Seiichi Suzuki
The Meters of Old Norse Eddic Poetry

Ergänzungsbände zum Reallexikon der Germanischen Altertumskunde

Herausgegeben von Heinrich Beck • Sebastian Brather • Dieter Geuenich Wilhelm Heizmann • Steffen Patzold • Heiko Steuer

Band 86

Seiichi Suzuki The Meters of Old Norse Eddic Poetry

Common Germanic Inheritance and North Germanic Innovation

ISSN 1866-7678
ISBN 978-3-11-033500-2
e-ISBN 978-3-11-033677-1

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.
© 2014 Walter de Gruyter GmbH, Berlin/Boston
Satz: Dörlemann Satz GmbH \& Co. KG, Lemförde
Druck und Bindung: Hubert \& Co. GmbH \& Co. KG, Göttingen
© Gedruckt auf säurefreiem Papier
Printed in Germany

To Hugo Gering (1847-1925) and Eduard Sievers (1850-1932)

Preface

This book is a formal and functional study of the three distinct meters of Old Norse eddic poetry, fornyrðislag ‘old meter’, málaháttr ‘speech meter’, and ljóðaháttr ‘song meter', which constitute the North Germanic tradition of Old Germanic alliterative meter. Drawing on my monographs on the West Germanic metrical traditions (Suzuki 1996, 2004), and building on my earlier research on the Norse meters (Suzuki 2008a, 2009, 2010a, 2010b, 2011a, 2011b, forthcoming), I will provide a systematic account of these archaic Old Norse meters, both synchronic and diachronic, and from a comparative Germanic perspective; particularly concerned with Norse innovations in metrical practice, I will be exploring how and why the three distinct Old Norse meters were shaped in West Scandinavia through divergent reorganization of the Common Germanic metrical system. The book will constitute the first comprehensive work on the meters of Old Norse eddic poetry in a single coherent framework; with thorough data presentation, detailed philological analysis, and sophisticated linguistic explanation, the book will be of enormous interest to Old Germanic philologists, historical linguists, literary scholars, medievalists, as well as metrists of all persuasions.

A strong methodological advantage of this work, the one that would certainly count as a unique feature in Old Germanic metrical scholarship in general, is the extensive use of inferential statistical techniques for giving empirical support to specific analyses and claims being adduced. Another strength of the proposed work is a cognitive dimension, especially a (re)construction of a prototype-based model of the metrical system and its overall characterization as an integral part of the poetic knowledge that governed eddic poets' verse-making technique in general.

It may be useful at this point to contextualize the present work in the long and rich scholarly tradition of Old Germanic metrical studies. The conceptual framework of this book is largely founded on Sievers's (1893) monumental work on Old Germanic alliterative meters, which was applied to the eddic meters most substantively by Gering (1902, 1924, 1926). Among the manifold contributions that Sievers made to Old Germanic metrics, the notion of metrical positions (Glieder) features most prominently. Particularly in relation to a wide-ranging numerical variation of unstressed syllables occurring in a verse, this abstract notion successfully reduces a rich variety of attested verses to a limited set of five basic verse types, thereby leading to a host of generalizations on verse structure that are otherwise unattainable. Without access to this flexible and abstract unit which is partly coterminous with, and partly more extensive than, the syllable, Pipping (1903, 1933, 1935, 1937), for example, missed insight into the organization of Old Germanic verse, despite the admirably meticulous investigations that he conducted in terms of syllable concatenations.

And yet Sievers himself did not explore in his own theory the inherent variability of the drop, the weak position, to the fullest extent possible, and accordingly failed to present insightful accounts and principled explanations in no small measure. Equipped with this key notion of metrical positions as an indispensable ingredient
of the theoretical framework, I will vigorously address the varying manners in which these underlying positions are aligned to linguistic material in given metrical contexts, and their arrangement and organization in the system on the syntagmatic and paradigmatic axes. Of further importance, among the configuring metrical positions constitutive of a verse, drops (weak positions) count as no less significant than lifts (strong positions) in versification; in this respect, I do not concur with Árnason (2006: 158-165), for example, who abstracts away from drops in exploring overarching metrical organization in the eddic and Old Germanic meters.

For a further orientation, I may devise an array of parameters for an overall characterization of the previous scholarship: (1) the treatment of rhythm; (2) the meter's relative autonomy from and reducibility to language; (3) the corpus size. The first parameter bears on how rhythm is conceptualized, more specifically, whether or not metrists are concerned with exploring ways in which given verses are recited in temporal terms. Since my research program does not share this set of problematics which is after all a matter of performance or actualization, as opposed to underlying mental representation or knowledge - metrists such as Heusler (1890, 1956), Boer (1916), Sievers (1923), and Cook (1959), to name just a few notables, will not figure conspicuously in this book, unless they are found to be incidentally relevant to my primary concerns with underlying metrical structure and its alignment to language material in the abstract.

The second parameter relates to the status of the meter vis-à-vis language, or in other words how we conceptualize the meter in relation to linguistic structure. While no one will deny that a poetic meter is a derivative of a language, metrists may differ largely in the extent to which they hold the metrical organization to be reducible to its linguistic basis, and also in which linguistic components they focus on as a significant interface with the meter. Thus, Russom (1998) constructs a word-foot theory of Old Germanic meters, in which the foot, the immediate constituent of the verse according to his theorizing, is a projection of word forms that are available in the lexicon. By contrast, Wenck (1905), Kuhn (1933), and, most recently, Gade (2002), attach paramount importance to syntactic organization or arrangement of lexico-grammatical items for versification. My view on the relative reducibility of meter to language is less radical: as should be clear from my earlier works on the West Germanic metrical traditions (Suzuki 1996, 2004), I grant relatively large autonomy to a meter: while partly reducible to language structure, the meter constitutes a system of its own, organized as it is on its own relatively independent terms. I accordingly assume that a meter may be subject to restructuring, partly induced externally by linguistic change, and partly motivated internally by purely metrical interests with or without linguistic mediation.

On the third parameter of corpus size, inasmuch as the three eddic meters are investigated on the basis of all relevant poems, and treated in a unified framework in a single volume, the comprehensiveness of the dataset covered is unparalleled in previous works. With a strict reference to fornyrðislag, the meter that has been most intensively researched among the three, however, we may provide a more refined
overview on previous scholarship. Gering (1924) examined the entire corpus, as did Pipping (1903) except for Reginsmál and Fáfnismál, whereas Sievers (1885), Boer (1916), Ent (1924), and Cook (1959) dealt with small selections of eddic poetry. In between, Russom (1998) focused on the poems of native content, the group of poems that Kuhn (1933) delimited on linguistic as well as metrical grounds (see section 1.2 below) - accounting for about half of the whole corpus. Despite the maximal corpus size treated, however, Gering presented the results according to individual poems, and thus failed to provide an overall account of fornyrðislag in its entirety. In this light, Pipping comes closest to the present work in regard to the scope of generalizations targeted as well as the corpus size examined.

This book consists of three parts, which are devoted to the three distinct meters of eddic poetry, fornyrðislag, málaháttr, and ljóðaháttr, respectively. The introduction (chapter 1) presents the corpus of each meter with remarks on their textual and philological bases, provides an overview of their metrical structure, and discusses the basics of statistical techniques with exemplifications of metrical analysis. Drawing on my previous books on Beowulf and the Heliand, the grounding hypothesis is submitted and defended, whereby the meter is characterized as a prototype-based cognitive system of gradient organization.

Part I: Fornyrðislag comprises seven chapters. Governed by the principle of four metrical positions per verse with a strictness approximating to Beowulf, but organized in distinct fashion, fornyrðislag is a North Germanic development in its most archaic form of Old Germanic alliterative meter. In chapter 2, which is concerned with overall verse structure, I identify verse types and their major realization variants. By examining the two primary parameters for identification, namely, the distinction between the a-verse and the b-verse (the first and the second half of the line), and that of single and double alliteration in the a-verse, and by performing statistical analysis such as Fisher's exact test as appropriate, I reduce the whole variety of verses found in the corpus to the underlying system of verse types (types A1, A2, A3, B, C, D, D*, and E), determine the range of variation each verse type displays in realization as prototype effects, and establish the scalar relation among the variants. Particular attention will be drawn to the emergence of new variants out of inherited types and the consequential reorganization of the traditional system of verse types. Chapters 3 through 6 treat particular units within the verse and their parametric variability. Chapter 3 deals with anacrusis and catalexis - addition and subtraction of a drop - which constitute the two major sources of variation of the drop in fornyrðislag. Despite superficial appearances to the contrary, anacrusis is shown to be still regulated competently through creative reconstitution by Norse poets, rather than being left unattended beyond control as a relic of earlier metrical practice. Catalexis, on the other hand, can be characterized as having the verse-final drop unrealized on the surface but retaining the position intact at the underlying level. Chapter 4 addresses resolution and suspension of resolution, the major sources of variation of the lift. After examining these two processes in every conceivable context, I propose a thesis, whereby, partly
influenced by the West Germanic tradition, and no less importantly implementing creative reorganization of native resources, the Norse poets expanded the scope of suspension of resolution and made extensive use of short stressed syllables as lifts on their own. Chapter 5 discusses the verse-ending unit, the cadence. In contrast to the West Germanic tradition, the cadence / x plays an increasingly important role in organizing the verse. Comparative analysis shows that the cadence is being shaped as a standard verse-ending unit in fornyrðislag: a number of metrical changes unique to the Norse meter can be explained in a unitary way as consequences of the emergence of the cadence as a significant metrical entity. In chapter 6, I present a comprehensive account of alliteration - a repetition of initial consonants of the metrically stressed syllables - as regards the distinction between single and double alliteration and varying ways of implementation according to verse types and lexical properties of lifted words. Chapter 7 is concerned with the stanza, the highest metrical unit in the Norse meter, and unique to the Norse tradition. It is demonstrated that particular verse types and their realization variants are favored or avoided in specific locations in the stanza. Of paramount importance is the stanza-initial verse, which is articulated most densely in terms of associations - positive or negative - with specific verse forms.

Part II: Málaháttr consists of four chapters, each devoted to a specific poem that is thought to have been composed in this meter or some transient form between fornyrðislag and málaháttr (i.e., fornyrðislag/málaháttr). Málaháttr is distinguished from fornyrðislag by the expansion of verse structure whereby a drop is added either before the verse-initial lift or after the verse-initial position. To put it in formal terms, the earlier four-position principle is displaced by the five-position counterpart. Chapter 8 deals with Atlamál in grœenlenzco, the single extant piece composed in málaháttr in its prototypical form. The following three chapters - chapters 9 through 11 - in turn are concerned with Atlaqviða in grœenlenzca, Hamðismál, and Hárbarðzlióð, respectively. These three poems will be shown to display metrical similarities to málaháttr (and conversely to retain features of fornyrðislag) in their own different ways; these peripheral meters may thus be characterized as standing at midpoints between the two polar opposites, fornyrðislag and málaháttr, as they are still being reorganized into an expanded meter that is to take shape eventually as málaháttr (or the poets responsible for these works would have had an incompetent command of the new meter designed already).

Part III: Ljóðaháttr is composed of three chapters. This meter differs from the other two primarily at the following two levels of metrical organization, the verse and the stanza. In regard to verse structure, ljóðaháttr has at its disposal three distinct verses, the a-verse, the b -verse, and the c-verse. While the first two roughly correspond to those referred to by the same names in fornyrðislag and málaháttr, they are organized diversely from each other as well as from their correspondents in the other meters, in terms of verse classes and types, and their realizations, as will be demonstrated fully in chapter 12 . On the other hand, the c-verse is an entity unique to
ljóðaháttr: without being combined with another verse into a line as with the pairing of the a-verse and the b-verse, it constitutes a poetic line on its own and completes alliteration accordingly. At the same time, however, this verse/line unit is shorter than the line that consists of the a - and b -verses, and largely homogeneous at the end by virtue of the pervasive cadence /, realized as px or P . In chapter 13 , then, I will propose a new analysis of the c-verse, and explore its syntagmatic and paradigmatic organization, with particular reference to anacrusis, alliteration, resolution, and the cadence. The concatenation of these three distinct verses creates a half-stanza, which in turn is coupled to form a stanza. Chapter 14 will examine the organization of the stanza and explore how it bears on verse composition.

In the concluding chapter, I will present an evolutionary trajectory of the three eddic meters on Scandinavian soil that derives from common Germanic sources: Common Germanic meter > fornyrðislag > málaháttr > ljóðaháttr. The strict observance of the four-position principle, as evidenced among others by the rule-governed and restructured marginality of anacrusis and class D^{\star}, indicates that fornyrðislag stands closest to Beowulf and hence is the most archaic of the three Norse meters. Exposed to the influx of West Germanic heavy verses from the Continent, málaháttr and ljóðaháttr emerged by innovation in their own ways, whereby the native resources available to the traditional meter (fornyrðislag) were selectively and imaginatively reconfigured and reorganized to meet the respective metrical needs and challenges. Between the two innovative meters, however, ljóðaháttr presupposed the novel organization that was accomplished in málaháttr, such as the privileged association of anacrusis with the b-verse, the exclusive realization of the cadence / x as Px, and the concomitant disintegration of its earlier triple variants in realization.

The conclusion is then followed by two appendixes, the first one giving a comprehensive catalogue of verses according to verse types, and the second providing a few remarks on the origins of dróttkvætt, the major skaldic meter, in relation to the eddic counterparts, in particular ljóðaháttr. The index of scansion covers the whole body of eddic poetry including those verses that are excluded from our corpus.

I did some preliminary work on this project while I was a Fellow in 2006-07 at the Netherlands Institute for Advanced Study in the Humanities and Social Sciences (NIAS), where I was primarily engaged with Anglo-Saxon archaeology (Suzuki 2008b). I am thankful to the Institute, particularly to the then rector, Wim Blockmans, for generous support. I drafted chapters on málaháttr in Reykjavík, where I spent the summer of 2011 through a Snorri Sturluson Icelandic Fellowship awarded by Árni Magnússon Institute for Icelandic Studies. For the intellectual stimulus and the peaceful research environment that I had the privilege of enjoying enormously, I extend my deepest appreciation to my host professor, Úlfar Bragason, as well as to the Institute. My special thanks go to a group of Icelandic metrists and historical linguists at Reykjavík, notably Kristján Árnason, Pórhallur Eybórsson, and Haukur Pórgeirsson, for helpful advice and valuable suggestions. Thanks are also due to Bjarki M. Karlsson, who generously gave me access to Greinir skáldskapar, an annotated
corpus of Old Icelandic poetry, which proved to be an indispensable research tool for my research. While I was in Reykjavík, I was honored and privileged by a kind invitation to Bragarmál: An International Conference on Germanic and Icelandic Metrics, a meeting that Kristján Árnason and Pórhallur Eypórsson among others organized on my behalf. I wish to express my sincere gratitude to the organizers for their hospitality and the occasion that they created for presenting some of my ideas and receiving useful feedback. Among the colleague metrists attending the conference, Tonya Kim Dewey, Klaus Johan Myrvoll, and Haukur Pórgeirsson deserve particular thanks for their intriguing questions and challenging remarks.

At an advanced stage of my project, I was timely appointed a Fellow for 2012-13 (the Barbro Osher Pro Suecia Foundation Fellowship) at the National Humanities Center (NHC), Research Triangle Park, North Carolina. At the Center, I wrote up an entire manuscript, revised it extensively as appropriate, and copyedited it for publication with as much concentration, efficiency, and comfort as would hardly be available elsewhere, thanks to the thorough care and assistance offered by the supporting staff. For their professionalism and friendliness, I am profoundly grateful to all of the staff members, in particular to Geoffrey Harpham, director of the NHC, Karen Carroll, copyeditor, and Eliza Robertson, librarian.

I am deeply indebted to Thomas Cable, R. D. Fulk, and Mihhail Lotman, my fellow metrists, for their interest in my work and their help in making my fruitful stay at the NHC possible.

Kansai Gaidai University, my home institution, generously granted me a leave of absence on the above three occasions. For this much needed logistic support and care, I would like to extend my acknowledgments to Eiko Tanimoto, chair of the Board of Trustees of the University, and Yoshitaka Tanimoto, president of the University.

Heinrich Beck and Wilhelm Heizmann reviewed a manuscript and agreed to publish it in their series, Reallexikon der germanischen Altertumskunde: Ergänzungsbände, for which I am thankful and greatly honored.

Yasuko Suzuki, my wife and fellow linguist, saved me from numerous errors through her careful checking of a manuscript at a final stage of copyediting.

The following articles of mine were incorporated, in substantially changed form, into this book. For permission to use these materials for the present publication, I wish to thank the respective editors and/or publishers as indicated in brackets below:
"On the emergent trochaic cadence / x in Old Norse fornyrðislag meter: Statistical and comparative perspectives." Journal of Germanic Linguistics 20 (2008), 53-79. [Robert W. Murray; Cambridge University Press]
"Three-position verses in Old Norse fornyrðislag meter: Statistical and comparative perspectives." NOWELE 56 (2009), 3-40. [Hans Frede Nielsen; John Benjamins]
"Suspension of resolution in Old Norse fornyrðislag meter: Statistical and comparative perspectives." Interdisciplinary Journal for Germanic Linguistics and Semiotic Analysis 15 (2010), 1-51. [Irmengard Rauch]
"Anacrusis in eddic meters fornyrðislag and málaháttr: Reevaluation and reinvigoration." Beiträge zur Geschichte der deutschen Sprache und Literatur 132 (2010), 159-176. [De Gruyter]
"Catalexis, suspension of resolution, and the organization of the cadence in eddic meters." In Mihhail Lotman and Maria-Kristiina Lotman (eds.), Frontiers in comparative prosody, 373-400. Bern: Lang, 2011. [Peter Lang]
"Kaluza's law in the Old Saxon Heliand." Amsterdamer Beiträge zur älteren Germanistik 68 (2011), 27-52. [Arend Quak; Rodopi]
"Toward a formal account of type A3 in fornyrðislag." In Pórhallur Eypórsson, Kristján Árnason, Ragnar Ingi Aðalsteinsson, and Stephen Carey (eds.), Approaches to Germanic poetics. Reykjavik: Iceland University Press, forthcoming. [Pórhallur Eypórsson; Kristján Árnason]

Finally, with love, respect, and gratitude, I offer this book to the memorial tablet for my father, Keisaku Suzuki (1927-2011), who always looked forward to seeing my books in print.

Seiichi Suzuki
May 2013, Research Triangle Park, NC

Contents

Dedication - V
Preface - VII
Contents - XV
List of tables - XXIII
Abbreviations and symbols - XLIII
1 Introduction - 1
1.1 The corpus of metrical data - 1
1.2 An overview of verse structure: metrical positions, verse types, and alliteration - 9
1.3 The meter as a prototype-based system of gradient organization - $\mathbf{1 3}$
1.4 Statistical analysis - 15
Part I. Fornyrðislag - 19
Introduction - 21
2 Verse types and their realizations - 25
2.1 Type A1 (/ x/x) $\mathbf{2 5}$
2.1.1 The first drop - 25
2.1.2 The second drop - 31
2.1.3 \quad Marked variants of type A1 33
2.1.3.1 The configuration PS\#px 33
2.1.3.2 The configuration Px...px 36
2.1.3.3 The configurations Pxx\#Px and PXx\#Px 40
2.1.3.4 The configuration PxSx 42
2.2 Type A2 - 43
2.2.1 Type A2a $(/ \backslash / \mathrm{x})-43$
2.2.2 Type A2b (/ x/ and / \/ $)$ —— 51
2.3 Type A3 ($[/] \times / \times$) — 56
2.3.1 The configurations $x . . . P x, x . . . P S$, and $x . . . P P-56$
2.3.2 The configuration x ... $\mathrm{px}-73$
2.4 Type A1- (/ x / [x]) - 75
2.5 Type A2a- $(/ \backslash /[x])-\mathbf{8 0}$
2.6 Type A3- ([/] x / [x]) — 82
2.7 Type B (x/x/)-85
2.8 Type C (x / / x) — 91
2.8.1 The first and second drops 91
2.8.2 The second lift: the six major configurations $x . . . P P x, x . . . P p x, x . . . P S x, x .$.Psx, x...PXx, and $x . . . P x x-93$
2.8.3 The configuration x ...pXx -101
2.9
Type C- (x / / [x]) —— 105
2.10 Type D (/ / x x) —— 110
2.10.1 Major variants and the status of the heavy drop - 110
2.10.2 The configuration PPPx: apparent ambiguity of types A2a and D 114
2.10.3 The configuration PPpx: apparent ambiguity of type D and subtype A1s - 116
2.10.4 The configurations PpXx and PsXx 119
2.11 Type D- (/ / x [x]) —— $\mathbf{1 2 1}$
2.12 Type D* $(/ \times / \times x)-124$
2.12.1 Major variants - 124
2.12.2 The configurations Px...Ppx and Px...Psx: on resolving ambiguitybetween types A2b and D* -— 1302.12.3 The configuration Pxxx...P with single alliteration: on resolvingambiguity between types A1- and D* - 133
2.13 Type E (/ \x /) —— 134
2.13.1 Major variants 134
2.13.2 The configurations PSxpx and PXxpx: on resolving ambiguity betweentype E and subtype A1s - 141
2.13.3 The configuration PXx...P: on resolving ambiguity between types E andA1- - 145
2.13.4 The configuration PPx...P with double alliteration: on resolving ambiguity between types E and A1- - 148
2.13.5 The configuration PPx...P with single alliteration: on resolving ambiguity between types E, D, and A1- - $\mathbf{1 5 0}$
2.14
Two-position verses - 161
2.15 The system of verse types: a first approximation 162
3 Anacrusis and catalexis 165
3.1
Anacrusis - 1653.2Catalexis - 1853.3The organization of anacrusis and catalexis, and the system of versetypes reconsidered - 201

4 Resolution - 209
4.1 Resolution and the drop: Auflösung and Verschleifung - 210
4.2 Resolution according to position and verse type - $\mathbf{2 1 3}$
4.2.1 The first lift of type A1 - 213
4.2.2 The first lift of type B $-\mathbf{2 1 6}$
4.2.3 The first lift of type C $-\mathbf{2 1 7}$
4.2.4 The first lift of type $D-223$
4.2.5 The first lift of types $D^{*}, D / E$, and E-228
4.2.6 A synchronic account of the varied incidences of resolution according to verse type - 229
4.2.7 The second lift of types A1, A2a, and A2b - 235
4.2.8 The second lift of type B - $\mathbf{2 3 8}$
4.2.9 The second lift of types C, D, D*, and E - 239
4.3 Suspension of resolution - 241
4.3.1 The configuration $\mathrm{x} . . \mathrm{pXx}$: the first lift of type $\mathrm{C}-241$
4.3.2 The configuration PS\#px: the second lift of subtype A1s - 244
4.3.3 The configuration Px...px: the second lift of subtype A1s - $\mathbf{2 4 7}$
4.3.4 The configuration x ... px : the second lift of type $\mathrm{A} 3-\mathbf{2 5 0}$
4.3.5 The configurations x ...Ppx and x ...Psx: the second lift of type C — $\mathbf{2 5 1}$
4.3.6 The configuration PpXx: the second lift of type D-255
4.3.7 The configuration Px...pXx: the second lift of type $D^{*}-258$
4.3.8 A synchronic account of suspension of resolution - $\mathbf{2 5 8}$
4.3.9 A diachronic account - 266
4.4 On Kaluza's law - 277
4.4.1 Introduction - 277
4.4.2 On defining 'short' and 'long' disyllables: two competing accounts - 278
4.4.3 Kaluza's law in fornyrðislag? - 283
4.4.4 Kaluza’s law in the Heliand - 286
4.4.5 Kaluza's law in fornyrðislag revisited - $\mathbf{3 0 3}$
4.4.6 Conclusion - 305

5 The cadence - 309

5.1 Preference for / x in verse-final position - 309
5.2 Preference for the cadence / x in the b-verse - 311
5.2.1 Class B (x/x/)—311
5.2.2 Class C $(x / / x)-312$
5.2.3 Class A (/x/x)——316
5.2.4 Class A with anacrusis $(x / x / x)-319$
5.3 The optimal prosodic form of the cadence / x: Px - 321
5.4 Further variants of the cadence / $\mathrm{x}: \mathrm{px}$ and P - $\mathbf{3 2 8}$
5.4.1 The prosodic form px-329
5.4.2 The prosodic form P - $\mathbf{3 3 0}$
5.4.3 The three variants of the cadence / x : Px, px, and P - 331
5.5 Conclusion: the overall proportion of verses ending in lift + drop-333

6 Alliteration - 335

6.1 The rules of alliteration - 335
6.2 The metrical basis of alliteration - 341
6.2.1 Variation in alliterative pattern within verse types - 341
6.2.1.1 Type A1 - 342
6.2.1.2 Types A2a and A2b - 346
6.2.1.3 Type A1- - 349
6.2.1.4 Type B - 351
6.2.1.5 Type C —— 353
6.2.1.6 Type D - 355
6.2.1.7 Type E- 357
6.2.1.8 Double alliteration and increased prominence: uniformity in diversity - 358
6.2.2 Verse classes and alliteration - $\mathbf{3 6 0}$
6.3 The lexical basis of alliteration - 371
6.3.1 Type A1 - 372
6.3.2 Type B - 376
6.3.3 Type C — 379
6.3.4 Generalizations: a comparative perspective - 383

7 The stanza - 389
7.1 Preliminaries - 389
7.2 Distribution of verse classes, verse types, and their variants in the stanza - 392
7.2.1 Types A1, A2, and A3 - 392
7.2.2 Type B —— 399
7.2.3 Type C ——401
7.2.4 Types D, D*, and E - 404
7.2.5 Verse classes - 407
7.3 Anacrusis and catalexis - 409
7.4 Resolution and alliteration - 410
7.5 The cadence - 411
7.6 The metrical organization of the stanza - 413

Part II. Málaháttr - 423

Introduction - 425

8 The prototype of málaháttr: Atlamál in græenlenzco - 429
8.1 Verse types and their realizations - 429
8.1.1 Type A1* $(/ x \times / x)-429$
8.1.2 Type aA1 $(x / x / x)-441$
8.1.3 Type A2* $(/ \times \times /)$ - 448
8.1.4 Type A3* $([/] \times x / x)-451$
8.1.5 Type $B^{*}(x \times / x /)-452$
8.1.6 Type C* $(x \times / / x)$ - 453
8.1.7 Type D $(/ / \times x)$ — 460
8.1.8 Type D* $(/ \times / \times x)-462$
8.1.9 Type E (/ $\backslash x /)$ — 467
8.2 The system of verse types 467
8.3 The cadence - 470
8.4 Resolution - 472
8.5 Alliteration - 484
8.6 The stanza - 493
8.7 A critique of Heusler's (1956) identification of málaháttr with fornyrðislag - 496

9 A peripheral variant of fornyrð̀islag/málaháttr 1: Atlaqviða in grœnlenzca - 499
9.1 Verse types and their realizations - 499
9.1.1 Type A1 (/x/x) — 499
9.1.2 Type aA1 $(x / x / x)$ — 504
9.1.3 Types A2a (/ $\backslash / \mathrm{x})$ and A2b $(/ \mathrm{x} / \mathrm{)})-507$
9.1.4 Type A3 $([/] \times / x)$ - 508
9.1.5 Type B (x/x/)—509
9.1.6 Type C $(x / / x)-511$
9.1.7 Type $D(/ / x x)-517$
9.1.8 Type D* $(/ \times / \times x)$ - 518
9.1.9 Type E (/ $\backslash x /$)—— 520
9.2 The system of verse types, the cadence, and resolution - 521

10 A peripheral variant of fornyrðislag/málaháttr 2: Hamðismál - 525
10.1 Verse types and their realizations - 525
10.1.1 Type A1 (/x / x) — 525
10.1.2 Type aA1 $(x / x / x)-528$
10.1.3 Types A2a (/ $/ / \mathrm{x}$) and A2b $(/ \mathrm{x} / \mathrm{)})$ — 529
10.1.4 Type A3 $([/] \times / x)-530$
10.1.5 Type B ($\mathrm{x} / \mathrm{x} / \mathrm{F}$ - 531
10.1.6 Type C ($\mathrm{x} / \mathrm{/} / \mathrm{x})$ - 532
10.1.7 Type D $(/ / \times x)$ - 534
10.1.8 Type D* $(/ \times / \times x)$ - 535
10.1.9 Type E (/ \x/)——537
10.2 The system of verse types, the cadence, and resolution - 537

11 A peripheral variant of fornyrðislag/málaháttr 3: Hárbarðzlióð - 541
11.1 Verse types and their realizations - 541
11.1.1 Type A1 $(/ x / x)$ — 541
11.1.2 Type aA1 $(x / x / x)-545$
11.1.3 Types A2a (/ \backslash / x) and A2b $(/ \mathrm{x} / \mathrm{)})$ — 550
11.1.4 Type A3 ([/] x / x) - 551
11.1.5 Type B (x / x /) — 553
11.1.6 Type C* $(x \times / / x)-554$
11.1.7 Type $D^{*}(/ \times / \times x)-561$
11.1.8 Type E (/ \x/) — 563
11.1.9 Overlong verses - 564
11.2 The system of verse types, the cadence, and anacrusis - 565

Part III. Ljódaháttr —— 571

Introduction - 573

12 The a-verse and the b-verse - 577
12.1 Verse types and their realizations - 577
12.1.1 Type A1 $(/ x / x)-577$
12.1.2 Type aA1 $(x / x / x)-582$
12.1.3 Types A2a $(/ \backslash / x)$ and A2b $(/ x / \backslash)-587$
12.1.4 Type A3 $([/] \times / x)$ — 590
12.1.5 Type A1- $(/ x /[x])-595$
12.1.6 Type A2a- $(/ \backslash /[x])$ - 598
12.1.7 Type A3- ([/] x / [x]) — $\mathbf{6 0 0}$
12.1.8 Type B (x / x /) — 601
12.1.9 Type C $(x / / x)-609$
12.1.10 Type C- (x / / [x]) — 621
12.1.11 Type D (/ / x x $)$ — 624
12.1.12 Type D- $(/ / \times[x])$ — 628
12.1.13 Type D* $(/ \times / \times x)$ - 631
12.1.14 Type E (/ $\backslash x /$) — 637
12.1.15 Two-position verses and overlong verses - 642
12.2 The system of verse types and their realizations - 645
12.3 Alliteration - 652
12.4 A critique of Gering's (1902) analysis - 659

13 The c-verse - 665
13.1 Verse types and their realizations - 665
13.1.1 Type A1 $(/ x / x)-666$
13.1.2 Type aA1 $(x / x / x /)-674$
13.1.3 Types A2a (/ $/ / x)$ and A2b $(/ x / \backslash)-679$
13.1.4 Type A3 $([/] \times / x)$ - 680
13.1.5 Type A1- $(/ x /[x])-689$
13.1.6 Type A2a- $(/ \backslash /[x])$ — 694
13.1.7 Type A3- ([/] $\times /[x])-694$
13.1.8 Type B (x/x/)-697
13.1.9 Type C (x / / x) — 702
13.1.10 Type C- $(x / /[x])$ - 712
13.1.11 Type D $(/ / \times x)$ - 716
13.1.12 Type D- $(/ / x[x])-718$
13.1.13 Type $D^{*}(/ x / \times x)$ — 721
13.1.14 Type E (/ $\backslash x /$ - 721
13.1.15 Two-position verses - 722
13.2 The system of verse types and their realizations - $\mathbf{7 2 5}$
13.3 Anacrusis, alliteration, resolution, and the cadence - 739
13.3.1 Anacrusis - 739
13.3.2 Alliteration - 741
13.3.3 Resolution - 745
13.3.4 The cadence - 751
13.4 A critique of Sievers's (1893) and Gering's (1902) analysis - 757

14 The stanza - 761
14.1 Preliminaries - 761
14.2 The a-verse - 766
14.3 The b-verse - 769
14.4 The c-verse - $\mathbf{7 7 0}$

15 Conclusion - 773
Appendix 1: Catalogue of verse types 799
Appendix 2: Dróttkvætt and the eddic meters 821
References - 825
Index of scansion - 831Index of authors - 1059
Index of subjects - 1061
Index of verses 1077

List of tables

Table 1.1. Overview of eddic poetry: sources, meters, and numbers of stanzas and verses used for metrical analysis - $\mathbf{2}$
Table 1.2. Use of distinct meters in metrically mixed poems according to the number of stanzas involved - $\mathbf{3}$
Table 1.3. Verse distinction and alliterative pattern in fornyrðislag - $\mathbf{1 5}$
Table 1.4. Alliterative pattern in the b-verse in fornyrðislag - $\mathbf{1 7}$
Table 2.1. Verse distinction of type A1 according to size of the first drop - $\mathbf{2 6}$
Table 2.2. Verse distinction of type A1 according to composition of the monosyllabic first drop - 27
Table 2.3. Verse distinction of type A1 according to composition of the disyllabic first drop - 27
Table 2.4. Verse distinction of type A1 according to composition of the trisyllabic or longer first drop - $\mathbf{2 7}$
Table 2.5. Alliterative pattern of type A1 in the a-verse according to size of the first drop - $\mathbf{2 8}$
Table 2.6. Alliterative pattern of type A1 in the a-verse according to composition of the monosyllabic first drop - 28
Table 2.7. Alliterative pattern of type A1 in the a-verse according to composition of the disyllabic first drop - 29
Table 2.8. Alliterative pattern of type A1 in the a-verse according to composition of the trisyllabic or longer first drop - 29
Table 2.9. Verse distinction and alliterative pattern of PS\#px, P\#P\#px, and Px\#Px - 34
Table 2.10. Occurrences of PS\#px and Px\#Px in fornyrðislag, Beowulf, and the Heliand - 35
Table 2.11. Verse distinction and alliterative pattern of Px...px, Px\#px, PS\#px, Px...P, and Px\#P - 37
Table 2.12. Size of the first drop of Px...px, PS\#px, Px...Px, and Px...P - 39
Table 2.13. Long and short syllables in verse-final position of $\mathrm{Px} . . . \mathrm{px}$ and Px...Px - 39
Table 2.14. Occurrences of Px...px and Px...Px in fornyrðislag, Beowulf, and the Heliand - 40
Table 2.15. Verse distinction and alliterative pattern of PxSx and Px\#Px - 42
Table 2.16. Verse distinction and alliterative pattern of PS\#Px and P\#P\#Px - 43
Table 2.17. Verse distinction and alliterative pattern of $\mathrm{P} \# \mathrm{x} \# \mathrm{Px}$ according to varying realizations of the first drop - 46
Table 2.18. Verse distinction and alliterative pattern of Px...PS, PS\#PS/P\#P\#PS, Px...P\#P, and Px...P\#x - 52
Table 2.19. Verse distinction and alliterative pattern of $x . . . P x, x . . . \mathrm{PS}$, and x...P\#P/x...P\#x - 59

