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Preface

This book is the second monograph of the earth science specializing in computa-

tional, observational and interpretational seismology and geophysics, containing

the full-3D waveform tomography method and its application; beamlets and

curvelets method for wavefield representation, propagation and imaging; two-

way coupling of solid-fluid with discrete element model and lattice Boltzmann

model; fault-zone trapped wave observations and 3-D finite-difference synthet-

ics for high-resolution imaging subsurface rupture zone segmentation and bifur-

cation; fault rock damage and heal associated with earthquakes in California

and New Zealand; characterization of pre-shock accelerating moment release

with careful considerations in processing and analysis of seismicity using earth-

quake catalogues; and statistical modeling of earthquake occurrences based on

the ultra-low frequency ground electric signals. Each chapter in this book in-

cludes the detailed discussion of the state-of-the-art method and technique with

their applications in case study. The editor approaches this as a broad inter-

disciplinary effort, with well-balanced observational, metrological and numerical

modeling aspects. Linked with these topics, the book highlights the importance

for imaging the crustal complex structures and internal fault-zone rock damage

at seismic depths that are closely related to earthquake occurrence and physics.

Researchers and graduate students in geosciences will broaden their horizons

about advanced methodology and technique applied in seismology, geophysics

and earthquake science. This book can be taken as an expand of the first book

in the series, and covers multi-disciplinary topics to allow readers to grasp the

new methods and skills used in data processing and analysis as well as numerical

modeling for structural, physical and mechanical interpretation of earthquake

phenomena, and to strengthen their understanding of earthquake occurrence and

hazards, thus helping readers to evaluate potential earthquake risk in seismogenic

regions globally. Readers of this book can make full use of the present knowledge

and techniques to serve the reduction of earthquake disasters.
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Seismic Imaging, Fault Damage and Heal:

An Overview

Yong-Gang Li

This book presents state-of-the-art methods and technique in observational,

computational and analytical seismology for earthquake science. Authors from

global institutions present multi-disciplinary topics with case studies to illu-

minate high-resolution imaging of complex crustal structures and earthquake-

borne fault zones by the full-3D waveform tomography, beamlets and curvles

of localized waves, discrete element model for fully-coupled solid-fluid, and 3-D

finite-difference simulation of fault zone trapped (guided) waves observed at re-

cent rupture zones in California and New Zealand. In addition, authors discuss

the significance in characterization of the pre-shock moment release using cata-

loged seismicity, and statistical modeling of earthquake occurrence based on the

ultra-low frequency ground electric signals. All topics in this book help further

understanding earthquake physics and hazard assessment in global seismogenic

regions.

The detailed crustal structure and physical properties of fault network are

of great interest because of the factors that control the occurrence and dy-

namic rupture in earthquake. Observations suggest that the crustal complexity

may segment fault zones (Aki, 1984; Malin et al., 1989; Ellsworth, 1990; Beck

and Christensen, 1991) or control the timing of moment release in earthquakes

(Harris and Day, 1993; Wald and Heaton, 1994). Rupture models have been

proposed that involved variations in fluid pressure over the earthquake cycle

(Hickman et al., 1995; Blanpied et al., 1992). Geometrical, structural, and rhe-

ological fault discontinuities, caused by the spatial variations in strength and

stress, will affect the earthquake rupture (e.g., Wesson and Ellsworth, 1973; Das

and Aki, 1977; Rice, 1980; Day, 1984; Duan, 2012). Rupture segmentation is

often related to fault bends, step-overs, branches, and terminations that have

been recognized by surface mapping (e.g., Sieh et al., 1993; Johnson et al., 1994),

exhumation (e.g., Chester et al., 1993), and seismic profiling and tomography
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(e.g., Lees and Malin, 1990; Thurber et al., 2004). In order to relate present-day

crustal stresses and fault motions to the geological structures formed by previ-

ous ruptures, we must understand the evolution of fault systems on many spatial

and temporal scales in the complex earth crust.

Because the fault plane is thought to be a weakness plane in the earth crust, it

facilitates slip to occur under the prevailing stress orientation. As suggested by

laboratory experiments, shear faulting is highly resisted in brittle material and

proceeds as re-activated faults along surfaces which have already encountered

considerable damage (e.g., Dieterich, 1997; Marone, 1998). Field evidence shows

that the rupture plane of slip on a mature fault occurs at a more restricted

position, the edge of damage zone at the plane of contact with the intact wall

rock (Chester et al., 1993; Chester and Chester, 1998). Assuming that this is

an actual picture of rupture preparation on the major faults, high-resolution

defining the crustal complex and internal damage structure of faults as well as

their temporal variations in physical property are challenging work in earthquake

science.

Monitoring seismic events and other physical field related to the principal

rupture plane would be crucial for earthquake prediction. The slip of these

events in series with the main fault is most likely to load the principal slip

plane to a point of a major through-going rupture. In these circumstances, it is

important to image where the principal fault plane is accompanied with damage

zone at depth. Detailing the crustal structure and local variations in seismic

velocities has implications for near-fault hazards and expected ground shaking.

Greater amplitude shaking is expected near faults due to both proximity to the

fault and localized amplification in damaged material. Examining the geometry

and physical properties of fault zones as well as the crustal complex structure

will help us understand the origin of spatial and temporal variations in rock

damage and the evolution of heterogeneities in stress and strain in a seismogenic

region.

