HEIM-SCHUMACHER-FROST RADIOAKTIVE ISOTOPE IN DER CHIRURGIE

RADIOAKTIVE ISOTOPE IN DER CHIRURGIE

von

Dr. med. WILHELM HEIM

Professor an der Freien Universität Berlin, Ärztlicher Direktor und Chefarzt der Chirurgischen Abteilung des Städtischen Rudolf-Virchow-Krankenhauses Berlin-West

Dr. med. WERNER SCHUMACHER

Chefarzt der Abteilung für Strahlentherapie und Nuklearmedizin des Städtischen Rudolf-Virchow-Krankenhauses Berlin-West

Dr.-Ing. DIETRICH FROST

Leiter der Abteilung für Strahlungsphysik des Städtischen Rudolf-Virchow-Krankenhauses Berlin-West

Mit 180 Abbildungen

WALTER DE GRUYTER & CO.

vormals G. J. Göschen'sche Verlagshandlung \cdot J. Guttentag, Verlagsbuchhandlung Georg Reimer \cdot Karl J. Trübner \cdot Veit & Comp.

Copyright 1961 by Walter de Gruyter & Co., vormals G.J. Göschen'sche Verlagshandlung — J. Guttentag, Verlagsbuchhandlung — Georg Reimer — Karl J. Trübner — Veit & Comp., Berlin W30, Genthiner Str. 13 — Alle Rechte, auch die des auszugsweisen Nachdrucks, der photomechanischen Wiedergabe, der Herstellung von Mikrofilmen und der Übersetzung, vorbehalten. — Printed in Germany. — Archiv-Nr. 518461.

Satz und Druck: Walter de Gruyter & Co., Berlin W 30

Vorwort

Es ist erst ein halbes Jahrhundert her, seitdem die Entdeckungen des großen Physikers W.C. Röntgen der medizinischen Wissenschaft neue und wichtige Erkenntnisse vermittelt haben. Damals ergaben sich für die Medizin unmittelbar mannigfache Nutzanwendungen dieser "neuen Art von Strahlen".

In kurzer Folge kamen dann die Entdeckungen von H. Becquerel und dem Ehepaar P. und M. Curie, die eine ähnliche Strahlung im natürlichen Uran nachweisen konnten. Alle diese Entdeckungen schufen die Voraussetzung für die Kernreaktoren, die mit der Atomexplosion in Hiroshima das Atomzeitalter einleiteten.

Diese neue Waffe gegen den Menschen brachte auch friedfertige Vorteile. So ermöglichte sie die Technik der Reaktoren und schuf Verfahren, Elemente durch eine so kurzlebige Strahlung zu kennzeichnen, daß sie auch in der Medizin anwendbar wurden.

Diese künstlichen radioaktiven Isotope erwiesen sich inzwischen ebenso segensreich im Dienste der Medizin, wie es die Röntgenstrahlen sind. Das Gebiet der Kernphysik hat neben der Bedeutung auf allen Zweigen der Wissenschaft und der Wirtschaft auch für die Medizin eine weittragende Bedeutung erhalten.

Durch die Verwendung von radioaktiven Isotopen ist erstmalig die Möglichkeit gegeben, einen Einblick in die Funktionsabläufe im Organismus durch Messungen außerhalb des Körpers zu erhalten.

Nach Verabreichung spezifischer radioaltiver Isotope können der Stoffwechsel in den verschiedenen Organen, der Kreislauf, die Regeneration der Gewebe sowie viele andere physiologische Vorgänge im zeitlichen Ablauf von außen mittels geeigneter Apparate nahezu mathematisch exakt kennengelernt und festgestellt werden. Ohne die Hilfe der künstlichen radioaktiven Isotope wären viele Erkenntnisse auf dem Gebiet der Medizin nicht möglich gewesen.

Damit ist es auch für den Arzt und insbesondere für jeden operativ tätigen Kliniker notwendig, die grundlegenden Kenntnisse physikalischer Art, soweit sie für ihn eine praktische Bedeutung haben, zu beherrschen. Aus der zunehmenden Anzahl der wissenschaftlichen Veröffentlichungen, aus den physikalischen Lehrbüchern und selbst aus den Handbüchern über künstliche radioaktive Isotope ist es für den Kliniker jedoch unmöglich, in Kürze die sichere klinisch brauchbare Routinemethode herauszufinden, die ihm für die Diagnostik und Therapie im Bereich der Chirurgie

VI Vorwort

von Bedeutung ist. Das Gebiet ist bereits zu umfangreich geworden. Die Besonderheit der Nuklearmedizin verlangt daher eine kurze Beschreibung der üblichen klinisch brauchbaren Untersuchungs- und Behandlungsmethoden.

In gemeinsamer Arbeit haben der Physiker, der Strahlentherapeut und der chirurgisch tätige Kliniker ihre in jahrelangen gemeinsamen Arbeiten gewonnenen Erkenntnisse niedergelegt. Da für den Kliniker eine Beschreibung der verschiedenen Variationen der Untersuchungsmethoden weniger wichtig ist, wurde hier besonders Wert darauf gelegt, nur klinisch bewährte Methoden zu beschreiben. Aus der eigenen Erfahrung auf diesem Gebiet wurde besonders das Verfahren ausgewählt, das bei der üblichen Technik die genauesten Ergebnisse lieferte.

Im allgemeinen Teil wurde eine Grundlage für das physikalische und technische Rüstzeug geschaffen. Die verschiedenen physikalischen Daten der Strahlung und Energie leiten über zu den Eigenschaften der radioaktiven Isotope. Die notwendigen Begriffe sowohl der Dosierung wie auch der gebräuchlichen Namen werden, soweit es für die chirurgischen Belange notwendig ist, im einzelnen abgehandelt. Sodann werden die für den klinischen Betrieb bewährten Meßgeräte eingehend geschildert. Statistische Daten und Beispiele aus der Praxis sollen dem Kliniker ein Fundament geben und ihm die Untersuchungs- und Behandlungsmethoden ohne eine besondere Schulung auf diesem Gebiet ermöglichen. Die Literaturhinweise vermitteln demjenigen, der für bestimmte Untersuchungen eine tiefer gehende Information benötigt, die entsprechenden Arbeiten zu finden. Auf die im Fluß befindliche wissenschaftliche Forschung wird nur kurz hingewiesen. Für die bewährten Routinemethoden wurden nur solche Geräte beschrieben, die bei uns in den letzten Jahren verwendet oder entwickelt wurden und die sich als nützlich erwiesen haben.

Der Umgang mit radioaktiven Stoffen erfordert darüber hinaus spezielle Kenntnisse auf dem Gebiet des Strahlenschutzes, die, soweit sie für den Arzt, das Pflegepersonal und den Patienten wichtig sind, hier wiedergegeben wurden.

Im klinischen Teil wird das weite Anwendungsgebiet der radioaktiven Isotope zunächst unter Berücksichtigung neuer Erfahrungen auf dem Gebiete der Physik, der Physiologie und der Pathologie veranschaulicht. Innerhalb der Therapie sind hinsichtlich der Methodik ebenfalls wie im Kapitel Diagnostik nur die Verfahren angeführt worden, die für den Patienten entweder in Kombination mit operativen Verfahren oder für sich allein nützlicher als andere konservative Methoden erwiesen haben.

Neben eigenen Methoden wurden auch die Ergebnisse ausländischer Kliniker herangezogen, vornehmlich in den Kapiteln, in denen unsere eigenen Erfahrungen nicht umfangreich genug erschienen.

In jedem Kapitel wird in der Diskussion und der Auswertung eigener Ergebnisse kritisch auf die immer noch bestehende Problematik hingewiesen. Gegenüber anderen Autoren sind wir der Ansicht, daß die Verwendung radioaktiver Isotope einen unbestrittenen Wert auch für die Durchführung von Operationen besitzt.

Vorwort

Besonders auf dem Gebiet der Schilddrüsenerkrankung hat die Anwendung von radioaktivem Jod eine besondere Bedeutung erlangt.

Der Begriff der funktionskritischen Operation wurde erst durch die Anwendung der neuen radioaktiven Isotope geschaffen.

Wir stehen zwar erst am Anfang einer Entwicklung, die bereits für die gesamte Medizin wesentliche Fortschritte gebracht hat. Die Erfolge berechtigen uns zu der Hoffnung, daß weitere grundlegende Erkenntnisse besonders auf dem Gebiet der Chirurgie in Diagnostik und Therapie möglich sind.

Berlin, im Januar 1961

Wilhelm Heim

Teil I: Physikalischer Teil

von Dietrich Frost

		Seite
Α.	Grundbegriffe zum Verständnis der Radioaktivität	. 1
	1. Natürliche und künstliche radioaktive Elemente	
	2. Die verschiedenen Zerfallsarten	$\frac{2}{2}$
	a) Alphastrahlung	
	b) Betastrahlung	_
	d) K-Strahlung	
	3. Eigenschaften radioaktiver Isotope	
	a) Zerfallskonstante und Halbwertszeit	3
	4. Radioaktive Mengeneinheit	
		_
	5. Dosisbegriffe	
	b) Ionendosisleistung	5
	c) Energiedosis	
	d) Energiedosisleistung	
	e) Dosiskonstante von Gammastrahlern	6
	f) Gewebsdosis	. 7
	g) Erläuterung zur Standard-Ionendosis	
	6. Praktische Daten	. 8
В.	Die klinisch verwendeten Strahlungsmeßgeräte	32
	1. Ionisationskammer und Zählrohr	32
	a) Zählrohrcharakteristik	
	b) Auflösungsvermögen	35
	c) Gamma- und Betazählrohre	35
	2. Der Szintillationszähler	37
	a) Wirkungsweise — Aufbau	37
	b) Die verschiedenen Szintillatoren	38
	c) Gammaspektroskopie	40
	d) Nulleffekt und Abschirmung	41
	3. Impulsverstärker und Anzeigegeräte	42
	4. Scintiscanner	. 44
	5. Statistische Meßfehler	46
	6. Praktische Tabellen zum Strahlenschutz	48
	Teil II: Klinischer Teil	
	von Wilhelm Heim und Werner Schumacher	
Α.	Die biologische Strahlenwirkung	69
	1. Die Theorien der biologischen Strahlenwirkung	
	2. Strahlandosis und Strahlanwirkung	. 03