Table 2.20. Type A3 (x...Px and x...PS) in fornyrðislag, Beowulf, and the Heliand - 59
Table 2.21. Verse distinction of type A3 according to size of the first drop - 60
Table 2.22. Size of the first drop of type A3 in fornyrðislag, Beowulf, and the Heliand - 63
Table 2.23. Size of the first drop in types A3, B, and C in the a-verse - 66
Table 2.24. Occurrences of type A3 according to location in the stanza - 68
Table 2.25. Occurrences of $\mathrm{x} . . . \mathrm{px}, \mathrm{x} . . . \mathrm{Px}$, and $\mathrm{x} . . . \mathrm{P}-73$
Table 2.26. Size of the first drop of $\mathrm{x} . . . \mathrm{px}, \mathrm{x} . . . \mathrm{Px}$, and $\mathrm{x} . . . \mathrm{P}-74$
Table 2.27. Long and short syllables in verse-final position of $\mathrm{x} . . \mathrm{px}$ and $\mathrm{x} . . . \mathrm{Px}-75$
Table 2.28. Verse distinction and alliterative pattern of Px...P (type A1-) and Px...Px (type A1) - 76
Table 2.29. Verse distinction of types A1- and A1 according to size of the first drop - 77
Table 2.30. Verse distinction and alliterative pattern of Px\#P (type A1-) and Px\#Px (type A1) according to size of the first drop - 78
Table 2.31. Verse distinction and alliterative pattern of PS\#P (type A2a-), PS\#Px (type A2a), P\#P\#P (type A2a-), and P\#P\#Px (type A2a) - 81
Table 2.32. Verse distinction and alliterative pattern of x...P (type A3-) and x...Px (type A3) - 83
Table 2.33. Size of the first drop of types A3- and A3 - $\mathbf{8 4}$
Table 2.34. Proportions of catalectic to full configurations - 84
Table 2.35. Verse distinction and alliterative pattern of type B according to size of the first drop - 86
Table 2.36. Verse distinction and alliterative pattern of type B according to composition of the second drop - 87
Table 2.37. Verse distinction and alliterative pattern of type C according to size of the first drop - 91
Table 2.38. Verse distinction and alliterative pattern of type C according to composition of the second drop - 93
Table 2.39. Verse distinction and alliterative pattern of type C according to composition of the second lift - 94
Table 2.40. Size of the first drop of the major variants of type C in the a-verse - 101
Table 2.41. Verse distinction and alliterative pattern of $\mathrm{x} . . . \mathrm{pXx}$ in comparison with minimally distinct configurations - $\mathbf{1 0 2}$
Table 2.42. Verse distinction and alliterative pattern of type C- and the analogous variants of type C-106
Table 2.43. Verse distinction of types C- and C according to size of the first drop - 109

Table 2.44. Verse distinction and alliterative pattern of type D according to composition of the second lift and/or the heavy drop - 113
Table 2.45. PPPx and its syntactic constituency - 116
Table 2.46. PPpx and its syntactic constituency - $\mathbf{1 1 8}$
Table 2.47. Verse distinction and alliterative pattern of PpXx, PsXx, Ppxx/Psxx, PPXx, PSXx, PPxx, and PSxx - 120
Table 2.48. Verse distinction and alliterative pattern of type D- and its corresponding variants of type D - 122
Table 2.49. Verse distinction and alliterative pattern of type $\mathrm{D}^{\star}-125$
Table 2.50. Verse distinction and alliterative pattern of type D^{\star} according to composition of the monosyllabic extra drop - 127
Table 2.51. Proportion of type D^{\star} to type D in fornyrðislag and Beowulf according to stress on the last two positions - $\mathbf{1 2 8}$
Table 2.52. Verse distinction and alliterative pattern of Px...P\#sx/Px...Ppx, Px...PS/ PS\#PS/Px...P\#P (type A2b), and Px...PSx/Px...P\#Px (type D*) —— 131
Table 2.53. Verse distinction and alliterative pattern of type E-136
Table 2.54. P-values resulting from Fisher's exact test concerning verse distinction (on the left) and alliterative pattern - 136
Table 2.55. Hypothetical type E variants ending in P and $\mathrm{px}-143$
Table 2.56. Proportion of PSxP/PSxpx and PXxP/PXxpx - $\mathbf{1 4 3}$
Table 2.57. Composition of the first drop in subtype A1s (excluding Vkv 4.3, 29.5, 38.1, and Br 5.1) - 144

Table 2.58. Occurrences of PXx\#, PSx\#, P\#P[class1]x\#, and P\#P[class2]x\# before Px and $\mathrm{P}-154$
Table 2.59. $\mathrm{PP}[$ class1] xP with double alliteration and its syntactic constituency - 156
Table 2.60. $\mathrm{PP}[$ class2] xP and $\mathrm{PP}[$ class3] xP with double alliteration and their syntactic constituency - 157
Table 2.61. PPxP with double alliteration and its syntactic constituency in Beowulf and the Heliand - $\mathbf{1 5 8}$
Table 2.62. Verse distinction and alliterative pattern of the two-word variants of types D(2b) and E in fornyrðislag and Beowulf - $\mathbf{1 6 0}$
Table 2.63. Verse distinction and alliterative pattern of the heavy variants of types D(2b) and E in fornyrðislag and Beowulf - $\mathbf{1 6 0}$
Table 2.64. The system of verse types in fornyrðislag: a first approximation - $\mathbf{1 6 3}$
Table 3.1. Distribution of verses with anacrusis in individual poems - $\mathbf{1 6 6}$
Table 3.2. Monosyllabic and polysyllabic realizations of anacrusis and the first drop of types B and C-168
Table 3.3. Verse distinction and alliterative pattern of type aA1 according to size of anacrusis - 169
Table 3.4. Verse distinction and alliterative pattern of verses according to presence or absence of anacrusis - $\mathbf{1 7 2}$

Table 3.5. Occurrences of anacrusis in fornyrðislag, Beowulf, and the Heliand - 172
Table 3.6. Verse distinction and alliterative pattern of types A1, A2b, D1, D2, D1*, and D2* combined according to presence or absence of anacrusis in Beowulf - 174
Table 3.7. Proportion of type aA1 to type A1 in fornyrðislag, Beowulf, and the Heliand - 175
Table 3.8. Verse distinction and alliterative pattern of types aA1 and A1 in fornyrðislag and Beowulf - 175
Table 3.9. Size of the first drop of types aA1 and A1 in fornyrðislag, Beowulf, and the Heliand - 178
Table 3.10. Verse distinction of type A1 according to size of the first drop in fornyrðislag, Beowulf, and the Heliand - 182
Table 3.11. Occurrences of anacrusis in the native and foreign groups of fornyrðislag poetry - $\mathbf{1 8 5}$
Table 3.12. Verse distinction based on the catalectic and full lifts in verse-final position - 190
Table 3.13. Verse distinction of x...PPx and x...Ppx in fornyrðislag, Beowulf, and the Heliand - 193
Table 3.14. Verse distinction of x...PP and x...Ppx in fornyrðislag -— 193
Table 3.15. Size of the first and second drops in type A1 - $\mathbf{1 9 7}$
Table 3.16. Size of the first drop in type A1 in Beowulf and the Heliand - $\mathbf{1 9 7}$
Table 3.17. Proportion of catalectic to full verses according to verse class - $\mathbf{1 9 8}$
Table 3.18. Verse distinction and alliterative pattern of catalectic and full verse classes - 199
Table 3.19. Occurrences of the resolved and the long first lift in catalectic and regular types - 201
Table 3.20. The system of verse types in fornyrðislag: a revision - $\mathbf{2 0 3}$
Table 3.21. The system of verse types in Beowulf - $\mathbf{2 0 4}$
Table 3.22. The system of verse types in the Heliand - 204
Table 3.23. Distribution of verse classes and types in fornyrðislag - 206
Table 4.1. Verse distinction and alliterative pattern of type A1 according to resolution on the first lift - 214
Table 4.2. Verse distinction of type A1 according to resolution on the first lift, and the monosyllabic and the disyllabic first drop - 214
Table 4.3. Resolution on the first lift and the size of the first drop of type A1 - 214
Table 4.4. Resolution on the first and second lifts in type A1 - $\mathbf{2 1 5}$
Table 4.5. Verse distinction and alliterative pattern of subtype A1s according to resolution on the first lift - $\mathbf{2 1 5}$
Table 4.6. Verse distinction and alliterative pattern of type A1- according to resolution on the first lift - 216

Table 4.7. Verse distinction and alliterative pattern of type B according to resolution on the first lift - 217
Table 4.8. Resolution on the first and second lifts in type B - 217
Table 4.9. Verse distinction and alliterative pattern of type C according to resolution on the first lift - 218
Table 4.10. Resolution on the first and second lifts in type C-219
Table 4.11. Verse distinction of type C according to resolution on the first lift and stress on the second lift - $\mathbf{2 2 0}$
Table 4.12. Occurrences of $\mathrm{x} . . . \mathrm{PPx}, \mathrm{x} . . . \mathrm{pxPx}, \mathrm{x} . . . \mathrm{PSx}$, and $\mathrm{x} . . . \mathrm{pxSx}$ in the foreign and native groups of fornyrðislag poetry - 221
Table 4.13. Verse distinction and alliterative pattern of type C- according to resolution on the first lift - $\mathbf{2 2 2}$
Table 4.14. Verse distinction and alliterative pattern of type D according to resolution on the first lift - 224
Table 4.15. Occurrences of the long and the resolved first lift in major variants of type D-225
Table 4.16. Resolution on the first and second lifts in type D - $\mathbf{2} 25$
Table 4.17. Resolution on the first lift and length of the first drop in type D-226
Table 4.18. Verse distinction and alliterative pattern of type D- according to resolution on the first lift - 226
Table 4.19. Verse distinction and alliterative pattern of types D^{\star} and D / E according to resolution on the first lift - 229
Table 4.20. Resolution on the first lift according to verse type - $\mathbf{2 2 9}$
Table 4.21. Favorable factors for implementing resolution on the first lift - $\mathbf{2 3 5}$
Table 4.22. Verse distinction and alliterative pattern of type A1 according to resolution on the second lift - 236
Table 4.23. Verse distinction and alliterative pattern of type A2b according to resolution on the second lift - 236
Table 4.24. Resolution on the second lift of type A1 and composition of the second drop-237
Table 4.25. Resolution on the first lift of type A1 and composition of the second drop-237
Table 4.26. Verse distinction of $x . . . P x p x / x . . . P x s x$ and $x . . . P x P x-239$
Table 4.27. Size of the first drop in $x . . . \operatorname{Pxpx} / \mathrm{x} . . . \operatorname{Prsx}$ and $\mathrm{x} . . . \mathrm{PxPx}-239$
Table 4.28. Verse distinction and alliterative pattern of $\mathrm{x} . . \mathrm{pXx}$ and its minimally distinguished configurations - $\mathbf{2 4 2}$
Table 4.29. Occurrences of $\mathrm{x} . . . \mathrm{pXx}, \mathrm{x} . . . \mathrm{pxXx}, \mathrm{x} . . \mathrm{pxx}, \mathrm{x} . . . \mathrm{pxxx}, \mathrm{x} . . \mathrm{PXx}$, and $\mathrm{x} . . . \mathrm{Pxx}$ in fornyrðislag, Beowulf, and the Heliand - 244
Table 4.30. Occurrences of PS\#px, PS\#pxx, PS\#Px, and Px\#Px in fornyrðislag, Beowulf, and the Heliand - 246
Table 4.31. Occurrences of Px...px, Px...pxx, and Px...Px in fornyrðislag, Beowulf, and the Heliand - 249

Table 4.32. Occurrences of $\mathrm{x} . . . \mathrm{px}, \mathrm{x} . . . \mathrm{pxx}, \mathrm{x} . . . \mathrm{Px}$, and $\mathrm{x} . . . \mathrm{P}$ in fornyrðislag, Beowulf, and the Heliand - $\mathbf{2 5 0}$
Table 4.33. Realization of the first and second lifts of type C with the primarystressed second lift - $\mathbf{2 5 2}$
Table 4.34. Realization of the first and second lifts of type C with the secondarystressed second lift - $\mathbf{2 5 2}$
Table 4.35. Realization of the second lift and the second drop of type C with the primary-stressed second lift - $\mathbf{2 5 3}$
Table 4.36. Mora count of the verse-final drop according to length of the second lift of type C - $\mathbf{2 5 3}$
Table 4.37. Occurrences of x...Ppx, x...Ppxx, and x...PPx in fornyrðislag, Beowulf, and the Heliand - 254
Table 4.38. Occurrences of x...Psx, x...Psxx, and x...PSx in fornyrðislag, Beowulf, and the Heliand - 255
Table 4.39. Occurrences of PpXx, PpxXx, and PPXx in fornyrðislag, Beowulf, and the Heliand - 256
Table 4.40. Occurrences of PsXx, PsxXx, PSXx, and PSxx in fornyrðislag, Beowulf, and the Heliand - $\mathbf{2 5 7}$
Table 4.41. Realization of the first lift and size of the first drop in type A1 - $\mathbf{2 6 3}$
Table 4.42. Realization of the first lift and size of the second drop in type B-263
Table 4.43. Occurrences of the eight configurations in the foreign and native groups of fornyrðislag poetry - 267
Table 4.44. P-values of the seven configurations compared on a pair-basis - $\mathbf{2 6 8}$
Table 4.45. Occurrences of long and short syllables in verse-final position of configurations ending in $\mathrm{px}-271$
Table 4.46. Verse distinction of PS\#Px and Px\#Px in fornyrðislag, Beowulf, and the Heliand - 272
Table 4.47. Occurrences of word forms of Sigurðr in configurations ending in px and pXx in the foreign group of fornyrðislag poetry - 273
Table 4.48. Occurrences of short and long disyllables in Beowulf according to Suzuki and Fulk - $\mathbf{2 8 0}$
Table 4.49. Occurrences of short and long disyllables in Beowulf according to Suzuki and Fulk (excluding those ending in a consonant) - $\mathbf{2 8 0}$
Table 4.50. Occurrences of short and long disyllables in the Heliand, Beowulf, and late Old English poetry - 293
Table 4.51. Occurrences of open and closed disyllables in the Heliand, Beowulf, and late Old English poetry - 295
Table 4.52. Occurrences of short/long and open/closed disyllables relative to implementation/suspension of resolution in the Heliand, Beowulf, and late Old English poetry - 298
Table 4.53. Occurrences of open and closed disyllables according to verse form in the foreign and native groups of fornyrðislag poetry - 304

Table 5.1. Occurrences of the five verse classes in fornyrðislag, Beowulf, and the Heliand - 310
Table 5.2. Verse distinction of class B in formyrðislag, Beowulf, and the Heliand - 311
Table 5.3. Verse distinction of the three variants of class C in fornyrðislag, Beowulf, and the Heliand - 312
Table 5.4. Verse distinction of Px\#Px (type A1) in fornyrðislag, Beowulf, and the Heliand - 317
Table 5.5. Verse distinction of PxSx in fornyrðislag, Beowulf, and the Heliand - 318
Table 5.6. Verse distinction of class A with anacrusis in fornyrðislag, Beowulf, and the Heliand - 319
Table 5.7. Verse distinction of class D with anacrusis in fornyrðislag, Beowulf, and the Heliand - 321
Table 5.8. Mora count of the verse-final drop in types A1 and C in fornyrðislag - 323
Table 5.9. Mora count of the verse-final drop in types A1 and C in Beowulf - 324
Table 5.10. Occurrences of bimoraic and longer nominal forms in types B and $\mathrm{E}-327$
Table 5.11. Proportion of subtype A1s to type A1 in fornyrðislag, Beowulf, and the Heliand - 329
Table 5.12. The three realization variants of the cadence $/ x$ in classes A and C in fornyrðislag - 331
Table 5.13. The three cadence variants Px, px, and P according to verse distinction - 333
Table 5.14. Proportion of verses ending in lift + drop (types A and C) to others in fornyrðislag, Beowulf, and the Heliand - 334
Table 6.1. Size of the polysyllabic first drop of types A1 and A3 - 339
Table 6.2. Alliterative pattern of type A1 according to the monosyllabic and the polysyllabic first drop in fornyrðislag, Beowulf, and the Heliand - 342
Table 6.3. Alliterative pattern of type A1 according to the composition of the first drop in fornyrðislag, Beowulf, and the Heliand - 343
Table 6.4. Alliterative pattern of subtype A1s and type A1, with the second position filled by a word-final syllable - 344
Table 6.5. Alliterative pattern of Px\#Px and P\#x\#Px with or without anacrusis - 344
Table 6.6. Alliterative pattern of PxPx and xPxPx in Beowulf and the Heliand - 346
Table 6.7. Alliterative pattern of types A2a and A2b (or their comparable configurations) in fornyrðislag, Beowulf, and the Heliand - 349
Table 6.8. Alliterative pattern of types A1- and A1 in fornyrðislag - 350

Table 6.9. Alliterative pattern of type B according to the monosyllabic and the polysyllabic first drop in fornyrðislag, Beowulf, and the Heliand - 351
Table 6.10. Alliterative pattern of type B according to the monosyllabic and the polysyllabic second drop in fornyrðislag, Beowulf, and the Heliand - 352
Table 6.11. Alliterative pattern of type B according to resolution in fornyrðislag, Beowulf, and the Heliand - 352
Table 6.12. Alliterative pattern of type C according to resolution in fornyrðislag, Beowulf, and the Heliand - 354
Table 6.13. Alliterative pattern of types C- and C-354
Table 6.14. Alliterative pattern of type D-355
Table 6.15. Alliterative pattern of types D and D- - 356
Table 6.16. Alliterative pattern of the minimal variants of verse classes in fornyrðislag, Beowulf, and the Heliand - 362
Table 6.17. Alliterative pattern of verse classes in fornyrðislag, Beowulf, and the Heliand - 364
Table 6.18. Alliterative pattern of regular variants of classes B and C in fornyrðislag, Beowulf, and the Heliand - $\mathbf{3 7 0}$
Table 6.19. Word classes and alliterative pattern in type A1 - 372
Table 6.20. Word classes in the first lift and monosyllables in the first drop of type A1 - $\mathbf{3 7 3}$
Table 6.21. Word classes in the second lift and monosyllables in the first drop of type A1 - 373
Table 6.22. Alliterative pattern of type A1 with the monosyllabic first drop and the first lift occupied by class 1 - 374
Table 6.23. Alliterative pattern of type A1 with the first drop occupied by the wordfinal syllable according to the word class of the first lift - 374
Table 6.24. Alliterative pattern of type A1 with the first drop occupied by the wordfinal syllable according to the word class of the second lift - 375
Table 6.25. Alliterative pattern of type A1 with the monosyllabic first drop and the second lift occupied by class 1 - 375
Table 6.26. Word classes and alliterative pattern in type B - 376
Table 6.27. Alliterative pattern of type B with the second drop occupied by the word-final syllable according to the word class of the first lift - 377
Table 6.28. Alliterative pattern of type B with the monosyllabic second drop and the first lift occupied by class 1 - 377
Table 6.29. Alliterative pattern of type B with the second drop occupied by the word-final syllable according to the word class of the second lift - 378
Table 6.30. Alliterative pattern of type B with the monosyllabic second drop and the second lift occupied by class 1 - 378
Table 6.31. Word classes and alliterative pattern in type C - 379

Table 6.32. Word class in the first lift and syllable length in the second lift of type C - 380
Table 6.33. Alliterative pattern of type C with the second lift realized by long syllables, according to the word class of the first lift - $\mathbf{3 8 1}$
Table 6.34. Alliterative pattern of type C with the first lift occupied by class 1 , according to the length of the second lift - 381
Table 6.35. Word class and syllable length in the second lift of type C-381
Table 6.36. Alliterative pattern of type C with the second lift occupied by class 1 , according to the length of the second lift - $\mathbf{3 8 2}$
Table 6.37. Alliterative pattern of type C with the second lift realized by long syllables, according to the word class of the second lift - 382
Table 6.38. Alliterative pattern of type C with the second lift realized by short syllables, according to the word class of the first lift - 383
Table 6.39. Alliterative pattern of type C with the second lift realized by short syllables, according to the word class of the second lift - 383
Table 6.40. Scalar distinctions in the likelihood of containing class 1 words in the first and second lifts of type C, according to the length of the second lift - 383
Table 6.41. Word classes and alliterative pattern in type A1 in Beowulf - 385
Table 6.42. Word classes and alliterative pattern in type B in Beowulf - 385
Table 6.43. Word classes and alliterative pattern in type C in Beowulf - 386
Table 7.1. Occurrences of stanzas according to constituent verse numbers - $\mathbf{3 9 0}$
Table 7.2. Occurrences of type A1 in the a-verse according to size of the first drop and location in the stanza - 392
Table 7.3. Occurrences of type A1 with the monosyllabic first drop according to location in the stanza - 393
Table 7.4. Occurrences of type A1 in the b-verse according to size of the first drop and location in the stanza - 394
Table 7.5. Occurrences of subtype A1s according to location in the stanza - 395
Table 7.6. Occurrences of subtype A1s with the unstressed, monosyllabic first drop in the a-verse according to location in the stanza - 395
Table 7.7. Occurrences of PxSx according to location in the stanza - 396
Table 7.8. Occurrences of type A1- according to location in the stanza - 397
Table 7.9. Occurrences of type A3 according to location in the stanza - 398
Table 7.10. Occurrences of type A3- according to location in the stanza - 398
Table 7.11. Occurrences of type A2a according to location in the stanza - 399
Table 7.12. Occurrences of type A2b according to location in the stanza - 399
Table 7.13. Occurrences of type B according to location in the stanza - $\mathbf{4 0 0}$
Table 7.14. Occurrences of type C with the long primary-stressed second lift (x...PPx and $\mathrm{x} . . . \mathrm{pxPx}$) according to length of the first lift and location in the stanza - 402

Table 7.15. Occurrences in the b-verse of type C with the long secondary-stressed second lift ($\mathrm{x} . . . \mathrm{PSx}$ and $\mathrm{x} . . . \mathrm{pxSx}$) according to length of the first lift and location in the stanza - 402
Table 7.16. Occurrences of type C with the long first lift and the primary-stressed second lift (x...PPx and x...Ppx) according to length of the second lift and location in the stanza - 402
Table 7.17. Occurrences of type C with the long first lift and the secondarystressed second lift (x...PSx and x...Psx) according to location in the stanza - 403
Table 7.18. Occurrences of type C- according to location in the stanza - 403
Table 7.19. Occurrences of type D according to location in the stanza - 405
Table 7.20. Occurrences of type D- according to location in the stanza - 405
Table 7.21. Occurrences of type D^{\star} according to location in the stanza - 406
Table 7.22. Occurrences of types D^{\star} and D according to location in the stanza - 406
Table 7.23. Occurrences of type E according to location in the stanza - 407
Table 7.24. Occurrences of verse classes according to location in the stanza - 408
Table 7.25. Occurrences of verses with or without anacrusis (classes A and D) according to location in the stanza - 409
Table 7.26. Occurrences of catalectic and full verses according to location in the stanza - 410
Table 7.27. Occurrences of the long and the resolved first lift according to location in the stanza - 411
Table 7.28. Alliterative pattern of the a-verse according to location in the stanza - 411
Table 7.29. Occurrences of the cadence $/ x$ and others according to location in the stanza - 412
Table 7.30. Metrical features according to location in the stanza - 415
Table 7.31. Characterization of verse classes in terms of verse-initial and versefinal strings / x - 416
Table 8.1. Verse distinction and alliterative pattern of Px...Px in málaháttr and fornyrðislag - 431
Table 8.2. Size of the first drop of Px...Px in málaháttr and fornyrðislag - 431
Table 8.3. Composition of the monosyllabic first drop of Px...Px in málaháttr and fornyrðislag - 432
Table 8.4. Verse distinction and alliterative pattern of Px...Px according to size of the first drop - 433
Table 8.5. Verse distinction and alliterative pattern of Sievers's types A*1 and A*2-437
Table 8.6. Verse distinction and alliterative pattern of -x\#x and \#x(\#)x in the first drop of type A1* - 439

Table 8.7. Verse distinction and alliterative pattern of - $\mathrm{x} \# \mathrm{x}$ and $\# \mathrm{x}(\#) \mathrm{x}$ in the first drop of type A1 in fornyrðislag - 440
Table 8.8. Verse distinction of x...Px...Px according to size of anacrusis in málaháttr and fornyrðislag - 442
Table 8.9. Verse distinction of x...Px...Px according to size of the first drop in málaháttr and fornyrðislag - 443
Table 8.10. Resolution on the first lift in type A1 without anacrusis, type A1* without anacrusis, and type A1 with anacrusis - 447
Table 8.11. Verse distinction and alliterative pattern of (x)Px...PS and Px...Px - 449
Table 8.12. Verse distinction and alliterative pattern of (x)Px...PS according to size of the first drop - 450
Table 8.13. Size of the first drop of x...Px in málaháttr and fornyrðislag - 451
Table 8.14. Verse distinction and alliterative pattern of the configurations in málaháttr and fornyrðislag that could be scanned as type $\mathrm{C}-454$
Table 8.15. Size of the first drop of type C in málaháttr and fornyrðislag - 454
Table 8.16. Verse distinction of type C according to size of the first drop in málaháttr and fornyrðislag - 455
Table 8.17. Verse distinction of types C and C^{*} according to length of the primarystressed second lift in málaháttr and fornyrðislag - 459
Table 8.18. Occurrences of $\mathrm{x} . . . \mathrm{PPx}$ and $\mathrm{x} . . . \mathrm{pxPx}$ in málaháttr and fornyrðislag - 459
Table 8.19. Verse distinction and alliterative pattern of type D (with or without anacrusis) in málaháttr and fornyrðislag - 461
Table 8.20. Verse distinction and alliterative pattern of type D^{\star} (with or without anacrusis) - 463
Table 8.21. The system of verse types in málaháttr - 469
Table 8.22. Distribution of verse classes and types/subtypes in málaháttr - 469
Table 8.23. Occurrences of the long and resolved first lifts according to verse types in málaháttr and fornyrðislag - 472
Table 8.24. Alliterative pattern of the a-verse in málaháttr and formyrðislag - 484
Table 8.25. Verse distinction and alliterative pattern of verse types - 485
Table 8.26. Alliterative pattern of verse classes in the a-verse - 486
Table 8.27. Occurrences of verse classes in the a-verse - 488
Table 8.28. Word classes and alliterative pattern in types A1 and A1*, with or without anacrusis - 491
Table 8.29. Word classes and alliterative pattern in types C and C*-492
Table 8.30. Occurrences of stanzas according to constituent verse numbers - 493
Table 8.31. Occurrences of verse classes according to location in the stanza - 494
Table 8.32. Size of the first drop of types A1 and A1* according to location in the stanza - 494

Table 8.33. Occurrences of the disyllabic first drop in type A1* according to location in the stanza - 495
Table 8.34. Alliterative pattern of the a-verse according to location in the stanza - 495
Table 9.1. Verse distinction and alliterative pattern of Px...Px in Akv, málaháttr, and fornyrðislag - $\mathbf{5 0 1}$
Table 9.2. Size of the first drop of type A1 in Akv, málaháttr, and fornyrðislag - 501
Table 9.3. Composition of the monosyllabic first drop of $\mathrm{PxPx}-502$
Table 9.4. Verse distinction and alliterative pattern of Px...Px according to size of the first drop - $\mathbf{5 0 2}$
Table 9.5. Occurrences of Px...Px, Px...px, and Px...P in $A k v, A m$, and fornyrðislag - 504
Table 9.6. Verse distinction and alliterative pattern of x...Px...Px in Akv, málaháttr, and fornyrðislag - 505
Table 9.7. Verse distinction according to size of anacrusis in Akv, málaháttr, and fornyrðislag - 505
Table 9.8. Size of the first drop of $\mathrm{x} . . . \mathrm{Px} . . . \mathrm{Px}-\mathbf{5 0 6}$
Table 9.9. Composition of the monosyllabic first drop of x...Px...Px - 506
Table 9.10. Verse distinction and alliterative pattern of (x)PSPx, Px...PS, and Px... Px —— 507
Table 9.11. Size of the first drop of x...Px in Akv, málaháttr, and fornyrðislag - 509
Table 9.12. Size of the first drop of type B in Akv and fornyrðislag - 510
Table 9.13. Verse distinction and alliterative pattern of type C and its analogs in Akv, málaháttr, and fornyrðislag - 511
Table 9.14. Size of the first drop of type C in Akv, málaháttr, and fornyrðislag - 513
Table 9.15. Size of the first drop of type C and verse distinction in Akv, málaháttr, and fornyrðislag - 513
Table 9.16. Occurrences of type C (or type C*) variants according to stress on the second lift in Akv, málaháttr, and fornyrðislag - 514
Table 9.17. Occurrences of x...PPx and x...Ppx in Akv, málaháttr, and fornyrðislag - 514
Table 9.18. Occurrences of $\mathrm{x} . . \mathrm{pxPx}$ and $\mathrm{x} . . . \mathrm{PPx}$ in $A k v$, málaháttr, and fornyrðislag - 515
Table 9.19. Verse distinction and alliterative pattern of type D in $A k v$, málaháttr, and fornyrðislag - 517
Table 9.20. Verse distinction and alliterative pattern of type D^{\star} in Akv, málaháttr, and fornyrðislag - 519
Table 9.21. The system of verse types in Akv - $\mathbf{5 2 1}$
Table 9.22. Distribution of verse classes and types/subtypes in Akv—— $\mathbf{5 2 2}$

Table 9.23. Resolution on the first lift of PxPx and Px...Px in Akv and málaháttr - 523
Table 10.1. Verse distinction and alliterative pattern of Px...Px according to size of the first drop - 526
Table 10.2. Verse distinction of Px...Px according to composition of the monosyllabic first drop - 527
Table 10.3. Verse distinction and alliterative pattern of x...Px...Px according to size of the first drop - 529
Table 10.4. Size of anacrusis - 529
Table 10.5. Size of the first drop of $\mathrm{x} . . . \mathrm{Px}-530$
Table 10.6. Size of the first drop of type B - 532
Table 10.7. Verse distinction and alliterative pattern of the configurations in Hm that correspond to type C in fornyrðislag - 533
Table 10.8. Verse distinction of type C according to size of the first drop - $\mathbf{5 3 3}$
Table 10.9. Occurrences of type C variants in $H m$, $A k v$, málaháttr, and fornyrðislag - 534
Table 10.10. Verse distinction and alliterative pattern of type D-535
Table 10.11. Verse distinction and alliterative pattern of type D*-536
Table 10.12. The system of verse types in Hm - 537
Table 10.13. Distribution of verse classes and types/subtypes in Hm - $\mathbf{5 3 8}$
Table 11.1. Verse distinction and alliterative pattern of Px...Px in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 542
Table 11.2. Size of the first drop of type A1 in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 542
Table 11.3. Verse distinction of Px...Px according to size of the first drop - $\mathbf{5 4 3}$
Table 11.4. Occurrences of word-finals and word-initials in the first drop of type A1 in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 543
Table 11.5. Occurrences of Px...Px, Px...px, and Px...P in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 545
Table 11.6. Verse distinction and alliterative pattern of x...Px...Px in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 546
Table 11.7. Size of anacrusis in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 547
Table 11.8. Distribution of the monosyllabic and the polysyllabic first drop in types A1 with and without anacrusis in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 548
Table 11.9. Distribution of word-initials and word-finals in relation to anacrusis in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 549
Table 11.10. Size of the first drop of x...Px in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 552
Table 11.11. Verse distinction and alliterative pattern of x...Px...P in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 553

Table 11.12. Size of the first drop of type B in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 554
Table 11.13. Verse distinction and alliterative pattern of type C in Hrbl , málaháttr, Akv, Hm, and fornyrðislag - 556
Table 11.14. Size of the first drop of type C in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 557
Table 11.15. Verse distinction of type C according to size of the first drop in Hrbl , málaháttr, and fornyrðislag - 558
Table 11.16. Occurrences of type C variants in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 558
Table 11.17. Occurrences of type C/C* variants according to stress on the second lift in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 559
Table 11.18. Grouping of Hrbl with málaháttr or fornyrðislag in regard to type C on the basis of its parametric variations - 561
Table 11.19. Verse distinction and alliterative pattern of type D* in Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 562
Table 11.20. The system of verse types in Hrbl - 565
Table 11.21. Distribution of verse classes and types/subtypes in Hrbl - 565
Table 11.22. P-values calculated from the proportion of anacrustic to regular verses between any two meters among Hrbl, málaháttr, Akv, Hm, and fornyrðislag - 570
Table 12.1. Verse distinction of type A1 (without anacrusis) according to size of the first drop in ljóðaháttr and fornyrðislag - 578
Table 12.2. Alliterative pattern of type A1 (without anacrusis) according to size of the first drop in ljóðaháttr and fornyrðislag - 578
Table 12.3. Verse distinction and alliterative pattern of PxPx according to composition of the monosyllabic first drop in ljóðaháttr and fornyrðislag - 580
Table 12.4. Verse distinction of types A1 and A1* according to anacrusis in ljóðaháttr, fornyrðislag, and málaháttr - 583
Table 12.5. Alliterative pattern of type A1 in the a-verse according to anacrusis in ljóðaháttr and fornyrðislag - 584
Table 12.6. Size of the first drop of types A1 with and without anacrusis in ljóðaháttr, fornyrðislag, and málaháttr - 585
Table 12.7. Verse distinction and alliterative pattern of type A1 with anacrusis according to size of the first drop - 585
Table 12.8. Occurrences of anacrusis in type A1 according to composition of the monosyllabic first drop in ljóðaháttr and fornyrðislag - 586
Table 12.9. Verse distinction and alliterative pattern of type A1 with anacrusis according to composition of the monosyllabic first drop in ljóðaháttr, fornyrðislag, and málaháttr - 587