Other geophysical parameters, such as signals from the ultra-low frequency

ground electric field, can be applied for modeling earthquake occurrence. For

instance, the version of Ogata’s Lin-Lin algorithm (Ogata, 1988) presented in

this book is useful for examining the influence of an explanatory signal on the

occurrence of earthquakes in a stochastic point process. The statistical mod-

els based on observations of these signals allow to forecast earthquakes in its

associated circle.

In this book, we introduce the new methodology and technology used in data

assimilation for defining subsurface complexity, seismically imaging the multi-

scale crustal heterogeneity and fault zone geometry, characterizing fault damage

magnitude and heal progression, and its physical properties with high-resolution.

We also introduce a sophisticated discrete element model with solid-fluid cou-

pling mechanics for earthquake fracture zone rheological simulation, and the pre-
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shock accelerating moment release (AMR) model related to the critical-point-like

behavior of earthquake preparation. This book includes seven chapters.

Chapter 1: “Applications of Full-Wave Seismic Data Assimilation (FWSDA)”

by Dawei Mu, En-Jui Lee and Po Chen.

In the first volume of this book series, Po Chen (2012) introduced theoreti-

cal background and recent advances of full-waveform seismic data assimilation

(FWSDA) as well as its mathematical formulations in the framework of the var-

ious data assimilation theories. In this chapter, Mu et al. further discuss the

full-wave seismological inverse, as a weakly constrained generalized inverse prob-

lem, in which the seismic wave equation with its initial and boundary conditions,

the structural and source parameters and the waveform misfit measurements are

all allowed to contain errors. The issues related to the applications of FWSDA

in realistic seismological inverse problems are also discussed in detail.

Authors present the recent development of FWSDA that can potentially im-

prove the efficiency of some numerical algorithms used for solving acoustic and

visco-elastic seismic wave equations. To fully take advantage of the newly emerg-

ing computing hardware, algorithmic changes are needed. For the earth structure

models in 3-D with highly irregular surface topography and fault structures, the

efficiency and the accuracy of the wave equation solver are highly important in

solving the problem in a realistic amount of time. In some of the recent successful

full-3D waveform tomography applications, the waveform misfit measurements

were made on selected wave packets on the seismograms. In order to achieve

successful full-3D waveform tomography applications with a large amount of

seismic data, the waveform selection process needs to be automated to a certain

extent. Authors provide some of the latest developments in numerical solutions

of the forward problem and their implementation and optimization on modern

CPU-GPU hybrid parallel computing platforms. A realistic full-3D, full-wave

tomography for the crustal structure in Southern California is used to illustrate

the various components of FWSDA.

Chapter 2: “Wavefield Representation, Propagation and Imaging Using Lo-

calized Waves: Beamlet, Curvelet and Dreamlet” by Ru-Shan Wu and Jinghuai

Gao.

In this chapter, authors review phase-space localization, mainly along the

line of time-frequency localization, and then phase-space localization using gen-

eralized wavelet transform applied to wave field and one-way propagator de-

compositions. Physically the phase-space localized propagators are beamlet or

wavepacket propagators which are propagator matrices for short-range itera-

tive propagation. When asymptotic solutions are applied to the beamlet for

long-range propagation, beamlets evolve into global beams. Various asymptotic

beam propagation methods have been developed in the past, such as the Gaus-

sian beam, complex ray, coherent state, and more recently the curvelet methods.

Local perturbation method for propagation in strongly heterogeneous media is
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also briefly described in this chapter. Finally, authors review the development of

curvelet transform and its application to propagation and imaging in comparison

with the beamlet approach.

For wavefield decomposition, both beamlet and curvelet transforms have ele-

mentary functions of directional wavelets. Beamlet is a type of physical wavelet,

representing an elementary wave in various wavefield decomposition schemes

using localized building elements, such as coherent state, Gabor atom, Gabor-

Daubechies frame vector, local trigonometric basis function. Curvelet transform

is a specifically defined mathematical transform, characterized by the parabolic

scaling. Its generalization width is similar to the beam-aperture requirement

for asymptotic beam solution: the beamwidth must be smaller than the scale

of heterogeneity and much greater than the wavelength. Optimal beamwidth is

reached by balancing the beam geometric spreading and the beam-front distor-

tion. Using optimal beamwidth, beamlet or curvelet propagator will be sparse

in smooth media for short-range propagation. For strong and rough hetero-

geneities, beamlet or curvelet scattering will occur and asymptotic propagator

may not work well. In this case, the local perturbation method can be ap-

plied, in which the propagator is decomposed into a background propagator and

a perturbation operator for each forward marching step. Numerical examples

demonstrate the validity of the approach in this chapter.

Chapter 3: “Two-way Coupling of Solid-fluid with Discrete Element Model

and Lattice Boltzmann Model” by Yucang Wang, Sheng Xue and Jun Xie.