		Seite
	3.	Die zytologischen Bestrahlungswirkungen
		a) Zytologische Veränderungen bei Anwendung radioaktiver Isotope
		b) Die genetischen Strahlenwirkungen
	4.	Die Strahlenchemie
		a) Die Strahlenchemie des Wassers
		b) Die Wirkung der Strahlung auf Kolloide
		c) Die Strahlungswirkung auf Makromoleküle
		d) Die Strahlungswirkung auf Proteine
		e) Die Inaktivierung von Enzymen
		f) Die Reaktion auf die Nukleinsäuren
	5.	Die Strahlenwirkung auf biologische Gewebe
	6.	Organspezifische Strahlenwirkungen 85
		a) Die Strahlenwirkung auf die Haut
		b) Die Wirkung auf die blutbildenden Organe
		c) Die Strahlenwirkung auf das periphere Blut
		d) Die Strahlenwirkung auf die Knochen
		e) Die Wirkung auf den Gastrointestinaltrakt
	7.	Die Wirkung verschiedener Strahlenarten
	8.	Die Auswahl radioaktiver Isotope für Diagnostik und Therapie
		Die Dosisprobleme bei der therapeutischen Anwendung radioaktiver Isotope 88
	•	a) Die Dosisberechnungen
		b) Protrahierung und Fraktionierung
		c) Organspezifische strahlende Substanzen und ihre Eigenschaften
		d) Die räumliche und zeitliche Verteilung der radioaktiven Strahler im Organismus 91
т	ъ.	CO
Б.		ie Chirurgie der Schilddrüsenerkrankungen
	1.	Die Indikation zur Operation
		a) Voruntersuchungen
		b) Radiojod in der Diagnostik der Schilddrüsenerkrankungen
	2.	Die Physiologie des Jodstoffwechsels
		a) Der Radiojodtest
		Durchführung
		Auswertung
		b) Die Serumjod- und Proteinjodbestimmung
		Methodik
		Durchführung
		Ausrechnung
		Beispiel
		c) Das Clearence-Verfahren
		Methodik
		Durchführung
		Beispiel zur Berechnung der J-131-Clearence
		Auswertung
		Auswertung aller Befunde
		α) Normale Schilddrüsenfunktion
		β) Hyperthyreose
		γ) Struma diffusa euthyreotica
		δ) Struma nodosa euthyreotica mit funktionsuntüchtigen Knoten
		ε) Strumitis
		ζ) Unterfunktion oder Blockierung der Schilddrüse
		η) Myxödem oder Blockierung der Schilddrüse

${\bf Inhalts verzeichn is}$		XI
		Seite
d) Fehlermöglichkeiten des Radiojodtestes		113
Durch Thyreostatika		116
Durch Schilddrüsenextrakt oder Schilddrüsenhormon		
Durch andere schilddrüsenwirksame Medikamente		
3. Die Lokalisation der Schilddrüsenfunktion		116
a) Technik der Lokalisierung		
b) Methodik		
4. Die Feststellung dystopischer Schilddrüsengewebe		
5. Andere Untersuchungsmethoden		131
a) Die Röntgenaufnahmen des Ösophagus und der Trachea		131
b) Die HNO-Untersuchung	٠.	132
c) Die EKG-Untersuchung		
e) Die Messung des Exophthalmus mit Hilfe des Exophthalmeters		
6. Die Kropfoperation auf Grund der neuen Erkenntnisse		134
a) Die Therapie der struma diffusa euthyreotica		194
b) Die Operation der struma nodosa et cystica euthyreotica		
Hinweis für die Operation	• •	139
c) Die Adoleszenten-Struma	• •	139
Hinweis		139
d) Die Struma diffusa hyperthyreotica (Basedow-Struma)		140
Hinweis für die Operation		
e) Das toxische Adenom		142
Hinweise für die Operation		143
f) Die Therapie der dystopen Struma		143
7. Die chirurgisch-radiologische Therapie des Schilddrüsenkarzinoms		146
Hinweis für die Operation		147
8. Nachuntersuchung		147
a) Der Radioiodtest		147
b) Das Scanningverfahren		148
C. Die Radiojodtherapie		
1. Indikation und Kontraindikation		150
2. Durchführung		151
3. Beispiele der Radiojodtherapie		
a) Die Struma diffusa hyperthyreotica		152
b) Der Morbus Basedow		154
c) Die Struma euthyreotica		
d) Die Behandlung des Schilddrüsenkarzinoms		
4. Ergebnisse der Radiojodtherapie		
D. Die Anwendung radioaktiver Isotope zur Leberdiagnostik		159
1. Einleitung		
2. Der Leberfunktionstest		
a) Methodik		160
b) Durchführung		
c) Der normale Funktionsablauf in der Leber		
3. Methodik zur Darstellung der Leber		
a) Durchführung		
h) Das normale Leberhild		165

		S	eite
	c) Anomalien der Leber im Photogammagramm		166
	d) Die Differentialdiagnostik von Zysten im Lebergebiet		166
	e) Das primäre Leberkarzinom		
	f) Lebermetastasen		
	Diffuse Lebermetastasen		
	Grobknotige Lebermetastasen		
	4. Folgerungen für das operative Vorgehen	•	177
Ε.	Die Tumordiagnostik mit radioaktiven Isotopen		180
	1. Hirntumorlokalisation		
	A Die Darstellung der Hirntumoren durch Messungen von außen		182
	B Die Feststellung der Tumorausdehnung durch Sondenmessung während d		
	Operation		
	a) Methodik		
	b) Durchführung		
	2. Die Lokalisierung des Brustkrebess einschließlich der Metastasen		
	3. Die Diagnose und Lokalisierung von Melanomen und Hauttumoren mit P-32		
	Methodik		188
_	73		
F.	Blutvolumen und Kreislaufdiagnostik		
	1. Die Bestimmung des Blutvolumens und dessen Bedeutung für die Operation		
	Methodik		
	Durchführung		
	Beispiel		
	a) Die Markierung der Erythrozyten		
	b) Die Markierung mit Cr-51		
	Durchführung		
	c) Die Markierung der Erythrozyten mit P-32		
	Methodik		
	Durchführung		197
	Auswertung		
	d) Der Isotopenhaematokrit		199
	e) Die Markierung der Erythrozyten mit radioaktivem Eisen		
	f) Die Doppelmarkierungen des Blutes	. :	201
G.	Die Bestimmung der Kreislaufzeit		
	1. Die Verwendung von markierten Erythrozyten	. :	203
	2. Die Verwendung von markiertem, menschlichem Serumalbumin (J-131-HSA)	2	204
	3. Die Untersuchung der peripheren Durchblutungsstörungen		207
	a) Durchführung		
	b) Auswertung		
	4. Die Prüfung der Gewebedurchblutung	:	212
	5. Die Untersuchung arterieller Durchblutungsstörungen		
	6. Die Organdurchblutung		
	7. Die Leberdurchblutung		
	<u> </u>		
	8. Die Bestimmung des Herzminutenvolumens		
	a) Methodik b) Technische Erläuterung	. ;	219 210
	c) Durchführung		
	W/ ARMOTTOR VALUE		

	Inhaltsverzeichnis	XIII
0	D' De l' le Percel	Seite
9.	Die Radiokardiographie	
	a) Methodik	
	b) Durchführung	
	c) Auswertung	
10.	Die selektive quantitative Radiokardiographie	
	a) Das Herzminutenvolumen	
	b) Die Entleerungsrate des rechten Ventrikels	
	c) Das Blutvolumen des rechten Ventrikels	
	d) Die Entleerungsrate des linken Ventrikels	
	e) Methodik	
	f) Durchführung	. 231
H. D	er Schock — Untersuchungen und Ergebnisse mit radioaktiven Isotopen	. 232
1.	Der neurogene Schock	. 233
2.	Der haemorrhagische Schock	. 233
	6	
I. D	ie Bestimmung der Lebensdauer der Erythrozyten	. 235
1.	Methodik	. 236
2.	Faktoren, die eine Markierung der Erythrozyten mit Cr-51 beeinflussen können	
TC 11		
	eitere Methoden der diagnostischen Anwendung radioaktiver Stoffe in der Chirurgi	
	Die Bestimmung der extrazellulären Raumes	
2.	Die Bestimmung des Gesamtkörperwassers	. 243
3.	Die Feststellung von Magen- und Darmblutungen	. 243
4.	Frühzeitige Erkennung von Gefäßzerstörungen im Femurkopf bei Frakturen, die zu	r
	Femurkopfnekrose führen	
	Methode	. 245
5.	Untersuchungen über den Knochenstoffwechsel	. 245
	Die Auswahl der radioaktiven Isotope für die Untersuchung des Knochenstoff	_
	wechsels	. 246
6.	Die Bestimmung des Flüssigkeitsvolumens intrakavitärer Ergüsse und größerer Zyster	ı 248
	a) Methodik	. 248
	b) Durchführung	
7.	Die Beurteilung der Nierenfunktion mit radioaktiv markierten Substanzen	
	a) Methode	. 250
	b) Durchführung	
	c) Auswertung	. 250
8.	Diagnostische Untersuchungen mit Hilfe von markiertem Vitamin B-12	. 252
	a) Die verschiedenen Testmethoden	. 253
	,	254
	c) Durchführung	. 254
	Auswertung	. 256
		. 256
9.	Untersuchungen über die Fettverdauung und Fettresorption mit Hilfe radioaktiv ma	r-
٠.	kierter Fette	. 257
	a) Methodik	. 258
	b) Durchführung	
	c) Auswertung	

		Seite
L.	Die Tumortherapie mit radioaktiven Isotopen unter chirurgischen Gesichtspunkten	260
	1. Die Chirurgie des Schilddrüsenkarzinoms unter Berücksichtigung der Radiojodtherapie	
	2. Die Indikation zur Therapie	
	3. Die Radiojodaufnahme beim Schilddrüsenkarzinom	200
	5. Die Kadiojodaumanme beim Schilddrusenkarzinom	201
M	Die Therapie des Lungen- und Bronchialkarzinoms	264
	<u>. </u>	
	1. Die Verwendung von radioaktiven Kolloiden als präoperative Maßnahme bei der	
	operativen Therapie der Bronchialkarzinome	
	Methode	
	2. Die Anwendung radioaktiver Isotope als postoperative Maßnahme	
	3. Die Therapie des inoperablen Bronchialkarzinoms	
	A Die Anwendung von Kobalt-60-Perlen	
	B Die Injektion von radioaktiven Kolloiden	269
	a) Methode	
	b) Die Durchführung	
	c) Vorsichtsmaßnahmen	
	d) Kontrolle des Patienten	
	C Die Implantation von radioaktiven Seeds	
	D Die Infusion von Radiogold in die tumorösen Lungenlappen mit Hilfe eines Herz-	
	katheters	275
_		
N.	Die Therapie der Pleura-und Peritonealkarzinose	276
	1. Die Indikationsstellung	277
	2. Die Dosierung	277
	3. Methodik	
	4. Durchführung	
	5. Nebenreaktionen und Ergebnisse	900
	6. Ergebnisse von Verteilungsuntersuchungen nach intrakavitärer Infusion von radio-	200
	aktiven Kolloiden	282
n	Die Therapie der Blasentumoren	985
٠.		
	1. Die Therapie der diffusen malignen Papillomatose	
	a) Methode	286
	b) Die Verwendung eines Gummiballons	286
	c) Die Dosimetrie	
	d) Die intrakativäre Blasentherapie ohne Verwendung eines Gummiballons	
	e) Ergebnisse	289
	2. Die Therapie der rezidivierenden lokalisierten Papillomatose	
	3. Die Therapie der begrenzten Papillomatose mit Verdacht auf beginnende karzino-	
	matöse Umwandlung	
	4. Die Nachbestrahlung nach unvollständiger Tumorexstirpation	
	5. Die Therapie der sehwer zugänglichen Tumoren am Blasenboden oder im Bereich der	
	Ostien	
	6. Die Therapie des infiltrierenden Blasenkarzinoms	294
_		
۲.	Die Therapie des Prostatakarzinoms	295
	1. Das radioaktive Material	297
	2. Dosierung	297
	3. Die apparative Ausrüstung	298
	4. Die suprapubische Technik	298
	5. Die perineale Methode	300
	Durchführung	300
	6. Die transrektale Methode	
	7. Ergebnisse	
	TI AMBONIANO	*****