Table 12.10. Verse distinction and alliterative pattern of type A2a (with or without anacrusis) in ljóðaháttr and fornyrðislag - 589
Table 12.11. Verse distinction and alliterative pattern of type A2b (with or without anacrusis) in ljóðaháttr and fornyrðislag - 590
Table 12.12. Occurrences of type A3 in ljóðaháttr and fornyrðislag - 591
Table 12.13. Size of the first drop in type A3 in ljóðaháttr, fornyrðislag, and málaháttr - 592
Table 12.14. Size of the first drop and the composition of the second drop of type A3 - 594
Table 12.15. Verse distinction and alliterative pattern of type A1- in ljóð $\begin{aligned} & \text { hááttr and }\end{aligned}$ fornyrðislag - 596
Table 12.16. Verse distinction of type A1- according to size of the first drop in ljóðaháttr and fornyrðislag - 597
Table 12.17. Alliterative pattern of type A1- according to size of the first drop in ljóðaháttr and fornyrðislag - 597
Table 12.18. Verse distinction and alliterative pattern of Px...Px, Px...px, and Px...P-598
Table 12.19. Verse distinction and alliterative pattern of PSPx, PSpx, and PSP - 599
Table 12.20. Occurrences of type A3- in ljóðaháttr and fornyrðislag - 600
Table 12.21. Size of the first drop of type A3- in ljóðaháttr and fornyrðislag - 601
Table 12.22. Verse distinction and alliterative pattern of $\mathrm{x} . . . \mathrm{Px} . . . \mathrm{px}, \mathrm{x} . . . \mathrm{Px} . . . \mathrm{P}$ (type B), and Px...px (subtype A1s) - 602
Table 12.23. Size of the initial upbeat in $x . . . P x . . . P, x . . . P x . . . p x$, and $x . . . P x . . . P x-603$
Table 12.24. Size of the second drop in $x . . . P x . . . P$ and $x . . . P x . . . p x$ and of the first drop in Px...px - 604
Table 12.25. Verse distinction and alliterative pattern of x ...PSx...P and x...PSx...px - 605

Table 12.26. Size of the initial upbeat in x...PSx...P/x...PSx...px, x...Px...Px (type A1 with anacrusis), and x...Px...P/x...Px...px (type B) - 606
Table 12.27. Verse distinction and alliterative pattern of type B in ljóðaháttr and fornyrðislag - 607
Table 12.28. Size of the first drop of type B in ljóðaháttr and fornyrðislag - 608
Table 12.29. Verse distinction of type B according to size of the first and second drops - 609
Table 12.30. Verse distinction and alliterative pattern of the six major variants of type C, x...PPx, x...Ppx, x...PSx, x...Psx, x...PXx, and x...Pxx - 610
Table 12.31. Verse distinction of type C according to composition of the second lift - 613
Table 12.32. Layered feature specifications of the short and long disyllables - $\mathbf{6 1 5}$
Table 12.33. Size of the first drop of type C in ljóð aháttr and fornyrðislag, and of type C* in málaháttr - 618

Table 12.34. Verse distinction of type C according to size of the first drop - $\mathbf{6 1 9}$
Table 12.35. Verse distinction and alliterative pattern of type C with the primarystressed second lift according to resolution on the first lift - $\mathbf{6 2 0}$
Table 12.36. Resolution on the first lift and length of the second lift in type C with the primary-stressed second lift - $\mathbf{6 2 0}$
Table 12.37. Verse distinction and alliterative pattern of types C- and C - $\mathbf{6 2 1}$
Table 12.38. Verse distinction of x...PS, x...Px (type A3), and x...PP (type C-) - 623
Table 12.39. Size of the first drop in $x . . . P S, x . . . P x$ (type A3), and x...PP (type C-) - 624
Table 12.40. Verse distinction and alliterative pattern of type D-627
Table 12.41. Verse distinction of type D according to anacrusis - $\mathbf{6 2 7}$
Table 12.42. Verse distinction and alliterative pattern of types D- and D without anacrusis - 628
Table 12.43. Occurrences of types D- and D in ljóðaháttr, fornyrðislag, and málaháttr - 629
Table 12.44. Verse distinction and alliterative pattern of type D^{*} - 632
Table 12.45. Verse distinction of type D^{\star} according to length of the penultimate drop - 633
Table 12.46. Verse distinction of type D^{\star} according to anacrusis in ljóðaháttr, fornyrðislag, and málaháttr - 635
Table 12.47. Verse distinction of types D and D^{\star} (including anacrustic variants) according to varying cadences - 636
Table 12.48. Occurrences of types D and D^{\star} in ljóðaháttr, fornyrðislag, and málaháttr - 636
Table 12.49. Verse distinction and alliterative pattern of type E without anacrusis - 638
Table 12.50. Verse distinction and alliterative pattern of type E with anacrusis - 638
Table 12.51. Verse distinction of type E according to anacrusis - 639
Table 12.52. Verse distinction of type E according to anacrusis and the cadence - $\mathbf{6 4 0}$
Table 12.53. Distribution of verses according to the number of positions involved - 643
Table 12.54. Organization of basic and expanded verse classes - 646
Table 12.55. The system of verse types and subtypes with special reference to the cadences and their realizations in ljóðaháttr - 648
Table 12.56. Distribution of verse classes and types in the a-verse and the b-verse of ljóðaháttr —— 648
Table 12.57. Alliterative pattern of the a-verse in ljóðaháttr, fornyrðislag, and málaháttr - 653
Table 12.58. Alliterative pattern of the a-verse according to verse types - 654
Table 12.59. Word classes and alliterative pattern in type A1 - 656

Table 12.60. Word classes and alliterative pattern in type B - 657
Table 12.61. Word classes and alliterative pattern in type C - 658
Table 13.1. Size of the first drop of type A1 in the c-verse and the a-/b-verse (excluding anacrusis) - 666
Table 13.2. Composition of the monosyllabic first drop of type A1 in the c-verse and the a-/b-verse - 667
Table 13.3. Composition of the monosyllabic second drop of type A1 - 668
Table 13.4. Size of the first and second drops of type A1 in the c-verse - $\mathbf{6 6 9}$
Table 13.5. Alliterative pattern of type A1 - 669
Table 13.6. Alliterative pattern of type A1 according to size of the first drop - $\mathbf{6 7 0}$
Table 13.7. Alliterative pattern of type A1 according to composition of the monosyllabic first drop - 671
Table 13.8. Cadence variants of type A1 - $\mathbf{6 7 1}$
Table 13.9. Size of the first drop and cadence variants in type A1 - 671
Table 13.10. Size of the second drop and cadence variants in type A1 - 672
Table 13.11. Occurrences of px and Px at the end of types A1, A 3 , and C in the c-verse and the a-/b-verse - 673
Table 13.12. Size of anacrusis in the c-verse and the a-/b-verse - 675
Table 13.13. Size of the first drop of type A1 with anacrusis in the c-verse and the a-/b-verse - 675
Table 13.14. Composition of the monosyllabic first drop of type A1 with anacrusis in the c-verse and the a-/b-verse - 676
Table 13.15. Composition of the monosyllabic second drop of type A1 with anacrusis - 677
Table 13.16. Alliterative pattern of type A1 with anacrusis - 677
Table 13.17. Alliterative pattern of type A1 with anacrusis according to size of the first drop - 678
Table 13.18. Alliterative pattern of type A1 with anacrusis according to composition of the monosyllabic first drop - 678
Table 13.19. Cadence variants of type A1 with anacrusis - 679
Table 13.20. Size of the first drop of type A3 in the c-verse and the a-/b-verse - $\mathbf{6 8 0}$
Table 13.21. Size of the first drop and stress on the second drop of type A3 - 681
Table 13.22. Size of the second drop of types A3 (excluding x...PS) and A1 - $\mathbf{6 8 2}$
Table 13.23. Occurrences of variants of type A3 and similar configurations in the c-verse and the a-/b-verse - 683
Table 13.24. Occurrences of type A3 variants, x...PxP, x...Pxpx, x...pxP, and x... pxpx - 683
Table 13.25. Distribution of verses beginning with a lift and those with a drop - 688
Table 13.26. Cadence variants of types A3 and A1 - $\mathbf{6 8 9}$
Table 13.27. Cadence variants of type A3 according to stress on the second drop - 689

Table 13.28. Size of the first drop of type A1- in the c-verse and the a-/b-verse - 690
Table 13.29. Size of the first drop of types A1- and A1 - 691
Table 13.30. Cadence variants of type A1- - 693
Table 13.31. Size of the first drop of type A3- - 695
Table 13.32. Size of the first drop of types A3- and A3 - 696
Table 13.33. Cadence variants of type A3- - 697
Table 13.34. Size of the first drop of type B in the c-verse and the a-/b-verse - $\mathbf{6 9 7}$
Table 13.35. Size of the second drop of type B in the c-verse and the a-/b-verse - 698
Table 13.36. Cadence variants of type B - 701
Table 13.37. Extra long cadence variants - 701
Table 13.38. Occurrences of cadence variants Px, Sx, PS, and Psx according to verse types - 701
Table 13.39. Variants of type C - 703
Table 13.40. Size of the first drop of type C in the c -verse and the a-/b-verse - $\mathbf{7 0 3}$
Table 13.41. Size of the first drop and variants of type C in the c-verse - $\mathbf{7 0 4}$
Table 13.42. Size of the first drop and variants of type C in the a-/b-verse - 705
Table 13.43. Composition of the second drop of type C - 705
Table 13.44. Verse distinction of type C according to composition of the second lift in ljóðaháttr and fornyrðislag - 706
Table 13.45. Verse distinction of type C according to length of the second lift - $\mathbf{7 0 8}$
Table 13.46. Correlation between the first and the second lift in type C in regard to their syllable length - $\mathbf{7 0 8}$
Table 13.47. Cadence variants of type C -711
Table 13.48. Size of the first drop of type C- (c-verse and a-/b-verse) and type C (c-verse; x...PPx) - 712
Table 13.49. Cadence variants of type C- - 716
Table 13.50. Cadence variants of type D-718
Table 13.51. Cadence variants of type D- - $\mathbf{7 2 0}$
Table 13.52. Cadence variants of two-position verses - $\mathbf{7 2 5}$
Table 13.53. Occurrences of verse classes in the c-verse, the a-/b-verse, and the a-verse - 726
Table 13.54. Occurrences of class A in the c-verse and the a-verse according to verse types - $\mathbf{7 2 8}$
Table 13.55. Occurrences of regular and catalectic verse types in the c-verse and the a-verse - 731
Table 13.56. Size of the first drop of type B in the c-verse and the a-verse - 734
Table 13.57. Size of the first drop of type C in the c-verse and the a-verse - 735
Table 13.58. Occurrences of verse types in the c-verse - 738
Table 13.59. Occurrences of anacrusis in the c-verse, the a-verse, and the b-verse - $\mathbf{7 4 0}$

Table 13.60. Size of anacrusis in the c-verse, the a-verse, and the b-verse - 741
Table 13.61. Alliterative pattern of the c-verse - 741
Table 13.62. Alliterative pattern of the c-verse according to verse types (excluding types A3 and A3- with the fixed pattern xaa) - 743
Table 13.63. Alliterative pattern of the c-verse and the two major cadence variants - 743
Table 13.64. Word classes and alliterative pattern in type A1 - 744
Table 13.65. Word classes and alliterative pattern in type A1- - 745
Table 13.66. Word classes and alliterative pattern in type B-745
Table 13.67. Distribution of long monosyllables (P) and resolved short syllables (px) according to verse and lift distinctions - 746
Table 13.68. Distribution of long monosyllables (P) and resolved short disyllables (px) according to verse class and lift distinctions in the a-verse - 748
Table 13.69. Distribution of long monosyllables (P) and resolved short disyllables (px) according to verse class and lift distinctions in the b-verse - 749
Table 13.70. Distribution of long monosyllables (P) and resolved short disyllables (px) according to verse class and lift distinctions in the c-verse - 749
Table 13.71. Cadence variants in the c-verse - $\mathbf{7 5 2}$
Table 13.72. The cadence in the a-verse in terms of metrical positions - 753
Table 13.73. The cadence in the a-verse in terms of syllables - 753
Table 13.74. The cadence in the b-verse in terms of metrical positions - 756
Table 13.75. The cadence in the b-verse in terms of syllables - $\mathbf{7 5 6}$
Table 14.1. Occurrences of stanzas according to constituent verse numbers (in decreasing order of counts) - 762
Table 14.2. Occurrences of stanzas according to constituent verse numbers in Hav-762
Table 14.3. Occurrences of stanzas according to constituent verse numbers in Vm-763
Table 14.4. Occurrences of stanzas according to constituent verse numbers in Grm - 763
Table 14.5. Occurrences of stanzas according to constituent verse numbers in Skm - 763
Table 14.6. Occurrences of stanzas according to constituent verse numbers in Hrbl - 764
Table 14.7. Occurrences of stanzas according to constituent verse numbers in $L s$ - 764
Table 14.8. Occurrences of stanzas according to constituent verse numbers in Alv —— 764
Table 14.9. Occurrences of stanzas according to constituent verse numbers in $H H v-764$
Table 14.10. Occurrences of stanzas according to constituent verse numbers in $R m-765$

Table 14.11. Occurrences of stanzas according to constituent verse numbers in Fm - 765
Table 14.12. Occurrences of stanzas according to constituent verse numbers in Sd - 765
Table 14.13. Occurrences of verse classes in verses 1 and 4 - 766
Table 14.14. Occurrences of verse types in verses 1 and $4-767$
Table 14.15. Size of the first drop of type A1 in verses 1 and $4-767$
Table 14.16. The monosyllabic first drop of type A1 in verses 1 and 4 - 767
Table 14.17. Size of the first drop of type A3 in verses 1 and $4-768$
Table 14.18. Occurrences of anacrusis and its varying size in verses 1 and $4-768$
Table 14.19. Size of the first drop of types B and C in verses 1 and 4 - 768
Table 14.20. Alliterative pattern in verses 1 and 4 - 768
Table 14.21. Occurrences of verse classes in verses 2 and $5-769$
Table 14.22. Size of the first drop of type B in verses 2 and 5 - 769
Table 14.23. Size of the first drop of type C in verses 2 and 5 - $\mathbf{7 7 0}$
Table 14.24. Length of the second lift of type C in verses 2 and 5 - 770
Table 14.25. Occurrences of verse classes in verses 3 and 6 - $\mathbf{7 7 0}$
Table 14.26. Occurrences of verse types in verses 3 and 6 - 771
Table 14.27. Alliterative pattern in verses 3 and 6 - 771
Table 14.28. Size of the first drop of type A1 in verses 3 and 6 - 772
Table 14.29. Size of the first drop of type A3 in verses 3 and 6 - 772

Abbreviations and symbols

a	alliterating lift in contrast to ' x ' (nonalliterating lift)
acc.	accusative
adj.	adjective
Beo	Beowulf
b-v	b-verse
C	consonant
cn	common noun
eOE	early Old English
F	full line
fem.	feminine
Hel	Heliand
Hild	Hildebrandslied
ind.	indicative
L	long line
1OE	late Old English
neut.	neuter
nom.	nominative
OE	Old English
OHG	Old High German
OIce.	Old Icelandic
ON	Old Norse
OS	Old Saxon
P	primary-stressed long syllable
p	primary-stressed short syllable
$\mathrm{P}(=\mathrm{x})$	primary-stressed long syllable that is treated as equivalent to an unstressed one in metrical terms
PGmc. pl.	Proto-Germanic plural
PN	Proto-Norse
pn	proper noun
pres.	present
pret.	preterite
S	secondary-stressed long syllable
S	secondary-stressed short syllable
sg.	singular
V	vowel
X	unstressed long syllable
x	unstressed short syllable or unstressed syllable in general; nonalliterating lift in contrast to ' a ' (alliterating lift)
x...	one or more unstressed syllables

$\#$	word boundary
$\$$	syllable boundary
σ	syllable
$/$	lift
/	heavy drop
X	normal drop
$>$	becomes; ranks higher than
<	derives from; ranks lower than
\geq	apparently ranks higher than, but lacking statistical support
[]	syntactic boundaries, unless otherwise specified

Eddic poems (see section 1.2):
Akv Atlaqviða in groenlenzca
Alv Alvíssmál
Am Atlamál in grœenlenzco
Bdr Baldrs draumar
Br Brot af Sigurðarqviðo
Fm Fáfnismál
Ghv Guðrúnarhvǫt
Grm Grímnismál
Grp Grípisspá
Grt Grottasøngr
Gðr I Guðrúnarqviða in fyrsta
Gðr II Guðrúnarqviða @nnor
Gðr III Guðrúnarqviða in priðia
Hav Hávamál
Hdl Hyndlolióð
HH Helgaqviða Hundingsbana in fyrri
HH II Helgaqviða Hundingsbana qnnor
HHv Helgaqviða Hiqrvarðzsonar
Hlr Helreið Brynhildar
Hm Hamðismál
Hrbl Hárbarðzlióð
Hym Hymisqviða
Ls Locasenna
Od Oddrúnargrátr
Rm Reginsmál
Rp Rígspula
Sd Sigrdrífomál
Sg Sigurðarqviða in scamma
Skm For Scírnis
Vkv Volundarqviða

Vm	Vafðrúðnismál
Vsp	Volospá
Prk	Prymsqviða

1 Introduction

1.1 The corpus of metrical data

This book investigates the metrical systems of eddic poetry (or the Poetic Edda or the Elder Edda, as it is often called) as opposed to skaldic poetry. ${ }^{1}$ Our overarching concern is how alliterative verse is composed and organized in the oldest North Germanic metrical tradition both in terms of its distinctions from and commonalities with its West Germanic cognates. ${ }^{2}$ Unlike West Germanic alliterative verse, which is made in a single meter, the Old Norse counterpart is composed in three distinct meters, fornyrðislag, málaháttr, and ljóðaháttr. Accordingly, we will be exploring the three meters in the corresponding three parts of this book, both on their own terms and through their mutual and cross-Germanic comparison.

It will be most appropriate here to give an overview of our data in regard to the textual identities of constituent poems which total thirty-three in all, their size in terms of verses and stanzas involved, and most important of all, the meters of their composition, along with page references to Neckel and Kuhn's (1983) edition, the textual basis of our study. For orientation, readers are referred to Table 1.1, which is partly based on Gunnell (2005: 97-98). The poems listed in the table are arranged in order of their appearance in Neckel and Kuhn (1983). The first twenty-nine poems - up to Hamðismál - are preserved in this order in the major manuscript, the Codex Regius of the Elder Edda (Gammel kongelig samling 2365 4to; Ólason and Gunnlaugsson 2001; to be distinguished from the Codex Regius of the Prose Edda); and the remaining four poems, which are not transmitted in the Codex Regius, are taken from other sources as noted in the table, and placed in the appendix of Neckel and Kuhn's edition. On the other hand, the further two poems, Hloðskviða (Hunnenschlachtlied; Neckel and Kuhn 1983: 302-312) and Hildibrandskviða (Hildibrands sterbelied; Neckel and Kuhn 1983: 313-314), while included in Neckel and Kuhn's edition, are excluded from our corpus, as both are usually subsumed under the peripheral group of the Eddica Minora (Heusler and Ranisch 1903: 1-12, 53-54); these two poems should thus be isolated from the core of eddic poetry proper (see Gunnell 2005: 98), as are fragmentary sources, that is, several stanzas found in Snorra Edda (Neckel and Kuhn 1983: 315-321) and Volsunga Saga (Neckel and Kuhn 1983: 321-323). In determining the total number of verses for each poem, we disregard defective ones that are not suitable for metrical analysis, which will be indicated individually in appropriate places at the beginning of the three parts devoted to the respective meters.

[^0]Table 1.1. Overview of eddic poetry: sources, meters, and numbers of stanzas and verses used for metrical analysis

Poem	MS	Neckel and Kuhn (1983)	Meter	Stanzas	Verses
Volospá (Vsp)	CR/H	pp. 1-16	F	66	538
Hávamál (Hav)	CR	pp. 17-44	L	154	1004
			F/M	10	$70^{\text {a }}$
Vafərúznismál (Vm)	CR/A	pp. 45-55	L	55	329
Grímnismál (Grm)	CR/A	pp. 56-68	L	53	353
			F/M	1	$6^{\text {a }}$
For Scírnis (Skm)	CR/A	pp. 69-77	L	42	262
Hárbarðzliód (Hrbl)	CR/A	pp. 78-87	F/M	38	166
			L	12	67
Hymisqviða (Hym)	CR/A	pp. 88-95	F	39	304
Locasenna (Ls)	CR	pp. 96-110	L	65	394
Prymsqviða (Prk)	CR	pp. 111-115	F	32	256
Volundarqviða (Vkv)	CR	pp. 116-123	F	41	315
Alvíssmál (Alv)	CR	pp. 124-129	L	35	210
Helgaqviða Hundingsbana in fyrri (HH)	CR	pp. 130-139	F	56	456
Helgaqviða Hiqrvarðzsonar (HHv)	CR	pp. 140-149	F	24.5	200
			L	18.5	118
Helgaqviða Hundingsbana onnor (HH II)	CR	pp. 150-161	F	50	424
			L	1	$6^{\text {a }}$
Grípisspá (Grp)	CR	pp. 164-172	F	53	424
Reginsmál (Rm)	CR/F	pp. 173-179	L	16	96
			F	10	80
Fáfnismál (Fm)	CR	pp. 180-188	L	35	205
			F	9	72
Sigrdrífomál (Sd)	CR	pp. 189-197	L	32	211
			F	5	$39^{\text {a }}$
Brot af Sigurðarqviðo (Br)	CR	pp. 198-201	F	19	150
Guðrúnarqviða in fyrsta (Gðrl)	CR	pp. 202-206	F	27	216
Sigurðarqviða in scamma (Sg)	CR	pp. 207-218	F	71	559
Helreið Brynhildar (HIr)	CR/L	pp. 219-222	F	14	108
Guðrúnarqviða ¢ ¢nnor (Gðr II)	CR	pp. 224-231	F	44	349
Guðrúnarqviða in priðia (Gðr III)	CR	pp. 232-233	F	11	80
Oddrúnargrátr (Od)	CR	pp. 234-239	F	34	250
Atlaqviða in grænlenzca (Akv)	CR	pp. 240-247	F/M	43	348
Atlamál in grænlenzco (Am)	CR	pp. 248-263	M	103	760
Guðrúnarhvǫt (Ghv)	CR	pp. 264-268	F	21	166
Hamðismál (Hm)	CR	pp. 269-274	F/M	30	214
			L	1	$6^{\text {a }}$
Baldrs draumar (Bdr)	A	pp. 277-279	F	14	114
Rígspula (Rp)	W	pp. 280-287	F	47	365
Hyndloliód (Hdl)	F	pp. 288-296	F	50	390
Grottasongr (Grt)	RS	pp. 297-301	F	24	182
${ }^{\text {a }}$ Not included in the corpus, as will be sh Key: MS: A = AM 748; F = Flateyjarbók; CR = C W = Codex Wormianus Meter: $\mathrm{F}=$ fornyrðislag; $\mathrm{F} / \mathrm{M}=$ fornyrðisla	wn in t dex Reg /málah	text. us; $\mathrm{H}=$ Hauksbók; RS = Cod áttr; L = ljódaháttr; $M=$ mál	ex Regiu háttr	of the P	Edda;

Table 1.2. Use of distinct meters in metrically mixed poems according to the number of stanzas involved

Poem	Fornyrðislag Counts		\%	Fornyrðislag/Málaháttr Counts		Ljóðaháttr Counts		\%
Hav			10	6.10	154	93.90		
Grm			1	1.85	53	98.15		
Hrbl			38	76.00	12	24.00		
HHv	24.5	56.98			18.5	43.02		
HH II	50	98.04			1	1.96		
Rm	10	38.46			16	61.54		
Fm	9	20.45			35	79.55		
Sd	5	13.51			32	86.49		
Hm			30	96.77	1	3.23		

As can be seen, nine poems are composed in two meters: Hav, Grm, Hrbl, HHv, HH II, $\mathrm{Rm}, \mathrm{Fm}, \mathrm{Sd}$, and Hm . The distributions of the concurrent meters are illustrated in Table 1.2, in which the numbers of stanzas composed in one meter, compared to those in the other, are recorded. Usually, a stanza is composed consistently in the same meter, but there is a single exception: $H H v 12$ is a mixed composition, with the first four verses (two lines) in fornyrðislag and the last three verses (two lines) in ljóðaháttr (for details, see note 2, introduction, Part II). The proportion of two constituent meters varies widely from the preponderance of one meter over the other (like Grm, HH II, and Hm) to the more or less even distribution of two (like HHv).

Moreover, not all of the logically possible combinations are attested: one of the two meters is invariably ljóðaháttr, and the other is either formyrðislag or fornyrðislag/ málaháttr; there is no single poem that is composed in fornyrðislag and málaháttr to the exclusion of ljóðaháttr. This state of affairs may yield to a credible account by bringing the formal and evolutionary dimensions to bear on the issue. Málaháttr in its prototypical form is represented only in a single poem (Am). By contrast, there is a continuum of meters that may be characterized as fornyrðislag/málaháttr, a complex notion that refers to any transient meter that, while coming close to málaháttr in varying degrees of expanding verse structure, is still organized by the principle of four metrical positions, the defining property of fornyrðislag (introduction, Part II). These hybrid meters may accordingly be regarded as those involved in the ongoing process of metrical reorganization toward the emergence of málaháttr. In formal terms, while fornyrðislag and málaháttr differ in the finer details at the lowest level, verse composition (chapters 8 through 11), ljóðaháttr is sharply distinguished from these two at the most salient level of organization by its distinctive stanza form, whatever else is different in other domains. Given such a formal and evolutionary proximity of fornyrðislag and málaháttr, then, it seems to be only natural that these two closeresembling meters do not readily lend themselves to a concurrent use which depends
on their sharp and categorical distinguishability on the surface for effective control. Gradient and fuzzy distinctions between the two meters would have been too subtle to exercise appreciable poetic effects and thus made their concurrent use hardly appealing.

As a textual basis for the following study, we follow Neckel and Kuhn (1983), with some minor alterations made for ease of exposition and sorting, particularly in regard to verse numberings, as listed in (1) below, ${ }^{3}$ largely according to See, La Farge, Picard, Priebe, and Schulz (1997), See, La Farge, Picard, and Schulz (2000), See, La Farge, Gerhold, Dusse, Picard, and Schulz (2004), See, La Farge, Gerhold, Picard, and Schulz (2006), See, La Farge, Picard, Schulz, and Teichert (2009), and See, La Farge, Horst, and Schulz (2012). This change will have some relevance principally for examinations of the stanza in chapter 7.
(1) Fornyrðislag: Vsp $55 \rightarrow$ 54; 55 H \rightarrow 55; Vkv 26.7-8 \rightarrow 26.5-6; Gðr I 18.3-10 \rightarrow
18.1-8; Sg 63.3-8 \rightarrow 63.1-6; Rp 5.3-8 \rightarrow 5.1-6; Hdl 23.3-8 \rightarrow 23.1-6

Málaháttr: Akv 20.5-8 \rightarrow 20.1-4
Ljóðaháttr: Hav 134.8-12 \rightarrow 134.9-13; HHv 12.4-6 \rightarrow 12.5-7

We will not emend the inherited text on metrical grounds, ${ }^{4}$ in opposition to Sievers, Leonhardt, Gering, and other early metrists, who practiced extensive emendations metri causa (Heusler 1956: 126-127; see also Zetterholm 1934: 36). ${ }^{5}$ Our conservative stance largely stems from the prototype-based view of the meter as outlined in section 1.3 below.

At this point, we are required to make justifications for treating as a single sample the whole variety of eddic poems insofar as they are composed in the same meter, despite their apparent diversity in content, provenance, and date of composition. ${ }^{6}$ Taking as a representative case the data of fornyrðislag meter for the sake of exposition, let us justify our research strategy based on the assumption of a unitary sample.

[^1]Much the same argument will apply to the ljóðaháttr corpus, while the study of málaháttr must be geared to individual poems because of the much less extensive dataset and the considerable heterogeneity within it.

There are several interrelated methodological grounds for pursuing the proposed line of investigation. First, our primary concern is the North Germanic development of Common Germanic alliterative meter particularly on its synchronic dimension, in distinction from the West Germanic cognates as represented by Beowulf (Fulk, Bjork, and Niles 2008) and the Heliand (Behaghel and Taeger 1996). Given such a compar-ative-Germanic perspective and the concomitant panchronic orientation, as well as our conceptualization of the meter as a prototype-based, overarching system of gradient organization (section 1.3), we may naturally prioritize metrical features that are common to the Norse tradition as a whole over whatever distinctions in fine details are observed among the individual members, which will figure centrally after we have successfully established the metrical identity of fornyrðislag in its entirety. Second, while individual eddic poems are relatively short and even fragmentary at times, the whole collection becomes comparable to Beowulf in length, and is approximately half the length of the Heliand. Comparing like with like in quantitative terms should keep to a minimum possible distortions that would contingently arise from a radical difference in sample size. Third and inseparable from the last point, since we perform statistical analysis as appropriate as a means of checking the empirical adequacy of our specific claims, too small a corpus size, which would be bound to materialize by treating the component poems separately, may bring about results that would be unrevealing and unstable at best, and possibly unreliable and anecdotal.

Our prime standpoint thus founded, however, does not exclude other approaches to the Norse meter. On the contrary, while exploring the network of distinctive characteristics underlying the fornyrðislag tradition in general, we will be careful enough to uncover features that are limited to single poems or groups thereof in distribution, and offer plausible explanations (as long as viable) for these local properties as well. To address these supplementary problematics, we have at our disposal two complementary perspectives to bring to bear on the issues. The first is obviously an examination of each poem on its own terms. More specifically, where particular poems display notable deviations from the overall system, we will duly deal with these metrical idiosyncrasies in their own right, and attempt to relate them to the dominant patterns in meaningful ways. It is not our intention, however, to make thorough examinations of metrical differences among the constituent poems for establishing a metrical identity for each poem, and to draw whatever empirical implications for the appreciation of eddic poems, such as their relative or absolute dating, and their localization. For such a traditionally dominant research orientation with a focus on the metrical individuality of specific pieces of eddic poetry, see, for example, Sievers (1885), Boer (1916), Ent (1924), and Gering (1924).

A second conceptual framework is the binary grouping of eddic poems in fornyrðislag according to content. As originally propounded by Kuhn ([1933] 1969: 46), the eddic poetry composed in fornyrðislag (or málaháttr, but not ljóðaháttr) falls into
two groups, ${ }^{7}$ foreign and domestic (for a succinct summary and evaluation of Kuhn's thesis, see Fidjestøl 1999: 153-157, 294-317). The foreign group of poems (Fremdstofflieder) is distinguished from the rest by subject matter of south German origin, and it comprises the following twelve poems in our corpus (Fidjestøl 1999: 294): Vkv, Grp, Rm, Fm, Br, Gðr I, Sg, Hlr, Gðr II, Gðr III, Od, Ghv. The remaining ten - Vsp, Hym, Prk, $H H, H H v, H H I I, B d r, R p, H d l$, and $G r t$ - belong to the domestic group. ${ }^{8}$

While this dichotomy is by definition based on sources of subject matter - native versus foreign - it is demonstrably associated also with a cluster of linguistic features, notably the stress and word-order phenomena generally referred to as Kuhn's laws (Kuhn [1933] 1969), and the use of negative particles attached to verbs, -a, -at, -t, -gi, and ne (Kuhn [1936] 1969). To put it briefly, the primarily syntactic phenomena in question are generalized by the following set of rules:
(2) a. Clause particles such as conjunctions, finite verbs, adverbs, and substantive pronouns - that is, unstressed or weakly stressed words that belong to a clause as a whole, rather than to a particular constituent of that sentence - must appear in the first weak position of a clause, either before or after the first stressed word.
b. The clause-initial unstressed position must be occupied by a clause particle; it may not be filled exclusively by a phrase particle - an unstressed or weakly stressed word that belongs to a particular constituent of the clause, that is, a phrase.
c. Full finite verbs of bound clauses - clauses, whether main or subordinate, that are connected with another clause by overt expressions such as conjunctions and relatives - are stressed, and therefore cannot occupy a drop; they instead occur for the most part toward the end of the clause.
d. Full finite verbs of independent clauses - main clauses that are not bound to another clause by overt syntactic markers - are weakly stressed, and occur in the first weak position as clause particles normally do.
e. The negative particles - a, -at, - t may be attached to verbs only in independent clauses.

[^2]f . The negative particles $-a$, $-a t$, $-t$ may be attached to verbs only when the resultant complex forms are disyllabic (Px) or trisyllabic (pxx) with the short initial syllable.
g. Rules e and f may be violated only where the negative particles ne and -gi are used as independent words.