This chapter presents a fully coupled solid-fluid code using Discrete Element

Method (DEM) and Lattice Boltzmann Method (LBM). The new and distinctive

features of this coupled approach compared with the existing coupled DEM-

LBM models include the permission of bonded DEM particles, the capability

to simulate explicitly fracturing events by the breakage of bonds, simulation

of Darcy flow, free flow, and turbulent flow with the same integrated code,

adoption of a more stable and efficient moving boundary condition, and a unified

parallel algorithm for both codes based on MPI libraries, which allows larger

scale parallel computing using super computers in the future. Two widely used

open source codes, the Esys-Particle and OpenLB, are integrated as both of the

codes are written using C++ and paralleled with MPI library. Recently, LBM

has made a significant progress as a new method into numerical modeling of

fluid dynamics. In contrast to the conventional computational fluid dynamics

(CFD) techniques that solve macroscopic Navier-Stokes equations, LBM is built

on a mesoscopic scale in which fluid is described by a group of discrete particles

that propagate along a regular lattice and collide with each other. The use

of LBM instead of CFD also eliminates severe mesh distortion due to frequent

mesh geometry adaptation required in CFD. Because of its Eulerian grids, LBM

is particularly suitable for modeling fluid-solid interaction problems, and a large

number of solid particles can easily be accommodated.
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Authors present three simple preliminary numerical results to assess the per-

formance of the coupled DEM-LBM approach. The small scaled models are used

as a qualitative display to demonstrate the capability and potential of the cou-

pled approach. Some preliminary 2-D simulations, such as particles moving in

the fluid, fluid flow in a narrow tunnel or crack and hydraulic fracture induced by

the injection of fluid into a borehole, are carried out to validate the integrated

code. These results show that the new method is capable of simulating solid

particle flow in fluid, fluid flow inside narrow fracture, and hydraulic fracture by

injection of fluid. The validation of large-scale simulations in 3-D and detailed

comparisons with physical experiments are under development.

Chapter 4: “Co-seismic Damage and Post-Mainshock Healing of Fault Rocks

at Landers, Hector Mine and Parkfield, California Viewed by Fault-Zone Trapped

Waves” by Yong-Gang Li.

This chapter reviews fault rock co-seismic damage and post-mainshock heal-

ing progressions associated with the 1992 M7.4 Landers, the 1999 M7.1 Hector

Mine, and the 2004 M6.0 Parkfield earthquakes in California through observa-

tions and 3-D finite-difference modeling of fault-zone trapped waves (FZTWs)

generated by explosions and aftershocks, and recorded at linear seismic arrays

deployed across and along the rupture zones (Li et al., 1990, and further refer-

ences). Because FZTWs arise from coherent multiple reflections at the bound-

aries between the low-velocity fault zone and the high-velocity surrounding rock,

their amplitudes, frequencies and dispersive waveforms strongly depend on the

fault geometry and physical properties, these waves enable to insight the inter-

nal structure and physical properties of fault zones at seismogenic depths with

a higher resolution than ever before. The author with his colleagues from mul-

tiple institutions (see acknowledgement and references of Chapter 4) have used

FZTWs to delineate the studied rupture zones being a low velocity waveguide

about 100 to 250 m wide, in which S velocities are reduced by 40%–50% from

wall-rock velocities and Q values are 10–50, which is interpreted as a remnant of

process zone where inelastic deformation occurs around the propagating crack

tip during dynamic rupture in the mainshocks. The width of the fault zone

waveguide scales to the rupture length as predicted in published dynamic rup-

ture models (e.g., Scholz, 1990). FZTWs also show the rupture segmentation

and bifurcation associated with these earthquakes.

The strength of the low-velocity anomalies along the fault might vary over

the earthquake cycle (e.g., Vidale et al., 1994; Marone, 1998). Repeated seismic

experiments conducted at the Landers rupture zone showed fault healing with

recovery of seismic velocity by approximate 2% between 1994 and 1998. The

survey in 1998 showed a reduction of the healing rate by a factor of two between

1994–1996 and 1996–1998. The ratio of the rates of P-wave and S-wave speed

recovery is consistent with healing caused by closure of cracks that are partially

fluid-filled. A similar experiment at Hector Mine has confirmed that healing is
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not unique to Landers and shows that there is variability in healing rates among

the fault segments that we have measured. However, the healing at the Landers

rupture was interrupted in 1999 by the M7.1 Hector Mine earthquake rupture,

which occurred 20–30 km away. The Hector Mine earthquake both strongly

shook and permanently strained the Landers fault, adding damage discernible

as a temporary reversal of the healing process. The fault has since resumed the

trend of strength recovery that it showed after the Landers earthquake. These

observations suggest that fault damage caused by strong seismic waves may

help to explain earthquake clustering and seismicity triggering by shaking, and

may be involved in friction reduction during faulting. At Parkfield, repeated

surveys reveal an approximately 2.5% co-seismic decrease in seismic velocity

within the San Andreas fault (SAF), due to the co-seismic damage of fault-zone

rocks at seismogenic depths during dynamic rupture in the 2004 M6 Parkfield

earthquake. Seismic velocities then increased by an approximate 1.2% in the

following ∼4 months, indicating that the rock damaged in the M6 mainshock

recovers rigidity through time. These observations lead us to speculate that

fault damage caused by strong seismic waves may help to explain earthquake

clustering and seismicity triggering by shaking, and may be involved in friction

reduction during faulting.

Chapter 5: “Subsurface Rupture Structure of the M7.1 Darfield and M6.3

Christchurch Earthquake Sequence Viewed with Fault-Zone Trapped Waves” by

Yong-Gang Li, Gregory De Pascale, Mark Quigley and Darren Gravely.