	Inhaltsverzeichnis		XV
Q.	Die Therapie des Portiokarzinoms		Seite
_	1. Die Indikation zur Radiogold-Therapie		
	2. Methode		
	3. Spezieller Strahlenschutz		
	4. Die Dosierung		
	5. Die Kontrollmaßnahmen		308
	Ergebnisse		308
R.	Die Hypophysenausschaltung bei fortgeschrittenen malignen Tumoren mit Metastas	en	309
	1. Methode		311
	2. Durchführung		312
	3. Dosierung		315
s.	Die Radiogold-Therapie leicht zugänglicher Tumoren		
	1. Die Radiogold-Therapie der Tumoren im Mund- und Kiefergebiet		
	2. Die Therapie des Zungenkarzinoms	•	321
	3. Die Therapie der Tumoren des harten Gaumens		
	4. Die Therapie des Tonsillenkarzinoms		
	5. Die Therapie des Epipharynx-Tumors	٠	324
	6. Die Radiogold-Therapie der Larynxtumoren	•	320
Lit	teraturverzeichnis		329
Au	torenregister		383
	chregister		
Ве	richtigungen		395

Teil I: Physikalischer Teil

Die klinische Anwendung von radioaktiven Isotopen stellt den Arzt vor die Notwendigkeit, sich mit rein physikalischen Gedankengängen sowie mit der kernphysikalischen Meßtechnik vertraut zu machen. Durch die stürmische Entwicklung auf dem Gebiete der Kernphysik ist heute bereits ein außerordentlich umfangreiches Schrifttum entstanden, das es dem Mediziner schwer macht, das für seine Untersuchungen Notwendige herauszuschälen.

Für die Abfassung des physikalischen Teils eines medizinischen Lehrbuches stehen zwei grundsätzliche Wege offen. Der erste und eigentlich am häufigsten beschrittene Weg ist die qualitative und relativ oberflächliche Schilderung der einzelnen Prinzipien. Die in diesem knapp bemessenen Kapitel vermittelten Grundlagen reichen in den seltensten Fällen aus, um die in den nachstehenden Kapiteln beschriebenenen Untersuchungen selbst auszuführen. In der letzten Zeit sind nun in Deutschland eine Reihe von guten Einführungen in die kernphysikalische Meßtechnik erschienen. Diese sind am Schluß dieses Kapitels genannt und seien zum Studium empfohlen.

Für das vorliegende Buch wurde der zweite Weg zur Abfassung des physikalischen Teils gewählt, nämlich in knapper Form durch Tabellen und Diagramme Arbeitsunterlagen zu erstellen. Nach Erlernung der grundlegenden Meßmethodik mit Hilfe eines der genannten Einführungswerke steht dem Leser in diesem Teil des Buches eine Reihe von Arbeitsunterlagen zur Verfügung, die eine Beschaffung von weiterer Spezialliteratur entbehrlich macht. Dem Titel des Buches entsprechend werden diejenigen Meßmethoden bevorzugt dargestellt, die für den Chirurgen von besonderem Interesse sind.

A. Grundbegriffe zum Verständnis der Radioaktivität

1. Natürliche und künstliche radioaktive Elemente

Ein Atomkern läßt sich symbolisch durch die Massenzahl A und die Ordnungszahl Z kennzeichnen. Dabei wird A als oberer Index an das Chemische Symbol des Elements und die Ordnungszahl Z als unterer Index angeschrieben. Die Kernladungs- oder Ordnungszahl sei als bekannt vorausgesetzt, so daß auf ihre Angabe häufig verzichtet werden kann. Nach dieser Bezeichnung gilt z. B. für

```
einen Sauerstoffkern die Schreibweise {}_8O^{16} oder O^{16} einen Wasserstoffkern die Schreibweise {}_1H^1 oder H^1 ein Proton die Schreibweise {}_1p^1 oder p^1 ein Neutron die Schreibweise {}_0n^1 oder n^1
```

Als Isotope bezeichnet man allgemein Stoffe, die sich bei gleicher Ordnungszahl durch verschiedene Neutronenzahlen unterscheiden.

Radioaktive Isotope 1

Die schwersten Elemente des natürlichen periodischen Systems der Elemente erleiden einen dauernden Umwandlungsprozeß. Diese spontanen Zerfallsvorgänge wandeln eine Atomart in eine andere um. Die Zahl dieser Umwandlungen kann eine ganze Reihe von Elementen durchlaufen, bis sie mit einem stabilen Isotop ihr Ende findet. Bei jeder der genannten Atomumwandlungen wird ein gewisser Energiebetrag frei. Diese Energie wird in Form von korpuskularer Strahlung, z. T. begleitet durch Quantenstrahlung, abgestrahlt.

Wir kennen vier radioaktive Zerfallsreihen:

Die Thorium-Reihe Die Neptunium-Reihe Die Uran-Radium-Reihe Die Uran-Aktinium-Reihe

Im Gegensatz zu den lange bekannten, natürlich radioaktiven Kernen kennen wir heute rund 1000 verschiedene, in der Natur nicht vorhandene instabile Atomarten. Sie können durch äußere Einwirkung mit Hilfe von Kernreaktionen erzeugt werden. Bei diesen künstlich radioaktiven Kernen oder Radioisotopen handelt es sich um strahlende Kernarten von Elementen, die in der Natur meist nur stabile Isotope besitzen. Der Zerfall von künstlich radioaktiven Isotopen erfolgt hauptsächlich unter Emission von Elektronen (β^-), seltener von Positronen (β^+), nicht so häufig auch durch Elektroneneinfang (K-Strahlung). Nur in seltensten Fällen läßt sich bei Radioisotopen eine α -Emission beobachten.

2. Die verschiedenen Zerfallsarten

a) Alphastrahlung

Als Alphastrahlung werden die beim Zerfallsakt emittierten Helium-Atomkerne ₂He⁴ bezeichnet. Bei der Emission eines Alpha-Teilchens wird der Kern um 4 Masseneinheiten und 2 Ladungseinheiten verringert. Nach dem Verschiebungssatz von Fajans rückt daher der Kern um 2 Stellen nach links in periodischem System.

Charakteristisch für den Alpha-Zerfall ist die Gleichung:

$$_{z}E^{A} \rightarrow _{z-2}A^{A-4} + {}_{2}He^{4}$$

Die Alpha-Teilchen eines bestimmten radioaktiven Isotops haben alle die gleiche Reichweite. Bezüglich der medizinischen Anwendung haben Alpha-Strahler heute nur noch eine untergeordnete Bedeutung.

b) Betastrahlung

Die Emission von Kernelektronen wird als Betastrahlung bezeichnet. Symbolisch können wir schreiben:

$$_{Z}E^{A} \rightarrow _{Z+1}E^{A} + \rlap/ E^{-}$$

Der entstehende Kern rückt im periodischen System um eine Stelle nach rechts. Im Gegensatz zum Alpha-Zerfall ergibt der Beta-Prozeß ein kontinuierliches Energiespektrum. Der Übergang eines Atomkerns in einen Folgekern unter β --Emission ist aus Gründen der Energiebilanz häufig von einer Gamma-Strahlung begleitet. Die

Energie dieser quantenhaften Gamma-Strahlung entspricht dabei dem Betrag der überschüssigen Anregungsenergie des Folgekernes.

c) Positronenstrahlung

Eine Anzahl künstlich radioaktiver Isotope sendet eine Strahlung aus, die von derjenigen der natürlichen Strahler verschieden ist. Die bei diesem sog. β^+ -Zerfall entstehende Positronenstrahlung besteht aus positiven Elektronen, die in Gegenwart von Materie nur kurzzeitig frei existieren können. Bei der Vereinigung eines Positrons mit einem negativen Elektron wird das "Elektronenpaar" vernichtet und wandelt sich nach der Äquivalenzgleichung in zwei Gammaquanten um. Dieser Umkehrungsprozeß zur Paarbildung läuft nur bei Überschußenergien von mehr als 1 MeV ab.

d) K-Strahlung

Bei Kernen, deren Instabilität auf einer zu großen Protonenzahl beruht, besteht die Möglichkeit, daß der Kern nicht unter Positronenemission zerfällt, sondern umgekehrt ein Elektron einfängt. Dieses Elektron wird vorzugsweise der kernnächsten, der K-Schale entnommen. Beim Übergang eines kernferneren Elektrons in die Elektronenlücke der K-Schale wird dann die jeweilige Röntgen-K-Strahlung emittiert. Durch Bahnelektroneneinfang wandeln sich fast alle schweren, instabilen Kerne mit einem Protonenüberschuß in stabile Isotope um.

3. Eigenschaften radioaktiver Isotope

a) Zerfallskonstante und Halbwertszeit

Als Aktivität A eines radioaktiven Strahlers bezeichnet man die pro Zeiteinheit in ihm ablaufenden Zerfallsvorgänge. Sie ist der jeweiligen Zahl N der Atome direkt proportional:

$$A = -\frac{dN}{dt} = \lambda N \tag{1}$$

Darin ist λ die Zerfallskonstante.

Die Anzahl der Atome des Ausgangsstoffes zur Zeit't=0 sei $N_{\rm o}$, dann ist die Anzahl zur Zeit t:

$$N = N_0 \cdot e^{-\lambda t} \tag{2}$$

Für eine Abklingung von N auf $\frac{N_0}{2}$ ergibt sich die sog. Halbwertszeit zu

$$T = \frac{1}{\lambda} \cdot \ln 2 = \frac{0.6931}{\lambda} \tag{3}$$

Dann kann Gleichung (2) auch geschrieben werden:

$$N = N_0 \cdot e^{-\frac{\ln 2}{T}t} \tag{4}$$

 $e^{-\lambda t}$ als Funktion von t/T ist in Tabelle 1 dargestellt.