According to Kuhn's findings, the domestic group conforms closely to these rules, whereas the foreign one makes numerous violations to them. The content-based dichotomy is thus claimed to have significant correlations to the syntactic dimension. In this light, Kuhn's bipartition seems firmly established beyond reasonable doubt and well qualified to be built on as an empirically sound conceptual framework for further study.

In his careful evaluation of Kuhn's grouping of eddic poetry, however, Fidjestøl (1999: 298-317) takes issue with the alleged associations with syntactic behavior. Drawing on Kuhn ([1933] 1969; [1936] 1969), Fidjestøl (1999: 300-301) tabulates all violations to the above seven rules according to the individual poem and the bipartite grouping. ${ }^{9}$ Summarizing Fidjestøl's results without going into detail here, the domestic group, comprising approximately 3380 lines, gives 75 violations to the rules altogether; by contrast, the foreign group, amounting to 2236 lines in total, contains as many as 240 breaches (Fidjestøl 1999: 302).

While not hesitating to acknowledge the overall difference between the two groups as "impressive," Fidjestøl raises doubt on the legitimacy of the division by concentrating on the distributions of violations to each rule according to individual poems within the foreign group. As he acutely points out, the violations are far from evenly distributed across the group; five poems - Rm, Fm, Sd, Hild, and fragments in Volsunga saga - show no examples of violations at all; even when breaches occur, they are often extremely small in number, one or two per rule and per poem, as shown by the vast majority of poems. ${ }^{10}$ The relatively small number of violations and their concomitant failure to be attested across the entire group, then, leads Fidjestøl (1999: 302) to reject as inconclusive Kuhn's findings on the correlation between the contentbased grouping and the linguistic properties. ${ }^{11}$

[^3]Fidjestøl's wholesale rejection of Kuhn's thesis, however, seems to be far-fetched. The overall distribution of violations to the set of rules is indisputably of statistical significance, with a p-value of less than 0.001. In this respect, Fidjestøl's initial impression proves to be tenable. The general picture remains unchanged even when we narrow down the range of data in accordance with our conceptualization detailed above and remove from the list the fragmentary examples and, more importantly, the three poems in málaháttr or fornyrðislag/málaháttr, which figure centrally among the foreign group as major locations of violations, as observed above. After having sorted out the material that is not included in our corpus, we obtain the following overall distribution pattern: ${ }^{12}$ the foreign group gives 48 breaches in the total of 1393 lines, whereas the domestic one testifies to 21 violations in the collection of 1617 lines. Performing Fisher's exact test gives a p-value of less than 0.001 ; we may therefore be justified in maintaining that the distribution of the syntactic violations under consideration is significantly associated with the bipartite division of eddic poetry on the basis of subject matter.

The uneven distribution within the foreign group that led Fidjestøl ultimately to deny the adequacy of Kuhn's content-based classification is an independent issue that needs to be kept strictly separate from the overall, undeniable association. Membership of a group does not necessarily entail that each member should also share other attributes than the defining feature(s). In this light, Fidjestøl is too demanding: his argument seems to be based on the premise that all poems of the foreign group should display common syntactic features that are unique to the group. While Fidjestøl's criticism of Kuhn's specific diachronic explanations of the group-internal difference may be sound, it does not directly detract from the empirical significance of the distinct distribution pattern of syntactic violations at issue. We may safely conclude, then, that Kuhn's dichotomy of eddic poetry in fornyrðislag provides a wellfounded conceptual framework that may be employed fruitfully for independent investigation.

[^4]
1.2 An overview of verse structure: metrical positions, verse types, and alliteration

This section provides an overview of metrical organization in eddic poetry with reference to fornyrðislag as a representative case. There is every reason to focus on this meter for exposition at this point: for one thing, it seems to be the oldest Norse variety in diachronic terms, as it is most closely paralleled by West Germanic alliterative meters; for another, in formal and structural terms, the other two meters are constructed through reorganization and standardization of certain metrical features inherent in fornyrðislag, as will be substantiated in subsequent chapters. A set of core properties inherent in fornyrðislag is thus shared by málaháttr and ljóðaháttr.

The meters of eddic poetry are organized at three different levels: verse, line, and stanza. These three levels are hierarchical in construction, with the verse at the bottom, the stanza at the top, and the line in between in the metrical hierarchy. The stanza is a unique feature of the Norse meters, unknown to their West Germanic cognates; chapter 7 (fornyrðislag), section 8.6 (málaháttr), and chapter 14 (ljóðaháttr) will be specifically concerned with this highest metrical unit. The exact manner of composition of the three metrical units, however, differs markedly among the three individual meters.

Normally, a verse comprises four metrical positions, which are verse constituent elements that are incapable of occurring by themselves and are loaded with varying prominence value relative to each other within the same verse. Two of these four constituents count as relatively strong or prominent over the other two; these two stronger positions are called lifts (/), and the two weaker ones, drops (x or \; see below). Thus, the verse in its prototypical form consists of two lifts and two drops. Although metrical positions are not grouped into an intermediate entity standing between metrical position and verse in Old Germanic meter, often referred to as the foot in the literature, ${ }^{13}$ fornyrðislag diverges from this archaism through an emergent regularization of a verse final unit, the cadence, in the form of lift + drop (/x), as will be shown in detail in chapter 5; and this verse-ending unit becomes increasingly significant as a metrical organizer in the other two meters (sections 8.3 and 13.3.4).

The arrangement of the four metrical positions within a verse varies widely. It is not the case, however, that any arbitrary ordering is allowed to occur: rather, the concatenation of lifts and drops is constrained in ways that will be specified in due course. Moreover, the legitimate patterns are far from equal in metrical status; nor are they identical in metrical properties such as verse distribution and alliterative

[^5]pattern. At this point, it may suffice for us to assume as a first approximation that the following configurations of lifts and drops constitute authentic verses in fornyrðislag, which may be called the basic verse types (compare Sievers 1893: 31):
(3) Type A1 (/x/x)

Type A2a (/ \backslash / x)
Type A2b (/ x /
)
Type A3 ([/] \times / x)
Type B ($\mathrm{x} / \mathrm{x} /$)
Type C (x//x)
Type D (/ / xx)
Type E (/ \x/)

The verse types are subject to variation depending on a cluster of factors. Chapter 2 will be devoted to the identification of significant verse types and their major variants in fornyrðislag, with particular reference to their distribution and alliterative pattern, to their specific linguistic realizations, and to their overall organization in the metrical system; and the corresponding examinations will be conducted in appropriate sections for the other two meters.

Each metrical position can be occupied by a range of syllables of varying properties. A lift is usually realized by a primary-stressed long syllable; it may also be filled by a disyllabic sequence of a short primary-stressed syllable and an unstressed syllable (resolution; sections 4.1 and 4.2); further, it may be linked exclusively to a short primary-stressed syllable (suspension of resolution; section 4.3); it may often be embodied by a secondary-stressed syllable, long or short, or even by an unstressed syllable under special conditions; and finally it can occasionally be left unrealized (realization by zero linguistic material; section 2.3).

A drop is occupied by a still wider variety of syllables both in terms of quantity and quality. The number of syllables involved ranges between zero and more than two, with a monosyllable being by far the most common; when occupied by a null syllable, catalectic verses arise (sections 3.2 and 3.3). Occasionally, an extra drop may be added to the beginning of a verse by anacrusis (sections 3.1 and 3.3); in that case, the verses involved exceptionally comprise five metrical positions (two lifts and three drops including an anacrustic one). While a drop is normally realized by unstressed syllables, it is compatible with a stressed syllable or a string of syllables that contains a stressed one; some (but not all) instantiations of a drop by a stressed syllable are designated a heavy drop (\backslash; sections 2.2 and 2.13.1) in distinction from a normal counterpart (x).

So far, we have been concerned with the distinction of metrical positions primarily from a paradigmatic perspective. There is a complementary dimension to the organization of metrical positions, namely, a syntagmatic basis of organization. This aspect concerns the relation of the positions of the same kind that occur in a verse.

More specifically at issue is the relative ranking in terms of prominence of like positions that are constitutive of the same verse. This relation may be generalized as the linearity-based prominence scale of metrical positions (Suzuki 1996: 167; 2004: 10) or, more simply, the syntagmatic scale of metrical positions, as follows:
(4) Linearity-based (or Syntagmatic) scale of metrical positions:

$$
\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}
$$

Key: 1, 2, 3, and 4 refer to the metrical positions counted from the beginning of a verse.
Given any two positions of the same kind, the one that is located closer to the beginning of a verse counts as more prominent than the other that stands farther away from it.

Two verses - referred to as the a-verse and the b-verse in order of occurrence - are combined to form a line, the next higher metrical unit, through alliteration (chapter 6). By alliteration, one of the two lifts - normally the first one - of each constituent verse must begin with the identical consonant; while the b-verse strictly limits alliteration to occur solely on the first of its two constitutive lifts, the a-verse may also implement alliteration on the second lift, in which case double alliteration materializes, as opposed to single alliteration, whereby only one lift participates in alliteration in the a-verse (chapter 6).

There is nothing particularly notable about the exact manner of implementing alliteration in fornyrðislag: as in the West Germanic tradition, alliteration exclusively affects word-initial consonants, with the exception of /s/-clusters, /sp/, /st/, and /sk/, which are treated as units. As a consequence, only word-initial consonants are repeated by alliteration, except for these three clusters, which alliterate solely with the same clusters. Since words beginning with a vowel have no initial consonants, they are free to combine with any other words as long as they also lack initial consonants. For a more precise structural account of alliteration as well as a review of other explanations, see Suzuki (1996: 292-311) and Árnason (2007). Moreover, as Hollmérus (1936) showed at length on statistical grounds, identical vowels tend to be avoided in alliteration, particularly in the case of single alliteration.

To a large extent, the composition of metrical positions and the selection of alliterative lifts are predicated on the lexical properties of the linguistic material to be used. Such a lexical basis for materializing metrical positions and alliteration was correctly recognized already in the mid-nineteenth century at an initial stage of Old Germanic metrical scholarship (Rieger 1876; Sievers 1893: 42-46; Wenck 1905: 5; Heusler 1956: 107-108). Lexical categories or parts of speech largely determine qualifications for the binary-opposed membership of metrical positions - lift versus drop - and a similar dichotomy of alliterative versus nonalliterative lifts. For these purposes of linguistic realizations, the lexical categories are grouped into three classes, 1 through 3 , in the
following way: nominals or substantives, comprising nouns, adjectives (including numerals), and nominal forms of verbs - infinitives and participles - are subsumed under class 1; finite verbs and adverbs belong to class 2 ; and function words including pronouns, prepositions, and conjunctions are assigned to class 3. Of the three classes thus identified, class 1 is the most likely to serve as a lift, while class 3 is furthest removed from class 1 by its minimal likelihood of occupying a lift; and class 2 is situated between these two extremes, given its largely ambivalent eligibility for filling a lift. No less importantly, the three word classes motivate varying probabilities of manifesting alliteration: class 1 is distinguished from the other two by its maximal likelihood of serving as an alliterative element; and class 2 is in turn the more likely to carry alliteration than class 3 , when chosen as lifts.

In addition to the class distinction, a further factor affects alliterative pattern, namely, the linear order of lexical items in a verse. More specifically, the preceding less prominent words more often than not may take precedence over the following more prominent ones in carrying alliteration, as catalogued in Pipping (1935: 47-58). In conjunction with the lexical-based organization, this precedence condition, which may be viewed as another manifestation of the linearity-based scale mentioned above, leads to prohibit (or at least marginalize) the pattern whereby a preceding class 1 word is excluded from alliteration in favor of a following less prominent item. There are a small number of exceptions to this generalization, however, as listed in Pipping (1935: 40-41): class 1 words are occasionally aligned to the first drop of types A1, A3, B, or C.

In determining significant metrical categories and operations, and exploring their mutual relations, we will use two formal criteria as primary bases for identification: (i) verse distinction between the a-verse and the b-verse; (ii) single and double alliteration in the a-verse. In this respect, we follow the line of formal investigation established and pursued vigorously by Bliss (1967: 4) for the Beowulf meter and subsequently practiced by other metrists including Suzuki (1996; 2004). Of the two parameters, the verse distinction is of overriding importance because of its ubiquitous character: it concerns the whole set of verses in the corpus by distinguishing between the first and second halves of all lines. By contrast, alliterative distinction is a more local concern, as it involves only half of the corpus, the set of a-verses, that is, a subset of the corpus. The ubiquitous presence entails that the verse distinction has higher cognitive salience and is accordingly amenable to a greater degree of manipulation for metrical organization. In this light, while taking the two parameters into full account, we give priority to the verse distinction in making specific decisions on metrical categorization.

Finally, since our primary concerns are the organization of the metrical systems, and their variation and change, we will not deal with how concrete verses would have been actualized at the level of performance. Accordingly, the rhythm or the timebased interpretation of verse will not figure at all in this work; and no account will be taken of the previous work on the rhythm and recitation of eddic poetry (e.g., Sievers 1893: 219-239; 1923; Boer 1916; Ent 1924; Heusler 1956; Cook 1959), unless formal and structural issues are inseparably involved.

1.3 The meter as a prototype-based system of gradient organization

As in our previous two works on the meters of Old English (Suzuki 1996) and Old Saxon (Suzuki 2004), we assume the prototype-based organization of the meter. Justification for this grounding hypothesis may be provided in no small measure by the concrete results of these empirical studies themselves. In this light, a concise statement will suffice in the following presentation. As argued in detail in Suzuki (1996: 1-14), according to our conceptualization, the meter constitutes a prototype-based, cognitive system of rules, constraints, and representations, much as its linguistic foundations do. In this system, metrical categories and operations are predicated on prototype, whereby a given category or operation - a particular verse type or anacrusis formation, for example - is defined more or less rigorously in its core, but the periphery becomes increasingly fuzzy and subject to variation as its similarity to the core decreases progressively. The core-periphery distinction - itself a matter of degree - and the gradience within the periphery thus give rise to metrical rules and constraints that are variable, preferentially motivated, and stochastically conditioned, rather than categorical and exceptionless in implementation. In short, the meter constitutes an open-ended heterogeneous structure that is organized through a diverse density of integration and systematicity. In this way, while determining metricality as a whole on the basis of probability in gradient terms, the system is far from rigid and homogeneous in organization: rather than binding performers' practice in full, it is constantly susceptible to reinterpretation and reorganization through abduction by poets and audiences.

In accordance with the prototype-based notion of metricality, scansion or metrical categorization must be characterized as a matter of gradience and preference: a given metrical category is identified in its maximally transparent form in terms of the properties of its central members; less typical instances may be subsumed under the same category on the basis of varying degrees of their shared similarity (family resemblance) to its prototype. Furthermore, acknowledging family resemblance anew may induce category extension whereby novel cases are accommodated into an existing category as its noncentral members on the basis of perceived similarity. Metrical categories and constructs are thus less than clear-cut at their boundary zones, where they may become indistinguishable from each other and result in categorial indeterminacy. And by virtue of prototype effects, scansion applies to prototypical instantiations of a metrical category with maximal facility, while progressively removed instances may incur increasing difficulty in metrical identification and lead ultimately to insoluble ambiguity in scansion.

Given the inherent variability and the stochastic nature of the meter as conceptualized above in synchronic terms, the metrical tradition that builds on it and constitutes a diachronic and panchronic extension of it can be viewed as analogously constructed in its essentials: the metrical tradition shapes, and in turn is reshaped
by, individual practices of versification; hence, it may be conceptualized as inherently most susceptible to variation through potential realization. Since our corpus of poems as a whole was not produced at a single point in time and space, but came into being during an extended period of time and in different locations, it represents a rich variety of the meter, rather than the unitary instantiation of it. On another dimension, however, the tradition is a norm and as such constrains every single versification to a considerable extent. Accordingly, despite whatever individual and idiosyncratic features are detectable, the poems belonging to our corpus are all composed in the same meter, fornyrðislag. The meter that is realized in the corpus may therefore be conceptualized as doubly variational with its varied instantiations of the inherently variable and flexible construct.

Meanwhile, it can be reasonably assumed that the extant corpus does not make a comprehensive collection of verses in fornyrðislag that were ever composed in the past. There must have been other poems that simply failed to come down to us for reasons of pure chance or deliberate abandonment. In this sense, our corpus should be characterized as a sample of the once-existing, but no longer recoverable population of fornyrðislag verses, including oral performances. This is the sample, moreover, that was forced upon us, rather than the one we are at liberty to construct on a random basis. ${ }^{14}$

Inasmuch as our primary interest is directed to the metrical tradition of formyrðislag, rather than its particular manifestations in individual works of poetry, we must go beyond the latter's descriptions and delve into the underlying generative basis of versification for full inquiry. Our clues for this abstract construct, however, cannot be accessible elsewhere than in the existing corpus. We must make sure, therefore, that whatever information we may claim to have at our disposal in regard to the metrical tradition is not a matter of coincidence - an accidental result of random sampling - but that there is every reason to attribute it to the population as a whole lying behind the data. At this point, inferential statistics presents itself as a useful checking device.

The foregoing discussion, then, converges to show that statistical reasoning is an indispensable research strategy on two fronts. First, on the more immediate level, the meter itself is a stochastic organizing system with varying realizations, as it is prototype-based, cognitively open, and subject to variation depending on a wealth of preference conditions, themselves tendentious in nature. A proper understanding of the metrical mechanism requires a statistics-based conceptual framework. Second, on the more removed front, the metrical tradition, the overarching panchronic entity that lies behind its concrete manifestations in individual works, is accessible to us

14 Of course, we are free to make a smaller sample, a subset, out of the existing corpus. The point being made here, however, is that we are incapable of making a sampling independent of the inherited corpus.
only through the extant corpus of historical contingency. Inferential statistical techniques provide an empirically solid basis for inferring by generalization that specific properties observed in the corpus would have obtained correspondingly in the underlying metrical tradition at large.

1.4 Statistical analysis

The last section highlighted the importance of statistical thinking. In this section, we introduce in an informal way the minimal basics of inferential statistical analysis that will be presupposed throughout the following exploration. Suppose we have a sample of data, a corpus of eddic verses in fornyrðislag, for example. And suppose further we cross-classify the data according to two different parameters each with two distinct values: for example, the distinction between the a-verse and the b-verse on the one hand, and that between single and double alliteration on the other, the two familiar variables that will figure centrally in the rest of this book. The results of this two-way classification are represented in a two-by-two contingency table (cross tabulation), as follows:

Table 1.3. Verse distinction and alliterative pattern in fornyrðislag

	Single alliteration	Double alliteration	Total
A-verse	$2144(71.44 \%)$	$857(28.56 \%)$	$3001(100 \%)$
B-verse	$2989(99.73 \%)$	$8(0.27 \%)$	$2997(100 \%)$
Total	$5133(85.58 \%)$	$865(14.42 \%)$	$5998(100 \%)$

Fisher's exact test (or simply Fisher test) is designed to determine whether two given categorical variables (or parameters; each usually ranging between two discrete values) are independent of each other (assumed as the null hypothesis). In other words, the test confirms or rejects the null hypothesis that there is no association between the two variables that are represented in the rows and columns of a two-by-two contingency table. Returning to our example, the null hypothesis in this case is that there is no correlation between verse distinction and alliterative pattern; more specifically, the selection of alliterative pattern is unaffected by the difference between the a -verse and the b -verse, and vice versa.

We may then pose the following question: How high is the probability of obtaining the distribution as given in the above table? If it is sufficiently high (to put it in vague terms), we will be led to conclude that the actual pattern is within the range of expected variation - that is, a matter of chance due to a random sampling - and is therefore not worthy of further inquiry. According to Fisher, the exact probability of obtaining a particular distribution given in a contingency table is calculated by a
specific formula based on the hypergeometric distribution. ${ }^{15}$ What concerns us most, however, is the sum probability of the actual distribution and others that are more uneven than this in patterning: we wish to view the observed distribution pattern as the least extreme instantiation of all conceivable uneven patterns. Thus, the test adds up all relevant probabilities for these more extreme cases to reach the cumulative p-value with which the observed distribution in the cells of the contingency table and all others more extreme than this are likely to be obtained. When the p-value is below 0.05 , we may be justified in rejecting the null hypothesis of independent variation and conclude alternatively that the given sets of variables are significantly associated with each other: a correlation - which should not be confused with a causal relation, of course - is thus demonstrably established between the two parameters.

Back to our example, the p-value that we get is less than 0.001 . This means that the distribution of verse and alliteration that is represented in Table 1.3 and others more extreme than this have a probability of occurrence lower than 0.001. Since this figure is far below the threshold of 0.05 , we are justified in rejecting at a significance level of 0.05 (or at a confidence level of 95%) the null hypothesis that verse distinction and alliterative pattern are determined independently. On the contrary, the two variables are significantly correlated. The a-verse and the b-verse display distinct alliterative patterns; more specifically, while the a-verse allows for double alliteration, the b-verse virtually excludes it.

The previous example exemplifies a typical application of Fisher's exact test, whereby a cross tabulation by two binary-valued parameters observed in the data is demonstrated to be of statistical significance and leads to the conclusion that there is a correlation between the two variables in question. There is a further use of the statistical test, the kind of application that appears less obvious, but embodies nonetheless the same logic as the earlier example.

Returning to Table 1.3, let us focus on the alliterative pattern in the b-verse, 2989 counts of single alliteration versus 8 counts of double alliteration. We may be reminded that this pattern is significantly different from that displayed by the a-verse ($\mathrm{p}<0.001$). What we are concerned with here is the significance (or lack thereof) of this distribution, not in comparison with that of the a-verse, but on its own terms. More specifically, we are interested to see whether the rare realizations of double alliteration in the b-verse are negligibly small enough to be equated with total absence. It may be recalled in this connection that double alliteration is disallowed in the b-verse in contrast to the a-verse, as remarked in section 1.2 above. If the stated rule were strictly categorical and exception-free, there should be no instance of double alliteration whatsoever in the b-verse. How should we make sense out of this discrepancy?

15 Computational bases of calculation need not concern us here. For details, see Agresti (2013), for example.

The contingency table that is at stake here is represented as Table 1.4. While the alliterative patterns are properties of the same sample in the last example, we are now comparing the two corresponding instantiations of single and double alliteration in two different samples, one actual and the other virtual. Running Fisher's exact test, we obtain a p-value of 0.008: the difference in distribution at issue proves to be of statistical significance. We are not justified in assuming that the two distribution patterns are simply two different samples of the same population; on the contrary, they must be attributed to differing populations. The eight examples of double alliteration thus cannot be reduced to the total absence of double alliteration; they cannot be explained away as occurrences by pure chance. In other words, the actually observed pattern belongs to the population in which the constraint against double alliteration is far from exceptionless. We might accordingly be induced to conclude that a part of alliteration rules, which are generally held to be highly strict, allows as a matter of fact for a range of exception, however small it may be.

Table 1.4. Alliterative pattern in the b-verse in fornyrðislag

	Single alliteration	Double alliteration	Total
B-verse (observed)	$2989(99.73 \%)$	$8(0.27 \%)$	$2997(100 \%)$
B-verse (expected)	$2997(100 \%)$	$0(0 \%)$	$2997(100 \%)$
Total	$5986(99.87 \%)$	$8(0.13 \%)$	$5994(100 \%)$

Part I. Fornyrðislag

Introduction

Among the body of eddic poetry as delimited in section 1.1 above, the following twenty poems constitute the corpus for our study of fornyrðislag meter (on two other pieces to be included, see further below; Sievers 1893: 63-64; Neckel and Kuhn 1983): Volospá (Vsp), Hymisqviða (Hym), Prymsqviða (Prk), Volundarqviða (Vkv), Helgaqviða Hundingsbana in fyrri (HH), Helgaqviða Hiorvarðzsonar (HHv; excluding 12.5 through 30), Helgaqviða Hundingsbana onnor (HH II), Grípisspá (Grp), Brot af Sigurðarqviðo (Br), Guðrúnarqviða in fyrsta (Gðr I), Sigurðarqviða in scamma (Sg), Helreið Brynhildar (Hlr), Guðrúnarqviða ९nnor (Gðr II), Guðrúnarqviða in priðia (Gðr III), Oddrúnargrátr (Od), Guðrúnarhvot (Ghv), Baldrs draumar (Bdr), Rígspula (Rp), Hyndlolióð (Hdl), and Grottasengr (Grt). We will treat this body of data as a unitary sample of fornyrðislag verse, and on this empirical basis provide comprehensive descriptions and explanatory accounts of the metrical system at large.

On the other hand, the following eddic materials in fornyrðislag need empirical justification for being included in our corpus, because they are embedded in their own different ways into the larger wholes that do not constitute fornyrðislag compositions in themselves. Being short in length and lacking self-contained status, these more or less fragmentary pieces possibly would not have been amenable to full metrical organization otherwise due, and vulnerable on the contrary to extraneous forces noise and interference owing to a shifting of meters as a code-switching - that may have denied them effective metrical control. There are three such poems of mixed composition in which fornyrðislag verses are apparently in the minority against the background of dominant ljóðaháttr compositions (see Table 1.2, section 1.1 above): Reginsmál (Rm; stanzas 5, 11, 13-18, 23, 26), Fáfnismál (Fm; stanzas 32-33, 35-36, 40-44), and Sigrdrífomál (Sd; stanzas 1, 5, 15-17).

Of these three pieces, $S d$ seems to be extremely doubtful concerning its reliability as a genuine instantiation of fornyrðislag: in addition to the smallest presence of fornyrðislag, there are in fact empirical grounds to conclude that the part of $S d$ supposedly composed in fornyrðislag - which amounts to thirty-nine verses ${ }^{1}$ - does not follow the meter as strictly as would normally be expected; rather, it displays several features characteristic of ljóðaháttr, three of which deserve specific discussion in the following.

First, type A1 is predominantly accompanied by anacrusis: as many as 11 (73.33\%) out of a total of 15 type A1 verses are anacrustic. ${ }^{2}$ By contrast, anacrusis is only exceptionally found in other fornyrðislag poems: we count 26 (1.23\%) type A1 verses with

[^6]anacrusis in a total of 2118 type A1 verses. The distributions involved differ significantly, of course (p 0.001); for details, see section 3.1 below.

Second, and related to the first point, $29(74.36 \%)$ verses out of a total of 39 begin with unstressed material, either with anacrusis as we have just seen a representative case of above or with the first drop of types B, C, or C-. ${ }^{3}$ In all other poems in fornyrðislag, on the other hand, we count 44 anacrustic verses and 1871 instances of types B, C, and C- (31.93\%) in the corpus of 5998 verses. Being thus a reversal of each other in the proportions of drop-initial to lift-initial verses, the two patterns are significantly different, with a p-value of less than 0.001.

Third, types B and C seem to be associated more closely with the b-verse than with the a-verse in $S d$, contrary to the largely even distribution in fornyrðislag. There are 12 examples of types B and C in Sd - 1 type B verse and 11 type C ones - of which as many as 10 (83.33%) occur in the b-verse (see note 3). By contrast, we witness 863 a-verses (48.10%) and 931 b-verses (51.90%) of these two types in fornyrðislag. Accordingly, $S d$'s uneven distribution proves to be significantly different from the unbiased pattern obtained in fornyrðislag ($\mathrm{p}=0.040$).

The above three properties that uniquely distinguish $S d$ from the corpus of other fornyrðislag poems share a notable characteristic: they are all found to be highly reminiscent of ljóðaháttr, particularly its b-verse. First, of the total of 55 type A1 verses occurring in the b-verse of this meter (Table 12.4, section 12.1.2), 40 (72.73\%) are prefixed with anacrusis, the proportion that is statistically indistinguishable from the corresponding one observed in $S d(\mathrm{p}=1)$. Second, in ljóðaháttr the verses beginning with an unstressed syllable or a string of such weak syllables constitute the majority by accounting for 899 (84.25%) in the total of 1067 b-verses (Table 12.56, section 12.2). In $S d$, we find 16 examples beginning with unstressed material and 4 with a verse-initial stress in the b-verse. As it turns out, the two distributions are hardly distinguishable, given $\mathrm{p}=0.542$. These two patterns in turn are diametrically opposed to the situation in fornyrðislag, in which the verses beginning with unstressed syllables are in the minority (977 vs. 2020). Significantly distinguished from fornyrðislag accordingly ($\mathrm{p}<0.001$), $S d$ is demonstrably grouped with ljóðaháttr. Third, types B and C occur predominantly in the b-verse in ljóðaháttr, too (sections 12.1 .8 and 12.1.9): we count 141 (14.89\%) a-verses as against 806 (85.11\%) b-verses (Table 12.56, section 12.2). In light of a p-value of $0.697, S d$ and ljóðaháttr must be regarded as equivalent on this parameter as well.

Since $S d$ is framed by ljóðaháttr in its overall composition (see Table 1.2, section 1.1), the clustering of the above three features characteristic of this meter in the peripheral part of this poem may reasonably be ascribed to transference from the

[^7]dominant meter to the minor one by analogical extension. This supposition in turn prompts us to ask why the b-verse, rather than the a-verse, of ljóðaháttr profoundly shapes the alleged composition in fornyrðislag. Of the two verses, it will be the b-verse that figures more prominently in terms of salience, partly because of its line-terminating function and partly because of its determining role in alliteration. Moreover, given that the a-verse and the b-verse are categorically distinct in ljóðaháttr in terms of verse types represented (section 12.1), while they are largely commensurate in fornyrðislag, it may follow as a matter of course that whichever verse is chosen for modeling comes to permeate the whole line in fornyrðislag, rather than being limited to its original constituent. Accordingly, once singled out as a basis for analogical extension owing to its inherent greater perceptibility, the ljóðaháttr b-verse reshapes the part of $S d$ in its entirety that should have been intended as a composition in fornyrðislag.

This, then, is the essence of the metrical interference that may be held responsible for the outstanding deviations in Sd from the standard of fornyrðislag, which may thus justify us in excluding $S d$ from the corpus of fornyrðislag poems. On the other hand, inasmuch as Rm and Fm do not display comparable aberrancies that are attributable to metrical interference, we may safely include them in the dataset, which then comprises twenty-two poems altogether and 5998 verses in total after deducing the defective ones as given in the following paragraph.

Since alliteration crucially determines the identity of verse types, the verses that do not display alliteration must be excluded from examination. In addition, a number of verses are assumed to be missing in terms of line and stanza formation. These defective verses in the broadest sense, twenty-six in total, are listed below (unless otherwise noted, the verses are preserved in full, but without alliteration):

List of defective fornyrðislag verses not included in the corpus:
Prk 28.5-6, Vkv 9.4, 26.1-2 (26.2 lacking), Sg 6.3-4, 13.1-2, 39.2 (lacking), 50.1-2, Gðr II 17.4 (lacking), Ghv 5.1-2, 13.3-4, 14.7-8 (14.7 lacking), 18.1-2 (18.2 lacking), 20.7-8 (20.7 imperfect), $R p 8.6$ (lacking), 47.7-8 (47.7 lacking)

2 Verse types and their realizations

In this chapter, we will identify significant verse types at the underlying level of metrical representation, determine their manifold variations at the surface level of realization, and explore the formal and functional organization of these verse types and tokens largely on a stochastic basis. While the number and kinds of metrical positions and their linear sequencing determine a restricted set of verse types, a broad latitude of alignment of these invariant metrical positions to diverse language materials results in a wide-ranging variation of verse types on the surface.

Major sources of variation in realization are twofold depending on the kinds of positions involved, namely, the lift and the drop. Realizations of the strong position are predicated on two parameters, stress degrees - primary (P / p), secondary $(\mathrm{S} / \mathrm{s})$, and weak (X / x) - and syllable length - long monosyllables ($\mathrm{P} / \mathrm{S} / \mathrm{X}$), short monosyllables ($\mathrm{p} / \mathrm{s} / \mathrm{x}$), short disyllables (px), and null syllables (zero realization). The alignment of a lift to a short disyllable is implemented by resolution, which will be treated separately in chapter 4. On the other hand, the drop varies depending primarily on two parameters, the number of syllables including zero and, in the case of monosyllables, their location relative to a word boundary, more specifically word-initial versus word-final. Occasionally, stress degrees may assume limited relevance in the organization of drops. The role and ranking of these parameters and the ways in which they interact, however, vary from type to type largely because of the underlying metrical structures involved, as will be detailed in the following.

2.1 Type A1 (/x / x)

2.1.1 The first drop

Constituting by far the most common verse type (see section 3.3 below), type A1 is characterized by the regular modulation of lifts and drops in this order, namely, a trochaic pattern, as exemplified below: ${ }^{1}$
(1) \quad Vsp 1.2 helgar kindir [$\mathrm{Px} \# \mathrm{Px}]$

Hym 9.7 gløggr við gesti [P\#x\#Px]
HH 11.6 iofri at gialda [Px\#x\#Px]
Prk 1.5 scegg nam at hrista [P\#x\#x\#Px]
Grp 44.4 mér segðu, Grípir [P\#xx\#Px]
Gðr II 41.1 Hugða ec mér af hendi [Px\#x\#x\#x\#Px] (also Gðr II 42.1)

[^8]As should be clear, the first drop of type A1 may be occupied by a varying number of unstressed syllables, ranging between one and five, as indicated in Table 2.1. ${ }^{2}$ While the vast majority (74.55%) of type A1 verses in general have a monosyllable for the first drop, the b-verse shows a stronger preference for this minimal number. The notably higher presence of the b-verse in the minimal variant of type A1 is sharply contrasted by the reverse pattern of distribution whereby the a-verse is represented more strongly when the first drop is filled by more than a single syllable. This diametrical pattern proves to be of statistical significance, as a p-value of less than 0.001 is obtained by a Fisher's exact test performed on the two-by-two contingency table that is divided by the parameter of the verse distinction and that of the mono- versus polysyllables.

