118
		Barometer-Korrektionen (in Torr)	110
	0.	Hilfstafel zu Tafel 7	121
		Volumetrische Bestimmung gasentwickelnder Stoffe	122
	II.	Umrechnung von Vol0/00 in mg/cbm (und umgekehrt) bei Gas-	
		gemischen usw	123
Mol	12.	Molekulargewichtsbestimmung	125
Pyk	13.		•
•		in Luft	126
	14.	Dichte des Wassers (ϱ_w) bei verschiedenen Temperaturen (ι^0)	
		nebst Logarithmen	127
	15.	Volumbestimmung durch Auswägen I	128
		Volumbestimmung durch Auswägen II	131
3 7	16.	Maßanalytische Temperaturkorrektionen	133
Norm	17.	Dichte und Gehalt von Lösungen	134
	10.	remperatur and Dichte des Queckshoers	140
	19.	Logarithmen der Werte von $\frac{n^2-1}{n^2+2}$	141
	20.	Löslichkeit wichtiger Stoffe bei 200	142
	21.	Wheatstonesche Brücke. Logarithmen der Werte von	
		a:(1000 - a) für a von I bis 999	144

14	Inhalt
Index	

Index			Seite
\mathbf{E} l	22.	Elektrochemie	
		A. Elektrochemische Äquivalente. Normalclemente	146
		B. Potentialübersicht	147
		C. Bathmometrie	149
		D. Puffergemische	156
		E. Aktivität und Aktivitätskoeffizient	166
\mathbf{Ind}	23.	Indikatoren, optische Bathmometrie, Kolorimetrie	
		A. Zusammenstellung wichtiger Indikatoren	168
		B. Optische Bathmometrie	170
		C. a) Redox-Bathmometrie	174
		b) Redox-Indikatoren	178
		D. Kolorimetrie	179
\mathbf{Th}	24.		
		A. Thermometrische Fixpunkte	181
		B. Fadenkorrektionen für Quecksilberthermometer	182
		C. Umrechnung von Graden Fahrenheit in Grade Celsius .	18
		D. Berechnung chemischer Gleichgewichte aus thermochemi-	
		schen Daten	187
	25.	Formel- und Einheitszeichen	190
EKU	26.	Häufig gebrauchte Einheiten, Konstanten und Umrechnungs-	
		größen	196
	27.		200
	28.	Die neuere Nomenklatur anorganischer Verbindungen	202
	29.	Fehlerrechnung	206
	30.	Ausgleichrechnung	208
Rech		Rechenhilfen	210
	32.	Auswertung von Röntgenaufnahmen	21
		Zusätze	228
Erl		Erläuterungen	
Lii			
	Taf		230
	Taf		230
	Taf		233
	Taf		234
	Taf		236
	Taf		24
	Taf		24
	Taf	/ (/)	24
	Taf		24
	Taf	. ,	248
		el 10	25
	Taf	el II	25
		el 12	254
	Taf	el 13	25

												Iı	nha	alt															15
Index																													Seite
ADUC A	Tafel	1.1	١.																										259
	Tafel																												259
	Tafel																												262
	Tafel																												263
	Tafel	18																											264
	Tafel	19																											264
	Tafel																												264
	Tafel																												265
	Tafel	22																											265
	Tafel	23																											274
	Tafel	24							٠																				275
	Tafel																												278
	Tafel																												278
	Tafel																												279
	Tafel																												279
	Tafel																												280
	Tafel	•																											281
	Tafel	•																											282
	Tafel	32	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	282
Man		iffi ffri	ge	n 2	Za	hle	n	v	on	10	000	o i	bis	9	99	9	mi	t :	Pr	op	or	tio	na	lte	eile	en,	, f	ür	284
	Nach	trä	ge																										310
	Sachr	egi	ste	er																									311
	Vierz und 100	l f	für	ıfz	iff	rię	ŗе	M	ar	ıti	sse	en	Z	u	de	n	v	ier	zi	ffr	ige	n	Z	ah	lei	n	v	n	asch e

VORBEMERKUNGEN

- 1. Messungsergebnisse, also auch Analysenresultate, sind mit so vielen Stellen anzugeben, als der Genauigkeit der Messung entspricht, und zwar so, daß die vorletzte Stelle als sicher, die letzte als unsicher gilt.
- 2. Als Regel für die Abrundung gilt, daß die vorhergehende Ziffer um 1 erhöht wird, wenn der wegfallende Rest mehr als eine halbe Einheit der letzten stehenbleibenden Stelle ausmacht. Beträgt der Rest genau eine halbe Einheit, so wird die Erhöhung der vorhergehenden Stelle nur vorgenommen, falls sie eine ungerade Zahl enthält (um etwaige spätere Halbierung zu vereinfachen). Bei der Abrundung auf 2 Dezimalen geht demnach über:

1,2348 in 1,23; 1,2352 in 1,24; 1,2350 in 1,24; 1,2250 in 1,22.