In this chapter, Li et al. present the subsurface fault rock damage structure

along the Greendale fault (GF) and Port Hills fault (PHF) that ruptured in

the 2010 M7.1 Darfield and 2011 M6.3 Christchurch earthquake sequence using

fault-zone trapped waves (FZTWs) generated by aftershocks recorded at a linear

seismic array installed across the surface rupture along the GF. FZTWs were

identified for aftershocks occurring on both the GF and the PHF. The post-

S duration of these FZTWs increases as focal depths and epicentral distances

from the array increase, showing an effective low-velocity waveguide formed by

severely damaged rocks existing along the GF and PHF at seismogenic depths.

Locations of aftershocks generating prominent FZTWs delineate the subsurface

GF rupture extending eastward as bifurcating blind fault segments an additional

∼5–8 km beyond the mapped ∼30 km surface rupture into a zone with compa-

rably low seismic moment release west of the PHF rupture. The propagation

of FZTW through the intervening ‘gap’ indicates moderate GF-PHF structural

connectivity. This zone is interpreted as a fracture mesh reflecting the inter-

play between basement faults and stress-aligned microcracks that enable the

propagation of PHF-sourced FZTWs into the GF damage zone.

Combined with previous rupture models for slip distributions in the Canter-

bury earthquake sequence (Quigley et al., 2012; Barnhart et al., 2011; Beavan et

al., 2012; Elliott et al., 2012), authors construct a plausible model of subsurface
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rupture zones associated with the Darfield-Christchurch earthquakes. Velocities

of basement rocks in this model are constrained by the existing regional veloc-

ity models in Canterbury Plains (e.g., Smith et al., 1995; Eberhart-Phillips and

Bannister, 2002; Kaiser et al., 2012). The 3-D finite-difference simulations of

observed FZTWs suggest that the GF rupture zone is ∼200–250-m wide, con-

sistent with the surface deformation widths, in which velocities are reduced by

35%–55% with the maximum reduction in the ∼100-m wide damage core zone

corresponding to surface and shallow subsurface evidence for discrete fractur-

ing. The damage zone delineated by FZTWs indicates an effective low-velocity

waveguide extending ∼65 km along the GF and PHF under the Canterbury

Plains while the waveguide varies in its velocity and geometry along multiple

rupture segments viewed by FZTWs, and penetrates down to the depth of ∼8

km or deeper, consistent with hypocentral locations and geodetically-derived

fault models. Their experiment also illuminates a potential approach to im-

age the buried part of a rupture zone using FZTWs recorded at seismic array

deployed at the surface-exposed part of the rupture zone.

Authors have examined the possible temporal change in wave velocity for re-

peated aftershock occurring just before and after the large aftershocks to find the

additional co-seismic damage in rocks associated with these large aftershocks.

We measured ∼2% decrease of seismic velocity with fault rocks due to co-seismic

damage by an M5.3 aftershock. This value is in general consistent with obser-

vations of fault rock damage and healing at the San Andreas fault associated

with the 2004 M6 Parkfield earthquake (Li et al., 2007, 2006).

Chapter 6: “Characterizing Pre-shock (Accelerating) Moment Release: A

Few Notes on the Analysis of Seismicity” by Changsheng Jiang and Zhongliang

Wu.

Understanding of seismicity is one of the frontiers in the modern seismology.

Careful considerations in processing and analysis of seismicity using earthquake

catalogues are necessary. in this chapter, Jiang and Wu demonstrate some useful

tactics in analysis of earthquake catalog data and make notes on the existing

methods used for careful analysis of seismicity in terms of (1) interfering events

and the eclipse method, (2) the Bayesian information criterion, (3) the spatio-

temporal scales for the sampling of seismic events, and (4) removal of aftershocks

and the de-clustered Benioff strain method.

Authors use the pre-shock accelerating moment release (AMR) model (Bufe

et al., 1994; Brehm and Braile, 1998; Bowman and King, 2001) related to the

critical-point-like behavior of earthquake preparation (Sornette and Sammis,

1995; Bowman et al., 1998; Jaumé and Sykes, 1999; Rundle et al., 2000). They

explore whether the claimed and controversial pre-shock acceleration have a firm

statistical (and seismological) basis by retrospective investigation in which they

focus on the scaling exponent with the failure time fixed to the origin time of

the ‘target’ earthquake so that the fitting can be stabilized by reducing one free
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parameter (origin time). Borrowing from the concept of modern astronomy for

analyzing remote planets, they use an ‘eclipse method’ for screening out the seis-

micity in the neighboring active fault zones as shown in analysis of seismicity for

the 2008 M8 Wenchuan earthquake catalog data. The Bayesian Information Cri-

terion (BIC) consideration provides a useful aid to judge whether the apparent

‘accelerating’ trend is statistically significant. The BIC criterion may be able to

reveal more clues regarding the accelerating/quiescence behavior in the seismic

moment release. To de-cluster an earthquake catalogue, previous works on AMR

tended to use simple schemes (e.g., Robinson, 2005; Jiang and Wu, 2010), an al-

ternative approach is to use the ‘Epidemic-Type Aftershock Sequences’ (ETAS)

model (Ogata, 1988; Zhuang et al., 2002; Zhuang and Ogata, 2006), in which

a stochastic de-clustering scheme is proposed no longer determine whether an

earthquake is a ‘background event’ or if it is triggered by another. To check the

accelerating behavior objectively, authors also try to map the scaling coefficient

calculated for different spatio-temporal windows, with different cutoff magnitude

of the catalog (Jiang and Wu, 2005, 2010). The method extends a manifestation

of the Gutenberg-Richter’s law. Deviation from the G-R power-law relation can

be used for judging the completeness of an earthquake catalogue. Quantita-

tively, the goodness of fit between a power law fit to the data and the observed

frequency-magnitude distribution as a function of a lower cutoff of the magni-

tude can be used (Wiemer and Wyss, 2000). Finally, they provide the case study

in seismicity analysis using real catalog data: (1) ‘crack-like’ spatial window for

the 2008 M8.0 Wenchuan earthquake, (2) a finite earthquake rupture of the

2004 M9.1 Sumatra-Andaman earthquake, and (3) seismic moment tensors to

investigate the moment release before the 2011 M9.0 Tohoku earthquake.