A casual observation may further lead us to detect an apparently neat correlation between the a-verse/b-verse distinction and the differing number of syllables in the first drop. That is, the greater the number of syllables involved, the higher the proportion of the a-verse represented. On closer analysis, however, the observed differences among the polysyllables are not supported by inferential statistics, with none of the relevant p-values obtained being smaller than $0.05 .^{3}$

Table 2.1. Verse distinction of type A1 according to size of the first drop

Syllables	A-verse	B-verse	Total
1	$429(28.28 \%)$	$1088(71.72 \%)$	$1517(100 \%)$
2	$264(60.83 \%)$	$170(39.17 \%)$	$434(100 \%)$
3	$53(68.83 \%)$	$24(31.17 \%)$	$77(100 \%)$
4	$5(83.33 \%)$	$1(16.67 \%)$	$6(100 \%)$
5	$1(100 \%)$	$0(0 \%)$	$1(100 \%)$
Total	$752(36.95 \%)$	$1283(63.05 \%)$	$2035(100 \%)$

While occurring dominantly in the b-verse in overall terms, the variant of type A1 with the monosyllabic first drop is subject to a finer differentiation that is predicated on the morphological status of the monosyllables involved. Specifically, the degrees of association with the b-verse vary depending on whether the monosyllables are wordinitial or final, as represented in Table 2.2. With p-values of less than 0.001 obtained by Fisher's exact test, the word-final (-x\#) syllable displays a significantly stronger

[^9]association with the b-verse than the word-initial counterpart (\#x\#), that is, the monosyllabic independent word for the most part. We may accordingly generalize that monosyllables that are bound to the preceding stressed syllables in morphological (rather than syntactic) terms are characterized by the maximal preference for the b-verse.

Table 2.2. Verse distinction of type A1 according to composition of the monosyllabic first drop

Monosyllabic	A-verse	B-verse	Total
$-\mathrm{x} \mathrm{\#}$	$236(21.95 \%)$	$839(78.05 \%)$	$1075(100 \%)$
$\# \mathrm{x} \#^{\mathrm{a}}$	$193(43.67 \%)$	$249(56.33 \%)$	$442(100 \%)$

${ }^{\text {a }}$ Two instances of \#x- (both b-verses) are included.

A similar distinction obtains when the first drop is realized by disyllables (Table 2.3). While the disyllabic first drop shows a stronger preference for the a-verse than the monosyllabic counterpart, as pointed out above, the disyllable beginning with the word-final (-x\#...) occurs more frequently in the b-verse than the one starting with the word-initial (\#x...), with a statistical significance ($p=0.001$). No significant difference, however, is recognizable between the two sequences beginning with the wordinitial, namely, \#x\#x\# and \#xx\# ($\mathrm{p}=0.275$; 117 vs. 39 for the a-verse; 52 vs. 25 for the b-verse). In this light, the differing degrees of morphological boundedness of the initial syllable to the preceding lift can be held primarily responsible for the differential distribution pattern in question.

Table 2.3. Verse distinction of type A1 according to composition of the disyllabic first drop

Disyllabic	A-verse	B-verse	Total
$-x \ldots$	$96(51.34 \%)$	$91(48.66 \%)$	$187(100 \%)$
$\# x \ldots$	$156(66.95 \%)$	$77(33.05 \%)$	$233(100 \%)$
- S...	$5(83.33 \%)$	$1(16.67 \%)$	$6(100 \%)$

When more than two syllables are involved (Table 2.4), however, the distinction between the word-final and the word-initial is immaterial, given a p-value of 1 . This lack of distinction among the larger numbers of syllables can be regarded as analogous to that among the polysyllables mentioned above.

Table 2.4. Verse distinction of type A1 according to composition of the trisyllabic or longer first drop

Trisyllabic or longer	A-verse	B-verse	Total
-х...	$39(69.64 \%)$	$17(30.36 \%)$	$56(100 \%)$
\#x...	$20(71.43 \%)$	$8(28.57 \%)$	$28(100 \%)$

Another parametric distinction that may possibly be correlated to the varying size of the first drop of type A1 concerns the opposition between single and double alliteration in the a-verse. Table 2.5 shows the distribution of single and double alliteration in relation to the numbers of syllables that realize the first drop of type A1. As it turns out, only when the position in question is filled by monosyllables, does the distribution pattern significantly differ. More specifically, with p-values of 0.010 and 0.003, respectively, monosyllables display a stronger preference for single alliteration than disyllables on the one hand, and all polysyllabic sequences on the other. No significant distinction is in evidence among the polysyllables, as would be expected in light of the comparable phenomena referred to above in regard to verse distribution.

Table 2.5. Alliterative pattern of type A1 in the a-verse according to size of the first drop

Syllables	Single alliteration	Double alliteration	Total
1	$245(57.11 \%)$	$184(42.89 \%)$	$429(100 \%)$
2	$124(46.97 \%)$	$140(53.03 \%)$	$264(100 \%)$
3	$27(50.94 \%)$	$26(49.06 \%)$	$53(100 \%)$
4	$2(40.00 \%)$	$3(60.00 \%)$	$5(100 \%)$
5	$1(100 \%)$	$0(0 \%)$	$1(100 \%)$
Total	$399(53.06 \%)$	$353(46.94 \%)$	$752(100 \%)$

We may now examine whether the morphological status of the initial syllable of the first drop has comparable effects on the distinction between single and double alliteration in the a-verse. As Table 2.6 makes evident, with the monosyllabic first drop, word-finals prefer single alliteration whereas word-initials favor double alliteration, a diametrically opposite distribution that is of statistical significance ($p<0.001$).

Table 2.6. Alliterative pattern of type A1 in the a-verse according to composition of the monosyllabic first drop

Monosyllabic	Single alliteration	Double alliteration	Total
-x\#	$173(73.31 \%)$	$63(26.69 \%)$	$236(100 \%)$
\#x\#	$72(37.31 \%)$	$121(62.69 \%)$	$193(100 \%)$

When disyllables or more are involved, however, no significant correlation is discerned between word-finals/word-initials and single/double alliteration, given $\mathrm{p}=0.437$ for disyllables (Table 2.7) and $\mathrm{p}=0.589$ for trisyllables or longer syllable strings (Table 2.8).

Table 2.7. Alliterative pattern of type A1 in the a-verse according to composition of the disyllabic first drop

Disyllabic	Single alliteration	Double alliteration	Total
$-x . .$.	$41(42.71 \%)$	$55(57.29 \%)$	$96(100 \%)$
\#x...	$75(48.08 \%)$	$81(51.92 \%)$	$156(100 \%)$
-S...	$3(60.00 \%)$	$2(40.00 \%)$	$5(100 \%)$

Table 2.8. Alliterative pattern of type A1 in the a-verse according to composition of the trisyllabic or longer first drop

Trisyllabic or longer	Single alliteration	Double alliteration	Total
$-\mathrm{x} . .$.	$21(53.85 \%)$	$18(46.15 \%)$	$39(100 \%)$
\#x...	$9(45.00 \%)$	$11(55.00 \%)$	$20(100 \%)$

At this point, it is worth examining in detail the sequence PS...Px (PS\#x\#Px or PSx\#Px), referred to in Tables 2.3 and 2.7 without discussion. There are six examples in the corpus. ${ }^{4}$ Remarkably, all these instances contain a compound proper noun for the initial word PS(x): myrcvið (Vkv 1.2), ${ }^{5}$ Hlaðguðr (Vkv 15.1), Guthormr (Grp 50.3), Guðrúno (Sg 2.3), Brynhildr (Od 17.1), Vegtamr (Bdr 6.1). Put another way, no definitive instance of PS...Px is known in which the first drop is realized by the second member of a true compound and an additional syllable (-S\#x or -Sx\#), as pointed out by Sievers (1893: 69n2; compare Kuhn [1939] 1969: 511-513). As expected from the small sample size involved, the configuration PS\#x\#Px/PSx\#Px displays no significant difference from the corresponding sequences of unstressed syllables in terms of verse distinction ($\mathrm{p}=0.220$ against $-x . .$. and $p=0.667$ against $\# x . .$.) and alliterative pattern in the a-verse ($p=0.657$ against $-\mathrm{x} . .$. and $\mathrm{p}=0.674$ against $\# \mathrm{x} . .$.$) . The lack of significant difference then confirms$ Sievers's identification of the configuration PSx\#Px as a regular verse with four positions, rather than an expanded variant (type A*) with five metrical positions.

Noteworthy further is the extreme rarity of the sequence PSx\#Px (one example; Sg 2.3 Guðrúno ungo) in comparison with PS\#x\#Px (five examples). Seen in this light, the configuration PSxPx is differentiated by the combination of the two parameters, one of PSx\# versus PS\#x and the other of true compounds versus proper names. The four variants are then ranked in terms of their occurrence, as follows:

[^10](2) PS\#x\#Px (proper names) > PSx\#Px (proper names) > PS\#x\#Px/PSx\#Px (true compounds)

Thus, the configuration PS\#x\#Px (proper names) occurs with the highest frequency, the sequence PSx\#Px (proper names) then follows, and the remaining two are totally unattested in the corpus.

Finally, we should draw attention to the idiosyncrasy of the following eight verses, in which the first drop is exceptionally realized by a class 1 word (nominal; represented as ' $\mathrm{P}(=\mathrm{x})$ ', a primary-stressed syllable that would otherwise serve as a lift but is actually being treated as equivalent to an unstressed one in metrical terms), usually in conjunction with the following unstressed syllable:
(3) $\quad V k v 7.7$ siau hundruơ allra $[\mathrm{P} \# \mathrm{P}(=\mathrm{x}) \mathrm{x} \# \mathrm{Px}]$

Prk 2.8 áss er stolinn hamri $[\mathrm{P} \# \mathrm{x} \# \mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{Px}]$
Sg 33.1 Frýra maðr bér engi, Gunnar [Px\#P(=x)\#x\#xx\#Px]
Sg 43.3 léta mann sic letia [$P x \# P(=x) \# x \# P x]$
Sg 45.3 Letia maðr hána $[\mathrm{Px} \# \mathrm{P}(=\mathrm{x}) \# \mathrm{Px}]$
Gðr III 5.4 briggia tega manna [Px\#p(=x)x\#Px]
Gðr III 7.1 Siau hundruơ manna [P\#P(=x)x\#Px]
Od 12.5 slícs dœmi qvaðattu [P\#P(=x)x\#pxx]

The above verses must all be scanned as type A1, because the illegitimate forms would otherwise arise on postulation of a metrical stress on the initial syllables of the words in question: two of the resulting sequences PPxPx (Vkv 7.7, Gðr III 7.1, and Od 12.5) and PxPxPx (Sg 33.1 and 43.3) with five and six metrical positions, respectively, would defy scansion by any means. Therefore, we must demote the lexical stress on the second lexical words and accordingly equate them to members of classes 2 and 3. Stress demotion seems to be all the more plausible, given the nature of the words involved. They are for the most part marginal members of substantives: numerals and maðr, which is close to being a pronoun. Furthermore, given the comparably peripheral nature of the words involved (maðr, tega, a numeral, and stolinn, a participle), the remaining three verses - Prk 2.8, Sg 45.3, and Gðr III 5.4 - may be scanned analogously as type A1, although they could be categorized as type D^{\star} in the absence of an unstressed syllable in the immediately following position (sections 2.12.1 and 2.12.2). The improbable resolution on the second lift that would otherwise have to be postulated for tega and stolinn lends further support to the proposed scansion as type A1.

Somewhat similar to these eight verses is Sg 2.3 Guðrúno ungo (PSx\#Px; treated in this section above), in which the first drop is occupied by the disyllabic second element of a compound proper name. In this case, however, the entity involved obviously carries a lesser stress, and the demotion of stress and the consequent identification with Pxx would seem to be more natural. Similarly and uniquely, Gðr I 6.2 Húnalanz drótning ($\mathrm{PxS} \# \mathrm{Px}$) has its first drop aligned to a disyllabic string that contains a
secondary-stressed syllable, but in reverse order. Again, we may invoke a demotion of lexical stress to treat the sequence involved as unstressed as a whole.

As pointed out by Kuhn ([1939] 1969: 512) from a different perspective, ${ }^{6}$ the above ten verses of type A1 in which the first drop is exceptionally occupied by a lexical stress are concentrated in the group of poems of foreign (South German) content (section 1.1): all but one (Prk 2.8) belong to this group. Of further interest, disregarding the four verses that Kuhn did not take into consideration (see note 6), the remaining six verses are all restricted to the foreign group. In either case, the uneven distributions observed are of statistical significance, when we compare them with the minimally distinct variant of type A1, namely, Pxx...Px, which occurs in total (including the examples at issue) 224 times and 294 times in the foreign and the native group, respectively. The results of statistical analysis are $\mathrm{p}=0.003$ in regard to the first distribution including Prk 2.8, Sg 33.1, 43.3, and 45.3, and p = 0.006 in regard to the second case excluding these four verses. Thus, Kuhn's original observation has been verified as statistically tenable on either count. The idiosyncratic use of the syllable sequences carrying a lexical stress in the first drop of type A1 must therefore be characterized as a peripheral feature of the meter that is delimited largely in terms of poetic content: it is a highly marked metrical trait characteristic of the poems of South German content. ${ }^{7}$

2.1.2 The second drop

In contrast to the first drop, which may be realized by a varying number of syllables, the second drop is absolutely limited to a single syllable for realization. Furthermore, this position is normally filled by the word-final -x\#. There are, however, thirty-three exceptions to this generalization, in which the verse-final drop is occupied by an independent word (\#x\#), ${ }^{8}$ as exemplified in (4): ${ }^{9}$

[^11](4) Prk 15.5 Bindo vér Pór pá [Px\#x\#P\#x]

Hdl 16.9 alt er bat ætt pín [P\#x\#x\#P\#x] (also Hdl 17.5, 20.9, 21.7, 23.7, 24.9, 26.7, 27.9, 28.11, 29.9)

Vkv 31.6 kọld ero mér ráð bín [P\#xx\#x\#P\#x]
There are several notable features about this configuration. First, the vast majority of these exceptional verses, 20 out of 33 (60.61%), are attested in $H d l$, which accounts for no more than 6.50% of all eddic verses in fornyrðislag. Second, a number of verses are used recurrently. There are 10 tokens of alt er pat ætt pín, as indicated in (4) above. We find 4 instances of voromz, at viti svá at Hdl 31.3, 34.3, 36.3, and 39.3. Similar to these instances is the verse varðar, at viti svá, which occurs twice at Hdl 17.7 and 18.9. Furthermore, Prk 15.5 Bindo vér Pór pá and Prk 19.1 Bundo peir Pór pá are all but identical to each other. Third, all the examples but two (93.94%) occur in the a-verse. By contrast, nearly two-thirds (63.99%) of all type A1 verses (excluding the variant under consideration) appear in the b-verse. This difference is of statistical significance ($p<0.001$): the preponderance of this exceptional verse form in the a-verse is thereby confirmed. Fourth, of the 31 a-verses, as many as 24 instances (77.42\%) manifest double alliteration. As far as type A1 verses in general (excluding the variant under consideration) are concerned, however, double alliteration is attested for less than half (45.63\%). This difference in distribution can be regarded as significant in light of a p-value of 0.001. The clustering of these metrical irregularities may lead us to suspect that the configuration in question constitutes a highly idiosyncratic verse of a formulaic character and as such is located on the periphery of the metrical system.

At this point, a brief look at the West Germanic meters will be instructive. Beowulf gives only a single example of the configuration, namely, Beo 274b sceaðona ic nāt hwylc. In the Heliand, on the other hand, we find 14 such examples: a-verse with single alliteration (1 example): 2109a uualdand frô mîn; a-verse with double alliteration (4 examples): 3832a selliad, that thar sin ist, 4618a, 5104a, 5191a; b-verse (9 examples): 46b Ên uuas iro thuo noh than, 490b, 971b, 1522b, 2836b, 3281b, 4765b, 4861b, 5017b (Suzuki 2004: 68). Most striking about these West Germanic verses is that they occur predominantly in the b-verse, in sharp contrast to the eddic ones, which go so far as to display a marked preference for double alliteration. The North and West Germanic pieces are thus diametrically opposed in verse distribution and alliterative pattern. No less importantly, the Norse meter is distinguished from the West Germanic ones by the relatively high proportion of the configuration at issue to other varieties of type A1: 33 to 2059 (fornyrðislag); 1 to 2153 (Beowulf); 14 to 2987 (Heliand). The resultant p-values are less than 0.001 between fornyrðislag and either of the West Germanic meters. We must therefore conclude that, unparalleled in the West Germanic traditions both quantitatively and qualitatively, the configuration Px...P\#x in fornyrðislag is a highly idiosyncratic verse form of limited currency (further on this configuration in connection with its apparent similarity to type A2b, see section 2.2.2 below).

2.1.3 Marked variants of type A1

2.1.3.1 The configuration PS\#px

This is a marked variant of type A1 in which the first drop is typically occupied by the second constituent of a compound and the second lift is realized by a short stressed syllable on its own through suspension of resolution, as exemplified in (5). ${ }^{10}$ This is subtype A1s (Suzuki 1996: 84), corresponding to Sievers's (1893: 33) type A2k and Heusler's (1956: 223) 2V.2s. The realization of the second lift by a short stressed syllable motivates by compensation a reallocation of the otherwise expected, stressbearing second mora to the preceding drop, resulting thereby in its bimoraic stressed realization (-S; Suzuki 1996: 84-86; compare Boer [1916: 24], who regarded the relatively heavy weight of the first drop as a compensation for the reduced second lift). ${ }^{11}$

(5) Hym 4.7 ástráð mikit [PS\#px]

Gðr II 41.7 sorgmóðs sefa [PS\#px]
Bdr 9.2 hróðrbarm pinig [PS\#px]

[^12]As shown in Table 2.9, this configuration significantly differs from a minimally different variant of type A1 with the monosyllabic word-final first drop (Px\#Px) in regard to the distribution of the a-verse and b-verse ($\mathrm{p}<0.001$) and also - if not as outstandingly - of single and double alliteration ($p=0.022$). Subtype A1s is thus distinguished by lesser degrees of association with the b-verse and single alliteration.

Table 2.9. Verse distinction and alliterative pattern of PS\#px, P\#P\#px, and Px\#Px

Configuration	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
PS\#px	47 (38.21\%)		76 (61.79\%)	123 (100\%)
	26 (55.32\%)	21 (44.68\%)		
PS\#px (PS = proper noun)	10 (28.57\%)		25 (71.43\%)	35 (100\%)
	6 (60.00\%)	4 (40.00\%)		
P\#P\#px	9 (20.93\%)		34 (79.07\%)	43 (100\%)
	3 (33.33\%)	6 (66.67\%)		
Px\#Px	236 (21.95\%)		839 (78.05\%)	1075 (100\%)
	173 (73.31\%)	63 (26.69\%)		

A further variant of subtype A1s has its first drop filled by the second member of compound proper nouns, as shown in (6). ${ }^{12}$

(6) HH II 25.3 Hǫðbroddr konungr [PS\#px]
 Gðr II 7.7 Gothorms bani [PS\#px]
 Hdl 32.4 Hiorvarðr faðir [PS\#px]

This variant displays no significant difference from the prototypical instance of subtype A1s in terms of the a-verse and b-verse distinction ($\mathrm{p}=0.325$) as well as of single and double alliteration ($\mathrm{p}=1$; Table 2.9). In the absence of distributional differences, then, we may safely categorize this configuration as subtype A1s.

The metrical equivalence of ordinary compounds and compound proper nouns that underlies their common identification as subtype A1s is not a self-evident convention that is regularly conformed to. In Beowulf, for example, the two word categories in question are kept strictly separate: carefully distinguished from true compounds, compound proper names are treated the same way as simplex words for metrical purposes (Suzuki 1996: 73-74). In fornyrðislag, however, there is further evi-

12 A-verse with single alliteration (6 examples): HH II 25.3, Sg 55.5, Gðr II 7.7, 19.1, 19.3, Hdl 24.3; a-verse with double alliteration (4 examples): Vsp 13.7, 66.7, HH 1.7, Gðr II 19.7; b-verse (25 examples): Vsp 11.4, 12.2, 15.4, HH 18.4, 18.6, 30.2, 46.2, HHv 1.6, 5.6, 38.2, 43.6, HH II 24.2, 25.8, 27.2, 27.4, 36.8, Gðr II 25.6, Ghv 1.8, Hdl 21.2, 28.8, 32.4, 40.8, 46.8, 47.8, Grt 1.6. Compare Pipping (1903: 32-35).
dence for equating compound proper nouns with true compounds, as will be shown in section 2.2 below.

A still further variant of subtype A1s is obtained when the second position is occupied by a content word (class 1), as exemplified in (7). ${ }^{13}$
(7) Gðr II 9.7 víð lǫnd yfir [P\#P\#px]

Vsp 1.7 forn spioll fira [P\#P\#px]
Hym 24.4 fold oll saman [P\#P\#px]

While double alliteration definitely argues for scansion as subtype A1s as with Vsp 1.7, single alliteration results in apparent ambiguity in categorization: we may identify relevant verses as subtype A1s, with the third word serving as the second lift, or type D (/ / x x), with the second one characterized as the second lift. Compare Gðr II 9.7 above with Gðr II 10.3 trauðr góðs hugar (type D), and Hym 24.4 above with Hym 2.8 opt sumbl gora (type D). This issue will be treated in depth in section 2.10 .3 below. Meanwhile, the tabulation given above tacitly assumes the well-motivated differentiation between the two types in advance of the arguments adduced later on.

From a comparative Germanic perspective, the configuration PS\#px has a significantly larger presence in fornyrðislag than in the West Germanic meters: the proportions of this configuration to the primary variant of type A1, Px\#Px, differ radically among the three meters concerned, as represented in Table 2.10. The relevant p-values obtained are as follows: $\mathrm{p}=0.001$ (between fornyrðislag and Beowulf); p < 0.001 (between fornyrðislag and the Heliand); p $=0.001$ (between Beowulf and the Heliand). This relatively heightened profile of the configuration PS\#px in fornyrðislag has important implications for the sequence Px...px, which is almost unique to the Norse meter, as will be discussed briefly in the following section, and more fully in section 4.3 .3 below.

Table 2.10. Occurrences of PS\#px and Px\#Px in fornyrðislag, Beowulf, and the Heliand

Configuration	PS\#px	Px\#Px
Fornyrðislag	123	1075
Beowulf	59	877
Heliand	39	1211

[^13]
2.1.3.2 The configuration Px...px

As with the sequence PS\#px treated in the preceding section, this configuration has its second lift realized by a short stressed syllable alone, as shown in (8). Unlike PS\#px, however, the first drop is occupied by an unstressed syllable or a string thereof. There are eighty-three examples of the configuration Px...px. ${ }^{14}$ They are widely distributed, as is attested in twenty of the twenty-two works - HHv and Gðr III being exceptions that constitute the corpus of verses composed strictly in fornyrðislag.
(8) HH II 11.6 hildings synir [Px\#px]

Grp 12.5 leið at huga [P\#x\#px]
Hdl 1.6 ríða við scolom [Px\#x\#px]

Postulating secondary-stress also on the word-final long syllable of the simplex word PX such as oflungr, doglingr (Sievers 1885: 8), Sievers (1885: 27, 30, 39, 42) identified the sequence PXpx (where PX is not a compound) as A2k (equivalent to subtype A1s in our terms). When it comes to the configuration P\#x...px, where x makes (part of) a separate word, Sievers's treatment was varied. Where the words concerned end in a consonant such as oc 'and', he scanned as type A2k, as with Vsp 12.3 Peccr oc Porinn (Sievers 1885: 19). Yet, for Vsp 62.4 Baldr mun koma, Sievers emended it to man Baldr koma (type C), apparently for metrical reasons but without argument (Sievers 1885: 29). Where x constitutes a word of its own ending in a vowel (Hym 34.2 fecc á premi), Sievers (1885: 44) left scansion unspecified by adding the sign '?’. Where a string of syllables is involved as in Prk 11.3 Prymr hefir pinn hamar, Sievers (1885: 34) silently restored the sequence P\#x\#px, Prymr hefr [pinn] hamar, and scanned it accordingly as type A2k. Where a single word constitutes the configuration PXxx (Hym 28.7 kropturligan), Sievers (1885: 43) went no farther than making a tentative scansion as 'A2k?'. Although Sievers's (1885) limited scope of investigation makes it impossible to recover his treatment in its entirety, it seems hard to resist rejecting Sievers's scan-

[^14]sions as ad hoc and lacking in consistency and empirical adequacy, particularly in regard to his underlying identification of word-finals, word-medials, and function words - obviously all without lexical stress - with the second constituents of compounds that have the privilege of carrying a lexically assigned stress.

While correctly refusing to postulate stress on function words like oc, Gering (1924: 2) categorically denied the configuration Px...px a metrically legitimate status. Pipping (1933: 76, 78), on the other hand, was more liberal: while acknowledging the usual presence of secondary stress on the second syllable (PS\#px), he regarded the deviant configuration Pxpx as metrically acceptable.

Table 2.11 compares the distribution of the configuration Px\#px with that of PS\#px (subtype A1s). The a-verse/b-verse distribution of this configuration does not differ from that of PS\#px, with a p-value of 0.436 . Nor does the single/double alliterative pattern assume statistical significance, with a p-value of 1 . When we compare the entire group of the configuration Px...px with PS\#px, we obtain a p-value of 0.117 for verse distribution and that of 0.667 for alliterative pattern. This apparent discrepancy in the two distributions with regard to verse distinction, in contrast to the robustness of alliterative pattern, should hardly be surprising, when we are reminded that the configuration Px...px is characterized by a relatively low proportion of the minimal first drop, -x\#, which is maximally associated with the b-verse: only thirty-seven verses out of a total of eighty-three have their first drop minimally realized ($\mathrm{Px} \# \mathrm{px}$). Considering this distributional bias, we should better compare the minimally distinct pair of Px\#px on the one hand and PS\#px on the other to draw whatever plausible inferences on metrical identity. In any event, the lack of significant difference along the two parameters between the two minimal pairs of configurations may justify us in identifying the configuration Px\#px as a variant of subtype A1s, and the whole variety of Px...px may by implication be subsumed under the same subtype.

Table 2.11. Verse distinction and alliterative pattern of $P x \ldots . . \mathrm{px}, \mathrm{Px} \# \mathrm{px}, \mathrm{PS} \# \mathrm{px}, \mathrm{Px} \ldots \mathrm{P}$, and $\mathrm{Px} \# \mathrm{P}$

| Configuration | $\begin{array}{c}\text { A-verse } \\ \text { Single alliteration }\end{array} \quad$ Double alliteration | |
| :--- | :---: | :---: | :---: | :---: | :---: |$)$

Things are rather different in regard to the other configuration to be compared with, namely, Px...P, which is characterized as type A1- (/ x/[x]), a catalectic counterpart of type A1. As will be fully treated in section 2.4 below, this type lacks on the surface the verse-final drop constitutive of type A1 and is accordingly composed of three metrical positions in their manifest form. Given this catalectic type, the configuration Px... px can be regarded as its variant realization in which the second lift is occupied by a short disyllable through resolution, as scanned by Gering (1924: 21-22, 26).

This alternative scansion, however, must be rejected as hardly feasible on empirical grounds as follows. ${ }^{15}$ First, while the verse distribution is indistinguishable ($p=0.825$ for the minimal variants Px\#px and Px\#P, and $p=0.101$ for the whole variety Px...px and Px...P), the single/double alliteration in the a-verse makes a significant distinction between the two sequences ($p=0.068$ for the minimal variants, and $\mathrm{p}=0.026$ for the entire group): the configuration Px...px does not share the conspicuous presence of single alliteration that is characteristic of the catalectic form Px...P.

Second, the relative magnitude of the first drop argues against identifying the configuration Px...px as Px...P, and instead supports its characterization as coterminous with Px...Px (and by implication PS\#px). Table 2.12 shows the varying size of the first drop in the three configurations with the variable first drop, as measured in terms of the numbers of syllables that realize the position in question. As it turns out, the proportions of the monosyllabic drop, which constitutes the vast majority for all of the configurations except for Px...P, vary significantly between Px...px and Px...P (p < 0.001) as well as between Px...Px and Px...P (p < 0.001); by contrast, the configurations Px...px and Px...Px do not differ significantly on this score ($p=0.700$). Moreover, the proportions involved are ranked in a scalar manner in decreasing order of percentage as follows: PS\#px > Px...px >Px...Px >Px...P. Of paramount importance here is the location that the configuration Px...px occupies relative to the others: it stands between PS\#px and Px...Px. This relative ranking may be interpreted as indicative of the string's structural proximity to the immediately adjacent ones: the configuration may therefore be characterized as related to PS\#px on the one hand and Px...Px on the other, and correspondingly as situated far removed from the catalectic form Px...P. In other words, the configuration Px...px should best be grouped with PS\#px and Px...Px as variants of type A1, and sharply demarcated from type A1-.

15 Russom (1998: 107) dismisses the equation with the configuration Px...P through a deductive reasoning on the basis of his word-foot theory: since resolution is not allowed to occur on the second lift in fornyrðislag, the verse form Px...px cannot possibly be identified with the sequence Px...P.

Table 2.12. Size of the first drop of Px...px, PS\#px, Px...Px, and Px...P

Syllables	Px...px		PSpx		Px...Px		Px...P	
	Counts	$\%$	Counts	$\%$	Counts	$\%$	Counts	$\%$
1	64	77.11	158	100	1517	74.55	81	30.22
2	19	22.89	0	0	434	21.33	143	53.36
3	0	0	0	0	77	3.78	28	10.45
4	0	0	0	0	6	0.29	15	5.60
5	0	0	0	0	1	0.05	1	0.37
Total	83	100	158	100	2035	100	268	100

Another notable feature of the configuration Px...px is that it ends in a long syllable (-X\#; or to put it more precisely in terms of mora count, the configuration at issue ends in a syllable that contains more than two moras; this distinction between bimoraic and more than bimoraic serves as a structural basis for Craigie's law, as treated in section 5.3 below; see also section 4.3 .8 below) with a higher frequency than would be expected on the basis of the overwhelming presence in general of the short syllable $(-\mathrm{x})$ as opposed to the long one (-X), as can be seen in the configuration Px...Px. The distribution pattern of these minimally distinct verse forms is shown in Table 2.13. The distinction proves to be of statistical significance, with a p-value of less than 0.001. The relatively large presence of long syllables in verse-final position in the configuration Px...px can be related to the opposition between the existing string pXx and its minimally distinct, nonexistent one, pxx, as seen in the opposition between $\mathrm{x} . . \mathrm{pXx}$ and ${ }^{\star} \mathrm{x}$...pxx. On this issue, see section 4.4 below.

Table 2.13. Long and short syllables in verse-final position of $\mathrm{Px} . . . \mathrm{px}$ and $\mathrm{Px} . . . \mathrm{Px}$

Configuration	Long syllable	Short syllable	Total
Px...px	$26(31.33 \%)$	$57(68.67 \%)$	$83(100 \%)$
Px...Px	$99(4.86 \%)$	$1936(95.14 \%)$	$2035(100 \%)$

On a comparative dimension, the configuration Px...px is extremely rare, to say the least in the West Germanic cognate meters. While it is totally unattested in the Heliand, it occurs in Beowulf in extremely small numbers and in a limited shape: for the most part, it is of the form PX\#px with the first drop realized by a long syllable (e.g., Beo 2457b rīdend swefað), whereas no examples are known of the polysyllabic first drop, corresponding to Hdl 1.6 ríða við scolom, for instance. The distribution pattern of the two minimally distinct configurations, Px...px and Px...Px, in the three cognate meters, are indicated in Table 2.14. The differences are all significant between any two of the three meters, with p -values of less than 0.001 .

Table 2.14. Occurrences of Px...px and Px...Px in fornyrðislag, Beowulf, and the Heliand

Configuration	Px...px	Px...Px	Total
Fornyrðislag	$83(3.92 \%)$	$2035(96.08 \%)$	$2118(100 \%)$
Beowulf	$8(0.42 \%)$	$1908(99.58 \%)$	$1916(100 \%)$
Heliand	$0(0 \%)$	$2923(100 \%)$	$2923(100 \%)$

Thus, fornyrðislag stands out among the three meters not only by the high frequency, but also by the wide variety, of the configuration Px...px. In this connection, we may be reminded that the Norse meter is distinguished from the West Germanic cognates by the larger presence of the related configuration, PS\#px (section 2.1.3.1). Since the two verse forms are subsumed under the same metrical category (subtype A1s), it would be a short step to assuming that the two phenomena are causally related: more specifically, the central and original member of subtype A1s, commonly attested in the three meters, would have been used with greater vigor in fornyrðislag, and this privileged treatment would in turn have motivated an expanded use of this subtype by category extension, so much so that the condition on the immediately preceding stressed syllable was no longer held to be vital for derivation.