Tab. 1. Zerfallsfunktion

			Tab. 1. Zerfa	llsfunktio	n		[1]
t/T	$e^{-\lambda t}$	t/T	$e^{-\lambda t}$	t/T	$e^{-\lambda t}$	t/T	$e^{-\hat{\lambda}t}$
0	1,000	0,52	0,6974	1,54	0,3439	3,80	0,0718
0,01	0,9931	0,54	0,6878	1,56	0,3391	3,85	0,0693
0,02	0,9862	0,56	0,6783	1,58	0,3345	3,90	0,0670
0,03	0,9794	0,58	0,6690	1,60	0,3299	3,95	0,0647
0,04	0,9726	0,60	0,6597	1,62	0,3253	4,00	0,0625
0,05	0,9659	0,62	0,6507	1,64	0,3209	4,10	0,0583
0,06	0,9593	0,64	0,6417	1,66	0,3164	4,20	0,0544
0,07	0,9526	0,66	0,6329	1,68	0,3121	4,30	0,0508
0,08	0,9461	0,68	0,6242	1,70	0,3078	4,40	0,0474
0,09	0,9395	0,70	0,6156	1,75	0,2973	4,50	0,0442
0,10	0,9330	0,72	0,6071	1,80	0,2872	4,60	0,0412
0,11	0,9266	0,74	0,5987	1,85	0,2774	4,70	0,0385
0,12	0,9202	0,76	0,5905	1,90	0,2679	4,80	0,0359
0,13	0,9138	0,78	0,5825	1,95	0,2588	4,90	0,0335
0,14	0,9075	0,80	0,5744	2,00	0,2500	5,00	0,0312
0,15	0,9013	0,82	0,5664	2,05	0,2415	5,10	0,0292
0,16	0,8950	0,84	0,5586	2,10	0,2333	5,20	0,0272
0,17	0,8888	0,86	0,5509	2,15	0,2253	5,30	0,0254
0,18	0,8827	0,88	0,5434	2,20	0,2176	5,40	0,0237
0,19	0,8766	0,90	0,5359	2,25	0,2102	5,50	0,0221
0,20	0,8705	0,92	0,5285	2,30	0,2031	5,60	0,0206
0,21	0,8645	0,94	0,5212	2,35	0,1961	5,70	0,0192
0,22	0,8586	0,96	0,5141	2,40	0,1895	5,80	0,0179
0,23	0,8526	0,98	0,5070	2,45	0,1830	5,90	0,0167
0,24	0,8467	1,00	0,5000	2,50	0,1768	6,00	0,0156
0,25	0,8409	1,02	0,4931	2,55	0,1708	6,20	0,0136
0,26	0,8351	1,04	0,4863	2,60	0,1649	6,40	0,0118
0,27	0,8293	1,06	0,4796	2,65	0,1593	6,60	0,0103
0,28	0,8236	1,08	0,4730	2,70	0,1539	6,80	0,0090
0,29	0,8179	1,10	0,4665	2,75	0,1487	7,00	0,0078
0,30	0,8122	1,12	0,4601	2,80	0,1436	7,20	0,0068
0,31	0,8066	1,14	0,4538	2,85	0,1387	7,40	0,0059
0,32	0,8011	1,16	0,4475	2,90	0,1340	7,60	0,0052 0,0045
$0,33 \\ 0,34$	0,7955	1,18 1,20	0,4413	2,95	0,1294	7,80	0,0045
0,34	0,7900 0,7846	1,20	0,4353 0,4293	3,00	$0,1250 \\ 0,1207$	8,00 8,20	0,0039
0,36	0,7840	1,24	0,4293 $0,4234$	3,05 3,10	0,1207	8,40	0,0034
0,37	0,7738	1,24	0,4234	3,15	0,1100	8,60	0,0036
0,37	0,7684	1,28	0,4173	3,13	0,1127	8,80	0,0020
0,39	0,7631	1,30	0,4061	3,25	0,1050	9,00	0,0022
0,40	0,7579	1,32	0,4005	3,30	0,1015	9,20	0,0017
0,41	0,7526	1.34	0,3950	3,35	0,0981	9,40	0,0017
0,42	0,7474	1,36	0,3896	3,40	0,0948	9,60	0,0013
0,43	0,7423	1,38	0,3842	3,45	0,0915	9,80	0,0011
0,44	0,7371	1,40	0,3789	3,50	0,0884	10,00	0,0010
0,45	0,7320	1,42	0,3737	3,55	0,0854	10,50	0,0007
0,46	0,7270	1,44	0,3685	3,60	0,0825	11,00	0,0005
0,47	0,7220	1,46	0,3635	3,65	0,0325	11,50	0,0004
0,48	0,7170	1,48	0,3585	3,70	0,0770	12,00	0,0002
0,49	0,7120	1,50	0,3536	3,75	0,0743	13,00	0,0001
0,50	0,7071	1,52	0,3487	}		,	1

4. Radioaktive Mengeneinheit

Nach der Definition der Internationalen Radium-Standard-Kommission aus dem Jahre 1930 ist 1 Curie (C) diejenige Menge einer Substanz der Uran-Radium-Reihe, die mit 1 g Radium im Gleichgewicht steht. Im Jahre 1950 wurde die Definition verallgemeinert: Das Curie ist diejenige Menge irgendeiner radioaktiven Kernart, deren Aktivität $3.7 \cdot 10^{10}$ Zerfälle/sec beträgt. Also:

1 Curie (C) = $3.7 \cdot 10^{10}$ Zerfälle/sec 1 Millicurie (mC) = $3.7 \cdot 10^7$ Zerfälle/sec 1 Mikrocurie (μ C) = $3.7 \cdot 10^4$ Zerfälle/sec

Als spezifische Aktivität wird die im Gramm einer strahlenden Substanz enthaltene Aktivität bezeichnet (C/g, mC/g oder μ C/g). Die spezifische Aktivität ist für alle biologischen Untersuchungen eine sehr wichtige Größe.

5. Dosisbegriffe

Die wohl eindeutigsten Dosisdefinitionen dürften im DIN-Blatt 6809 (Entwurf) enthalten sein. Sie sollen hier unverändert übernommen werden [2].

a) Ionendosis

Die Ionendosis J einer ionisierenden Strahlung ist der Grenzwert des Quotienten aus der elektrischen Ladung ΔQ eines Vorzeichens der Ionenpaare, die in einem Luftelement von der Masse $\Delta m = \varrho_L \cdot \Delta v$ (Δv Volumen; ϱ_L Dichte der Luft) durch die Strahlung unmittelbar oder mittelbar erzeugt werden, und der Masse Δm :

$$J = \frac{dQ}{dm} = \frac{1}{\varrho_L} \frac{dQ}{dv} \tag{5}$$

Die Standard-Ionendosis J_{st} ist die Ionendosis einer Röntgen- oder Gammastrahlung bei Elektronengleichgewicht:

$$J_{st} = \left(\frac{dQ}{dm}\right)_{st} = \frac{1}{\varrho_L} \left(\frac{dQ}{dv}\right)_{st} \tag{6}$$

Elektronengleichgewicht in einem Material bedeutet, daß die in dem Volumenelement Δv von allen es durchsetzenden Sekundärelektronen abgegebene Energie gleich derjenigen Energie ist, welche die in Δv durch die Röntgen- oder Gammastrahlung gebildeten Sekundärelektronen auf ihrem gesamten Wege in dem Material abgeben.

Die Einheit der Ionendosis ist das "Röntgen" (r)

$$1 r = 2.58 \cdot 10^{-4} \frac{\text{Coulomb (C)}}{\text{Kilogramm (kg)}}$$

$$= \frac{1}{1,293} \frac{\text{elektrostatische Ladungseinheiten (esE)}}{\text{Milligramm (mg)}}$$
(7)

b) Ionendosisleistung

Die Ionendosisleistung j ist der Differentialquotient der Ionendosis nach der Zeit

$$j = \frac{dJ}{dt} \tag{8}$$

Die Standard-Ionendosisleistung j_{st} ist die Ionendosisleistung einer Röntgen- oder Gammastrahlung bei Elektronengleichgewicht:

$$\dot{j}_{st} = \frac{dJ_{st}}{dt} \tag{9}$$

Die Einheit der Ionendosisleistung ist das Röntgen/Sekunde (r/s)

$$1 \ r/s = 2.58 \cdot 10^{-4} \frac{\text{Ampere}}{\text{Kilogramm (kg)}} \tag{10}$$

Tab. 2. Beziehungen zwischen gebräuchlichen Vielfachen der Einheit der Ionendosisleistung [2]

Dosis- leistung	mr/h	μr/s	r/h	r/min	r/s
1 mr/h	1	0,28	0,001	0,000017	0,00000028
$1 \mu r/s$	3,6	1	0,0036	0,00006	0,000001
l r/h	1000	280	1	0,017	0,00028
1 r/min	60000	17000	60	1	0,017
1 r/s	3600000	1000000	3600	60	1

c) Energiedosis

Die Energiedosis K einer ionisierenden Strahlung ist der Grenzwert des Quotienten aus der Energie ΔW , die einem Körperelement von der Masse $\Delta m = \varrho \Delta v$ (Δv Volumen; ϱ Dichte des Mediums) durch die Strahlung unmittelbar oder mittelbar zugeführt wird, und der Masse Δm :

$$K = \frac{dW}{dm} = \frac{1}{\rho} \frac{dW}{dv} \tag{11}$$

Die Einheit der Energiedosis ist das "Rad" (rad)

$$1 \text{ rad} = 100 \frac{\text{erg}}{\text{Gramm}} \frac{\text{(erg)}}{\text{g}} = 10^{-2} \frac{\text{Joule}}{\text{Kilogramm}} \left(\frac{\text{J}}{\text{kg}}\right)$$
 (12)

d) Energiedosisleistung

Die Energiedosisleistung k ist der Differentialquotient der Energiedosis nach der Zeit

$$k = \frac{dK}{dt} \tag{13}$$

Die Einheit der Energiedosisleistung ist das Rad/Sekunde $\left(\frac{\text{rad}}{\text{s}}\right)$

$$1\frac{\text{rad}}{\text{s}} = 100\frac{\text{Gramm} \cdot \text{Sekunde}}{\text{erg}} \left(\frac{\text{erg}}{\text{g} \cdot \text{s}} \right) = 10^{-2} \frac{\text{Watt}}{\text{Kilogramm}} \left(\frac{\text{W}}{\text{kg}} \right) \tag{14}$$

Für die Beziehungen zwischen gebräuchlichen Vielfachen der Einheit der Energiedosisleistung gelten dieselben Zahlenwerte wie in Tabelle 2.

e) Dosiskonstante von Gammastrahlern

Die Dosiskonstante $I\gamma$ eines Gammastrahlers ist das Produkt aus der Standard-Ionendosisleistung j_{st} , welche die Strahlung ohne Berücksichtigung der Schwächung

[3]

in Luft in einem gegen die linearen Abmessungen des Strahlers großen Abstande b vom Strahler bewirkt, und dem Quadrat des Abstandes b, dividiert durch die Aktivität $A\gamma$ des Strahlers:

$$I\gamma = \frac{j_{st}b^2}{A\gamma} \tag{15}$$

Die Dosiskonstante wird für ungefilterte Strahlung angegeben, mit Ausnahme des Radiums, dessen Dosiskonstante für 0,5 mm Platinfilter gilt.