Chapter 7: “Statistical Modeling of Earthquake Occurrences Based on Ex-

ternal Geophysical Observations: With an Illustrative Application to the Ultra-

low Frequency Ground Electric Signals Observed in the Beijing Region” by Jian-

cang Zhuang, Yosihiko Ogata, David Vere-Jones, Li Ma and Huaping Guan.

In this chapter, authors present the idea on developing models for earth-

quake probability forecasts based on the precursor data from observations of the

ultra-low frequency components of the underground electric signals used as an

example to illustrate the modeling strategies. In the study case, signals from 4

stations in the vicinity of Beijing are used to monitor the variations in ultra-

low frequency components electric field for forecasting the occurrence of M�4

earthquakes within a 300-km circle centered in Beijing. The model used is a ver-

sion of Ogata’s Lin-Lin algorithm for examining the influence of an explanatory

signal on the occurrence of events in a stochastic point process, which is highly

significant, and greatly superior to the explanatory effect of the same signals

applied to a randomized version of the earthquake data. The results from all

four stations show significant explanatory power although in combination the

two most effective tend to dominate the forecasts. The predictions appear to
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be most effective for events with M�5, for which probability gains are up to

3–4 over the simple Poisson process, and for the events closer to the observing

stations. Some smaller events appear to produce detectable signals at distances

of over 100 km from the source.

The probability modeling framework adapted in this chapter is extended to

the development of probability forecasts, which can be assessed directly, and in

their turn can form the basis for a variety of decision procedures (e.g., Vere-

Jones, 1995, and further references). Authors present a brief discussion of the

performance of probability forecasts based on the best Lin-Lin model, which

provides a strong confirmation of the reality of the explanatory power of the

electric signals. They also carefully examine the effect of changes in background

seismicity. Results show that the Lin-Lin model based on the electrical signals

still out-performs the two-stage Poisson model.

The purpose of this book is to introduce the new approaches in solid-earth

geophysics research with case studies. The following new methods and results

presented in this book will be of particular interest to the readers:

– The full-3D waveform tomography method, and beamlets and curvelets

methods for imaging complex subsurface structure.

– Observations and 3-D finite-difference simulations of fault-zone trapped

wave for high-resolution delineation of fault internal structure and physical

properties.

– Co-seismic rock damage and post-mainshock heal in major earthquakes.

– Discrete element method for solid-fluid coupling mechanics in earthquake

fracture modeling.

– Pre-shock accelerating moment release with analysis of seismicity for earth-

quake risk assessment.

– Ultra-low frequency ground electric signals for statistical modeling of earth-

quake occurrences.

This book is a self-contained volume starting with an overview of the subject

then explores each topic with in depth detail. Extensive reference lists and cross

references with other volumes to facilitate further research. Full-color figures

and tables support the text and aid the readers in understanding. Content

is suited for both the senior researchers and graduate students in geosciences

who will broaden their horizons about observational, computational and applied

seismology and earthquake sciences. This book covers multi-disciplinary topics

to allow readers to gasp the new methods and techniques used in data analysis

and numerical modeling for structural, physical and mechanical interpretation

of earthquake phenomena, to aid the understanding of earthquake processes

and hazards, and thus helps readers to evaluate potential earthquake risk in

seismogenic regions globally.
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Part of articles in the preceded book (Book 1) edited by Li (2012) and this

book (Book 2) came out of International Symposium on Earthquake Seismology

and Earthquake Predictability (ISESEP) held in Beijing, China, 2009, spon-

sored by Institute of Geophysics in China Earthquake Administration (CEA),

co-sponsored by the Asian Seismological Commission (ASC) of the International

Association of Seismology and Physics of the Earth’s Interior (IASPEI) and sup-

ported by the International Union for Geodesy and Geophysics (IUGG). The

meeting included two special sessions: I. “Wenchuan Earthquake: One Year Af-

ter” and II. “Keiiti Aki Workshop on Earthquake Physics and Earthquake Pre-

dictability”. The meeting highlights the importance for an international discus-

sion on the seismology, geology, and geodynamics of strong to great earthquakes,

their predictability, and how to make full use of the present knowledge and tech-

niques to reduce earthquake disasters. Chapter 3 by Yong-Gang Li, Peter E.

Malin, and Elizabeth S. Cochran; Chapter 6 by Xiang-Chu Yin, Yue Liu, Lang-

Ping Zhang, and Shuai Yuan in Book 1, and Chapter 6 by Changsheng Jiang

and Zhongliang Wu; Chapter 7 by Jiancang Zhuang, Yosihiko Ogata, David

Vere-Jones, Li Ma and Huaping Guan in Book 2 came from representations in

the 2009 ISESEP meeting.