2.1.3.3 The configurations Pxx\#Px and PXx\#Px

When more than one syllable fills the first drop of type A1 and no word boundary intervenes between the preceding lifted syllable and the following unstressed syllable (the sequence $\mathrm{P} \# \mathrm{xx}(\ldots$.$) is accordingly dismissed here), normally only the first member$ of the syllable sequences involved belongs to the same word as the lifted syllable. In other words, the configurations $\operatorname{PX} \# \mathrm{x}(\ldots$.$) and \operatorname{Px\# x}(. .$.$) are far more frequent than$ PXx\#(...) and Pxx\#(...). The latter two marked sequences are instantiated by no more than 14 instances, as against 241 examples of PX\#x(...)Px and Px\#x(...)Px. Specifically, there are 4 examples of the configuration PXx\#Px: HH II 28.5 vantattu vígi, Bdr 8.1, 10.1, 12.1 Pegiattu, volva. Another 4 examples with the same constituent PXx\# end in a compound proper name (PS): Vkv 29.7 grátandi Bøðvildr, Gðr II 32.1 Grátandi Grímildr, Ghv 7.1 Hlæiandi Guðrún, Bdr 13.1 Ertattu Vegtamr. ${ }^{16}$ The configuration Pxx\#(...) with a short medial syllable is counted 5 times: Grp 35.5 Gunnari til handa, Br 12.5 sofnoðo allir, Gðr II 7.1 Hnipnaði Gunnarr, Gðr II 28.1 Hirðaðu hqlðom, Gðr III 8.2 kalliga ec Hggna. Another example ends in a compound name (Pxx\#PS): Sg 25.5 Grátaðu, Guðrún. Remarkably, all 9 instances of PXx\#(...)Px and Pxx\#(...)Px but one (Gðr III 8.2)

[^15]appear in the a-verse, ${ }^{17}$ whereas the sequence $\operatorname{Px\# x}(\#$...) Px is distributed more or less evenly in the two verses (131 a-verses and 106 b-verses). As it turns out, however, the observed difference cannot be regarded as of statistical significance, given $p=0.082$.

According to Kuhn ([1939] 1969: 511-521), the configurations PXx\#Px and Pxx\#Px are distinctive of the group of poems of nonnative origin, as are the forms PSx\#Px and PxS\#Px (see section 2.1.1 above). While the identification of the latter group has been confirmed on a statistical basis (section 2.1.1), the same cannot hold true of the current group lacking a lexical stress. Of the 9 instances in question, 5 (Grp 35.5, Br 12.5 , Gðr II 7.1, 28.1, Gðr III 8.2) belong to the foreign group. The proportion of 5 (foreign) to 4 (native), however, does not make significant difference from the distribution of the configuration Px\#x...Px in 114 (foreign) and 123 (native), given $\mathrm{p}=0.743$. Accordingly, Kuhn's ([1939] 1969: 512) grouping of the configurations PXx\#Px and Pxx\#Px with P\#Px\#Px and PSx\#Px (see section 2.1.1 above) proves to be untenable: the former two configurations cannot be attributed to the group of poems of South German content. ${ }^{18}$

Of greater interest from a comparative Germanic perspective, the one that Kuhn vigorously pursued, the proportion of the configuration PXx\#(...)Px with a long medial syllable to its minimally distinct one Px\#x(\#...)Px is notably high in fornyrðislag - although very rare in occurrence in absolute terms - compared with that in Beowulf: 4 to 237 in fornyrðislag as opposed to 0 to 580 in Beowulf. With p $=0.007$ between the two meters, fornyrðislag is significantly distinguished from Beowulf by acceptance of the configuration PXx\#Px, however marginal it counts. In this respect, fornyrðislag stands closer to the Heliand; with a somewhat comparable proportion of 45 to 1091, the Old Saxon poem does not differ conspicuously from fornyrðislag with a p-value of 0.086, although it can still be maintained that the configuration at issue is represented more strongly in the Heliand at a significance level of 0.10.

While not outstanding in its own right, the presence of the configuration PXx\#Px in fornyrðislag assumes added importance when we observe that the more prominent form PSx\#Px is exceptionally attested in fornyrðislag (section 2.1.1), whereas it is not demonstrably known in Beowulf (Suzuki 1996: 76, 404n16; 2004: 31-32). Of further interest, the apparently larger presence of PXx\#(...)Px in the Heliand than in fornyrðislag corresponds neatly to the relatively frequent occurrence of the heavy counterpart PSx\#(...)Px there (Suzuki 2004: 31-35).

17 As will be shown in section 2.2.2 below, the configuration ending in compounds (PS) including compound proper nouns is biased toward the a-verse on account of the verse-final, stressed drop. For this reason, the configurations PXx\#PS and Pxx\#PS are excluded from counting.
18 The situation would hardly differ, if the configurations ending in PS (type A2b) were also taken into account: the 14 configurations beginning with PXx\# or Pxx\# would be divided into 9 (the foreign group) and 5 (the domestic group), while the other concatenations would amount to 121 (the foreign group) and 129 (the domestic group). The two distributions would be lacking in statistical significance, with a p-value of 0.282 .

2.1.3.4 The configuration PxSx

This configuration arises when a verse is composed solely by a single compound word of the form PxSx, whereby the second lift is occupied by a secondary-stressed syllable. We have a total of fifty-six such verses in the corpus, ${ }^{19}$ of which forty-four are constituted by common nouns and the other twelve, by proper nouns, as exemplified in (9). The distribution of this configuration (with the two variants) is indicated in Table 2.15.
(9) Vsp 13.8 Eikinscialdi [PxSx]

Vsp 59.4 iðiagræna [PxSx]
Rp 13.3 Øcqvinkálfa [PxSx]
Rp 43.3 ævinrúnar [PxSx]
Grt 12.7 hoqfgahalli [PxSx]

Table 2.15. Verse distinction and alliterative pattern of PxSx and Px\#Px

Configuration	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
PxSx	14 (25.00\%)		42 (75.00\%)	56 (100\%)
	13 (92.86\%)	1 (7.14\%)		
PxSx (= common noun)	11 (25.00\%)		33 (75.00\%)	44 (100\%)
	10 (90.91\%)	1 (9.09\%)		
PxSx (= proper noun)	3 (25.00\%)		9 (75.00\%)	12 (100\%)
	3 (100\%)	0 (0\%)		
Px\#Px	236 (21.95\%)		839 (78.05\%)	1075 (100\%)
	173 (73.31\%)	63 (26.69\%)		

No significant difference is found between the two variants of the configuration PxSx in terms of verse distribution and alliterative patterning. Therefore, we should best leave the configuration undivided as a unitary configuration. This sequence as a whole is in turn indistinguishable from the configuration Px\#Px, a variant of type A1 in which the first drop is realized exclusively by a word-final syllable, as regards verse distribution ($p=0.620$) as well as alliteration ($p=0.125$).

[^16]The first drop is monosyllabic, with the exception of Vkv12.3 bestibyrsima as noted above, in which a disyllable occurs instead. As the manuscript reading is hardly intelligible as it stands, this verse is often emended to bestisima 'bast rope' (Jónsson 1888: 83; Sijmons and Gering 1931: 13; La Farge and Tucker 1992: 22; See, La Farge, Picard, and Schulz 2000: 177-179; see also Dronke 1997: 312). This emendation also results in a metrically regular form.

2.2 Type A2

2.2.1 Type A2a (/ \/x)

Formally distinguishable from the minimal variant of type $\mathrm{A} 1(\mathrm{Px} \# \mathrm{Px})$ on the one hand and subtype A1s (PS\#px) on the other is the configuration PS\#Px (corresponding to Heusler's [1956: 223] 2V.k) in which the second position is filled by the second member of compounds, as exemplified in (10). While differentiated from the sequence Px\#Px by the secondary stress on the first drop, this configuration also stands in contrast to subtype A1s by virtue of the greater length or weight of the second lift that is realized by a long stressed syllable (P) rather than the unresolved short counterpart (p). Altogether forty-one examples are found in the corpus. ${ }^{20}$ The distribution pattern of this configuration is represented in Table 2.16.
(10) \quad Sg 61.3 frumver sínom [PS\#Px]

Vsp 35.3 lægiarn líki [PS\#Px]
Prk 5.2 fiaðrhamr dunði [PS\#Px]

Table 2.16. Verse distinction and alliterative pattern of PS\#Px and P\#P\#Px

Configuration	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
PS\#Px	$18(43.90 \%)$		$23(56.10 \%)$	$41(100 \%)$
	$2(11.11 \%)$	$16(88.89 \%)$		

[^17]| Configuration | A-verse | | B-verse | Total |
| :--- | :---: | :---: | :---: | :---: |
| | Single alliteration | Double alliteration | | |
| PS\#Px (PS $=$ | $2(56.67 \%)$ | $3(50.00 \%)$ | $6(100 \%)$ | |
| proper noun) | $2(33.33 \%)$ | | | |
| P\#P\#Px | $3(37.50 \%)$ | $8(66.67 \%)$ | $4(33.33 \%)$ | $12(100 \%)$ |

The configuration PS\#Px differs significantly from the variant of type A1, Px\#Px (Table 2.2), both in terms of verse distinction ($\mathrm{p}=0.002$) and alliterative pattern ($\mathrm{p}<0.001$). It fails to display the marked preference for the b-verse and single alliteration characteristic of type A1 in its minimal form (Px\#Px). Most outstanding seems to be the strong predilection of PS\#Px for double alliteration, a pattern that is contrary to the configuration Px\#Px.

In comparison, no significant difference can be found between the configurations PS\#Px and PS\#px as far as the verse distinction is concerned ($p=0.582$). In this respect, Sievers's (1885: 13) generalization that type A2a and subtype A1s are favored complementarily in the a-verse and the b-verse, respectively, proves to be insubstantial in statistical terms. As regards the alliterative pattern, however, the two configurations are distinguished ($p=0.002$): the conspicuous preference for double alliteration proves to be a privilege of the sequence PS\#Px.

As with subtype A1s, there is a further variant of PS\#Px in which the first word PS is constituted by a compound proper noun, as follows: ${ }^{21}$
(11) Hym 24.1 Hreingálcn hlumðo [PS\#Px]

Vkv 10.6 Hlǫðvés dóttir [PS\#Px]
Od 6.1 Vilmundr heitir [PS\#Px]

As shown in Table 2.16, the two varieties of PS\#Px are indistinguishable from each other in regard to the distribution of the a-verse and the b-verse ($p=1$) as well as to the use of single and double alliteration in the a-verse ($p=0.080$). It may therefore be warranted to conclude that the two configurations are reducible to the identical metrical type, type A2a. When the first lifted-word involved is a complex noun, whether common or proper in lexical category, a distinct verse type, type A2a, arises in differentiation from type A1: while the occurrence of a true compound is strongly associated with double alliteration, precisely the opposite appears to obtain when a compound proper noun is used instead. With the p-value of 0.080 by Fisher's exact test as given above, however, this contrast can hardly be regarded as well proven, largely

21 A-verse with single alliteration (2 examples): Od 1.7, 6.1; a-verse with double alliteration (1 example): Hym 24.1; b-verse (3 examples): Vsp 50.8, Vkv 10.6, Hdl 13.4. Three further examples contain anacrusis: Grp 45.5, Od 18.4, 20.4.
due to the small sample concerned. Accordingly, with respect to verse distinction and alliterative pattern, the configuration PS\#Px ($\mathrm{PS}=$ proper noun) may be characterized as no different from the sequence PS\#Px (PS = common noun) regardless of the category of the first word PS.

In addition to the host of type A2a variants with the second position filled by a secondary-stressed syllable, there are a small number of examples in which the same position is realized by an independent content word, as follows: ${ }^{22}$
(12) Vsp 19.3 hár baðmr, ausinn [P\#P\#Px]

HH 49.7 gǫfuct lið gylfa [px\#P\#Px]
Vkv 1.8 dýrt lín spunno [P\#P\#Px]

Particularly remarkable about this configuration is that, unless double alliteration occurs, it can alternatively be scanned as type D, subtype Da (/ / \backslash x; section 2.10) on purely formal grounds: the second words involved constitute the second lift, rather than the first drop (heavy drop). As far as the distribution of the a-verse and the b -verse is concerned (Table 2.16), the configuration P\#P\#Px is of no significant difference from PS\#Px: $p=0.202$ when PS is a common compound; $p=0.627$ when PS is a proper name; and $p=0.209$ when both classes are combined. In similar fashion, the configuration in question does not differ significantly from PS\#Px in terms of alliterative pattern in the a-verse: $p=0.281$ when PS is a common compound; $p=0.545$ when PS is a proper name; and $\mathrm{p}=0.357$ when both classes are combined. Given the lack of significant distinction on the two major distributional parameters, identifying the sequence P\#P\#Px as type A2a seems to be most plausible.

Also scanned as type A2a (type A2l in their terms) by Sievers (1885: 10-11, 17, 23, $24,26,27,28,36,39,40,41,43 ; 1893: 61$) and Gering (1924: 2, 8, 12, 17, 20, 29, 44, 188, 192) is the configuration P\#x\#Px (or P\#P\#Px with the assumption of metrical prominence on the second word) in which the first drop (\#x\# or \#P\#) is realized by a monosyllabic verb, as exemplified in (13): ${ }^{23}$
(13) Vsp 4.5 sól scein sunnan [$\mathrm{P} \# \mathrm{x} \# \mathrm{Px}]$ or [$\mathrm{P} \# \mathrm{P} \# \mathrm{Px}]$
$H H v 6.5$ orn gól árla [$\mathrm{P} \# \mathrm{x} \# \mathrm{Px}$] or [$\mathrm{P} \# \mathrm{P} \# \mathrm{Px}$]
Rp 21.4 kona sveip ripti [px\#x\#Px] or [px\#P\#Px]

As mentioned in section 2.1.1 above, however, we recognized no difference between these verses and other comparable configurations in which the first drop is occupied by monosyllabic function words such as conjunctions (e.g., Vsp 6.5 nótt oc niðiom) and

22 A-verse with single alliteration (3 examples): Vsp 19.3, Od 6.5, 14.7; a-verse with double alliteration (5 examples): Vsp 26.1, 26.7, 30.7, HH 49.7, Rp 25.3; b-verse (4 examples): Vsp 25.8, Vkv 1.8, 9.2, Br 10.2. 23 Heusler (1956: 223-224), too, seems to be in favor of this scansion.
prepositions (e.g., Hym 9.7 gløggr við gesti): they are all identified as type A1. It should be borne in mind in this connection that Sievers and Gering carefully distinguished between ordinary verbs (such as those given above) and weakly stressed verbs (auxiliaries) such as vera ‘be’ (e.g., Hym 31.5 heill var karli) and типи 'will' (e.g., Vsp 44.3 festr mun slitna), and regarded the latter group as incapable of constituting a heavy drop and hence as indistinguishable from other function words like prepositions.

At first sight, Sievers's and Gering's scansion might appear credible on metrical grounds: a clear distinction in verse distribution is in evidence depending on whether the first drop is realized by verbs or other function words, as substantiated in the first two rows of Table 2.17. ${ }^{24}$

Table 2.17. Verse distinction and alliterative pattern of P\#x\#Px according to varying realizations of the first drop

First drop	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
Verbs (excluding auxiliaries)	45 (90.00\%)		5 (10.00\%)	50 (100\%)
	14 (31.11\%)	31 (68.89\%)		
Auxiliaries and other function words	148 (37.95\%)		242 (62.05\%)	390 (100\%)
	58 (39.19\%)	90 (60.81\%)		
Auxiliaries	22 (78.57\%)		6 (21.43\%)	28 (100\%)
	10 (45.45\%)	12 (54.55\%)		
Function words other than verbs and auxiliaries	126 (34.81\%)		236 (65.19\%)	362 (100\%)
	48 (38.10\%)	78 (61.90\%)		

The observed difference is of statistical significance, given $\mathrm{p}<0.001$ by Fisher test. Thus, the configuration with the first drop occupied by monosyllabic verbs occurs in the a-verse with a significantly higher incidence than the one with other function words (including auxiliaries) appearing in the same position. Since type A2a is distinguished from type A1 by a significant increase in the incidence of the a-verse, one might be tempted to conclude that the configuration at issue is fully qualified for a characterization as type A2a in distinction from type A1, as did Sievers and Gering.

On closer examination, however, the above characterization becomes increasingly suspicious. First, the distinction that Sievers and Gering made between the two classes of verbs, ordinary verbs on the one hand and auxiliaries on the other, proves to be inconclusive on metrical grounds. As Table 2.17 makes evident, full verbs and auxiliaries are treated quite analogously as realizations of the first drop of the config-
uration P\#x\#Px (or P\#P\#Px): the use of auxiliaries leads to a conspicuous increase of the a-verse that is highly comparable to the situation arising from the use of ordinary verbs. In fact, the distribution of the a-verse and the b-verse does not differ significantly between the two classes of verbs, with a p-value of 0.188 by Fisher's exact test. Hardly more distinguishable is the alliterative pattern in the a-verse, given a p-value of 0.286 by the same test. The lack of metrical significance thus throws doubt on the categorical distinction that Sievers and Gering made between the two classes of verbs as far as the first drop of the configuration $\mathrm{P} \# \mathrm{x} \# \mathrm{Px}$ is concerned.

In the absence of further argument for the differential treatment at issue, we are led to isolate the configuration $\mathrm{P} \# \mathrm{x} \# \mathrm{Px}$ with the first drop realized by verbs in general as a unitary entity that is characterized by a marked preference for the a-verse. Now that the weakly stressed verbs like vera has been determined as a legitimate constituent of this special variant of the configuration P\#x\#Px (or P\#P\#Px, where \#x\# and \#P\# = verb; hereafter P\#x[verb]\#Px or P\#P[verb]\#Px), it seems hardly feasible to ascribe the metrical property in question to a high degree of prominence on the first drop: it is scarcely conceivable that the auxiliaries are sharply differentiated from other function words on account of prosodic salience. In this light, it does not seem to be conclusive at all to characterize the marked variant at issue primarily in terms of metrical prominence and hence to identify it as type A2a.

To identify the configuration under consideration with type A2a raises further suspicion. As uncovered earlier in this section, type A2a (PS\#Px) is differentiated from type A1 by lack of a marked preference for the b-verse, rather than the dominance of the a-verse as with the configuration under discussion. In actuality, the verse distribution of PS\#Px - whether the first compound word PS is a common or proper noun significantly differs from that of P\#x[verb]\#Px: with a p-value of less than 0.001, the configuration P\#x[verb]\#Px occurs in the a-verse with a significantly higher frequency than PS\#Px. The same significant difference obtains when we include for comparison the other variant of type A2a in which the first drop is occupied by an independent word, a noun or adjective (P\#P[noun]\#Px): as shown in Tables 2.16 and 2.17, the configuration P\#x[verb]\#Px occurs in the a-verse more frequently than type A2a with all its manifestations combined, with a p-value of less than 0.001.

Furthermore, when comparing the representative configuration of each group with the highest incidence in the a-verse - P\#P[noun]\#Px on the one hand and $\mathrm{P} \# \mathrm{x}[\mathrm{full}$ verb] $\# \mathrm{Px}$ on the other - we obtain a p-value of 0.062 , which would moderately suggest that the configuration with the first drop aligned to a verb is more likely to appear in the a-verse. Yet, in Old Germanic meter in general, nouns and adjectives are regarded as more qualified to form a lift and hence are characterized as inherently more prominent in prosodic terms than finite verbs (section 1.2). Given this overarching characterization and under the general assumption that a closer association with the a-verse is due to a higher degree of prominence on a given verse, we would counterfactually expect that the configuration with the first drop filled by a noun or adjective ($\mathrm{P} \# \mathrm{P}[$ noun $] \# \mathrm{Px}$) is more likely to occur in the a-verse than the verbal counterpart

P\#x[verb]\#Px. The contrary pattern of distribution actually obtained would therefore suggest that the conspicuous concentration of the configuration P\#x[verb]\#Px in the a-verse be attributed to anything other than its metrical categorization as type A2a and the entailed grouping with the configuration P\#P[noun]\#Px: otherwise, one would be forced to identify the configuration P\#x[verb]\#Px (P\#P[verb]\#Px) as a maximally heavy variant of type A2a in defiance of the lesser degree of prominence on verbs as observed elsewhere.

Another difficulty that arises from the scansion of P\#x[verb]\#Px (P\#P[verb]\#Px) as type A2a concerns the configuration P\#xx\#Px (or P\#P/px\#Px) in which \#xx\# (or \#Px\#/\#px\#) is filled by a disyllabic finite verb (P\#xx[verb]\#Px or P\#Px[verb]\#Px/ P\#px[verb]\#Px). There are fifty-three such verses in the corpus, ${ }^{25}$ exemplified in (14). This group includes auxiliaries as well as ordinary verbs as disyllabic realizations of the first drop, given the common treatment of these two categories of verbs in regard to the monosyllabic counterpart P\#x[verb]\#Px as shown above.
(14) Vsp 26.5 á genguz eiðar [P\#xx\#Px] or [P\#Px\#Px]; type A2l (Sievers 1885: 22; Gering 1924: 2); type A* (Sievers 1893: 68)
Vkv 4.4 sali fundo auða [px\#xx\#Px] or [px\#Px\#Px]; type E^1 (/ \x/x; Gering 1924: 33)
Hdl 10.7 æ trúði Óttarr [P\#xx\#Px] or [P\#Px\#Px]; type E1^ [sic] (Gering 1924: 26)

Rather than the dichotomy of true verbs versus auxiliaries, this group of the configuration P\#xx[verb]\#Px (P\#Px[verb]\#Px/P\#px[verb]\#Px) may more meaningfully be divided into two subgroups according to the length of the first syllable involved, long \#Xx\# or \#Px\#) versus short (\#xx\# or \#px\#). ${ }^{26}$ On identifying P\#x[verb]\#Px as type A2a, the first variant configuration P\#Xx[verb]\#Px (P\#Px[verb]\#Px) would most likely be identified as a five-position verse: because a heavy drop (\backslash) is generally filled by a long stressed syllable alone, the following unstressed syllable (-x\#) must be assigned

25 A-verse with single alliteration (15 examples): Vsp 30.9, HHv 40.1, HH II 2.1, 34.1, Br 8.3, 12.7, Sg 2.1, Gðr II 26.5, Ghv 4.7, Rp 13.9, Hdl 7.1, 11.1, 18.1, Grt 5.1, 24.3; a-verse with double alliteration (18 examples): Vsp 20.5, 26.5, 45.1, Hym 14.5, HH 36.1, Grp 9.1, 31.1, 37.1, Rm 13.5, 15.1, Br 11.5, Gðr I 12.3, Rb 34.7, Hdl 6.1, 10.7, 13.7, Grt 17.1, 18.1; b-verse (20 examples): Vsp 51.2, Hym 39.6, Vkv 4.4, HH 6.8, 25.6, HHv 31.2, 33.2, 40.2, HH II 25.6, Grp 11.8, 18.2, 31.4, 38.2, 38.8, 42.4, 42.8, 44.4, 50.8, Sg 34.2, Rp 34.4. Compare Heusler (1956: 222) and Kuhn ([1939] 1969: 511).
26 P\#Xx(verb)\#Px (or P\#Px[verb]\#Px; 27 examples), a-verse with single alliteration (8 examples): HHv 40.1, HH II 34.1, Br 12.7, Gðr II 26.5, Ghv 4.7, Hdl 7.1, 11.1, 18.1; a-verse with double alliteration (10 examples): Vsp 20.5, 26.5, Hym 14.5, HH 36.1, Grp 9.1, Gðr I 12.3, Rp 34.7, Hdl 6.1, 10.7, 13.7; b-verse (9 examples): Vkv 4.4, HHv 31.2, 40.2, Grp 38.8, 42.4, 44.4, 50.8, Sg 34.2, Rp 34.4.

P\#xx(verb)\#Px (or P\#px[verb]\#Px; 26 examples), a-verse with single alliteration (7 examples): Vsp 30.9, HH II 2.1, Br 8.3, Sg 2.1, Rp 13.9, Grt 5.1, 24.3; a-verse with double alliteration (8 examples): Vsp 45.1, Grp 31.1, 37.1, Rm 13.5, 15.1, Br 11.5, Grt 17.1, 18.1; b-verse (11 examples): Vsp 51.2, Hym 39.6, HH 6.8, 25.6, HHv 33.2, HH II 25.6, Grp 11.8, 18.2, 31.4, 38.2, 42.8.
to a separate metrical position, a normal drop (x). The resulting verse accordingly contains five positions altogether, which may be called type A* (Sievers 1893: 68) or type E* (Gering 1924: 2). ${ }^{27}$ An analogous scansion as type A* or type E* would have to be implemented on the longer configuration $\mathrm{P} \# \mathrm{Xx}[$ verb] $\# \mathrm{x} \# \mathrm{Px}$ in which the disyllabic verb (Xx[verb]) is followed by another function word, as with HH II 18.7 ætt áttu, in góða and Ghv 10.1 Priá vissa ec elda.

Whatever the proper labeling of this five-position verse, its existence as an independent metrical type is extremely doubtful. First, as noted by Sievers (1893: 69n2) himself and discussed at greater length in section 2.1.1 above, there is no instance of the configuration $\mathrm{PSx} \# \mathrm{Px}(\mathrm{PSx}=$ true compound noun), the expected prototypical realization of the expanded type at issue if it should really be in existence. Second, also virtually unknown is a closely related configuration P\#Px\#Px in which the second word \#Px\# is embodied by a noun or adjective proper - in contrast to the presence of its four-position counterpart, P\#P[noun]\#Px - that is severely limited to the foreign group as mentioned above. ${ }^{28}$ Finally, there are isolated examples of the configurations PXx\#(...)Px and PXx\#(...)PS (section 2.1.3.3), as are the short counterparts Pxx\#(...)Px and Pxx\#(...)PS. This contrastive treatment between -Sx\# (disallowed) and -Xx\# (marginally allowed) seems to suggest that the first drop of type A1 may be aligned to posttonic syllables as long as they lack lexical stress. This generalization would in turn prove to be most compatible with the scansion whereby the long disyllabic verbs in question are treated as equivalent to medial syllables lacking lexical stress (-Xx\#) that are most amenable to serving as a drop, rather than to class 1 words (\#Px\#) that are most likely to constitute a lift. ${ }^{29}$

In the absence of these realization variants that are predicted to be more typical and hence more numerous in occurrence, one might contend, elaborating on Sievers's (1893: 69n2) observation, that the peripheral variant P\#Px[verb]\#Px is permitted to occur to the exclusion of more central ones precisely because of its greater deviation from the prototype that violates in a maximal way the principle of four positions per verse. This reasoning, however, would entail that the disyllabic verb \#Px\# is deviant on account of its lesser prominence than the nominal counterpart. The postulation of a lesser degree of prominence on the disyllabic verb \#Px\#, however, utterly contra-

[^18]dicts the situation for the monosyllabic verb: as observed above, the maximal preference for the a-verse displayed by the configuration P\#x[verb]\#Px (or P\#P[verb]\#Px) in distinction from P\#P[noun]\#Px seems to be at variance with the suggested postulation of a weaker stress on \#Px[verb]\# than on \#Px[noun]\#.

The second configuration group, $\mathrm{P} \# \mathrm{xx}[\mathrm{verb}] \# \mathrm{Px}$ (or $\mathrm{P} \# \mathrm{px}[\mathrm{verb}] \# \mathrm{Px}$), poses another difficulty. Scanning this configuration as type A2a (/ \backslash / x) means that the second position (the first drop) is resolved through realization of a short disyllable (px). The resolution of a heavy drop, however, is unattested elsewhere in fornyrðislag poetry. No example can be found in the corpus in which the first drop of type A2a is realized by a short disyllabic nominal form -sx\# or \#px\#. Moreover, the metrical type that constitutes a mirror image of type A2a, namely, type A2b (/ x /
), does not allow resolution on the final drop, a heavy drop, either (see section 2.12 .2 below). The characterization of $\mathrm{P} \# \mathrm{px}[\mathrm{verb}] \# \mathrm{Px}$ as type A2a would therefore have to legitimate composition of the otherwise excluded configuration.

Furthermore, the identification of the configuration in question as a resolved variant of type A2a would have to treat it as equivalent to the configuration P\#P[verb]\#Px, the unresolved counterpart. Given the allegedly same identity as type A2a, we would expect its two variants, 'resolved' and 'unresolved,' to behave analogously in the absence of independently motivated conditions that are conducive to their differential treatment. As it is, the two configurations are sharply differentiated in terms of verse distribution: only slightly more than half the 'resolved' variant (15 out of a total of $26,57.69 \%$; see note 26 above) occur in the a-verse, whereas as many as 67 out of a total of 78 instances of the 'unresolved' variant, 85.90% (see Table 2.17 above) appear in the a-verse. The observed difference is of statistical significance, given a p-value of 0.005 . Since there seem to be no specific reasons for preventing the 'resolved' variant from being used dominantly in the a-verse parallel to the 'unresolved' one, this distributional discrepancy argues against the reduction of the two configurations to the identical metrical type, type A2a.

Rather, the form P\#px[verb]\#Px should alternatively be equated with the configuration P\#Px[verb]\#Px, the first group of verses treated above. The verse distribution of these two configurations P\#Px[verb]\#Px and P\#px[verb]\#Px is hardly distinguishable. More specifically, 18 out of a total of 27 examples of P\#Px[verb]\#Px, 66.67% (see note 26 above), occur in the a-verse, a pattern which does not differ significantly from that of P\#px[verb]\#Px given above, with a p-value of 0.577. The indistinguishability of these two configurations thus demonstrates that these two varieties of disyllabic verbs, \#px\# and \#Px\#, are metrically equivalent, thereby entailing as a consequence that the short disyllabic verb \#px\# is metrically distinct from the monosyllabic one \#P\#. This equation with the long disyllable \#Px\# accordingly shows that the short disyllabic verb is immune to resolution.

Therefore, as far as metrical prominence is postulated, with Sievers and Gering, on the short disyllabic verb, the configuration P\#px[verb]\#Px - along with its equivalent longer one, $\mathrm{P} \# \mathrm{Px}[\mathrm{verb}] \# \mathrm{Px}$ - only yields to the scansion as a five-position verse,
type A* or type E^{\star}, rather than type A2a. This leads to a further proliferation of the expanded metrical type that lacks empirical justification. In this way, the identification of the configuration P\#x[verb]\#Px as type A2a brings about the serious consequence of having to create a large number of the ill-founded metrical type with five metrical positions in violation of the otherwise very general principle of four positions per verse.

To conclude, the configuration $\mathrm{P} \# \mathrm{x} \# \mathrm{Px}$ with the first drop filled by a finite verb must be scanned as type A1, as opposed to type A2a; similarly, when the position in question is realized by a disyllabic verb, the configuration concerned has to be identified as type A1, rather than types A2a, A*, or E^. Sievers's (1885; 1893) and Gering's (1924) alternative scansions must therefore be rejected. At this point, the conspicuous occurrence of the type A1 variant P\#x[verb]\#Px in the a-verse may be explained in metrical terms. The Norse meter is distinguished from its West Germanic cognates by the leveling of the originally sharp distinction between the lift and the drop due to the radical reduction of unstressed syllables in North Germanic. Consequently, the class of maximally prominent words - substantives - is allowed to occupy a drop more frequently, as will be shown in subsequent sections. Seen in this light, it may be small wonder that the less prominent words - those belonging to class 2 - should be more likely to occur in the same position than does class 1 , and that this phenomenon should occur with a higher incidence in the Norse meter than its West Germanic counterparts. Furthermore, given the greater prominence of class 2 words than those belonging to class 3, which constitute prototypical realizations of the drop, the alignment of finite verbs to the first drop of type A1 must be characterized as marked relative to the prototypical instantiation, Px\#Px. Because of this less typical status of the configuration that is equipped with a relatively larger amount of prominence, the sequence $\mathrm{P} \# \mathrm{x}[\mathrm{verb}] \# \mathrm{Px}$ is associated strongly with the a-verse, rather than the unmarked b-verse.

2.2.2 Type A2b (/ x / \and / \/)

Another configuration that is minimally distinguished from type A 1 ($\mathrm{Px} . . . \mathrm{Px}$) is the sequence Px...PS in which the verse-final drop is realized by the second constituent of a compound. There are eleven such examples, as given below: ${ }^{30}$

[^19](15) Vsp 41.5 svort verða sólscin [P\#xx\#PS]

Vkv 21.3 opin var illúð [px\#x\#PS]
Sg 4.3 mæki málfán [Px\#PS]

In addition, we have five instances of the configuration PS\#PS and one instance of P\#P\#PS, both of which scan as type A2a as well as type A2b, as exemplified in (16):31
(16) Vsp 41.7 veðr ǫll válynd [P\#P\#PS]

Vsp 45.7 sceggold, scálmold [PS\#PS]

The verse distribution and alliterative pattern of these two configurations are represented in Table 2.18.

Table 2.18. Verse distinction and alliterative pattern of Px...PS, PS\#PS/P\#P\#PS, Px...P\#P, and Px...P\#x

Configuration	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
Px...PS	10 (90.91\%)		1 (9.09\%)	11 (100\%)
	0 (0\%)	10 (100\%)		
PS\#PS/P\#P\#PS	6 (100\%)		0 (0\%)	6 (100\%)
	0 (0\%)	6 (100\%)		
Px...P\#P	5 (100\%)		0 (0\%)	5 (100\%)
	0 (0\%)	5 (100\%)		
Px...P\#x	31 (93.94\%)		2 (6.06\%)	33 (100\%)
	7 (22.58\%)	24 (77.42\%)		
$\begin{aligned} & \text { Px...PS (PS = } \\ & \text { proper noun) } \end{aligned}$	41 (95.35\%)		2 (4.65\%)	43 (100\%)
	16 (39.02\%)	25 (60.98\%)		

The two configurations do not differ significantly along either parameter ($\mathrm{p}=1$ both for the a-verse versus the b-verse and for single versus double alliteration). It is accordingly justified to reduce the two sequences to the identical type, type A2b.

At this point, it will be of interest to compare type A2b with its minor-image configuration, type A2a, with the PS sequence realized by a true compound (section 2.2.1). As may be recalled, this type displays a strong preference for double alliteration (Table 2.16). Indeed, these two configurations are indistinguishable as far as their conspicuous predilection for double alliteration within the a-verse is concerned

31 A-verse with double alliteration (6 examples): Vsp 41.7, 45.7, 45.9, HH 50.7, HH II 45.11, Gðr II 15.7. Compare Gering (1924; see note 30 above), Heusler (1956: 224), and Russom (1998: 80).
($\mathrm{p}=0.524$). In regard to the distinction between the a -verse and the b -verse, however, they differ significantly, with a p-value of 0.007 by Fisher's exact test: while type A2a occurs more or less evenly in the a-verse and the b-verse, type A2b is virtually limited to the a-verse. The maximal preference for the a-verse and double alliteration thus constitutes a distinguishing property of type A2b. Furthermore, since the configuration PS\#PS/P\#P\#PS shares with the configuration Px...PS the marked preference for the a-verse as observed above, it must be identified as type A2b, rather than type A2a, which lacks this property.