Die Einheit der Dosiskonstanten ist das

$$\frac{\text{Röntgen}}{\text{Stunde}} : \frac{\text{Quadratmeter}}{\text{Curie}} \left(\frac{r \, m^2}{h \, C}\right).$$

$$1 \, \frac{r \, m^2}{h \, C} = 1,94 \cdot 10^{-18} \, \frac{\text{Ampere \cdot Quadratmeter \cdot Sekunde}}{\text{Kilogramm}} \left(\frac{A \cdot m^2 \cdot s}{\text{kg}}\right)$$

$$= 1,94 \cdot 10^{-18} \, \frac{\text{Coulomb \cdot Quadratmeter}}{\text{Kilogramm}} \left(\frac{C \cdot m^2}{\text{kg}}\right) \tag{16}$$

Tab. 3. Dosiskonstanten verschiedener Radioisotope

Isotop	$I\gamma\left(\frac{r\cdot m^2}{h\cdot C}\right)$	Isotop	$I_{\gamma}\left(-rac{r\cdot m^2}{h\cdot C} ight)$
$ m Na^{22}$	1,32	$Z_{ m n}^{65}$	0,3
Na^{24}	1,91	As^{76}	0,22
$\mathbf{K^{42}}$	0,195	Br ⁸²	1,51
Se ⁴⁶	1,14	Sb124	0,79
V48	1,63	I ₁₃₁	0,265
$\mathbf{Mn^{52}}$	1,95	Cs ¹³⁷	0,29
$\mathbf{Mn^{54}}$	0,49	Au ¹⁹⁸	0,24
$\mathbf{Fe^{69}}$	0,655	Ra in 0,25 mm Pt	0,88
Co ⁵⁸	0,57	Rain 0,5 mm Pt	0,84
Co ⁶⁰	1,35	Ra in 2,5 mm Pt	0,63
Cu^{64}	0,12	Ra in 5,0 mm Pt	0,46

f) Gewebsdosis

Wenn in einem Organ der Masse M der Anteil p einer Aktivitätsmenge A gespeichert wird, so enthält das Organ

$$U = p \cdot A \tag{17}$$

Aktivitätseinheiten. Diese werden je nach Art des Isotops mit einer gewissen Geschwindigkeit aus dem Organ verschwinden. Ein Maß für die Geschwindigkeit ist die "Effektive Halbwertzeit"

$$\mathbf{T_e} = \frac{\text{Biologische Halbwertzeit} \times \text{Physikalische Halbwertzeit}}{\text{Biologische Halbwertzeit} + \text{Physikalische Halbwertzeit}} \tag{18}$$

Die integrale Gewebsdosis ist dann [4]

$$D_s = 1,60 \cdot 10^4 \frac{U \cdot T_e}{M} \quad [rad] \tag{19}$$

Gleichung (19) gilt vorzugsweise für Beta-Strahler. Bei komplexen Emissionsspektren muß die Gamma-Komponente prozentual berücksichtigt werden.

g) Erläuterung zur Standard-Ionendosis

Die Standard-Ionendosis stellt einen Sonderfall der allgemein gültigen Ionendosis dar, da sie auf Röntgen- und Gammastrahlen praktisch bis zu einer maximalen Energie von etwa 3 MeV beschränkt ist und die Bedingungen des Elektronengleichgewichts erfüllen muß. Sie gibt den Anschluß an die auf der bisherigen Definition des Röntgen beruhenden Messungen und bildet die Grundlage der Dosimetrie im konventionellen Bereich der Röntgenstrahlen, für den sich bezüglich der Meßverfahren und der Anzeige der Meßinstrumente hierdurch also nichts ändert. Elektronengleichgewicht besteht z. B. innerhalb des Meßvolumens einer Ionisationskammer, wenn dieses Volumen allseitig von einer Luftschicht umgeben ist, deren Dicke größer als die maximale Reichweite R_{el} der Sekundärelektronen und wenn gleichzeitig $R_{el} \ll \frac{1}{\mu}$ ist (μ Schwächungskoeffizient der Wellenstrahlung) oder wenn das Meßvolumen von einer Schicht anderen Materials umgeben ist, für das diese beiden Bedingungen und die Voraussetzungen erfüllt sind, daß der Massenabsorptionskoeffizient der Wellenstrahlung und das Massenbremsvermögen der Elektronen in diesem Material annähernd gleich denen in Luft sind. Ein solches "luftäquivalentes" Material kann in der Dichte erheblich von Luft abweichen, dagegen nur wenig in der atomaren Zusammensetzung.

Bei ultraharten Röntgenstrahlen oberhalb 3 MeV ist die Bedingung $R_{el} \ll \frac{1}{\mu}$ nicht mehr erfüllt, außerdem geht mit steigender Quantenenergie die Richtungsisotropie der Sekundärstrahlung mehr und mehr verloren.

6. Praktische Daten

Tab. 4. Haupt-Gammalinien des Radiumzerfalls

Übergang	Gammaenergie MeV	Relativer Anteil
Radium	0,18	1,2
Radium B Radium C	0,241	11,5
	0,294	25,8
	0,350	45,0
Radium $C \longrightarrow Radium C'$	0,607	65,8
	0,766	6,5
	0,933	6,7
	1,120	20,6
	1,238	6,3
	1,379	6,4
	1,761	25,8
	2,198	7,4
		229,0

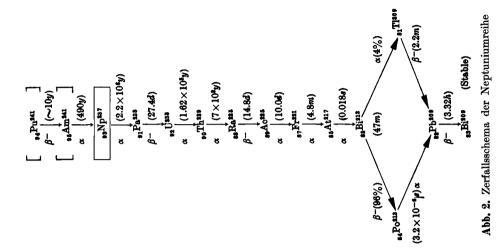
[5]

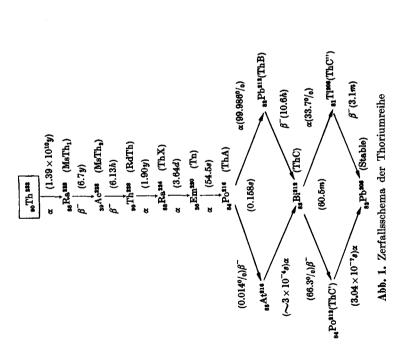
Tab. 5. Energieabsorption in erg pro Gramm pro r für verschiedene biologische Gewebe als Funktion der Gammaenergie [6]

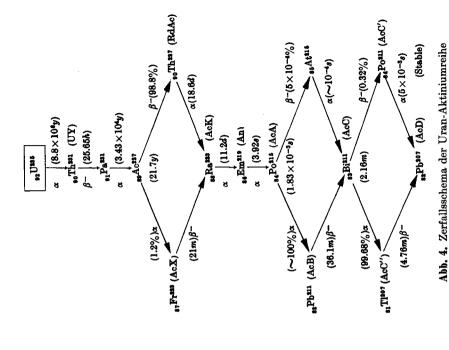
Photonenergie MeV	Knochen	Muskel- gewebe	Fett
0,01	480	87	47
0,02	475	87	47
0,05	395	88	57
0,1	170	92	86
0,2	95	93	97
0,5	84	93	98
1,0	84	93	98
2,0	84	92	98
5,0	88	91	94
10	93	90	90
20	99	89	83
50	108	87	77
100	108	85	73

Tab. 6. Absorbierte Strahlungsenergie in erg pro Gramm pro r

[7]


Quanten- energie	Üblicherweise als mittlere Härte emittiert von	Absorbierte Energie pro Gramm pro r [erg pro g pro r]		
[keV]	- Camerica Control	Muskel- gewebe	Fett- gewebe	Knochen
10	50 kV Röntgenröhre	87	46	490
50	140 kV Röntgenröhre	90	58	400
100	200 kV Röntgenröhre	93	85	170
200	500 kV Röntgenröhre	93	95	93
1000	Kobalt-60	93	95	85
10000	Betatron oder Linearbeschleuniger .	90	90	90


Anmerkung: Die angegebenen Zahlen sind nur in den sich im "Elektronengleichgewicht" befindenden Gewebegebieten gültig.


Tab. 7. Relative biologische Wirksamkeit von verschiedenen Strahlungsarten

[8]

Strahlungsart	R. B. W.
Röntgen- und Gammastrahlung der Energie 0,1—3 MeV Betastrahlen und schnelle Elektronen Protonen Schnelle Neutronen der Energie < 20 MeV Alpha-Teilchen	1 1 10 10 20

: 11 TI TI (RAE") ► 82 Pb 214 (RaB) a(10-4 to 10-5%) \$ 99.85% (1.14m) , TIm (RaC") z(99.96°/s) $\beta^{-}(26.8m)$ $\beta^-(4.23m)$ $\alpha(0.04^{6}/_{0})$ $\beta^-(1.32m)$ $\beta^{-}(24.5d)$ $(4.498 \times 10^{\circ}y)$ $(2.67 \times 10^6 y)$ $_{90}\mathrm{Th}^{230}$ (Io) α | (8.3×10⁴y) Pb206 (Stable) s₁Pb²¹⁰ (RaD) β | (22y) 10 Th 234 (UX1) e₆Em⁴²² (Rn) α | (3.825d) 63Bi214 (RaC) (1620y)Po²™ (RaA) 0.12% (1.14m)Isom, Trans. 10224 (UII) Sa Upa (3.05m)(19.7m)(4.85d)(0.04°/6/9-) $(1.47 \times 10^{-4}s)\alpha$ $(138.3d)_{\alpha}$ (~100%)B (1.5-2.0s)a_g(%96.66) $(6.7h)\beta^{-}$ **Po*** (RaF) Ba Polts (RaC')