Man kann eine nachfolgende glatte 5 auch (etwas tiefer und kleiner geschrieben) mitführen (z. B. 1,235). "Aufgewertete" Ziffern kann man durch Unterstreichung (1,24) "abgewertete" durch Überstreichung (1,22) kennzeichnen.

- 3. Mißbräuchliche Aufführung von Ziffern ohne reale Bedeutung und daher auch ohne Berechtigung wird am besten durch Ausführung der hierzu geeigneten Berechnungen auf logarithmischem Wege verhütet (siehe die Erläuterungen zu den Tafeln 1, 2, 3, 5). Hierbei leisten im allgemeinen Logarithmentafel und (logarithmischer) Rechenschieber gleich gute Dienste. In manchen Fällen, z. B. bei häufiger Wiederholung der gleichen Operation, ist der Rechenschieber noch bequemer. Es sei daher hier auch auf dieses wertvolle Hilfsmittel hingewiesen. 1)
- 4. Darstellung von Analysenergebnissen. Meist ist durch die Analyse zu ermitteln, wieviel Gewichtsteile des gesuchten Stoffes in 100 Gewichtsteilen Substanz enthalten sind.

¹⁾ Zur Frage nach den wahren Grenzen der Analysengenauigkeit sowie nach der Möglichkeit, Rechnungen in vielen Fällen zu vereinfachen, vgl. die beachtenswerten Ausführungen von R. Saar, Ztschr. f. Unt. d. Nahr. u. Genußm. 47, 169 (1924) u. Chem.-Ztg. 48, 285 (1924).

Das Ergebnis der Analyse wird dann also in Gewichtsprozenten (richtiger: Massenprozenten, siehe den 5. Abschnitt) der analysierten Substanz ausgedrückt. In anderen Fällen wird die in einem bestimmten Volum einer Flüssigkeit (Lösung) enthaltene Menge eines Stoffes ermittelt und das Ergebnis dann vielfach in Gramm (oder Milligramm) auf ein Liter der analysierten Flüssigkeit angegeben¹). Immer häufiger aber zeigt sich das Bedürfnis, Angaben dieser Art in einer Form zu machen, welche vorhandene Äquivalenzbeziehungen sogleich zu erkennen und zu verwerten gestattet. Zu diesem Zwecke stellt man das Analysenergebnis in Werteinheiten, z. B. in Molen (g-Molekulargewichten) oder in Valen (g-Äquivalentgewichten) auf 100 g oder auf 1 kg einer festen oder auf ein Liter einer flüssigen Substanz dar.

5. Darstellung des Gehaltes von Lösungen²). Die Menge eines Bestandteils in einer bestimmten Menge einer Lösung wird mit folgenden drei gleichbedeutenden Ausdrücken bezeichnet:

Gehalt einer Lösung (oder Mischung oder Verbindung) an einem Bestandteil,

Konzentration einer Lösung an einem Bestandteil, Konzentration eines Bestandteils in einer Lösung.

Für besondere Zwecke (namentlich Gefrierpunktsmessungen) wird die Konzentration einer Lösung auch als Menge des Bestandteils auf eine bestimmte Menge des Lösungsmittels ausgedrückt.

Sowohl die Menge des Bestandteils wie die Menge der Lösung (oder des Lösungsmittels) kann in Masseneinheiten oder in Raumeinheiten angegeben werden.

Werden beide in Masseneinheiten oder beide in Raumeinheiten angegeben, so hat die Konzentration die Dimension einer reinen Zahl. Wird aber die Menge des Bestandteils in Masseneinheiten, die der

¹⁾ In vielen Fällen, namentlich in der biochemisch-medizinischen Literatur, hat sich die Angabe nach mg in 100 g (oder nach mg in 100 ccm) und bei noch geringeren Gehalten nach γ (= μ g) in 100 g (oder nach γ in 100 ccm) eingebürgert. Die gleichzeitig aufgetretene Gewohnheit, solche Angaben in der Form mg- 0 / $_0$ bzw. γ - 0 / $_0$ zu schreiben (und zu sprechen) ist zwar raumsparend (und atemsparend), aber völlig inkorrekt und sollte daher nicht nur abgelehnt und vermieden, sondern da, wo sie auftritt, auch bekämpft werden.

²⁾ Im wesentlichen nach J. Wallot, Verhandlungen des Ausschusses für Einheiten und Formelgrößen (AEF) in den Jahren 1907 bis 1927 (Berlin, Springer, 1928).