The editor of this book series wishes to thank reviewers who contributed to

referee articles in Volume 1 (Chen, 2012; Wu et al., 2012; Li et al., 2012a,b;

Duan, 2012; Yin et al., 2012; Wang et al., 2012) and the present Volume. In ad-

dition to many chapter authors, reviewers include Zhengxi Ge (PKU), Elizabeth

Cochran (UCR), En-Jui Lee (UOW), David Oglesby (UCR), Martha Savage

(VUOW), Yushen Sun (MIT), Xiao-Bi Xie (UCSC), Xiangzu Yin, and Yingcai

Zheng (MIT). We are grateful to many organizations and individuals, including

HEP Director Bingxiang Li and Editors Zhengxiong Chen and Yan Guan , who

help to make both books possible. This article was completed partly during the

Author’s (YGL) visit as Honorary Professor in Chinese Academy of Geological

Science, Beijing, China.

Key Words: Data assimilation, Full-3D waveform tomography, Beamlets and

curvelets methods, Fault-zone trapped waves, Rock damage and heal, Two-way

coupling of solid-fluid, Discrete element model and lattice Boltzmann model,

Pre-shock moment release, Earthquake catalogues, Relocation of the Wenchuan

earthquake, Statistical modeling of earthquake occurrences, Ultra-low frequency

ground electric signals.
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Chapter 1

Applications of Full-Wave Seismic Data

Assimilation (FWSDA)

Dawei Mu, En-Jui Lee, and Po Chen

In the first volume of this book series, we introduced the concept of full-wave

seismic data assimilation (FWSDA) and its mathematical formulations in the

framework of the various data assimilation theories (Chen, 2010). The full-wave

seismological inverse problem, which aims at estimating earth structure parame-

ters and seismic source parameters using observed waveform data and the seismic

wave equation, can be formulated as a weakly constrained generalized inverse, in

which the seismic wave equation (with its initial and boundary conditions), the

structural and source parameters and the waveform misfit measurements are all

allowed to contain errors. FWSDA provides a unified framework for solving seis-

mological inverse problems and for estimating uncertainties associated with the

nonlinear inversion process. Both the adjoint-wavefield (AW) method and the

scattering-integral (SI) method can be derived from FWSDA as special cases.

In this chapter, we will discuss issues related to the applications of FWSDA in

realistic seismological inverse problems. In FWSDA, the seismic wave equation

and its adjoint system, if the AW method is adopted, or the receiver-side Green’s

tensors (RGTs), if the SI method is adopted, need to be solved many times. For

three-dimensional earth structure models with highly irregular surface topog-

raphy or fault structures, the efficiency and the accuracy of the wave equation

solver are highly important in solving the problem in a realistic amount of time.

In this chapter, we will review and discuss some of the latest developments in

numerical solutions of the forward problem and their implementation and opti-

mization on modern CPU-GPU hybrid parallel computing platforms. In some of

the recent successful full-3D waveform tomography applications, the waveform

misfit measurements were made on selected wave packets on the seismograms.

For realistic inversions involving a large amount of seismic data, this waveform

selection process needs to be automated to a certain extent. We will discuss
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some recent developments in automating seismic waveform data processing and

selection. A realistic full-3D, full-wave tomography for the crustal structure in

Southern California will be used to illustrate the various components of FWSDA.

Key Words: Data assimilation, Full-wave tomography, Full-3D inversion, Earth-

quake source parameters, Discontinuous Galerkin, Adjoint method and scattering-

integral methods, Finite-difference, Discontinuous mesh, GPU, Waveform selec-

tion.

1.1 Numerical Solutions of Seismic Wave

Equations

Computer simulations of seismic wavefields have played an important role in

seismology in the past few decades. However, the accurate and computationally

efficient numerical solution of the three-dimensional (visco)elastic seismic wave

equation is still a very challenging task, especially when the material proper-

ties are complex and the modeling geometry, such as surface topography and

subsurface fault structures, is irregular. In the past, several numerical schemes

have been developed to solve the elastic seismic wave equation. The finite-

difference (FD) method was introduced to simulate SH and P-SV waves on reg-

ular, staggered-grid, two-dimensional meshes in Madariaga (1976) and Virieux

(1984, 1986). The FD method was later extended to three spatial dimensions

and to account for anisotropic, viscoelastic material properties (e.g., Mora 1989;

Igel et al., 1995; Tessmer, 1995; Graves, 1996; Moczo et al., 2002). The spatial

accuracy of the FD method is mainly controlled by the number of grid points re-

quired to accurately sample the wavelength. The pseudo-spectral (PS) method

with Chebychev or Legendre polynomials (e.g., Carcione, 1994; Tessmer and

Kosloff, 1994; Igel, 1999) partially overcomes some limitations of the FD method

and allows for highly accurate computations of spatial derivatives. However, due

to the global character of its derivative operators, it is relatively cumbersome to

account for irregular modeling geometry and efficient and scalable parallelization

on distributed-memory computer clusters is not as straightforward as in the FD

method. Another possibility is to consider the weak (i.e., variational) form of

the seismic wave equation. The finite-element (FE) method (e.g., Lysmer and

Drake, 1972; Bao et al., 1998) and the spectral-element (SE) method (e.g., Ko-

matitsch and Vilotte, 1998; Komatitsch and Tromp, 1999, 2002) are based on

the weak form. An important advantage of such methods is that the free-surface

boundary condition is naturally accounted for even when the surface topogra-

phy is highly irregular. And in the SE method, high-order polynomials (e.g.,
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Lagrange polynomials defined on Gauss-Lobatto-Legendre points) are used for

approximation, which provides a significant improvement in spatial accuracy and

computational efficiency.