The final drop may exceptionally be realized by an independent word that is best qualified to carry alliteration (i.e., nouns and adjectives; class 1), as exemplified in (17). Altogether, five examples are found in the corpus. ${ }^{32}$ This variant fully manifests the distinctive property of being associated with the a-verse and double alliteration, as shown in Table 2.18 above.

(17) $\quad B r 7.5$ gnapir æ grár iór [px\#x\#P\#P]

In section 2.1.2 above, we mentioned the configuration Px...P\#x in which the final drop is filled by an independent word other than a noun or an adjective. The verse distribution and alliterative pattern of this sequence is indicated in Table 2.18. As it turns out, this configuration displays no significant difference from the one treated in the paragraph above, namely, Px...P\#P, along these two parameters ($p=1$ for the distinction of the a-verse and the b-verse, and $p=0.559$ for that of single and double alliteration in the a-verse). In this light, we might be tempted to regard the configuration Px...P\#x as no different from Px...P\#P and therefore identify it as another variant of type A2b, rather than type A1. Verse-final independent words, regardless of their lexical category, appear to be capable of constituting a heavy drop. Indeed, this analysis is apparently confirmed by a comparison with the whole set of type A2b variants so far identified, namely, Px...PS, PS\#PS, P\#P\#PS, and Px...P\#P, with a p-value of 1 for verse distribution. As for alliterative pattern, however, the configuration Px...P\#x does not share the exclusive association with double alliteration that the other three configurations display as a whole, given a p-value of $0.034 .{ }^{33}$ At the same time, however,

32 Vsp 20.3, 31.7, Br 7.5, Sg 66.3, Hdl 14.7.
33 The partial metrical equivalence of the two configurations Px...P\#P and Px...P\#x in fornyrðislag stands in opposition to the situation in the Heliand (Suzuki 2004: 66-70). In it, the configuration Px... P\#x does not share the maximal association with the a-verse that characterizes Px...P\#P ($p=0.001$), although it prefers double to single alliteration in the a-verse ($\mathrm{p}=0.312$); thus, fornyrðislag and the He liand form opposite patterns of similarity between the two configurations in question. Since the property of verse distinction is regarded as more inclusive than that of alliterative pattern (section 1.2), we may infer that the sequence Px...P\#x is less distant from the prototype of type A2b in fornyrðislag than from that of type A1.
this configuration differs from the representative variant of type A1, Px...Px, on the same parameter with a p-value of 0.001 (see Table 2.5).

A further variety seems to arise when the verse-final drop is filled by the second element of a compound proper name, as given in (18). With a total of forty-three examples found in the corpus, ${ }^{34}$ this configuration is distributed as indicated in Table 2.18 above. While indistinguishable from type A2b with the final drop occupied by the second element of a compound (Px...PS) as far as the distinction between the a-verse and the b-verse is concerned ($\mathrm{p}=0.502$; compare Heusler 1956: 223-224), this configuration appears to lack the strong association with double alliteration that is distinctively characteristic of the core set of type A2b comprising the configurations Px...PS, PS\#PS, P\#P\#PS, and Px...P\#P. This casual observation is statistically supported, given a p-value of 0.001 by Fisher's exact test. In fact, the alliterative pattern displayed by this configuration proves to be hardly distinguishable from that of the sequence treated immediately above, Px...P\#x, with a p-value of 0.202 . Nor does it differ significantly from type A1, given $p=0.107$. Thus, the distinguishability of alliterative pattern places the configuration Px...PS (PS = proper name) between type A1 and the configuration Px...P\#x, the two ends that are distinguished from each other.

(18) Vsp 46.5 hátt blæss Heimdallr [P\#x\#PS]

Sg 15.1 Ein er mér Brynhildr [P\#x\#x\#PS]
Gðr II 25.1 Gef ec pér, Guðrún [P\#x\#x\#PS]

In summary, the configurations Px...P\#x and Px...PS with compound proper names fail to display in slightly different ways the clustering of properties that are prototypical of type A2b. By and large, then, they might be located between types A1 and A2b, but at different points: displaying also a distinct alliterative pattern from type A1, the configuration Px...P\#x appears to be closer to the prototype of type A2b. Furthermore, in view of the greater significance of the a-verse versus b-verse distinction for identification of metrical types that they share with type A2b in distinction from type A1, one might be tempted to assign these two configurations to type A2b and characterize them as less typical, peripheral variants of this type.

On closer examination, however, the analysis suggested above proves to be scarcely convincing. First, the allegedly closer association of the configuration Px...P\#x with double alliteration in comparison with the sequence Px...PS (PS = proper name) by no means stems from its inherent property; rather, it should be

[^20]regarded as a contingent consequence of the preponderance of the polysyllabic first drop there. Specifically, of the 33 instances of the configuration Px...P\#x, 24 have the first drop realized by a disyllable (20 examples) or a trisyllable (4 examples). Note in passing that the multiple use of the set phrases alt er bat ætt bin and voromz, at viti svá are largely responsible for the predominance of the polysyllabic first drop. By contrast, in the configuration Px...PS (PS = proper name) the monosyllabic first drop (24 examples) predominates over the 19 polysyllabic ones (15 disyllables and 4 trisyllables). With a p-value of 0.019 , the sequence Px...P\#x is thus accompanied by the polysyllabic first drop with a significantly higher frequency than the configuration Px...PS. As demonstrated in section 2.1.1 above, the polysyllabic first drop of type A1 is more closely associated with double alliteration than the monosyllabic one is. Given this correlation, and given that there are no more intrinsic reasons for the configuration Px...P\#x to prefer the polysyllabic first drop than for other verse compositions, we should ascribe the high incidence of double alliteration at issue to the dominant but coincidental polysyllabicity of the first drop involved in it. Correspondingly, it would hardly be warranted to characterize the verse form Px...P\#x as more similar to type A2b in its inherent metrical terms than the configuration Px...PS (PS = proper noun).

Second, further on the predominance of the polysyllabic first drop in the configuration Px...P\#x, it should also be pointed out that this verse form is accompanied by polysyllables in the first drop with a significantly higher incidence than type A1 ($p=0.001$; compare Table 2.5). In comparison, the proportion of monosyllables to polysyllables in the first drop does not differ between the configuration Px...PS (PS = proper name) and type A1 ($\mathrm{p}=0.875$). In this light, the higher frequency of the a-verse and double alliteration observed in the configuration Px...P\#x cannot compel us to categorize it as a marked variant of type A2b in opposition to type A1. Rather, the configuration in question would be no less compatible with its subsumption under type A1 as a peripheral variant.

Finally, the monosyllabic first drop in the configuration Px...P\#x is constituted by a word-initial syllable seven times out of the eight occurrences in the a-verse (Vsp 49.1, 58.1, Od 12.1, Hdl 31.3, 34.3, 36.3, 39.3 vs. Vkv 17.7). Such an overwhelming occurrence of word-initial syllables is in contrast to the normal composition of type A1, for which the converse distribution obtains (Table 2.2; $\mathrm{p}=0.026$). Since the word-initial monosyllable in the first drop of type A1 displays a closer association with the a-verse than the word-final one (section 2.1.1), its predominance in the monosyllabic first drop can plausibly be held responsible, along with its dominant polysyllabicity, for the marked concentration of this configuration in the a-verse.

All of these points convergently lead us to reaffirm the view presented in section 2.1.2 above that the configuration Px...P\#x scans as a marked variant of type A1. This identification is furthermore in keeping with the comparable phenomena that are observed in West Germanic (section 2.1.2), in which the configuration in question is characterized as nothing but type A1. Moreover, the dearth of type A2b in
the Norse meter would have been unlikely to promote a novel use by analogical extension, contrary to the implication that the scansion as a peripheral variant of type A2 would entail.

2.3 Type A3 ([/] x / x)

2.3.1 The configurations x...Px, x...PS, and x...PP

This type is characterized by the absence of the first lift in its explicit form; the verse accordingly contains only one lift on the surface, which is located in penultimate position and is preceded normally by a sequence of unstressed syllables. ${ }^{35}$

With regard to the cadence, the prototypical configuration is x...Px, in which the last two positions are realized by a simplex word, as exemplified in (19). There are 592 examples in the corpus, which are distributed as indicated in Table 2.19. ${ }^{36}$ While occurring overwhelmingly in the a-verse with 555 examples (93.75%), this type is attested in the b-verse as well with 37 instances (6.25\%).
(19) Vsp 19.5 baðan koma doggvar [$\mathrm{xx} \# \mathrm{xx} \# \mathrm{Px}$]

HH 6.1 Stendr í brynio [x\#x\#Px]
Sg 35.4 riðot at garði [xx\#x\#Px]

By comparison, this configuration is strictly limited to the a-verse in Beowulf (a total of 289 instances) and the Heliand (a total of 388 instances). The observed difference between Norse and West Germanic meters is significant, with p-values of less than 0.001 in both cases. The relaxation of the categorical prohibition against occurrence in the b-verse in fornyrðislag can feasibly be ascribed to the novel underlying struc-

35 Among the collection of verses that we identify as type A3 (see below) are a small number of instances that must be acknowledged to be ambivalent in scansion: depending on whether we regard as alliterative the weakly stressed words that precede the penultimate lift, they may be scanned as type A3 (our scansion) or alternatively as types A1 or C. Relevant examples are as follows: Hym 35.5 sá hann ór hreysom (type aA1 according to Lehmann and Dillard 1954); Vkv 25.1 and 35.5 enn ór augom (type A1 according to Lehmann and Dillard 1954; type C according to Karlsson, Eypórsson, and Árnason 2012); HH II 4.9 áðr hann Helgi (type A3 according to Lehmann and Dillard 1954; type C according to Karlsson, Eybórsson, and Árnason 2012); Sg 65.7 at undir oss ollom (type A1 according to Lehmann and Dillard 1954; type aA1 according to Karlsson, Eypórsson, and Árnason 2012); Ghv 15.7 sem væri sœmleitr (type A2b according to Lehmann and Dillard 1954; type A3 according to Karlsson, Eybórsson, and Árnason 2012); Ghv 17.1 Enn sá sárastr (type C according to Lehmann and Dillard 1954 and Karlsson, Eypórsson, and Árnason 2012).
36 For a list of verses, see appendix 1. Compare Ranisch (1888: 65), Pipping (1903: 110), Wenck (1905: 127), Gering (1924: 7, 11, 16, 19, 23, 28, 35, 39, 43, 49, 180, 182, 184, 187, 191, 197, 200, 206, 208-209, 213, 216, 220), and Russom (1998: 50-51).
ture $(/) \times / \times$ as opposed to $\times \times / \times$, as will be substantiated below: with the retention of the first lift by the Norse innovation, the metrical representation involved conforms to the requirement that the b-verse must have two lifts and two drops, the unmarked composition in conformity to the principle of four metrical positions per verse; therefore, this verse form is no longer excluded categorically from the b-verse (for details in relation to alliterative pattern, see section 6.1 below).

What would appear to be a heavy variant of type A3 arises when the verse-final drop is occupied by the second constituent of a compound, whether a true compound or compound proper name, as shown in (20) ${ }^{37}$ and (21), ${ }^{38}$ respectively.
(20) Vsp 24.3 bat var enn fólcvíg [x\#x\#x\#PS]

Prk 29.3 hin er brúoffiár [x\#x\#PS]
Ghv 21.5 at petta tregróf [x\#xx\#PS]
(21) $\operatorname{Br} 3.1$ Pic hefir Brynhildr [x\#xx\#PS]

Gðr I 6.1 Pá qvað pat Herborg [x\#x\#x\#PS]
Bdr 6.2 sonr em ec Valtams [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{PS}$]

While indistinguishable from each other $(\mathrm{p}=1)$ in verse distribution, these two configurations $\mathrm{x} . . . \mathrm{PS}(\mathrm{PS}=$ common or proper noun) can no more be distinguished from that of the prototypical form of type A3 (x...Px), with p-values of 1 in both cases. We may be led to conclude that the two configurations at issue constitute variants of type A3, rather than distinct metrical types. ${ }^{39}$

Comparing, then, the two configurations ending in a secondary-stressed syllable (x...PS) as a whole with the sequence $\mathrm{x} . . . \mathrm{Px}$, one might be struck by the relatively lower incidence of the b-verse in the heavier variant (4.65%) than in the lighter one (6.25%). One might thereupon be tempted to interpret this apparent difference in verse distribution as comparable to the opposition between types A1 and A2b. As may be recalled, the occurrence of the second element of compounds in the versefinal position of the metrical form $/ \times / \times$ (type A1) creates a distinct metrical type, type A2b (/ x / \backslash; section 2.2.2). This type is characterized by a conspicuous preference for the a-verse. In analogous fashion, the use of the same constituent at the end of

[^21]type A3 appears to be associated more strongly with the a-verse. However appealing the alleged correlation may look, the difference in distribution at issue turns out to be more apparent than real: by Fisher test, we obtain a p-value of 0.808 , which requires us to maintain the null hypothesis that the two patterns are independent; what is involved in the observed difference is a random variation without statistical significance.

A further possible variant is obtained when the verse-final drop is realized by an independent word, regardless of its word-class identity. There are seventy-seven examples of such configurations (x...P\#P or x...P\#x), ${ }^{40}$ as exemplified in (22):
(22) Hym 22.6 sú er goð fiá [x\#x\#P\#P]

HH II 2.3 era pat karls ætt [xx\#x\#P\#P]
Hdl 7.3 er pú queðr ver minn [x\#x\#x\#P\#P]

The configuration x ...P\#P (or $\mathrm{x} . . . \mathrm{P} \# \mathrm{x}$) displays a far weaker degree of association with the a-verse than do x...Px and x...PS (Table 2.19), and the observed difference proves to be of statistical significance ($\mathrm{p}<0.001$ as against x ...Px). The distribution pattern, therefore, does not support the identification of these configurations as type A3. Moreover, the use of the most salient word class, the nominals, for the least prominent position, the verse-final drop, does not seem to be a feasible operation of linguistic-metrical alignment, whereby the more comparable entities are more likely to be associated with each other (Suzuki 1996: 379-381). ${ }^{41}$ Therefore, the verse-final relatively prominent words involved should better be characterized as constituting an analogously prominent metrical position, notably, a lift. Furthermore, on identifying the final words as a drop in accordance with the scansion as type A3, the seven instances of apparent alliteration on the last words would have to be discarded as purely accidental. On statistical grounds, however, the observed cases of double alliteration are too frequent to be dismissed ($p=0.013$). In section 2.9 , then, we will argue for their alternative scansion as type $\mathrm{C}-(\mathrm{x} / /)$, a catalectic variant of type C .

40 A-verse with single alliteration (47 examples): Vsp 6.1, 9.1, 23.1, 23.7, 25.1, 25.5, Hym 9.5, Prk 4.1, 12.7, 20.5, Vkv 5.3, 14.7, 21.7, HH 50.3, HH II 1.5, 2.3, 9.1, 9.3, 18.5, 40.1, 41.1, Grp 3.3, 32.5, 42.5, Rm 5.7, 13.7, 14.7, Fm 35.7, 44.1, Gðr I 18.5, Sg 69.7, Hlr 2.5, 10.1, 10.5, Gðr II 2.3, 5.5, Gðr III 3.1, Ghv 8.3, Rp 43.1, 45.1, 46.1, 47.3, Hdl 5.1, 5.5, 6.5, 7.3, 10.3; a-verse with double alliteration (7 examples): Vsp 21.5, HH II 8.1, Rm 11.5, Gðr II 13.3, Hdl 5.7, Grt 2.3, 5.3; b-verse (23 examples): Hym 1.6, 22.6, Vkv 4.6, 17.2, 20.6, 21.4, 23.4, HH 20.4, HHv 10.4, HH II 11.2, 18.8, Grp 22.6, 28.2, 29.8, 39.8, Gðr I 12.4, 13.4, 19.4, Sg 28.2, 31.10, Gðr II 39.8, Ghv 17.2, Rp 28.2.
41 Of related interest, the primary condition for treating class 1 words exceptionally as drops - the syntactic integrity with the following finite verb, vera in particular - does not obtain here, in contrast to the verse-initial position of type A3, argued below.

Table 2.19. Verse distinction and alliterative pattern of $x \ldots P x, x \ldots P S$, and $x \ldots P \# P / x . . . P \# x$

Configuration	A-verse		B-verse	Total
	Single alliteration	Double alliteration		
x...Px	555 (93.75\%)		37 (6.25\%)	592 (100\%)
	555 (100\%)	0 (0\%)		
x...PS (PS = common noun)	25 (96.15\%)		1 (3.85\%)	26 (100\%)
	25 (100\%)	0 (0\%)		
x...PS (PS = proper noun)	57 (95.00\%)		3 (5.00\%)	60 (100\%)
	57 (100\%)	0 (0\%)		
x...P\#P/x...P\#x	54 (70.13\%)		23 (29.87\%)	77 (100\%)
	47 (87.04\%)	7 (12.96\%)		

As shown above, there are altogether at least 678 examples of the configurations x... Px and $\mathrm{x} . . . \mathrm{PS}$ (PS = common or proper noun) in the corpus of fornyrðislag poems. ${ }^{42}$ In comparison, Beowulf and the Heliand offer 307 and 397 instances, respectively. Given the corpus sizes of 5998 verses (fornyrðislag), 6334 verses (Beowulf), and 11143 verses (Heliand) as indicated in Table 2.20,43 fornyrðislag is distinguished from the West Germanic meters by the significantly higher occurrence of type A3 (p < 0.001; compare Russom 1998: 39).

Table 2.20. Type A3 (x...Px and x...PS) in fornyrðislag, Beowulf, and the Heliand

Meter	Representation	Counts (\%)	Total verses
Fornyrðislag	$(/) \times / \times$	$678(11.30 \%)$	$5998(100 \%)$
Beowulf	$\times \times / \times$	$307(4.85 \%)$	$6334(100 \%)$
Heliand	$\times \times / \times$	$397(3.56 \%)$	$11143(100 \%)$

We now examine whether the realization of the initial upbeat may differ between the a-verse and the b-verse, as with the first drop of type A1. Elaborating on Table 2.19, Table 2.21 shows the varying numbers of syllables involved along the parameter of the a-/b-verse distinction. As it turns out, the monosyllabic first upbeat occurs less frequently in the a-verse than the polysyllabic one, given $p=0.006$. We thus recognize that the minimal first drop tends to be dissociated from the a-verse in type A3, much as in type A1.

[^22]Table 2.21. Verse distinction of type A3 according to size of the first drop

Syllables	A-verse	B-verse	Total
1	$4(57.14 \%)$	$3(42.86 \%)$	$7(100 \%)$
2	$227(94.58 \%)$	$13(5.42 \%)$	$240(100 \%)$
3	$340(94.44 \%)$	$20(5.56 \%)$	$360(100 \%)$
4	$57(91.94 \%)$	$5(8.06 \%)$	$62(100 \%)$
5	$8(100 \%)$	$0(0 \%)$	$8(100 \%)$
6	$1(100 \%)$	$0(0 \%)$	$1(100 \%)$

In Beowulf and the Heliand, these weak elements are aligned to two drops; the initial lift is demoted to a drop in the absence of a word most likely to constitute a lift (Suzuki 1996: 47-59). In accordance with the succession of two drops in the West Germanic meters, type A3 requires at least two unstressed syllables before the lift, each corresponding to a separate drop; and there are in fact no examples of the configuration xPx in Beowulf or the Heliand.

The obligatory sequencing of at least two unstressed syllables in type A3 stands in contrast to the other types that start with a drop followed by a lift ($\mathrm{x} /$), such as types B and C. The doubling of drops in type A 3 is primarily evidenced by its significantly greater size than the initial upbeat in types B and C, which has only a single drop before the lift (Suzuki 2004: 77-79), as well as the complete absence of the configuration xPx in Beowulf and the Heliand, pointed out above.

Things are different in the Norse meter, however: there are seven examples of the configurations xPx and xPS in the corpus, as follows (on the configuration xPS, see also section 2.9 below):
(23) Vsp 64.4 á Gimlé [x\#PS]

Vkv 9.1 Gecc brúnni [x\#Px]
Rm 17.2 á sætriám [x\#PS]
Gðr I 24.11 oc vinspell [x\#PS]
Sg 62.7 til Iónacrs [x\#Px]
Od 4.2 á foldo [x\#Px]
Hdl 26.3 oc Hiordís [x\#PS]

The existence of the minimal configuration xPx in formyrðislag strongly suggests that type A3 should be identified as containing only a single drop, rather than a sequence of two as in the West Germanic meters; we might accordingly be tempted to postulate \times / x - as opposed to $x \times / x$ - as underlying type A3. This representation, however, would contravene the fundamental principle of four metrical positions per verse. Given that the principle is observed in fornyrðislag nearly as closely as in Beowulf, the more feasible structure to be posited would be (/) \times / \times comprising four positions, where the first lift ([/]) is left unrealized on the surface. More specifically, the initial lift is demoted to a drop
by metrical suppression in the West Germanic tradition, as observed above. By contrast, in the Norse meter, the same position does not undergo demotion, but is left vacant and immaterialized instead, in the absence of proper linguistic material to be matched with. Correspondingly, the minimal manifestation of this underlying form is the trisyllabic sequence xPx (or xPS) with the monosyllabic realization of the initial drop.

In order to appreciate the significance of the admittedly small number of supporting examples, we need to place them in the whole context of type A3. There are 671 instances of type A3 with the polysyllabic upbeat. If we continued to postulate the underlying form $\times \times / \times$ for type A3 in fornyrðislag much as in the West Germanic meters, we would expect to get the distribution of zero monosyllabic realizations and 678 polysyllabic ones (namely, the total of type A3 verses attested in the corpus). The question arising then is whether a statistical significance is attached to the difference in these proportions, observed as against expected. Performing Fisher's exact test on the distributional difference, we obtain a p-value of 0.015 , which means that the difference concerned is of statistical significance. In other words, we cannot dismiss these rare verses simply as random exceptions. We may therefore warrantedly conclude that the apparently few attestations of monosyllables in the upbeat of type A3 in fornyrðislag lend empirical support to our postulation of a single drop, rather than two, in its underlying representation, as presented above.

Nonetheless, the occurrence of monosyllables does seem underrepresented. We must make sense of the extremely low profile of such minimal configurations. As we see it, there is a strong motivation for minimizing occurrence of the least salient form xPx (or xPS): essentially the same mechanism of compensation is set to work, as in the composition of type A3 in the West Germanic tradition. In it, the suppression of the otherwise expected realization of the first lift by prominent language material demands more substantial materialization of the resultant succession of two drops than their bare minimum: their minimal disyllabic realization is thus strongly deterred, as shown in Table 2.22. Similarly and more urgently, the missing first lift must be compensated for in terms of linguistic materialization in fornyrðislag: while the initial position yields to direct materialization in whatever weakened form in West Germanic through alignment to some concrete expression, the same position is totally disallowed of any material support in North Germanic. The maximal degree of suppression thus achieved requires a fuller compensation. Such a greater demand for compensation, then, would have placed a still heavier pressure to avoid the minimal verse form in fornyrðislag than in Beowulf and the Heliand.

The more urgent necessity of compensation in fornyrðislag in turn may provide a credible account for the less salient presence of the minimal form there than would be statistically expected. At stake here is the lack of statistical significance between the presence of the configurations xPx and xPS in the Norse meter and their absence in the West Germanic counterparts. Specifically, the distribution in fornyrðislag of these 7 verses with the monosyllabic initial drop as against the occurrences of 671 type A3 instances with the polysyllabic counterpart does not differ significantly from the West

Germanic situations in which the configurations xPx and xPS are absolutely unknown in the populations of 307 (Beowulf) and 397 (Heliand) instances of the configuration x... Px, with p-values of 0.106 and 0.051 , respectively. The occurrence in fornyrðislag of the verse xPx (or xPS) would thus appear too infrequent to be able to claim its structural legitimacy from a comparative perspective - rather than on its own inherent terms as substantiated above - particularly with reference to Beowulf. This stands in contrast to, for example, the catalectic form of type A3, type A3- (x...P; section 2.6), which occurs with such a high frequency that its presence in formyrðislag makes a significant difference from its absence in the West Germanic meters with a p-value of less than 0.001.

In light of the functionally motivated, greater demand for avoiding the minimal realization in fornyrðislag, however, the underrepresentation of the configurations xPx and xPS , which is responsible for the lack of statistical significance at issue, turns out to be subject to a principled account. Therefore, the lack of statistical significance in this respect does not prevent us from attaching crucial importance to the extremely rare configurations xPx and xPS in fornyrðislag and adducing them as evidence for the postulation of the metrical representation $(/) \times / \times$.

Another way of comparing the status of the minimal forms of type A3 is to examine their occurrences relative to the remaining variants of the same verse type in the three respective meters, as represented in Table 2.22. As it turns out, the proportions of the respective minimal configurations - xPx (or xPS) in fornyrðislag and xxPx (or xxPS) in Beowulf and the Heliand - do not differ between fornyrðislag and Beowulf ($\mathrm{p}=0.088$), between fornyrðislag and the Heliand ($\mathrm{p}=0.404$), and between Beowulf and the Heliand ($\mathrm{p}=0.446$). Thus, the status of the monosyllabic upbeat in fornyrðislag may be characterized as hardly different from that of the disyllabic counterpart in the West Germanic meters.

Moreover, even for fornyrðislag and Beowulf, which could be regarded as differing moderately in the relative frequency of their minimal variants of type A3 (at a confidence level of 90%), the rarity of the monosyllabic and disyllabic upbeats in type A3 proves to be analogous on another dimension. Specifically, the two meters display isomorphic spectrums of variation in the size of the initial upbeat. At issue are the general profiles of distribution in regard to the number of initial unstressed syllables involved in the variation of type A3. This overall property of distribution is measured and compared in terms of rankings of the varying syllable numbers constitutive of type A3 in the two meters. Since we claim that the minimal number of syllables is one for fornyrðislag and two for Beowulf, and since the range of an ordinal category - the numbers of syllables - must be kept identical for statistical analysis, we select for comparative measurement the range of one to six syllables for fornyrðislag and two to seven syllables for Beowulf. In other words, the range of verse-initial syllables to be examined is the first six counted from the attested minimums.

In both poems, exactly the same ranking obtains in terms of observed counts: 5-2-1-3-4-6 (in order of increasing syllable numbers; Table 2.22). In order to determine the significance of this correspondence, we must perform statistical analysis; the appropriate statistical tests for our purposes are based on the Spearman rank correlation coef-
ficient (Spearman rho, ρ) or the Kendall rank correlation coefficient (Kendall tau, τ). Both are statistics for measuring the correlation between two ordinal variables in terms of ranking. With the maximum scores of 1 for both coefficients because of the perfect match in ranking between the two poems, we obtain p-values well below 0.05: $p=0.025$ (Spearman) and $\mathrm{p}=0.009$ (Kendall). We are accordingly justified in rejecting the null hypothesis that the two distributions are independent; hence, we may be allowed to interpret this result as constituting support for the claim that the distributions of varying syllable numbers in the upbeat of type A3 in fornyrðislag and Beowulf are reducible to the same pattern in terms of their general profiles. ${ }^{44}$ Specifically, the monosyllabic first drop of type A3 in fornyrðislag may be viewed as isomorphic to the disyllabic one in Beowulf.

Bringing the foregoing arguments all together, then, we may be warranted in concluding that, as the minimal variant of type A3, the configuration xPx occupies much the same status in fornyrðislag as does xxPx in the West Germanic meters. Since this minimal realization has only one unstressed syllable before the lift, no more than a single drop ought to be involved in the corresponding metrical representation in fornyrðislag, just as the minimum of two syllables at the beginning of a verse requires us to posit two drops in the West Germanic meters. We may accordingly be justified in reaffirming our postulation of the metrical representation $(/) \times / \times$ for this type in the Norse meter.

Table 2.22. Size of the first drop of type A3 in fornyrðislag, Beowulf, and the Heliand

Syllables	Fornyrðislag																
	Counts	$\%$	Rank	Counts	Beowulf $\%$							Rank	Counts			Heliand $\%$	Rank
1	7	1.03	5	-	-	-	-	-	-								
2	240	35.40	2	8	2.61	5	7	1.76	7								
3	360	53.10	1	108	35.18	2	25	6.30	5								
4	62	9.14	3	131	42.67	1	134	33.75	1								
5	8	1.18	4	49	15.96	3	108	27.20	2								
6	1	0.15	6	11	3.58	4	75	18.89	3								
7	-	-		-	-	6	32	8.06	4								
8	-	-	-	-	-	-	11	2.77	6								
9	-	-	-	-	-	-	5	1.26	8								
Total	678	100	-	307	100	-	397	100	-								

44 Needless to say, when comparing the two spectrums directly without adjustment (i.e., without shifting the fornyrðislag's column upward by one syllable), the distribution patterns cannot be regarded as isomorphic: the resultant Kendall tau is 0.333 - a very weak correlation - and the p-value is 0.452 . We cannot reject the null hypothesis of there being no ranking correlation between the two sets at issue. The point of the exercise in manipulating the distributions is to show that the minimal variants of type A3 in the two meters are loaded with the same structural value in purely formal terms.

Now that type A3 demonstrably contains one drop before the manifest lift, we turn to offer empirical motivations for positing before that drop an unrealized position in general and an unrealized lift in particular (rather than an unrealized drop). The postulation of a zero realization of the verse-initial lift gains in plausibility when we take into account catalexis, an analogous zero realization of the final drop that constitutes a mirror-image process unique to fornyrðislag (sections 2.4-2.6, 2.11, and 3.2). Just as the verse-final drop may be left immaterialized in the catalectic variant of type A1 - type A1- (and some other verse types as well) - its polar opposite both in terms of structure and location, namely, the verse-initial lift, may remain unaligned to concrete language material in a light variant of type A1, that is, type A3. Moreover, catalexis induces 'compensatory lengthening’ of the first drop, resulting in a longer sequencing of unstressed syllables in it; quite analogously, type A3 is characterized by a longer concatenation of weak elements in the first drop, as examined in detail below. Brought all together, unique to fornyrðislag, type A1 (/x/x) has two light variants that are derived through a zero realization of a metrical position: type A1- with the zero final drop on the one hand (/ x/[x]), and type A3 with the zero first lift on the other $([/] \times / x)$. The characterization of type A3 as a variant of type A1 with the unrealized first lift is thus formally supported by the isomorphic composition of the catalectic variant of type A1.

Beyond the formal isomorphism, a substantive parallelism to catalexis can be ascertained as serving as a common metrical basis for null realization, that is, the diminished prominence of metrical positions. The drop in its minimal shape, which must be realized by a single unstressed syllable in West Germanic, is allowed to be unrealized in catalexis in the Norse meter. By the same token, the lift becomes increasingly less pronounced by its greater susceptibility to suspension of resolution in fornyrðislag (section 4.3). With respect to the derivation of type A3 from type A1, the first lift is demoted to a drop in the West Germanic meters, as pointed out above. This partial suppression of the lift goes furthest in the North Germanic meter in the form of complete suppression: following the fuller implementation of metrical weakening in general in fornyrðislag, the initial lift, too, undergoes comparably more radical treatment, namely, zero realization.

Moreover, the mechanism of promotion, the converse of demotion, is almost out of function in fornyrðislag, in which the heavy drop resulting from promotion of a drop is virtually dysfunctional, with the sole exception of type A2. By contrast, promotion and demotion constitute productive mirror-image processes of metrical derivation, notably in Beowulf. Corresponding to the virtual demise of promotion, the demotion of a lift to a drop would have lost much of its structural support in the Norse tradition, and this would accordingly have exposed derivation of type A3 to a greater chance of reanalysis.

Inasmuch as the initial upbeat of type A 3 is constituted by a single drop on the surface, it must be no different from types B and C, which also start with a drop. Since type A3 is virtually limited to the a-verse, it will be most appropriate to bring
in for comparison types B and C with exclusive reference to their occurrences in the a-verse. Table 2.23 gives an overview of the varying realizations of the initial drops in the a-verse of types A3, B, and C in terms of the number of syllables involved. As it turns out, these initial drops are treated divergently in their alignment to differing numbers of syllables. As indicated in Table 2.23, the verse-initial drop is realized most frequently by disyllables for both types B and C, thus accounting for approximately half of all occurrences: no significant difference is in evidence between these two types ($p=0.780$). By contrast, the proportion of disyllables for type A3 is much lower, with a statistical significance of $p<0.001$. Instead, it is trisyllables that figure most prominently in this type: indeed, the occurrence of trisyllables in type A3 does not differ from those of disyllables in the other two types ($p=0.418$ against type B and $p=0.196$ against type C). And the remaining syllables are all different in their ranking in occurrences between type A3 on the one hand and types B and C on the other.

This outstanding difference in the distribution of varying syllable numbers in the initial upbeat between type A3 on the one hand and types B and C on the other, as epitomized by the significant difference in the proportion of disyllables, can be attributed to the distinct underlying compositions of metrical positions involved. While types B and C start with a single drop, type A3 contains a succession of a lift and a drop at the beginning. The significantly lower incidence of disyllables at the head of type A3 may thus be regarded as a consequence of the greater magnitude of the initial portion of this metrical configuration. In other words, the larger size of the initial upbeat may be ascribed to a compensation process whereby the unrealized first lift is materialized indirectly by extra language material that is aligned to the first drop, the mechanism that is essentially the same as the one involved in catalexis. In essence, the language material that would normally occupy the first two positions / x (or occasionally $\times /$) is aligned en bloc to the drop, as with Vkv 21.5 fiolð var par menia and Sg 12.1 Látom son fara (see further below).