Lösung in Raumeinheiten angegeben, so hat die Konzentration die Dimension $(l^{-3} m)$.

Im letzten Falle kann statt der Konzentration auch deren Kehrwert, die Verdünnung, angegeben werden, d. h. die Raummenge der Lösung, die eine bestimmte Masse des Bestandteils enthält; Dimension: $(l^3 \, m^{-1})$.

Konzentrationsangaben, die nur in Masseneinheiten ausgedrückt sind, haben den Vorzug, von der Temperatur unabhängig zu sein.

Finhaita

	zeichen
	Zeichen
Als Masseneinheiten dienen	i .
das Gramm oder das Kilogramm	g kg
das Mol, d. h. soviel Gramm des Stoffes, wie sein Molekulargewicht	
angibt	mol
das Millimol, der tausendste Teil des Mols	mmol
das Val, d. h. soviel Gramm des Stoffes, wie sein Äquivalentgewicht	ı
angibt	val
das Millival, der tausendste Teil des Vals	mval
das Gramm-Atomgewicht, d. h. soviel Gramm eines Elemen-	1
tes, wie sein Atomgewicht angibt	g-atom
Als Raumeinheiten dienen	1
das Milliliter (Kubikzentimeter) oder das Liter	ml(cm³)l

Von den zahlreichen durch Verknüpfung dieser Einheiten möglichen Arten der Konzentrationsangabe sind, falls nicht besondere Gegengründe vorliegen, nur die folgenden zu benutzen:

		Benennung	Einheitszeichen
	Gramm Bestandteil in { 100 g Lösung }	Prozent Massenprozent	0/0 oder g/100 g
	Milliliter Bestandteil in 100 ml Lösung	Volumprozent	ml/100 ml
•	Gramm Bestandteil in	_	g/l
4.	Mol Bestandteil in Il Lösung	-	mol/I
_	oder Liter Lösung auf I mol Bestandteil	Verdünnung	l/mol
5.	Val Bestandteil in 11 Lösung oder Liter Lösung auf	_	val/l
	1 val Bestandteil	Verdünnung	l/val

	Benennung	Einheitszeichen
6. Mol Bestandteil auf 1 kg Lösungsmittel	_	mol/kg Lösungsmittel
 Mol Bestandteil in 100 Gesamt-Mol Lösung oder der hundertste Teil 	Molprozent	mol/100 Gesamtmol
der Zahl der Molprozente	Molenbruch	mol/Gesamtmol
8. Gramm-Atomgewicht Bestandteil in 100 Ge- samt-Gramm-Atomge-		
wicht der Lösung oder der hundertste Teil	Atomprozent	g-atom/100 Gesamt-g-atom
der Zahl der Atompro- zente bei Mineralwässern auch		g-atom/Gesamt-g-atom
9. Millimol Bestandteil in 1 kg Lösung	_	mmol/kg
10. Millival Bestandteil in 1 kg Lösung	_	mval/kg

6. Für den Briggschen Logarithmus wird durchgehends das Zeichen Ig benutzt (siehe S. 194).

Über zweckmäßiges Rechnen mit Logarithmen siehe Seite 236f.

- 7. Für die Dichte ist gemäß den Festsetzungen des AEF das Formelzeichen ϱ eingeführt (siehe S. 190). Die Temperatur, für die sie gilt, wird als Index rechts unten beigefügt (ϱ_{20° usw.). Bei Gasen muß auch der Druck angegeben werden (z. B. $\varrho_{20^\circ}^{150^\circ}$ oder kürzer: $\varrho_{20^\circ}^{150^\circ}$). Die Dichte im "Normzustand" (o° C, 760 Torr) wird ϱ_N geschrieben.
- 8. Für die Schreibweise physikalischer Gleichungen (und einzelner Ausdrücke) gilt gemäß Normblatt DIN 1313 allgemein folgendes: Größen (Druck, Temperatur, Volum usw.) werden mit den dafür vorgesehenen Formelzeichen (siehe S 190f.) in Kursivdruck bezeichnet (also p, t, V usw.). Die Zeichen für Einheiten (Zentimeter, Sekunde, Gramm usw.) werden in geraden Typen gedruckt (also cm, s, g usw.).

Eine Größe besteht aus den Faktoren Zahlenwert und Einheit, z. B. Dichte = Zahlenwert × Dichteeinheit oder $\varrho_{20^{\circ}}$ = 2,5 g/ml = 2,5 gml⁻¹. Wird der Zahlenwert in Buchstaben an-

gegeben (wie in allgemeinen Beispielen), so wird dieser Buchstabe kursiv gedruckt (Beispiel: $\varrho_{20^0} = a \text{ gml}^{-1}$).