The arbitrary high-order discontinuous Galerkin (ADER-DG) method on un-

structured meshes was introduced to solve two-dimensional isotropic elastic seis-

mic wave equation in Käser and Dumbser (2006). It was later extended to

three-dimensional isotropic elastic case in Dumbser and Käser (2006) and to ac-

count for viscoelastic attenuation (Käser et al., 2007), anisotropy (la Puente et

al., 2007) and poroelasticity (la Puente et al., 2009). The p-adaptivity (i.e., the

polynomial degrees of the spatial basis functions can vary from element to ele-

ment) and locally varying time steps were addressed in Dumbser et al. (2007).

Unlike conventional numerical schemes, which usually adopt a relatively low-

order time-stepping method such as the Newmark scheme (Hughes, 1987) and

the 4th-order Runge-Kutta scheme (e.g., Igel, 1999), the ADER-DG method

achieves high-order accuracy in both space and time by using the arbitrary

high-order derivatives (ADER), which was originally introduced in Titarev and

Toro (2002) in the finite-volume framework. The ADER scheme performs high-

order explicit time integration in a single step without any intermediate stages.

In three dimensions, the ADER-DG scheme achieves high-order accuracy on

unstructured tetrahedral meshes, which allows for automated mesh generation

even when the modeling geometry is highly complex. Furthermore, the majority

of the operators in the ADER-DG method are applied in an element-local way,

with weak element-to-element coupling based on numerical flux functions, which

results in strong locality in memory access patterns. And the high-order nature

of this method lets it require fewer data points, therefore fewer memory fetches,

in exchange for higher arithmetic intensity. These characteristics of the ADER-

DG method make it well suited to run on massively parallel graphic processing

units (GPUs).

In the following sections, we will discuss some recent developments in the

finite-difference method, in particular, its extensions to non-uniform and discon-

tinuous meshes, and the ADER-DG method in more detail. It is likely that the

literature cited in the following is incomplete. However, some of the key refer-

ences are included and readers who are interested in studying these topics in

depth can use them as a starting point for further investigation. This is a highly

active research area with many new ideas and implementations emerging rapidly.

The advance in computing architecture certainly plays an important role and

many new implementations and optimizations are facilitated by innovations in

computer sciences.
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1.1.1 Stable Finite-Difference Solutions on Non-Uniform,

Discontinuous Meshes

The finite-difference method for solving acoustic and (visco)elastic seismic wave

equations has been used extensively in seismology because its numerical effi-

ciency is high both on commodity desktops and on modern distributed-memory

parallel computing platforms and it is relatively easy to program and use. In

conventional uniform-mesh finite-difference method, the grid space and time step

length are determined based on the maximum desired frequency of the resulting

synthetic seismograms and the CFL (Courant-Friedrichs-Levy) stability condi-

tion, i.e.,
αmax∆t

h
< 0.5 (1.1)

where αmax is the maximum P-wave speed, ∆t is the time-step length and h is

the grid space. Using our tomography in Southern California as an example,

the maximum desired frequency of the synthetic seismograms is 0.2 Hz and

the minimum S-wave speed in our three-dimensional starting model is 900 m/s,

which gives a minimum wavelength of 4,500 m. If we choose a grid space of

500 m, we can guarantee 9 grid points per minimum wavelength in our three-

dimensional 4th-order staggered-grid finite-difference simulations. In a 4th-order

finite-difference scheme, 5.5–6 grid points per minimum wavelength are usually

sufficient to ensure accuracy of the synthetic seismograms. We are using 9 grid

points per minimum wavelength in the starting model because the minimum

S-wave speed in our structure model may reduce when we update our velocity

model during the iterative tomographic inversion process. The maximum P-

wave speed in the simulation volume is 8,223 m/s, considering Equation (1.1),

the time-step length must be smaller than 0.0304 s for the simulation to be

stable. For a simulation volume that is 900 km long, 450 km wide and 50 km

deep, the total number of grid points is 162 million. If the desired length of

the synthetic seismograms is 180 s and the time-step length is around 0.03 s,

the total number of time steps is about 6,000. On the latest IBM Blue Gene/Q

system, it takes 2,048 cores in about 15 minutes of wall-time to complete one

simulation.

For many earth structure models, the minimum S-wave speed close to the

surface of the earth can be much smaller than that at greater depths. If this

is the case, using a discontinuous mesh with finer grid in the upper part of the

model and a coarser grid in the lower part of the model may significantly improve

computational efficiency without scarifying simulation accuracy. Considering

our Southern California example, the minimum S-wave speed increases from

around 900 m/s at 250 m depth to around 3,000 m/s at around 5 km depth. If

we adopt a finer grid with 500 m grid space for the modeling volume above 5

km depth and a coarser grid with 1,500 m grid space for the volume below 5 km
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depth, the total number of grid points is 21.6 million, a reduction of about 87%

compared with the uniform mesh configuration, which can be directly translated

into a significant amount of savings in either the wall-time or the core count or

both.