Because the lift is prototypically realized by a single long syllable, its realignment to the following drop is most likely to involve one syllable. As a consequence, the realigned syllable is expected to increase the size of the following drop by one syllable most frequently, which is exactly what is being observed here. As will be shown in the following paragraph, readjusting the beginning of the columns assigned to types B and C upward from the row of monosyllables to disyllables makes an almost perfect match with type A3 in terms of ranking correlation. This difference in syllable numbers is thus subject to a principled account by identifying the underlying initial lift unique to type A3 to be responsible for the surface increment in size. ${ }^{45}$

[^23]Despite the discrepancies in rankings of individual syllable numbers, however, the overall ranking pattern turns out to be the same in the three types. This comes to light when we take a wider perspective of adding the value of zero syllables in the representation of the distribution of types B and C: since the first drop of these types always materializes, the corresponding counts have to be null. Thus, the substance of the distribution pattern remains unaffected by this purely formal adjustment. Equipped with the slightly adjusted representation, we now perform a Kendall rank correlation test to confirm that the patterns are indistinguishable in the three types. We obtain the following results: τ (Kendall tau) $=0.966 ; p=0.013$. That is, the rank correlation between types A3 and B and that between types A3 and C are almost perfect; and the chance probability of getting this virtually maximal scale of correlation is less than 0.05 ; therefore, we must reject the null hypothesis of there being no association between the verse types concerned. In other words, the identity of the distribution patterns involved in terms of ranking is proven on statistical grounds. Notwithstanding the surface appearance to the contrary, the underlying invariance of distribution pattern of the initial upbeat enhances the plausibility of our claim that type A3 contains only one drop, much as do types B and C.

In this way, the dual nature of the initial upbeat of type A3 is provided a unitary explanatory account by the postulation of the metrical representation $(/) \times / \times$ for this verse type: the isomorphism to types B and C in terms of the variation pattern of the first drop on the one hand, and its greater size in terms of syllable numbers realized on the surface on the other, are thus reduced to the unique sequence $(/) x$ in the underlying representation of type A3 as proposed.

Table 2.23. Size of the first drop in types A3, B, and C in the a-verse

Syllables	Type A3 $([/] \times / \times)$		Type B $(\times / \times /)$		Type C $(\times / / \times)$				
	Counts	$\%$	Rank	Counts	$\%$	Rank	Counts	$\%$	Rank
1	4	0.63	5	150	44.91	2	223	42.16	2
2	227	35.64	2	169	50.60	1	262	49.53	1
3	340	53.38	1	13	3.89	3	43	8.13	3
4	57	8.95	3	2	0.60	4	1	0.19	4
5	8	1.26	4	0	0	5	0	0	5
6	1	0.16	6	0	0	5	0	0	5
Total	637	100	-	334	100	-	529	100	-

There are three additional properties of type A3 that are unique to formyrðislag, as opposed to the West Germanic cognates: (i) its occasional occurrences in the b-verse; (ii) the virtual absence of resolution; (iii) its strong preference for the stanza-initial verse (i.e., verse 1). These novel features all yield to explanation and lend support to our proposal that type A3 begins with an unrealized lift (rather than an unrealized drop). First, while occurring overwhelmingly in the a-verse with 637 examples
(93.95%), type A3 is attested in the b-verse as well with 41 instances (6.05\%). By comparison, this configuration is strictly limited to the a-verse in Beowulf (307 instances in total) and the Heliand (397 instances in total). The observed difference between Norse and West Germanic meters is significant, with p-values of less than 0.001 in both cases. The relaxation of the categorical prohibition against occurrence in the b-verse in fornyrðislag can feasibly be ascribed to the novel underlying structure (/) x / x as opposed to $(x) \times / x$. With the retention of the first lift by the Norse innovation, the metrical representation involved conforms to the requirement that the b-verse must comprise two lifts and two drops; therefore, this verse form is no longer excluded categorically from the b-verse (for details, see section 6.1 below).

A second notable feature of type A3 in fornyrðislag is the absence of resolution on the lift. With the exception of two examples (Sg 14.5 at frá konungdóm [x\#x\#pxS]; Gðr II 4.5 qll vóro sQðuldýr [$\mathrm{x} \# \mathrm{xx} \# \mathrm{pxS}]$), resolution is generally inapplicable to type A3. The extreme rarity of resolution in type A3 (0.30%) is in sharp contrast to the West Germanic practice: in Beowulf, there are 23 type A3 verses with resolution out of a total of 307 instances (10.75%); and in the Heliand 45 out of a total of 397 type A3 verses are resolved (11.35%). Of related interest, these two exceptional verses in fornyrðislag are of the configuration $\mathrm{x} . . . \mathrm{pxS}$, with a secondary stress falling on the final drop, rather than the prototypical one $\mathrm{x} . . . \mathrm{pxx}$ ending in an unstressed syllable: not a single example is known of the configuration x...pxx in the Norse corpus (see section 2.8.3 below).

The vanishing rarity of resolution in type A3 in fornyrðislag might be attributed to the generally diminished implementation of resolution in this meter (section 4.2). A more substantive account, however, needs to be explored in more specific terms, given that the first lift is far from immune to resolution; and that it is significantly more likely to be resolved than the second, which is almost immune to the process. At this point, the underlying representation of type A3 that was proposed earlier seems to settle the issue: because the overt lift of type A3 constitutes the second one in abstract metrical terms, it follows as a matter of course that it almost categorically evades resolution, much as does the second lift that is preceded by the first one realized on the surface, as in type A1 (Px...pxx; section 4.2.7).

Let us turn to the third novel property of type A3 in fornyrðislag. As far as we differentiate a-verses according to their placement in the stanza, type A3 is favored most of all by the stanza-initial verse or verse 1 in the stanza: this type is more closely associated with the stanza-initial location than anywhere else, as represented in Table 2.24 (for details, see section 7.2 below). ${ }^{46}$ More specifically, we obtain the following p-values: $p<0.001$ between verses 1 and 3; p = 0.025 between verses 1 and 5; p < 0.001

[^24]between verses 1 and 7 . On the same parameter, verse 5 is in turn distinguished from the other two, in view of $\mathrm{p}<0.001$ between verses 5 and 3 , and between verses 5 and 7 . Verses 3 and 7, however, do not differ significantly, as we obtain a p-value of 0.447 . The use of type A3 in the a-verse is thus organized on the basis of the three-way distinction in preference, whereby the four verses involved are ranked in order of weakening association with this type, as follows: verse $1>$ verse $5>$ verses 3 and 7 .

Table 2.24. Occurrences of type A3 according to location in the stanza

A-verse	Counts	\%	B-verse	Counts	\%
Verse 1	176	39.29	Verse 2	9	33.33
Verse 3	69	15.40	Verse 4	10	37.04
Verse 5	143	31.92	Verse 6	5	18.52
Verse 7	60	13.39	Verse 8	3	11.11
Total	448	100	Total	27	100

In broad terms (for details, see section 7.6 below), the close association with verse 1 is shared by type A1, type A1- (the catalectic variant of type A1), type D^{\star}, and type A3. By contrast, types B, D, and E tend to be avoided by verse 1 (negative association with the a-verse), while type C seems neutral in regard to occurrence in verse 1 (no significant association with either verse). Disregarding type A3 for the moment, this varied pattern of accommodation by verse 1 may be formally explained by generalizing that the initial sequence / x constitutes a structural condition that promotes occurrence in verse 1 . The presence versus absence of this concatenation makes the binary distinction of the verse configurations concerned as is actually found: type A1, type A1-, and type D^{\star} exclusively share the initial unit in question. Of paramount interest is the implication that this formal division entails for the structure of type A3. Insofar as this configuration is treated along with the three others explicitly beginning with the sequence / x, it is most likely that this type, too, is structured in the same way. The common metrical behavior in regard to the association with verse 1, therefore, corroborates our analysis whereby type A3 has the underlying representation (/) $\times / \times .^{47}$

The initial class 1 words, which would normally serve as the first lift of type A1 (occasionally of type C when they are immediately followed by the second lift, as in Hym 20.8 below), may be treated occasionally as equivalent to members of the less prominent word classes, and accordingly occupy the first drop in realization. Put another way, a sequence of words containing a class 1 word is aligned en bloc to the

47 Drawing heavily on Pope's (1942) theory on the recitation of Beowulf, Cook (1959: 102-114) posited an initial rest in the first measure, which also contains the upbeat of type A3 after the rest. The unrealized first lift that we postulate on purely structural grounds, however, should not be identified with Cook's notion of rest, which has to do with the level of actualizing verse as a performed event.
first drop, as proposed above. These exceptional verses number thirty-eight (including four instances with the short lift, x...px), as listed below (compare Wenck 1905: 51-52; Pipping 1935: 38-47):
(24) Vsp 14.1 Mál er, dverga $[\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{Px}]$ Hym 20.8 at róa lengra [$\mathrm{x} \# \mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{Px}$]
Hym 28.5 qvaðat mann ramman [xx\#P(=x)\#Px] Prk 1.1 Reiðr var bá Vingbórr [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{PS}$]
Prk 13.1 Reið varð pá Freyia [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
Vkv 2.5 oqnor var Svanhvít [$\mathrm{P}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{PS}$]
Vkv 15.2 borin var Hloqðvé [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{PS}$]
Vkv 21.5 fiolð var par menia [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
HH 7.5 siálfr gecc vísi [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{Px}]$
HH 14.7 farit hafoi hann allri [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{xx} \# \mathrm{x} \# \mathrm{Px}$]
HH 24.3 seint qvað at telia [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
HH 29.1 Draga bað Helgi [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
HH 55.1 Heill scaltu, vísi [$\mathrm{P}(=\mathrm{x}) \# \mathrm{xx} \# \mathrm{Px}$]
HH 56.5 heill scaltu, buðlungr [$\mathrm{P}(=\mathrm{x}) \# \mathrm{xx} \# \mathrm{Px}]$
HH II 6.1 Hamall lætr flióta [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
HH II 11.5 margir ro hvassir [$\mathrm{P}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{Px}]$
HH II 21.5 mál er, Hǫðbroddr [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{PS}]$
HH II 25.5 liðin er ævi [p(=x)x\#x\#Px]
HH II 42.6 kominn er Helgi [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
HH II 44.7 allr er vísi [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{Px}]$
HH II 45.1 Ein veldr pú, Sigrún [P(=x)\#x\#x\#PS]
HH II 49.1 Mál er mér at ríða [$\mathrm{P}(=\mathrm{x})$ \#x\#x\#x\#Px]
Grp 4.3 Hér er maðr úti [x\#x\#P(=x)\#Px]
Grp 31.5 verið hefir bú Giúca [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{xx} \# \mathrm{x} \# \mathrm{Px}$]
Gðr I 8.3 siálf scylda ec họndla [$\mathrm{P}(=\mathrm{x})$ \#xx\#x\#Px]
Sg 6.5 Hafa scal ec Sigurð [p(=x)x\#x\#x\#px]
Sg 7.3 qván er hans Guðrún $[\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{PS}$]
Sg 12.1 Látom son fara [$\mathrm{xx} \# \mathrm{P}(=\mathrm{x}) \# \mathrm{px}$]
Sg 16.3 gott er at ráða [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
Sg 21.1 Dælt var at eggia [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
Sg 51.5 Vilcat ec mann trauðan [xx\#x\#P(=x)\#Px]
Sg 69.8 aumlig vera $[\mathrm{P}(=\mathrm{x}) \mathrm{x} \# \mathrm{px}]$
Gðr II 4.5 oll vóro sǫðuldýr [$\mathrm{P}(=\mathrm{x}) \# \mathrm{xx} \# \mathrm{pxS}$]
Gðr II 35.4 hafit í vagna [$\mathrm{p}(=\mathrm{x}) \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
Bdr 6.2 sonr em ec Valtams [$\mathrm{P}(=\mathrm{x}) \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$]
$R p 32.2$ scutla fulla $[\mathrm{P}(=\mathrm{x}) \mathrm{x} \# \mathrm{Px}]$
Hdl 30.3 Freyr átti Gerði [$\mathrm{P}(=\mathrm{x}) \# \mathrm{xx} \# \mathrm{Px}$]
Hdl 41.5 varð Loptr quiðugr [$\mathrm{x} \# \mathrm{P}(=\mathrm{x}) \# \mathrm{px}$]

[^0]: 1 For an overview of eddic poetry, see Gunnell (2005), Harris (2005), and Kristjánsson (2007: 25-82). 2 Accordingly, we will leave largely unexplored the relation between the metrical organization of eddic poetry and that of skaldic poetry, with the exception of a few speculative remarks given in appendix 2 below.

[^1]: 3 Kuhn retains these numberings despite their conflict with their actual places of occurrence in his text presumably for the benefit of maintaining consistent reference across previous editions.
 4 The only exception is the relineation of Od 12.1-2 that we postulate drawing on See, La Farge, Picard, Schulz, and Teichert (2009), as shown in section 6.1 below.
 5 It may be appropriate in this connection to cite Heusler's (1956: 224) illuminating remarks as follows: "Hier darf man sich freilich nicht den 'kritischen' Ausgaben vor 1903 anvertrauen! ... Die Zeiten sind vorüber, wo man es für den Vers nötig fand, die Fürwörter zu tilgen ... Und eine maßvolle Textkritik ändert doch nur, wo es nötig, nicht wo es möglich ist!"
 6 In this connection, we must give full credit to Heusler's (1956: 224) remarks as follows: "Diese vierzig Gedichte [of eddic poetry including fragmentary pieces: S. S.] machen eine leidlich einheitliche Gruppe aus. Was sie sondert, ist weniger die Art, wie sie die gelegentlichen 'Ausnahmen' nach unter oder oben verwenden, als das wechselnde Verhalten zur Silbenzahl der Senkungen und Auftakte."

[^2]: 7 Since Kuhn makes no distinction between the two meters by subsuming málaháttr under fornyrðislag - a view that will be criticized in section 8.7 below - the grouping also bears on the four poems - Atlamál in grœenlenzco (Am) Atlaqviða in grœnlenzca (Akv), Hamðismál (Hm), and Hárbarðzlióð (Hrbl) - that are composed in málaháttr (or fornyrðislag/málaháttr) with varying degrees of strictness (see chapters 8 through 11 below). For our concerns, these four poems are excluded from the following examination on fornyrðislag, and will be treated separately in Part II. Of no less importance, the thematic division at issue is irrelevant to the poems in ljóðaháttr in Kuhn's view (Kuhn [1933] 1969: 49, 100; Fidjestøl 1999: 295, 304).
 8 Russom (1998) deals exclusively with the following native material: Vsp, Hym, Prk, HH, HHv, HH II, Bdr, Rp, Hdl, and Grt (Russom 1998: 10n37).

[^3]: 9 Fidjestøl's table covers the whole body of data falling under the domestic and the foreign group, including the fragmentary attestations and skaldic poems in fornyrðislag that are excluded from our corpus in this study. His reexamination is therefore of enormous value in accessing the empirical adequacy of Kuhn's findings in their entirety.
 10 We may add that the three poems in málaháttr or fornyrðislag/málaháttr - Akv, Am, Hm - are all counted among the minority of poems with relatively heavy concentrations of violations (the others are $V k v$ and $S g$; compare Fidjestøl 1999: 308).
 11 With this negative evaluation, Fidjestøl (1999: 302-317) turns to an assessment of Kuhn’s thesis from a diachronic perspective, drawing thereby on his rejection of Kuhn's specific accounts for the diverse treatment of the syntactic rules in question in the major groups of poems including the

[^4]: domestic and the foreign. Since Kuhn's findings are tenable as we argue immediately below in the text, it will not be necessary to take the trouble to review in the present context Fidjestøl's criticism of Kuhn's diachronic analysis.
 12 Rule (d) (= Fidjestøl's Rule 4) defies definite treatment, because Kuhn did not give all examples according to poem. In this light, we can include only the figures clearly given in Fidjestøl's table, namely, seven and fourteen violations, respectively, for calculation for the revised range of the foreign and domestic groups. It is thus conceivable that the numbers of breaches in the two groups are actually larger than the figures presented above.

[^5]: 13 As argued at length in Suzuki (1996: 35-44), we do not postulate the foot as a significant metrical level between metrical position and verse.

[^6]: 1 See the index of scansion. The remaining one verse, $S d 15.5$, is disregarded because of lack of alliteration.
 2 Type A1 without anacrusis: $S d 1.4,1.6,5.3,5.7$; type A1 with anacrusis: $S d$ 1.2, 15.1, 15.7, 16.1, 16.5, 16.7, 17.1, 17.2, 17.3, 17.5, 17.7.

[^7]: 3 In addition to the eleven instances of type A1 with anacrusis, the following eighteen verses begin with unstressed syllables: type aA1s: $S d$ 15.2, 16.4, 16.8; type aA2a: $S d$ 15.4; type aA2b: $S d 15.3$; type B: Sd 1.3; type C: Sd 1.1, 5.4, 5.6, 5.8, 15.6, 15.8, 16.2, 16.6, 17.4, 17.6, 17.8; type C-: Sd 16.3.

[^8]: 1 For a catalogue of verses, see appendix 1. Compare Sievers (1885: 9, 15-16; 1893: 65-66), Gering (1924: 2-3, 9, 13, 17, 20, 24, 29-30, 36, 40, 45, 176-177, 181, 183, 185, 188-189, 192-193, 199, 202, 206-207, 209-210, 214, 217-218), and Russom (1998: 38-39, 70-71, 87-88).

[^9]: 2 Verses with anacrusis, which will be treated separately in section 3.1 below, are excluded from consideration.
 3 In Beowulf, a significant distinction is in evidence between disyllables and trisyllables ($\mathrm{p}<0.001$), much as between monosyllables and polysyllables (p < 0.001; compare Suzuki 1996: 155). The Heliand goes so far as to make a comparable distinction between trisyllables (450 a -verses and 72 b -verses) and quadrisyllables (316 a-verses and 18 b-verses) with a p-value of less than 0.001 .

[^10]: 4 A-verse with single alliteration (3 examples): Grp 50.3, $\operatorname{Sg} 2.3, B d r$ 6.1; a-verse with double alliteration (2 examples): Vkv 15.1, Od 17.1; b-verse (1 example): Vkv 1.2.
 5 Although myrcvið 'dark forest' in Vkv 1.2 is treated as a common noun in Neckel and Kuhn (1983), an alternative reading as a proper noun is no less plausible as noted in La Farge and Tucker (1992: 186). See also Dronke (1997: 302), as well as Hollander's (1962: 160) and Larrington's (1996: 103) translations as a place name.

[^11]: 6 Conceptualizing according to Heusler’s tact-based metrical framework, Kuhn was concerned with the configurations in which the first lift of type A1 is followed by a stressed - metrically, rather than lexically - syllable that occurs in the same (first) measure. Presumably for this reason, Kuhn did not deal with Prk 2.8, Sg 33.1, 43.3, and 45.3. On the other hand, Kuhn ([1939] 1969: 511-521) took account of the configurations PXx\#Px and Pxx\#Px as well. On these configurations without a lexical stress on the medial syllable, see section 2.1.3.3 below.
 7 For a literary-historical account of this limited use, see Kuhn ([1939] 1969: 514-521).
 8 Excluding nouns and adjectives that are qualified to form a heavy drop by virtue of their inherent stressability, which will be treated in section 2.2.2 as a variant of type A2b.
 9 A-verse with single alliteration (7 examples): Prk 15.5, 19.1, Vkv 17.7, HH II 13.1, Br 14.5, Od 12.1, Hdl 13.1; a-verse with double alliteration (24 examples): Vsp 49.1, 58.1, Hym 34.5, Prk 15.3, Gðr II 33.5, Hdl 13.7, 16.9, 17.5, 17.7, 18.3, 18.9, 20.1, 20.9, 21.7, 23.7, 24.9, 26.7, 27.9, 28.11, 29.9, 31.3, 34.3, 36.3, 39.3; bverse (2 examples): Vkv 31.6, HH II 42.8. Compare Vkv 32.3, which is accompanied by anacrusis.

[^12]: 10 A-verse with single alliteration (26 examples): Vsp 37.7, 42.7, 43.7, Нym 4.7, 19.3, 22.7, 30.3, 30.7, HH 11.7, 25.5, 30.7, 37.3, 38.7, HHv 33.3, HH II 39.3, Grp 14.3, 23.7, Rm 16.5, Fm 35.3, Br 19.3, Gðr I 14.7, Gðr II 31.11, Od 21.7, Ghv 8.5, Hdl 9.7, 30.9; a-verse with double alliteration (21 examples): Vsp 52.5, Hym 5.3, 8.7, 10.3, 20.3, 23.7, 25.1, 35.7, HH 8.7, Grp 42.7, Rm 17.7, 23.7, Fm 43.7, Br 11.7, Hlr 2.3, Gðr II 23.5, 29.7, 30.7, 41.7, Od 29.9, Grt 19.3; b-verse (76 examples): Vsp 32.8, 34.2, 45.6, 56.6, Hym 1.8, 2.2, 8.8, 10.8, 18.4, 18.8, 23.6, 27.8, 29.4, 31.6, 33.4, 37.4, Prk 6.4, 18.6, 20.4, 26.2, 28.2, Vkv 4.2, 8.6, HH 7.8, 21.2, 36.12, 43.2, 50.12, 53.10, 54.2, 54.6, HHv 10.2, HH II 3.4, 12.8, 16.8, 26.2, 40.8, 41.8, 44.8, 45.4, 46.6, 48.2, 49.4, 49.6, 49.8, Grp 4.4, 21.6, 28.8, 48.6, 49.4, Fm 43.2, Br 12.4, Gðr I 4.6, 12.6, 26.4, Sg 18.6, 31.4, 37.8, 41.2, 44.8, 51.2, 56.6, 59.4, 64.4, Hlr 6.2, Gðr II 12.2, 29.8, Od 13.2, Bdr 4.6, 9.2, 11.4, Rp 38.2, Hdl 5.6, 15.8, 41.4, 49.4. In addition, Hdl 3.4 is expanded with anacrusis. Compare Pipping (1903: 32-35, 71; 1933: 67, 74), Gering (1924: 2, 8, 12, 17, 20, 23-24, 29, 36, 39, 44, 176, 181, 183, 185, 188, 192, 199, 201, 206, 209, 213-214, 217), and Russom (1998: 105-106). Gering (1924: 183) objects to Wenck’s (1905: 172) scansion whereby two closely paralleled verses, Fm 32.1 Par sitr Sigurðr and Fm 33.1 Par liggr Reginn, are identified as types C and A3, respectively (notice that Gering scans these two verses as type A2k (= our subtype A1s) with alliteration solely on the second lift, the scansion we reject as a matter of principle; see sections 2.3 , 3.1, and 6.1 below). Given the ambivalence of finite verbs in their alignment to metrical positions, and the determining role that alliteration assumes for metrical categorization, Wenck's scansion seems to be fully justified.
 11 Mora is a phonological unit that determines the length or weight of a syllable. Generally, a short vowel contains one mora, while a long one consists of two moras. Furthermore, a coda consonant, as opposed to one located in the onset, is assigned a mora. Accordingly, a long or heavy syllable, whether of the form -VV\$ or -VC\$, is characterized as bimoraic (that is, measured as having two moras), whereas a short syllable -V\$ counts as monomoraic in non-word-final position. In word-final position, however, monomoraic and bimoraic syllables are grouped together in distinction from longer ones, as will be shown in Craigie's law (section 5.3).

[^13]: 13 A-verse with single alliteration (3 examples): HH 6.3, 16.7, Gðr II 9.7; a-verse with double alliteration (6 examples): Vsp 1.7, 66.3, Hym 2.3, Vkv 2.3, Gðr II 23.7, Ghv 1.3; b-verse (34 examples): Hym 15.8, 16.8, 24.4, 33.8, Prk 24.10, HH 7.4, 29.2, 42.6, HHv 40.4, HH II 7.8, 9.4, Grp 9.4, 10.6, 41.8, Rm 11.8, Fm 33.6, Sg 2.6, 65.4, 68.6, Hlr 2.8, Gðr II 13.2, 22.2, 23.2, 35.2, 35.6, 35.10, Gðr III 8.6, Od 19.6, Rp 6.2, 20.2, 33.6, Hdl 48.4, 50.8, Grt 7.6. Compare Pipping (1903: 32-35; 1933: 67).

[^14]: 14 A-verse with single alliteration (25 examples and another 2 with anacrusis): Prk 5.1, 9.1, 30.3, 30.7, Vkv 4.3, 29.5, 38.1, 40.3, 41.3, HH 27.7, HH II 10.3, Grp 12.5, 18.1, 18.5, 19.5, 21.3, Fm 40.1, 41.7 (with anacrusis), Br 8.5, Hlr 11.7, Od 34.5, Ghv 10.5, 18.3, 19.1, Rb 16.1, Hdl 19.3 (with anacrusis), Grt 21.1; a-verse with double alliteration (16 examples and one other with anacrusis): Vsp 11.1, 12.3, 54.3, 65.3, Vkv 4.7, 29.1, 37.3 (with anacrusis), HH II 21.3, Br 5.1, 7.3, Gðr I 18.1, Sg 3.3, Gðr II 2.1, 42.7, Ghv 10.3, Rp 8.5, 41.3; b-verse (42 examples and another 4 with anacrusis): Vsp 13.4, 15.6, 62.4, Hym 5.6, 8.4, 21.2, 34.2, 38.8, Prk 24.4, Vkv 18.8 (with anacrusis), 18.10 (with anacrusis), 37.6 (with anacrusis), $H H 7.2,10.6,11.4,14.6$, 20.2, 53.6, HH II 1.8, 3.2, 11.6, 14.2, 28.6, Grp 4.8, 9.6, 23.4, 23.8, 46.2, Rm 15.2, Gðr I 22.4, Sg 13.14, 63.2, 69.6, Gðr II 17.2, 34.4, Bdr 14.8, Rp 6.6, 20.6, 33.10, Hdl 1.6, 8.2, 19.8, 20.4, 25.6 (with anacrusis), 41.8, Grt 17.6. Compare Pipping (1903: 32-35, 66, 69; 1933: 67-70, 74) and Russom (1998: 107). Vkv 4.3 Slagfiðr oc Egill, Vkv 29.5 and 38.1 Hlæiandi Volundr, and Br 5.1 Soltinn varð Sigurðr, appear to be subject to two alternative scansions, subtype A1s and type E (as scanned by Gering [1924: 33, 186], for example). These four verses, too, are scanned here as subtype A1s, as will be argued in section 2.13 .2 below.

[^15]: 16 According to Sievers (1893: 68), the configuration PXx\#Px (along with some varieties of PX\#x\#Px and $\mathrm{P} \# \mathrm{x} \# \mathrm{x} \# \mathrm{Px}$) may be regarded as an expanded variant of type $\mathrm{A} 2(/ \backslash \mathrm{x} / \mathrm{x})$ or type A^{*} in his terms. As he pointed out, however, it is next to impossible to make a definitive distinction between type A^{\star} and relatively heavy realizations of type A1 with the polysyllabic first drop.

[^16]: 19 A-verse with single alliteration (13 examples): Vkv 36.7, HH 43.7, Sg 18.11, Hlr 5.7, Gðr II.5.3, Rp 13.3, 13.7, 23.3, 36.9, 43.3, Hdl 7.7, 28.3, Grt 16.3; a-verse with double alliteration (1 example): Grt 12.7; b-verse (42 examples): Vsp 13.8, 16.2, 17.8, 19.4, 39.6, 43.2, 46.4, 59.4, Hym 2.4, 5.2, Vkv 25.2, 28.8, 35.6, HH 3.2, 40.2, HHv 36.4, HH II 22.6, Grp 6.6, 24.8, Rm 14.8, Fm 42.2, Sg 1.8, 26.2, 62.8, Hlr 10.2, Gðr II 31.2, Gðr III 5.8, 9.4, Ghv 5.6, 9.6, 14.6, 20.2, Rp 2.10, 10.2, 13.6, 23.2, 24.6, 36.8, Hdl 7.6, 18.2, Grt 4.2, 12.6. In addition, there is a verse PxxSx, Vkv 12.3 bestibyrsíma.

[^17]: 20 A-verse with single alliteration (2 examples): Sg 61.3, Hdl 22.3; a-verse with double alliteration (16 examples): Vsp 2.7, 32.3, 35.3, 48.7, 63.5, Hym 9.1, Vkv 1.3, 3.9, 10.7, HH 5.7, 55.3, HH II 25.7, 42.7, 45.7, Sg 69.3, Grt 8.3; b-verse (23 examples): Vsp 20.12, 23.6, 31.4, 56.8, 63.2, Prk 5.2, 9.2, 23.8, Vkv 1.4, 3.10, HH 10.4, Br 7.2, Gðr I 8.4, Sg 17.2, 38.2, 40.8, 45.2, 50.4, 71.4, Gðr II 22.8, Od 3.2, 8.2, Bdr 3.6. In addition, Vkv 38.3 enn ókátr Níðuðrr is accompanied by anacrusis. Compare Gering (1924: 1-2, 8, 12, 17, 20, 23, 29, $36,39,44,176,181,184-185,188,192,201,209,213,217)$ and Russom (1998: 77).

[^18]: 27 Sievers's (1893: 68-69) view on this issue is less than categorical: while recognizing some difference between the configuration P\#Xx\#Px under discussion and type A1 with relatively heavy realizations of the first drop, he hesitates to draw a sharp distinction between the two and consequently takes exception with the wholesale identification of P\#Xx\#Px as a five-position verse. Sievers's (1885) earlier analysis of P\#Xx\#Px as type A2a (a four-position verse) also witnesses his reluctance to equate the configuration with type A^{\star}.
 28 On the rare existence of the configuration PPxPx , see the remark toward the end of section 2.1.1 above.
 29 See also Kuhn ([1939] 1969: 511), who regarded these verbs as proclitic (thus unstressed) to the following measure.

[^19]: 30 A-verse with double alliteration (10 examples): Vsp 24.5, 34.3, 41.5, Vkv 21.3, 23.7, 41.5, Gðr I 24.3, Sg 4.3, Hdl 14.5, Grt 23.5; b-verse (1 example): Rp 8.8. Compare Gering (1924: 2, 8, 12, 17, 20, 24, 29, 36, $39,45,176,181,185,188,192,199,202,206,209,214,217)$ and Russom (1998: 74).

[^20]: 34 A-verse with single alliteration (16 examples): Vsp 12.1, Vkv 15.3, 29.7, HH 41.1, Gðr I 14.1, Sg 15.1, 24.1, 27.7, 54.1, 61.1, Gðr II 21.1, Gðr III 11.7, Od 4.7, 7.5, Ghv 7.1, Bdr 13.1; a-verse with double alliteration (25 examples): Vsp 1.5, 12.5, 12.7, 46.5, HH 8.3, 8.5, 14.3, 14.5, HHv 1.1, HH II 14.1, 20.1, Sg 25.5, Gðr II 16.7, 25.1, 28.7, 32.1, 33.3, Od 11.1, Ghv 15.5, Rb13.5, Hdl 15.1, 15.5, 18.7, 21.1, 32.5; b-verse (2 examples): Grp 51.8; Od 7.6.

[^21]: 37 A-verse (25 examples): Vsp 4.3, 21.1, 24.3, Prk 26.7, 28.7, 29.3, 32.3, Vkv 30.5, HH 33.5, 41.5, 48.7, 50.1, HH II 38.5, Grp 21.7, Br 5.7, Gðr I 18.5, 24.11, Sg 14.5, Hlr 14.1, Gðr II 4.5, Od 16.3, 28.7, Ghv 15.7, 21.5, Hdl 4.5; b-verse (1 example): Rm 17.2. Compare Russom (1998: 82).
 38 A-verse (57 examples): Vsp 29.1, 39.7, Prk 1.1, 15.1, Vkv 2.5, 36.5, 39.1, HH 35.1, 48.5, 54.5, HHv 3.1, 4.5, 10.1, HH II 21.5, 22.1, 25.1, 42.1, 45.1, Grp 35.1, Br 3.1, 6.1, 8.1, 10.1, 11.1, 14.1, Gðr I1.1, 2.5, 4.1, 5.1, 6.1, 11.1, 12.1, 17.1, 23.1, 23.5, 24.1, 25.1, Sg 7.3, 8.5, 20.1, 22.5, 30.1, 60.7, Hlr 4.1, 13.1, Gðr II 10.5, 17.1, 29.1, 38.5, Gðr III 2.1, 2.5, 5.1, Od 2.1, 4.5, Hdl 26.3, 27.5, 37.5; b-verse (3 examples): Vsp 64.4, Vkv 15.2, Bdr 6.2.

 39 Accordingly, Gering’s (1924: 208) scansion of Gðr III 2.5 at pit Pióðrecr, for example, as type C- (F3 in his terms) must be rejected.

[^22]: 42 In addition, the configuration $\mathrm{x} . . \mathrm{px}$, totaling twenty-seven examples, also scans as type A 3 , a variant unique to the Norse meter, as will be shown in the following section.
 43 We ignore hypermetric verses (Beowulf and the Heliand) and the verses containing biblical names (the Heliand; Suzuki 2004: 27), the classes of verses that have no comparable examples in fornyrðislag.

[^23]: 45 The existence of the latent first lift in type A3 uniquely determines the composition of the first drop not only in quantitative terms as shown in the foregoing discussion, but also in qualitative terms by making more extensive use of class 1 words in the position in question than elsewhere, as will be discussed at the end of this section.

[^24]: 46 As before, the marked variant of type A3, x...px (section 2.3.2), is not included, but this exclusion will not affect the overall pattern. Compare Table 7.9, section 7.2 .1 below, which includes the configuration x...px. We focus on the prototypical stanzas that consist of eight verses (for details, see section 7.1 below).