Auch der Chemiker muß sich daran gewöhnen, "in Dimensionen zu denken" und sich dementsprechend auszudrücken, wie das in der Physik schon längst gebräuchlich ist.

Zur Erreichung dieses Zieles möchten die Rechentafeln nach Möglichkeit beitragen.

9. Auf die Erörterungen über Dichte usw. (S. 255 f.) wird besonders hingewiesen.

TAFELN

22	Tafe	l I	Atomgew	ichte der E	lemente
A 3	g 47	4.10-6	Silber	107,880	03 294
A A		7,5	Aluminium	26,97	43088
Seite V		3,5.10-4	Argon	39,944	60145
		4,5.10-5	Arsen	74,91	87454
A ië		1,5.10-7	Gold	197,2	29491
Erläuterungen siehe		I·10-3	Bor	10,82	03 423
B B		4.10-2	Barium	137,36	13786
ā B		5.10-4	Beryllium	9.02	95521
B B		3.10-6	Wismut	209,00	32015
B		6.10-4	Brom	79,916	90 263
	6	8.10-2	Kohlenstoff	12,010	07954
C	20	3,39	Calcium	40,08	60 293
E Co	1 48	1.10-5	Cadmium	112,41	05080
Ĕ Ce	58	2,2.10-3	Cer	140,13	14653
S CI		0,19	Chlor	35,457	54970
a Co		1,2.10-3	Kobalt	58,94	77041
₽ CI	71	I·10-4	Cassiopeium	174,99	24302
E Ci	- 24	3,3.10-2	Chrom	52,01	71 609
S Cs	55	7.10-5	Cäsium	132,91	12355
₽ Ct		1,0.10-2	Kupfer	63,57	80325
g D		5.10-4	Dysprosium	162,46	21 075
E E		4.10-4	Erbium	167,2	22 324
"Häufigkeit" (Rursiv) und Logarithmen schwarz. HSOS女女女女女女女		1,4.10-5	Europium	152,0	18184
E F	9	2,7.10-2	Fluor	19,00	27875
₹ Fe	26	4,7	Eisen	55,84	74695
is G		2.10-5	Gallium	69,72	84336
iξ G		5.10-4	Gadolinium	156,9	19562
Ē G		1.10-4	Germanium	72,60	86094
		0,87	Wasserstoff	1,0080	00 346
und Atomgewichte rot, II HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		8-10-7	Helium	4,003	60239
e H	f 72	2,5.10-3	Hafnium	178,6	25188
₹ H		3.10-6	Quecksilber	200,61	30 23 5
∄ н		7.10-5	Holmium	164.94	21732
Ĕ In		I·10-5	Indium	114,76	05979
₽ Ir		I · 10-6	Iridium	193,1	28578
7 I		7.10-6	Jod	126,92	10353
J K	19	2,40	Kalium	39,096	59214
g K	r 36	1,9.10-8	Krypton	83,7	92273
٦ La		5.10-4	Lanthan	138,92	14276
Ordnungszahlen M W W	3	4.10-3	Lithium	6,940	84136
m M		1,93	Magnesium	24,32	38596
ь М	n 25	9.10-2	Mangan	54,93	73981
O M		7.5.10-4	Molybdän	95,95	08204