Abb. 3. Zerfallsschema der Uran-Radiumreihe

Tab. 8. Radioaktive Isotope, die aus Harwell bezogen werden können

Art des	Symbol des rad.	Halbwerts-	Strahlen-	eta-Energie i	n MeV	γ -Energie
chemischen Elements	Isotops	zeit T	art	$E_{ m max}$	$E_{ m mit.}$	in MeV
Antimon	$_{51}^{51}\mathrm{Sb^{122}}_{51}$	2,8 d 60 d	β ⁻ , γ β ⁻ , γ	1,94; 1,36 2,37 (21); 1,62 (8); 100 (9); 0,65 (44); 0,48 (18);	_	0,568; 1,708; 0,732; 0,654; 0,608; 2,04
	$_{51}{ m Sb^{125}}$	2,7 y	β-, γ	0,616 (18); 0,299 (49); 0,128 (33)		(schwach); $0,646$ usw. $7 \gamma'$ s
Arsen	$_{33}\mathrm{As^{76}}$	26,8 h	β-, γ	3.04 (60); 2,49 (25);	1,18	1,75; 1,2; 0,55
	$_{33}\mathrm{As}^{77}$	40 h	β-	1,29 (15); 0,8	0,24	_
Barium	$_{56}{ m Ba^{131}}$	12 d	к, ү			1,2 (schwach); 0,5; 0,26;
Brom	$_{35}{ m Br}^{82}$	35,8 h	β-, γ	0,447; 0,323; 0,181;		1,321; 1,036 0,769; 0,652; 0,61; 0,55
Cadmium	$_{48}\mathrm{Cd^{115}}$	53 h	β-, γ	1,13; 0,6;	_	0,54; 0,5;
Caesium	$^{55}_{55}$ Cs $^{131}_{55}$ Cs 134	9,6 d 1,7 y	κ β ⁻ , γ	0,658 (75); 0,99 (25)	0,16	(0,145); 1,35 (schwach); 0,794; 0,602;
	$_{55}{ m Cs^{137}}$	30 у	$\beta^-, \gamma, \varkappa$	0,52 (92) 1,17 (8)		0,568 0,662
Calcium	$_{20}~{ m Ca^{45}}$	152 d	β-	0,254	0,09	<u>.</u>
Cer	$_{58}{ m Ce^{141}}$	30 d	β-, γ	0,66	_	0,21;
Chrom	$_{24}{ m Cr^{51}}$	26,5 d	κ, γ	_	0,0054	0,323; 0,237;
Eisen	${}^{26}_{26}\mathrm{Fe^{55}}_{26}$	5,0 y 45,1 d	β-, γ	0,46 (50); 0,26 (50);	0,0064 0,12	1,3; 1,1;

Tab. 8. Radioaktive Isotope, die aus Harwell bezogen werden können (Fortsetzung)

		1 /		U	•	3/ [-]
Art des chemischen	Symbol des rad.	Halbwerts-	Strahlen-	β -Energie in	MeV	γ-Energie
Elements	Isotops	zeit T	art	$E_{ m max}$	$E_{\rm mit.}$	in MeV
Europium	$_{63}{ m Eu^{152}}$	13 y	β-, γ	(1,575); 0,751 1,88	_	1,23 usw. 0,725; 0,163; 0,123;
	$_{63}{ m Eu^{154}}$	16 y	β-, γ	(1,6)	_	1,4 usw.
Gallium	₃₁ Ga ⁷²	14,1 h	β-, γ	3,17 (8); 2,57 (8); 1,74 (3); 15,4 (7); 1,0 (26); 0,74 (23); 0,56 (25)	0,46	2,5; 2,18; 1,81; 0,835; 0,691; 0,631; (1,05; 1,3; 1,47; 1,57)
Germanium	$_{32}\mathrm{Ge^{71}}$	11,4 d	κ, γ	-	_	0,32
Gold	₇₉ Au ¹⁹⁸	2,69 d	β-, γ	0,96	0,34	0,411
Hafnium	₇₂ Hf ¹⁸¹	46 d	β-, γ	0,405	0,2	0,471; 0,337; 0,134; 0,13
Holmium	$_{67} { m Ho^{166}}$	27 h	β-, γ	1,64	_	0,92; 0,081
Indium	49 ^{In114}	48 d	γ	_ -	_	0,192; 0,552; 0,722; 1,27
Jod	₅₃ J ¹³¹	8,1 d	β-, γ	0,605 (86); 0,25 (14)	0,17	0,637; 0,363; 0,282; 0,08
Iridium	77 Ir ¹⁹²	70 d	β-, γ	0,59	_	0,19 bis 0,615; 12 γ's
Kalium	$_{19}{ m K}^{42}$	12,4 h	β-, γ	3,58 (75); 2,07 (25)	1,40	1,51
Kobalt	$_{27}\mathrm{Co}^{60}$	5,3 y	β-, γ	0,308	0,099	1,17; 1,33;
Kohlenstoff	$_{6}\mathrm{C}^{14}$	~ 6000 y	β	0,05	0,155	_
Kupfer	$_{29}\mathrm{Cu^{64}}$	12,8 h	β-, +n κ	$eta^-:\ 0.571; \ eta:\ 0.657$	0,12	1,2 (schwach)

[9]

Tab. 8. Radioaktive Isotope, die aus Harwell bezogen werden können (Fortsetzung)

Art des	Symbol	Halbwerts-	Strahlen-	β -Energie in	MeV	γ-Energie
chemischen Elements	des rad. Isotops	zeit T	art	$E_{ m max}$	$E_{ m mit.}$	in MeV
Lanthan	₅₇ La ¹⁴⁰	40 h	β-, β	2,26 (10); 1,67 (20); 1,32 (70)	_	2,5 (sehr schwach); 1,62;0,82 0,49; 0,34; 0,093
Mangan	₂₅ Mn ⁵⁶	2,6 h	β-, γ	2,81 (50); 1,04 (30); 0,75 (20)	0,77	2,06 1,18; 0,822
Molybdän	$_{42}\mathrm{Mo^{99}}$	68 h	β-, γ	1,3		0,75; 0,24
Natrium	$_{11}{ m Na^{24}}$	15,1 h	β-, γ	1,39	0,54	2,76; 1,38
Osmium	$^{76}_{76}\mathrm{Os}^{191}_{76}\mathrm{Os}^{193}$	32 h 17 d	β-, γ β-, γ	1,15 0,15	_	1,58 0,13
Palladium	$_{46}{ m Pd^{109}}$	13 h	β-	1,1	0,35	_
Phosphor	$^{15}_{15}P^{32}_{15}P^{32}$	14,3 d	eta^- trägerfrei	1,69	0,685 —	
Platin	$_{78}{\rm Pt}^{197}$	18 h	β-	0,65		_
Polonium	$_{84}\mathrm{Po^{210}}$	138 d	α, γ	α: 5,298	_	0,8 (schwach)
Praseodym	59Pr ¹⁴² 59Pr ¹⁴³	19,3 h 13,8 d	β-, γ β-	2,52; 0,35 0,93	0,82	1,53;~(0,7
Quecksilber	$_{80}{ m Hg^{203}}$	43 ,5 d	β-, γ	0,208	0,11	0,279
Rhenium	$_{75}{ m Re^{186}}$	91 h	β-, γ	1,073	0,38	0,212; 0,138
	$_{75}{ m Re^{188}}$	18 h	β-, γ	2,15; 0,97	-	0,16—1,43
Rhodium	$_{25}{ m Rh^{105}}$	36 h	β-, γ	0,78	0,26	0,33
Rubidium	$_{37}\mathrm{Rb^{86}}$	19,5 d	β-, γ	1,822 (80); 0,716 (20)	0,63	1,081
Ruthenium	$_{44}^{44}\mathrm{Ru^{97}}_{44}\mathrm{Ru^{103}}$	2,8 d 42 d	κ, γ β ⁻ , γ	 0,68 (8); 0,15 (92)	_ _	0,22; 0,18 0,52
	$_{44}\mathrm{Ru^{105}}$	4 h	β-, γ	1,5	0,09	0,76
Samarium	$_{62}{ m Sm^{153}}$	50 h	β-, γ	1,23	_	0,102
Scandium	$_{21}{ m Se^{46}}$	85 d	β-, γ	1,49 (2); 0,36 (98)	0,13	0,89; 1,12

Tab. 8. Radioaktive Isotope, die aus Harwell bezogen werden können (Fortsetzung)

		1	1 1			
Art des chemischen	Symbol des rad.	Halbwerts-	Strahlen-	β-Energie in	MeV	γ-Energie
Elements	Isotops	zeit T	art	$E_{ m max}$	$E_{\mathrm{mit.}}$	in MeV
Schwefel	$^{16}^{\mathrm{S}^{35}}_{16}^{\mathrm{S}^{35}}$	87,1 d	β− trägerfrei	0,168	0,053	_
Selen	$_{34}\mathrm{Se}^{75}$	125 d	κ, γ	_	_	0,076—0,405
Silber	47Ag110	225 d	β-, γ	2,97 (5); 0,57; 0,19; 0,99	0,23	1,48; 0,9 0,66 usw.
ļ	47Ag111	7,6 d	β-	1,0; 0,24	0,26	_
Silicium	$_{14}\mathrm{Si}^{31}$	2,85 h	β-	1,65; 0,67	0,72	_
Strontium	$_{38}^{\mathrm{Sr}^{8}}$ $_{38}^{\mathrm{Sr}^{90}}$	53 h 28 y	β- β-	1,46 0,61	0,58	
Tantal	$_{73}{ m Ta^{182}}$	120 d	β-, γ	0,5	_	1,13; 1,22 (Komplex)
Technetium	Te^{97}	93 d	κ, γ	-	_	0,097
Tellur	$_{52}{ m Te^{127}}$	115 d 9,3 h	e ⁻ , β, γ	e ⁻ : 0,7	0,42	0,0855;
Thallium Wismut	$^{81}_{83} m Hi^{204}_{83} m Bi^{210}_{(RaE)}$	2,7 y 5 d	β- α, β-	$0,775$ $\alpha: 4,77;$ $\beta^-: 1,17$	0,28	
Wolfram	74W ¹⁸³ 74W ¹⁸⁷	76 d 24,1 h	β-, γ β-, γ	0,69; 0,48 1,33 (30); 0,63 (70)	0,13	0,1337 0,696; 0,618; 0,48; 0,078
Yttrium	$_{39}Y^{90}$	61 h	β-	2,2	0,97	
Zink	$_{30}\mathrm{Zn}^{65}$	250 d	β-, π, γ	ж, e ⁻ (99)	0,01	1,118 (46)
	$_{30}\mathrm{Zn}^{69}$	13,8 h 59 m	e-, γ, β	$eta : 0.32 \ (1) \ e^- \ 1.0$	0,31	0,44;—
Zinn	$_{50}{ m Sn^{113}}$	105 d	κ, e ⁻ , γ	ж, е ⁻	_	0,085
Zirkonium	$_{40}\mathrm{Zr}^{95}$	65 d	β-, γ	1,4 (2); 0,39 (98)		0,91; 0,7