Molybdän

95,95

98204

7,5.10-4

Mo

42

204,39

169,4

238,07

183,92

131,3

88,92

65,38

91,22

173,04

50,95

31 046

22891

37671

70714

26463

11826

94900

23815

81 544

96000

pun

N

Na

Nb

Nd

Ne

Ni

0

Os

Pa

Pb

Pd

Pr

Pt

Ra

Rb

Re

Rh

Rn

Ru

S

Sb

Sc

Se

Si

Sm

Sn

Sr

Ta

Tb

Te

Th

Ti

TI

Tu U

V

W

X

Y

Yb

Zn

Zr

P

11

41

60

10

28

76

15

QI

82

46

50

78

88

37

75

45

86

44

16

51

21

34

14

62

50

38

73

65

52

90

22

81

60

92

23

74

54

39

70

30

40

I · 10-5

7.10-5

2.10-5

5.10-3

7.10-3

5.10-4

2.10-2

2.3.10-2

1,6.10-2

2,9.10-9

Thallium

Thulium

Vanadium

Wolfram

Yttrium

Ytterbium

Zirkonium

Xenon

Zink

Uran

8

AC

Gewichte una	Logarium	пен на	ung gebrauchter	Atome,	Atom-
	Gewicht	lg_		Gewicht	lg
Āg	107,880	03 294	Al(OH) ₃	77.99	89 204
2Ag	215,760	33397	AlPO4	121,95	08618
3 Ag	323,640	51 006	$Al_2(SO_4)_3$	342,12	53418
AgBr	187,796	27369	Al ₂ (SO ₄) ₃ ·18H ₂ O	006,41	82 374
AgCN	133,898	12677			
AgCNS	165,96	2200I			
AgCl	143.337	15636			
Ag J	234.80	37070			
$AgNO_3$	169,888	23016	As	74.91	87454
Ag ₂ O	231,760	36 504	1/2 As	37.455	57351
Ag_2S	247,82	39414	2As	149,82	17557
$AgVO_3$	206,83	31 561	3 As	224.73	35 166
Ag_3VO_4	438,59	64206	As_2O_3	197,82	29627
-			$\frac{1}{4}$ As ₂ O ₃	49.455	69421
	i		As ₂ O ₅	229,82	36139
	1		AsO ₃	122,91	08959
			As ₂ O ₇	261,82	41 800
	_1	1	AsO4	138,91	14273
Al	26,97	43088	As ₂ S ₃	246,00	39094
₹Al	8,990	95376	As ₂ S ₅	310,12	49153
2Al	53,94	73 191			., ,,
3 Al	80,91	90 800			
4Al	107,88	03 294			
5Al	134.85	12985		2000	
6Al	161,82	20903	Au	197,2	29491
$Al(C_9H_6ON)_3^1)$.	459,41	66220	2Au	394,4	59594
AlCl ₃	133,34	12496	3Au	591,6	77 203
AlCl ₃ ·6H ₂ O	241,44	38281	3	3.0	11-5
AlF ₃	83.97	92412			
2ÅlF ₃	167,94	22515			
3AlF ₃	251,91	40125			
Al_2O_3	101,94	00834	В	10,82	03423
$\frac{1}{4}$ Al ₂ O ₃	16,990	23019	2B	21,64	33 526
2:Al ₂ O ₃	203,88	30937	3B	32,46	51135
$3 \text{Al}_2 \text{O}_3$	305,82	48547	4B	43,28	63629
$Al_2O_3 \cdot 2SiO_2 \cdot $	C Mill Claude.h		5B	54.10	
$2H_2O$	258,09	41 177	6B	64,92	73320
21120			OD	4,92	81 238

¹⁾ Oxin (Ox).

Erläuterungen zu Tasel 2 siehe Seite 230 - Höhere Multipla siehe Seite 44/45

MG

Tafel 2 25 gruppen, Molekeln und Äquivalente (sowie niederer Multipla)

	Gewicht	lg		Gewicht	lg lg
BO ₂	42,82	63 165	Be	9,02	95 521
BO_3	58,82	76953	2Be	18,04	25624
B_2O_3	69,64	84286	BeO	25,02	39 829
B ₄ O ₇	155,28	19112	Bc ₂ P ₂ O ₇	192,00	28330
	777.6		Bi 2Bi	209,00 41 8,00	32015 62118
Ba	137,36 68,680	13786	BiC ₆ H ₃ O ₃	10 0	02110
½Ba 2Ba	274.72	83 683	(Pyrogallol)	332,08	52124
3Ba BaCO ₃	412,08	61 498	D'C II ONG	875,82	94241
BaCl ₂	208,27	31 863	BiCr(CNS)6	609,48	78496
BaCl ₂ ·2H ₂ O	244,31	38794	Bi ₂ O ₂	466,00	66 839
BaCrO ₄	253.37	40376	Bi(NO3)3.5H2O.	485,11	68583
BaF ₂	175,36	24393	BiOCI	260,46	41 574
$Ba(NO_3)_2 \dots$	261,38	41 727	(BiO) ₂ Cr ₂ O ₇	666,02	82348
BaÒ	153,36	18571		641,44	80716
½BaO	76,680	88468		659,46	81919
BaO_2	169,36	22881		303,98	48284
$Ba(OH)_2 \dots$	171,38	23396		514,18	71111
$Ba(OH)_2 \cdot 8H_2O$	315,51	49901	$Bi_2(SeO_3)_3$	798,88	90248
12[Ba(OH) ₂ ·8H ₂ O] BaS Ba ₁ ·2SO ₃ 2Ba ₁ ·2SO ₃	157,755 169,42 148,74 297,48	19798 22896 17243 47346			
$_{3}$ Ba $_{3}$ SO $_{3}$	446,22	64955	Br	79,916	90 263
BaSO ₄	233,42	36814	2Br	159,832.	20366
BaSiF ₆	279,42	44626	3Br	239,748	37975
~uon 6	-13172	44020	4Br	319,664	50469
			5Br	399,580	60160
			6Br	479,496	68078
		1	BrO ₃	127,916	10692
		i	1 BrO3	21,313	32877

Erläuterungen zu Tasel 2 siehe Seite 230 - Höhere Multipla siehe Seite 44/45

Gewichte und Logarithmen häufig gebrauchter Atome, Atom-

	Gewicht	lg	Gewicht	lg
C 2C	Gewicht 12,010 24,020 36,030 48,040 60,050 72,060 164,389 14,026 28,052 42,078 56,104 70,130	07954 38057 55666 68160 77851 85769 21587 14694 44796 62406 74899	$\begin{array}{c cccc} C_2H_2 & 26,036 \\ C_2H_5 & 29,060 \\ 2C_2H_5 & 58,120 \\ 3C_2H_5 & 87,180 \\ 4C_2H_5 & 116,240 \\ 5C_2H_5 & 145,30 \\ 6C_2H_5 & 174,36 \\ C_2H_3O & 43,044 \\ 2C_2H_3O & 86,088 \\ 3C_2H_3O & 129,132 \\ C_2H_3O_2 & 59,044 \\ \end{array}$	41 557 46 330 76 433 94 042 06 536 16 227 24 145 63 391 93 494 11 104 77 118
5 CH ₂ 6 CH ₂ CH ₃ 2 CH ₃ 3 CH ₃ 4 CH ₃ 5 CH ₃ 6 CH ₃ CH ₄ CH ₃ Br CH ₃ CI CH ₃ F CH ₃ J	70,130 84,156 15,034 30,068 45,102 60,136 75,170 90,204 16,042 94,950 50,491 34,03	84590 92509 17708 47810 65420 77913 87604 95523 20526 97749 70322 53186 15213	$\begin{array}{c ccccc} C_2H_5Br & 108,976 \\ C_2H_5Cl & 64,517 \\ C_2H_5F & 48,06 \\ C_2H_5J & 155,18 \\ C_2H_5O & 45,060 \\ C_5H_5N & (Py) & 79,098 \\ C_6H_5 & 77,100 \\ 2C_6H_5 & 154,20 \\ 3C_6H_5 & 231,30 \\ C_6H_6 & 78,108 \\ C_7H_5O & 105,110 \\ 2C_7H_5O & 210,22 \\ 3C_7H_5O & 315,33 \\ \end{array}$	03733 80967 68178 19307 65379 89816 88705 18808 36418 89270 02164 32267 49876
CH₃o	31,034	49 184	C ₉ H ₆ ON (Ox) C ₉ H ₇ ON (OxH) . 144,146 C ₁₀ H ₈ (Naphth.) C ₁₀ H ₇	15880 16183 10775 10435 10089 09740 09388

Erläuterungen zu Tafel 2 siehe Seite 230 - Höhere Multipla siehe Seite 44/45

Tafel 2 27 gruppen, Molekeln und Äquivalente (sowie niederer Multipla)

Gewicht	lg		Gewicht	lg
C ₁₄ H ₈ O ₂ (Anthrach.) 208,20	31848	Ca	40,08	60 293
$C_{14}H_7O_2$ 207,20	31 639	{ Ca		30190
$C_{14}^{14}H_6O_2$ 206,19	31 427	2Ca	80,16	90396
$C_{14}H_5O_2$	31214	3Ca	120,24	08005
$C_{14}^{14}H_4O_2$ 204,17	30999	4Ca	160,32	20499
C ₂₀ H ₁₆ N ₄ (Nitron) 312,30	49465	5Ca	200,40	30190
C ₂₀ H ₁₆ N ₄ ·HNO ₃ 375,38	57447	6Ca	240,48	38108
CN 20,018	41 528	CaC ₂	64,09	80679
2CN 52,036	71630	CaC ₄ H ₄ O ₆ ·4aq	260,22	41 534
3CN 78,054	89239	CaCN ₂	80,11	90369
4CN 104,072	01733	CaCO ₃	100,09	00039
5CN 130,090	11425	½CaCO₃	50,045	69936
6CN 156,108	19342	CaC ₂ O ₄ ·H ₂ O	146,12	16468
CN J 152,94	18452	Ca(C ₁₀ H ₇ O ₅ N ₄) ₂ ·	710,59	85 162
CNS 58,08	76403	8H2O (Pikrolons.)	N 550555	05102
CO 28,010	44731	CaCl ₂	110,99	04528
CO ₂ 44,010	64355	CaCl ₂ ·6H ₂ O	219,09	34062
½CO ₂	34252	CaCl ₂ O	126,99	10377
2CO ₂ 88,020	94458	½CaCl₂O	63,497	80 275
3CO ₂ [32,030	12067	CaF ₂	78,08	89254
CO ₃ 60,010	77822	Ca(HCO ₃) ₂	162,12	20983
¹ ₂ CO ₃ 30,005	47719	$\frac{1}{2}$ [Ca(HCO ₃) ₂].	81,058	90880
2CO ₃ 120,020	07925	e resource acros companies sylventers		
3CO ₃ 180,030	25 534			
CO ₂ H s. a. HCO ₂ 45,018	65 339			
C_2O_4	94458	l i		
$CO(NH_2)_2$ 60,058	77857			
CS ₂ 70,13	88 156	8		
9407				
	1			
N 28	7.			
		l		