			-	Ü	L -3
Isotop	Mittlere Beta-Energie MeV	Dosis in r pro μ C im Gramm Gewebe	Isotopenkonzentra- tion zur Abgabe von 0,1 rep/Tag in μ C/kg	Max. Beta- Reichweite im Wasser, in mm	Gewicht pro $\mu C \times 10^{-9}$ in g
6 ^{C14}	0,05	8,8×10 ⁶	32	0,24	1,8×10 ⁵
Na^{22}	0,225	1.8×10^{4}	7,1	2,1	197
$_{11}\mathrm{Na^{24}}$	0,540	29	5,2	6,4	0,113
$^{15}_{15}$ P ³²	0,695	870	2,4	8,0	3,6
$_{1c}S^{35}$	0,055	420	30	0,2	24
$_{19}$ K 42	1,395	63	2,1	19	0,167
Ca45	0,10	1340	17	0,8	62
21Sc46	1,117	870	14,3	1,0	30
$^{2}V^{48}$	0,175	245	9,7	2,8	5,9
$_{95}{ m Mn^{52}}$	0,085	45	20	2,2	2,6
₂₅ Mn ⁵⁴	0,0054	147	340		128
$_{\circ}\mathrm{Fe^{55}}$	0,0059	610	280	• • •	633
Fe ⁵⁹	0,120	477	13,9	1,5	21,3
₀,2Co ⁵⁸	0,035	22	480	1,5	29
-,Co ⁶⁰	0,099	$1,7 \times 10^4$	16,5	0,8	893
.₀Cu ⁶⁴	0,120	5,6	24,4	2,6	0,26
$_{30}$ Zn ⁶⁵	0,01	180	185	1,2	124
$_{20}$ As ⁷⁶	1,170	115	1,9	15,7	0,655
$_{2}$ Br 82	0,150	20	13,5	1,6	0,95
$_{\circ}\mathrm{Sr^{89}}$	0,57	2700	2,9	7	38
$_{3}$ Sr 90	0,22	$1,4 \times 10^4$	7	2,2	6200
$^{\circ}V^{90}$	0,90	200	2	11	18
-1Sb124	0,66	3500	2,4	12,3	57
I ¹³¹	0,205	145	8,3	2,2	8,1
79Au ¹⁹⁸	0,32	76	5,7	3,8	4,1

Tab. 10. Abfallcharakteristik für Natrium-24

Halbwertszeit = 15,1 Std.

min	0	20	40	60	80	100
Std		-				
0	• • •	0,985	0,969	0,954	0,940	0,925
2	0,911	0,897	0,884	0,870	0,856	0,843
4	0,830	0,818	0,805	0,792	0,780	0,768
6	0,756	0,744	0,733	0,722	0,711	0,700
8	0,689	0,678	0,668	0,658	0,648	0,638
10	0,628	0,619	0,609	0,600	0,590	0,581
12	0,572	0,563	0,555	0,546	0,538	0,529
14	0,521	0,513	0,505	0,497	0,490	0,482
16	0,475	0,468	0,461	0,454	0,447	0,440
18	0,433	0,427	0,420	0,414	0,407	0,401
20	0,395	0,389	0,383	0,377	0,371	0,366
22	0,360	0,355	0,349	0,344	0,339	0,333
24	0,328	0,323	0,318	0,313	0,308	0,303
26	0,299	0,295	0,290	0,286	0,281	0,276
28	0,272	0,268	0,264	0,260	0,254	0,252
30	0,248	0,244	0,240	0,237	0,233	0,229
32	0,225	0,222	0,218	0,215	0,212	0,208
34	0,205	0,202	0,199	0,196	0,193	0,190
36	0,188	0,185	0,182	0,179	0,176	0,173
38	0,171	0,168	0,166	0,164	0,162	0,159
40	0,157	0,155	0,152	0,149	0,147	0,144
42	0,142	0,140	0,138	0,135	0,133	0,131
44	0,129	0,127	0,125	0,123	0,121	0,120
46	0,118	0,116	0,114	0,113	0,111	0,109
48	0,107	0,105	0.103	0,102	0,100	0,099

Tab. 11. Abfallcharakteristik für Phosphor-32

1. Adiancha	ırakteristik für Phos	риог-а2	Halbwertsz	eit = 14,3 Ta
Std.	0	6	12	18
Tage				
0		0,988	0,976	0,964
1	0,952	0,941	0,929	0,918
2	0,907	0,896	0,885	0,875
3	0,864	0,854	0,843	0,833
4	0,823	0,813	0,804	0,794
5	0,784	0,775	0,765	0,756
6	0,747	0,738	0,729	0,720
7	0,712	0,703	0,695	0,686
8	0,678	0,670	0,662	0,654
9	0,646	0,638	0,630	0,623
10	0,615	0,608	0,601	0,593
11	0,586	0,579	0,572	0,565
12	0,558	0,552	0,545	0,539
13	0,532	0,526	0,519	0,513
14	0,507	0,501	0,495	0,489
15	0,483	0,477	0,471	0,466
16	0,460	0,454	0,449	0,444
17	0,438	0,433	0,428	0,423
18	0,417	0,412	0,407	0,402
19	0,398	0,393	0,388	0,383
20	0,379	0,374	0,370	0,365
21	0,361	0,356	0,352	0,348
$\frac{1}{22}$	0,344	0,340	0,335	0,331
23	0,327	0,323	0,320	0,316
24	0,312	0,308	0,304	0,301
25	0,297	0,294	0,290	0,287
26	0,283	0,280	0,276	0,273
27	0,270	0,266	0,263	0,260
28	0,257	0,254	0,251	0,248
29	0,245	0,242	0,239	0,236
3 0	0,233	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,227	,,,,,,,
31	0,222		0,217	
32	0,212		0,206	
33	0,201		0,197	
34	0,192		0,187	
35	0,183		0,178	
36	0,174		0,170	
37	0,166	}	0,162	}
38	0,158		0,154	
39	0,151		0,147	j
40	0,143		0,140	
41	0,137	-	0,133	
42	0,130		0,127	[
43	0,124		0,121	
44	0,118	1	0,115	

[11]

Tab. 12. Abfallcharakteristik für Schwefel-35

Halbwertszeit = 87,1 Tage

				= 67,1 Tage	
Tage	0,0	1,0	2,0	3,0	4,0
0		0,992	0,984	0,976	0,968
5	0,961	0,953	0,945	0,938	0,930
10	0,923	0,916	0,908	0,901	0,894
15	0,887	0,880	0,873	0,866	0,859
20	0,852	0,846	0,839	0,832	0,826
25	0,819	0,812	0,806	0,800	0,793
30	0,787	0,781	0,775	0,768	0,762
35	0,756	0,750	0,744	0,738	0,733
40	0,727	0,721	0,715	0,710	0,704
45	0,698	0,693	0,688	0,682	0,676
50	0,671	0,666	0,660	0,655	0,650
5 5	0,645	0,640	0,635	0,630	0,625
60	0,620	0,615	0,610	0,605	0,600
65	0,595	0,591	0,586	0,581	0,577
70	0,572	0,568	0,563	0,559	0,554
75	0,550	0,545	0,541	0,537	0,533
80	0,528	0,524	0,520	0,516	0,512
85	0,508	0,504	0,500	0,496	0,492
90	0,488	0,484	0,480	0,476	0,472
95	0,469	0,465	0,461	0,458	0,454
100	0,450	0,447	0,443	0,440	0,436
105	0,433	0,429	0,426	0,423	0,419
110	0,416	0,413	0,409	0,406	0,403
115	0,400	0,396	0,393	0,390	0,387
120	0,384	0,381	0,378	0,375	0,372
125	0,369	0,366	0,363	0,360	0,357
130	0,355	0,352	0,349	0,346	0,343
135	0,341	0,338	0,335	0,333	0,330
140	0,327	0,325	0,322	0,320	0,317
145	0,315	0,312	0,310	0,307	0,305
150	0,302	0,300	0,297	0.295	0,293
155	0,290	0,288	0,286	0,284	0,281
160	0,279	$0,\!277$	0,275	0,273	0,270
165	0,268	0,266	0,264	0,262	0,260
170	0,258	0,256	0,254	0,252	0,250
175	0,248	0,246	0,244	0,242	0,240
180	0,238	0,236	0,234	0,232	0,230
185	0,229	0,227	0,225	0,223	0,221
190	0,220	0,218	0,216	0,214	0,213
195	0,211	0,209	0,208	0,206	0,204
200	0,203	0,201	0,200	0,198	0,196
205	0,195	0,193	0,192	0,190	0,189
210	0,187	0,186	0,184	0,183	0,181
215	0,180	0,178	0,177	0,176	0,174
220	0,173	0,172	0,170	0,169	0,167

Tab. 13. Abfallcharakteristik für Kalium-42

[11] Halbwertszeit = 12,4 Std.

min	0	20	40	60	80	100
Std.						
0		0,981	0,963	0,945	0,928	0.911
2	0,894	0,877	0,861	0,845	0,829	0,814
${\color{red}2}\\{\color{red}4}$	0,799	0,784	0,770	0,756	0,742	0,728
6	0,715	0,701	0,688	0,676	0,663	0,651
8	0,639	0,627	0,615	0,604	0,593	0,582
10	0,571	0,561	0,550	0,540	0,530	0,520
12	0,511	0,501	0,492	0,483	0,474	0,465
14	0,457	0,448	0,440	0,432	0,424	0,416
16	0,408	0,401	0,393	0,386	0,379	0,372
18	0,365	0,358	0,352	0,345	0,339	0,333
20	0,326	0,320	0,314	0,309	0,303	0,297
22	0,292	0,286	0.281	0,276	0,271	0,266
24	0,261	0,256	0,251	0,247	0,242	0,238
26	0,233	0,229	0,225	0,220	0,216	0,212
28	0,208	0,205	0,201	0,197	0,193	0,190
30	0,186	0,183	0,180	0,176	0,173	0,170
32	0,167	0,164	0,160	0,158	0,155	0,152
34	0,149	0,146	0,143	0,141	0,138	0,136
36	0,133	0,131	0,128	0,126	0,124	0,121
38	0,119	0,117	0,115	0,112	0,110	0,108
40	0,106	0.104	0,102	0,101	0,099	0,097

Tab. 14. Abfallcharakteristik für Calcium-45

Halbwertszeit = 152 Tage

				manoweroszen = 132 Tag			
Tage	0	2	4	6	8		
0		0,991	0,982	0,973	0,964		
10	0,955	0,946	0,937	0,928	0,920		
20	0,912	0,904	0,896	0,888	0,879		
30	0,871	0,863	0,855	0,847	0,839		
40	0,832	0,824	0,816	0,809	0,802		
50	0,794	0,787	0,779	0,772	0,765		
60	0,758	0,751	0,744	0,737	0,731		
70	0,724	0,717	0,711	0,704	0,697		
80	0,691	0,685	0,679	0,672	0,666		
90	0,660	0,654	0,648	0,642	0,636		
100	0,630	0,624	0,619	0,613	0,608		
110	0,602	0,597	0,591	0,586	0,580		
120	0,575	0,570	0,565	0,559	0,554		
130	0,549	0,544	0,539	0,534	0,530		
140	0,525	0,521	0,516	0,512	0,507		
150	0,502	0,498	0,493	0,488	0,483		
160	0,478	0,474	0,469	0,465	0,460		
170	0,456	0,452	0,448	0,444	0,440		
180	0,436	0,432	0,428	0,424	0,420		
190	0,417	0,413	0,409	0,405	0,401		
200	0,398	0,394	0,390	0,387	0,384		
210	0,380	0,376	0,373	0,369	0,366		
220	0,363	0,360	0,356	0,353	0,349		
230	0,346	0,343	0,340	0,336	0,333		
240	0,330	0,327	0,324	0,321	0,318		
250	0,316	0,313	0,310	0,308	0,305		
260	0,302	0,300	0,297	0,294	0,291		
270	0,288	0,285	0,283	0,280	0,278		
280	0,275	0,273	0,271	0,268	0,265		
290	0,262	0,259	0,257	0,254	0,252		
300	0,250	0,248	0,245	0,243	0,241		
310	0,239	0,237	0,234	0,232	0,230		
320	0,228	0,226	0,224	0,222	0,220		
330	0,218	0,216	0,214	0,212	0,210		
340	0,208	0,206	0,205	0,203	0,201		
350	0,199	0,197	0,196	0,194	0,192		
360	0,190	0,188	0,187	0,185	0,183		
370	0,182	0,180	0,178	0,177	0,175		
380	0,173	0,171	0,170	0,168	0,167		
390	0,165	0,163	0,162	0,160	0,159		
400	0,158	0,157	0,155	0,153	0,152		
410	0,151	0,150	0,149	0,147	0,146		
420	0,144	0,142	0,140	0,139	0,138		
43 0	0,137	0,135	0,134	0,133	0,132		
440	0,131	0,130	0,129	0,128	0,127		