Erläuterungen zu Tafel 2 siehe Seite 230 — Höhere Multipla siehe Seite 44/45

Gewicht 136,07 172,10 234,07 252,09 164,10 56,08 28,040	13 376 23 578 36 93 5 40 15 5 21 51 1 74 881	Cd ½Cd 2Cd 2Cd Cd(C ₇ H ₄ NS ₂) ₂ }	Gewicht 112,41	1g 05080 74977 35183
172,10 234,07 252,09 164,10 56,08	23 578 36 93 5 40 15 5 21 5 1 1	½Cd 2Cd Cd(C ₇ H ₄ NS ₂) ₂ }	56,205 224,82	74977
112,16 168,24 224,32 280,40 336,48 74,10 37,048 310,20 72,14 100,10 200,20 300,30 136,14 172,17 116,14	74 661 44778 04984 22593 35087 44778 52696 86982 56877 49164 85818 00043 30146 47756 13399 23596 06498	$ \begin{array}{c} (\text{Mercaptobenzth.}) \\ \text{Cd}(C_7H_6O_2N)_2 \\ (\text{Anthranils.}) \\ \text{Cd}(C_{10}H_6O_2N)_2 \\ (\text{Chinaldins.}) \\ \text{CdO} \\ (\text{CdOx})_2 \\ (\text{Oxin)} \\ \text{Cd}(\text{Ox})_2 \\ (\text{Oxin)} \\ \text{Cd}(\text{Ox})_2 \\ \text{T,5} \\ \text{H}_2\text{O} \\ \text{Cd}_2P_2\text{O}_7 \\ \text{CdP}_2(\text{CNS})_2^1) \\ \text{CdP}_4(\text{CNS})_2 \\ \text{CdSO}_4 \\ \text{CdSO}_4 \\ \text{CdSO}_4 \\ \end{array} $	384,66 456,72 128.41 400,70 427,73 398,78 386,76 544,96 144.47 208.47 256,51	64 823 58508 65 965 10 860 60 282 63 117 60 074 58 744 73 637 15 97 8 31 904 40 910
		Ce 2Ce 3Ce CeCl ₃ Ce ₃ O ₄ Ce ₂ O ₃ CeO ₂ CeO ₃ Ce ₂ (SO ₄) ₃ ·8H ₂ O Ce(SO ₄) ₂ ·4H ₂ O	140,13 280,26 420,39 246,50 484,39 328,26 172,13 183,13 712,57 332,25 404,31	14653 44756 62365 39182 68526 23586 27446 85283 52147 60671
	336,48 74,10 37,048 310,20 72,14 100,10 200,20 300,30 136,14 172,17	280,40 336,48 74,10 86982 37,048 310,20 49 164 72,14 85 818 100,10 00043 200,20 301,46 300,30 47,756 136,14 13,399 172,17 23,596	280,40 336,48 74,10 86982 37,048 310,20 72,14 85,818 100,10 200,20 300,30 47,756 136,14 172,17 116,14 Ce 2Ce 3Ce CeCl ₃ CeO ₂ CeO ₂ CeO ₂ CeO ₃ Ce(SO ₄) ₃ ·8H ₂ O Ce(SO ₄) ₃ ····· Ce(SO ₄) ₃ ······ Ce(SO ₄) ₃ ····· Ce(SO ₄) ₃ ······ Ce(SO ₄) ₃ ······· Ce(SO ₄) ₃ ········ Ce(SO ₄) ₃ ········ Ce(SO ₄) ₃ ········ Ce(SO ₄) ₃ ········· Ce(SO ₄) ₃ ········· Ce(SO ₄) ₃ ············ Ce(SO ₄) ₃ ············ Ce(SO ₄) ₃ ···································	280,40 336,48 74,10 86982 37,048 310,20 72,14 85,818 100,10 200,20 300,30 172,17 116,14 Ce Ce 3Ce CeCl ₃ Ce ₂ O ₃ Ce ₂ CSO ₄) ₃ ·8H ₂ O Ce(SO ₄) ₃ ·8H ₂ O

¹⁾ Pyridin.

Tafel 2 29 gruppen, Molekeln und Äquivalente (sowie niederer Multipla)

	Gewicht	lg		Gewicht	lg
Cl	35.457	54970	Cr	52,01	71 600
2Cl	70,914	85073	2Cr	104,02	01712
3Cl	106,371	02682	3Cr	156,03	19321
4Cl	141,828	15176	CrO	68,01	83 257
5Cl	177,285	24 867		220,03	34248
6Cl	212,742	32785	Cr ₂ O ₃	152,02	18190
CIO	51,457	71 144		76,010	8808
Cl ₂ O ₅	150,914	17873		304,04	48293
ClO ₃	83,457	92146	$3 \operatorname{Cr_2O_3}$	456,06	65902
₹ClO ₃	13,9105	14331	CrO ₃	100,01	00004
CIO ₄	99,457	99764	2CrO ₃	200,02	30107
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Was 2 S	Cr ₂ O ₇	216,02	33 449
			CrO ₄	116,01	06450
			CrPO ₄	146,99	16729
Со	58,94	77041			
₹Co	29,470	46938	Cs 2Cs	132,91	1235
2Co	117,88	07144		265,82	42458
CoAs ₂	208,76	31 965	Cs ₂ O	281,82	44997
CoAsS	165,91	21988	Cs ₂ SO ₄	361,88	55 850
$Co(C_7H_6O_2N)_2^{1}$		52008			
$Co[C_{10}H_6O(NO)]_3 \cdot $	331,19				
$2 H_2O^2$	611,44	78636	Cu	63,57	8032
$Co[C_{10}H_6O(NO_2)]_3^3)$	2000	79478	2Cu	127,14	1042
$Co(NO_3)_2 \cdot 6H_2O$.	0/1	46397	3Cu	190,71	2803
CoO .	291,05	87471	CuCNS	121,65	0851
Co ₃ O ₄	74.94	38169	CuCO ₃ ·Cu(OH) ₂	221,17	3447
$Co(Ox)_2 \cdot 2aq$	240,82		2CuCO ₃ ·Cu(OH) ₂	344,75	5375
(Oxin)	383,26	58350	$Cu(C_7H_6O_2N)_2^4)$	335,82	5261
$Co_2P_2O_7$	The state of the s	46515	$Cu(C_{10}H_6O_2N)_2 \cdot $		
CoSO ₄	291,84		H_2O_5	425,90	6293
	155,00	19033	C IC IT ONTO		
$CoSO_4 \cdot 7H_2O \dots$	281,11	44 888	H ₂ O ₆)	514,02	71098
			CuC ₁₄ H ₁₁ O ₂ N ⁷)	288,81	46062
	ļ		CuCl ₂		1286
]		CuFeS ₂	134,48	2637
1) Anthranilsäure.	•			183,53 -Nitro-β-n	

*) Salicylaldoxim und Anthranilsäure. b) Chinaldinsäure. b) Thionalid.

7) Benzoinoxim (Cupron).

Tafel 2

	Gewicht	lg		Gewicht	lg
Cu ₂ O	Gewicht 143,14 79,57 39,785 159,14 238,71 351,86 159,20 95,63 159,63 249,71	15576 90075	Fe(CN) ₆ FeCO ₃ FeCl ₂ FeCl ₂ ·4H ₂ O FeCl ₃ ·6H ₂ O Fe(CrO ₂) ₂	Gewicht 205,66 162,81 211,95 115,85 126,75 198,82 162,21 270,31 223,86 177,88 309,68 71,84 143,68 215,52	lg 31 315 21 168 32 624 06 390 10 295 29 846 21 008 43 187 34 998 25 011 49 091 85 637 15 740 33 349
Er 2 Er Er ₂ O ₃	167,2 334,4 382,4	22 324 52 427 58 252	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231,52 159,68 26,614 79,840 319,36 479,04 106,86	36459 20325 42511
F 2F	19,00 38,00 57,00 76,00 95,00 114,00	27875 57978 75587 88081 97772 05690	2 Fe(OH) ₃ Fe(Ox) ₃ (Oxin) FePO ₄ FeS Fe ₇ S ₈ FeS ₂ FeSO ₄ FeSO ₄ FeSO ₄ 7 H ₂ O Fe ₂ (SO ₄) ₃	213,73 488,28 150,82 87,90 647,36 119,96 151,90 278,01 399,86 562,01	32 987 68 867 17 846 94 399 81 115 07 904 18 156 44 406 60 191 74 975
Fe 2 Fe 3 Fe 4 Fe 5 Fe 6 Fe	55,84 111,68 167,52 223,36 279,20 335,04	74695 04798 22407 34901 44592 52510	•		

Erläuterungen zu Tafel 2 siehe Seite 230 - Höhere Multipla siehe Seite 44/45