Tab. 15. Abfallcharakteristik für Caesium-137

Halbwertszeit = 33 Jahre

[11]

Jahre	0	1	2	3	4	
0		0,979	0,959	0,939	0,919	
5	0,900	0,881	0,863	0,845	0,827	
10	0,810	0,793	0,777	0,761	0,745	
15	0,730	0,715	0,700	0,685	0.671	
20	0,657	0,644	0,631	0,618	0,605	
25	0,592	0,580	0,568	0,556	0,544	
30	0,532	0,521	0,510	0,500	0,489	
35	0,479	0,469	0,460	0,450	0,44	
40	0,432	0,423	0,414	0,405	0,39	
45	0,389	0,381	0,373	0,365	0,35'	
50	0,350	0,343	0,336	0,329	0,325	
55	0.315	0,308	0,302	0,296	0,290	
60	0,284	0,278	0,273	0,268	0,26	
65	0,256	0,250	0,245	0,240	0,23	
70	0,230	0,225	0,221	0,216	0,21	
75	0,207	0,202	0,198	0,192	0,188	
80	0,186	0,182	0,179	0,175	0,17	
85	0,168	0,164	0,161	0,158	0,154	
90	0,151	0,148	0,145	0,142	0,13	
95	0,136	0,133	0,131	0,128	0,120	
100	0,123	0,120	0,117	0,115	0,112	
105	0,110	0,108	0,106	0,104	0,10	

Tab. 16. Abfallcharakteristik für Eisen-59

Halbwertszeit = 45,1 Tage

Std. Tage	0	24 1	48	72 3	96 4			
6-		<u> </u>						
0		0,985	0,970	0,955	0,940			
5	0,926	0,912	0,898	0,884	0,871			
10	0,858	0,845	0,832	0,819	0,806			
15	0,794	0,782	0,770	0,758	0,746			
20	0,734	0,723	0,712	0,702	0,691			
25	0,680	0,670	0,660	0,650	0,640			
30	0,630	0,621	0,612	0,602	0,593			
35	0,584	0,575	0,566	0,557	0,549			
40	0,540	0,532	0,524	0,516	0,508			
45	0,501	0,493	0,486	0,479	0,471			
50	0,464	0,457	0,450	0,443	0,436			
55	0,430	0,424	0,417	0,411	0,404			
60	0,398	0,392	0,386	0,380	0,375			
65	0,369	0,364	0,358	0,353	0,347			
70	0,342	0,336	0,331	0,325	0,320			
75	0,315	0,310	0,305	0,301	0,296			
80	0,292	0,287	0,283	0,279	0,275			
85	0,271	0,267	0,263	0,259	0,255			
90	0,251	0,247	0,243	0,239	0,236			
95	0,232	0,229	0,225	0,222	0,218			
100	0,215	0,211	0,208	0,205	0,202			
105	0,199	0,196	0,193	0,190	0,187			
110	0,184	0,181	0,179	0,176	0,173			
115	0,170	0,168	0,165	0,163	0,160			
120	0,158	0,155	0,153	0,151	0,149			
125	0,146	0,144	0,142	0,140	0,138			
130	0,136	0,134	0,132	0,130	0,128			
135	0,126	0,124	0,122	0,120	0,118			
140	0,117	0,115	0,113	0,111	0,110			
145	0,108	0,106	0,104	0,103	0,101			

Tab. 17. Abfallcharakteristik für Kobalt-60

Halbwertszeit = 5.3 Jahre

				Halbwertszeit = 5,3 Jahre	
Tage	0	40	80	120	160
0	• • •	0,985	0,971	0,957	0,944
200	0,930	0,917	0,904	0,891	0,879
400	0,866	0,854	0,842	0,830	0,818
600	0,806	0,795	0,783	0,772	0,761
800	0,750	0,740	0,729	0,719	0,708
1000	0,698	0,688	0,679	0,669	0,659
1200	0,650	0,641	0,632	0,623	0,614
1400	0,605	0,596	0,588	0,580	0,571
1600	0,563	0,555	0,547	0,539	0,532
1800	0,524	0,517	0,509	0,502	0,495
2000	0,488	0,481	0,474	0,467	0,461
2200	0,454	0,448	0,441	0,435	0,429
2400	0,423	0,417	0,411	0,405	0,399
2600	0,393	0,388	0,382	0,377	0,372
2800	0,366	0,361	0,356	0,351	0,346
3000	0,341	0,336	0,331	0,327	0,322
3200	0,317	0,313	0,308	0,304	0,300
3400	0,295	0,291	0,287	0,283	0,279
3600	0,275	0,271	0,267	0,263	0,259
3800	0,256	0,252	0,249	0,245	0,242
4000	0,238	0,235	0,231	0,228	0,225
4200	0,222	0,218	0,215	0,212	0,209
4400	0,206	0,203	0,200	0,198	0,195
4600	0,192	0,189	0,187	0,184	0,181
4800	0,179	0,176	0,174	0,171	0,169.
5000	0,166	0,164	0,162	0,159	0,157
5200	0,155	0,153	0,150	0,148	0,146
5400	0,144	0,142	0,140	0,138	0,136
5600	0,134	0,132	0,130	0,128	0,127
5800	0,125	0,123	0,121	0,119	0,118
6000	0,116	0,114	0,113	0,111	0,110
6200	0,108	0,106	0,105	0,103	0,102
6400	0,100	0,099	0,097	0,096	0,094

[11]

Tab. 18. Abfallcharakteristik für Kupfer-64

8. Abfallcharakteristik für Kupfer-64			Halbwertszei	t = 12,8 Std
min.	0	15	30	45
Std.				
0		0,986	0,973	0,960
ì	0,947	0,934	0,922	0,909
$ar{2}$	0,897	0,885	0,873	0,861
3	0,850	0,838	0,827	0,816
4	0,805	0,794	0,783	0,773
5	0,762	0,752	0,742	0,732
6	0,722	0,712	0,703	0,693
7	0,684	0,675	0,666	0,657
8	0,648	0,639	0,631	0,622
9	0,614	0,605	0,597	0,589
10	0,581	0,574	0,566	0,558
11	0,551	0,543	0,536	0,538
12	0,522	0,515	0,508	0,523
13	0,322	0,487	0,481	0,301
14	0,468	0,462	0,456	0,414
15	0,443	0,437	0,431	0,449
16	0,420	0,414	0,409	0,420
17	0,398		0,387	0,382
18	0,377	0,392	1	0,362
19	0,357	0,372	$0,367 \\ 0,347$	0,302
20	0,338	0,352		0,345
21	1	0,334	0,329	
21 22	0,320 0,303	0,316	0,312 0,295	$0,307 \\ 0,291$
23		0,299 0,28 3		
23 24	0,287 0,272		0,280	$0,276 \\ 0,261$
2 4 25	0,272	0,268	0,265	0,261 $0,247$
26 26	0,244	0,254	0,251	0,247
20 27	,	0,241	0,238	0,234 0,222
28	0,231 0,219	$0,228 \\ 0,216$	0,225 0,213	0,222
28 29	0,219	,	-	0,210
30	1	0,205	0,202	
30 31	0,197	0,194	0,191	0,189
32	0,186	0,184	0,181	0,179
32 33	0,176	0,174	0,172	0,169
33 34	0,167	0,165	0,162	0,160
3 4 35	0,158	0,156	0,154	0,152
36	0,150	0,148	0,146	0,144
	0,142	0,140	0,138	0,136
37	0,134	0,133	0,131	0,129
38 39	0,127	0,126	0,124	0,122
	0,121	0,119	0,117	0,116
40	0,114	0,113	0,111	0,110
41 42	0,108	0,107	0,105	0,104

Tab. 19. Abfallcharakteristik für Zink-65

Halbwertszeit = 250 Tage

				Halbwertszeit = 250 Tage	
Tage	0	4	8	12	16
0	•••	0,989	0,978	0,967	0,956
20	0,946	0,935	0,925	0,915	0,905
40	0,895	0,885	0,875	0,865	0,856
60	0,846	0,837	0,828	0,819	0,810
80	0,801	0,792	0,783	0,774	0,766
100	0,757	0,749	0,741	0,733	0,725
120	0,717	0,709	0,701	0,693	0,685
140	0,678	0,670	0,663	0,656	0,648
160	0,641	0,634	0,627	0,620	0,613
180	0,607	0,600	0,593	0,587	0,580
200	0,574	0,568	0,561	0,555	0,549
220	0,543	0,537	0,531	0,525	0,519
240	0,514	0,508	0,502	0,497	0,491
260	0,486	0,481	0,475	0,470	0,465
280	0,460	0,455	0,450	0,445	0,440
300	0,435	0,430	0,425	0,421	0,416
320	0,411	0,407	0,402	0,398	0,393
340	0,389	0,385	0,381	0,376	0,372
360	0,368	0,364	0,360	0,356	0,352
380	0,348	0,344	0,341	0,337	0,333
400	0,329	0,326	0,322	0,319	0,315
420	0,312	0,308	0,305	0,301	0,298
440	0,295	0,292	0,288	0,285	0,282
460	0,279	0,276	0,273	0,270	0,267
480	0,264	0,261	0,258	0,255	0,252
500	0,250	0,247	0,244	0,241	0,239
520	0,236	0,233	0,231	0,228	0,226
54 0	0,223	0,221	0,218	0,216	0,214
560	0,211	0,209	0,207	0,204	0,202
580	0,200	0,198	0,195	0,193	0,191
600	0,189	0,187	0,185	0,183	0,181
620	0,179	0,177	0,175	0,173	0,171
640	0,169	0,167	0,165	0,164	0,162
660	0,160	0,158	0,156	0,155	0,153
680	0,151	0,150	0,148	0,146	0,145
700	0,143	0,142	0,140	0,138	0,137
720	0,135	0,134	0,132	0,131	0,130
740	0,128	0,127	0,125	0,124	0,122
760	0,121	0,120	0,118	0,117	0,116
780	0,115	0,113	0,112	0,111	0,110
800			·	-,	
000	0,108	0,107	0,106	0,105	0,104

[11]