An important challenge in implementing finite-difference methods on discon-

tinuous meshes is how to reduce the instability caused by the numerical noise

generated at the interface between the finer and the coarser grids. On this in-

terface, in order to compute the spatial derivatives of the field variables (e.g.,

velocity and stress) at the finer-grid boundary we need access to the field vari-

ables at grid positions that do not exist at the coarser-grid boundary. Some type

of interpolation scheme is needed to obtain the field variables at those missing

grid positions. The existing finite-difference implementations on discontinuous

meshes can be categorized based on their interpolation approaches for reducing

the instability. For two-dimensional acoustic wave equations, Jastram and Behle

(1992) used trigonometric interpolation in the horizontal direction to obtain the

pressure at those missing grid positions at the boundary of the coarser grid. The

trigonometric interpolation scheme is closely related to Fourier spectral methods,

which have been shown to be highly accurate in computing spatial derivatives

of the field variables. This interpolation scheme allows arbitrary integer ratio

of the coarser grid space Hand the finer grid space h, although intuitively one

can expect that the larger is the grid ratio H/h, the higher is the possibility of

generating numerical instability. The same methodology was extended to two-

dimensional P-SV elastic wave equation using a staggered grid in Jastram and

Tessmer (1994). An interpolation scheme that is closely related to trigonometric

interpolation is the interpolation in the wavenumber domain, which is adopted in

Wang and Schuster (1996) to solve three-dimensional acoustic and elastic wave

equations. The same technique was extended to the viscoelastic wave equation

in Wang et al. (2001). Simple linear or bilinear interpolation schemes have also

been adopted in both two-dimensional (e.g., Hayashi et al., 2001) and three-

dimensional (e.g., Aoi and Fujiwara, 1999) finite-difference simulations. In Aoi

and Fujiwara (1999), numerical evidences have shown that when the grid space

ratio H/h = 3 and the number of grid points per wavelength is larger than 10,

the error introduced by a linear interpolation scheme is less than 2.2%, which

is sufficiently accurate for the 2nd-order staggered-grid finite-difference scheme

used in their simulations.

A different issue that is also related to the instability problem is how to down-

sample the field variables from the finer grid to the coarser grid on the interface.

Theoretical considerations (e.g., Kristek et al., 2010) and some numerical ex-

periments (e.g., Hayashi et al., 2001; Kristek et al., 2010) have shown that one

cannot simply take the field variable values in the finer grid to replace those

coarser-grid field variable values at the coarser grid positions that coincide with

the grid points in the finer grid when computing spatial derivatives of the field
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variables in the coarser grid. From a theoretical point of view (e.g., Kristek et al.,

2010), the minimum wavelength supported by the finer grid λh is smaller than

the minimum wavelength supported by the coarser grid λH for a given frequency.

When the wave-field enters the coarser grid from the finer grid at the interface,

waves with wavelength larger than λh but smaller than λH will introduce alias-

ing effect into the coarser grid and a filtering process that removes waves with

wavelength smaller than λH is needed at the interface to ensure numerical stabil-

ity. In Hayashi et al. (2001), a one-dimensional five-point averaging formula was

used to improve the stability of their two-dimensional P-SV viscoelastic finite-

difference scheme. In Kristek et al. (2010), the Lanczos down-sampling filter was

used to improve the stability of their three-dimensional 4th-order staggered-grid

finite-difference scheme. The Lanczos filter is a windowed sinc function in space

and provides a good approximation to a boxcar in the wavenumber space. It can

be implemented efficiently using a weighted averaging formula on the interface

(Kristek et al., 2010).

If a single time step is used for the discontinuous spatial mesh, this time step

may become unnecessarily small for some spatial grid points. To further im-

prove numerical efficiency, a straightforward extension is to use a locally varying

time step that is adapted to the stability condition, Equation (1.1), in each sub-

mesh. This type of local-time-step, discontinuous-grid finite-difference method

was implemented in Kang and Baag (2004). In their implementation, a simple

linear interpolation scheme was adopted for both the temporal and the spa-

tial interpolations of the field variables on the mesh interface and the 4th-order

staggered-grid finite-difference scheme is used for all interior grid points. The effi-

cient implementation of such local-time-step, discontinuous-grid finite-difference

schemes on modern distributed-memory parallel computing platforms is still a

very challenging issue. If the spatial mesh is distributed evenly among all pro-

cessors using a simple domain decomposition approach, the processors that are

mainly occupied by the coarser grid will likely be idle for a significant amount of

time because the field variables on the coarser grid are updated less frequently

than those on the finer grid, which is a serious load-balancing problem. Another

possibility is to evenly distribute the finer grid and the coarser grid separately

so that each processor owns an equal number of finer grids, as well as an equal

number of coarser grids. In such a case, every processor will always have some

work to do at every time step, but the spatial decomposition of the finer and the

coarser grids may no longer conform to simple boundaries and may introduce

additional complexity in exchanging boundary field variables among processors.

Instead of using a discontinuous mesh, one can also try to adapt the mesh to

the velocity model using a non-uniform but continuous mesh. In a non-uniform

mesh, the number of grid points in each direction does not change; therefore one

does not need to interpolate field variables. However, the grid space can vary

in accordance with the velocity model and avoid oversampling in regions with
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high velocity. Following Pitarka (1999), the 4th-order difference operator Dx on

a field variable g(x) at location xi can be expressed as

Dxg(xi) = c1g(xi + ∆1) + c2g(xi − ∆2) + c3g(xi + ∆3) + c4g(xi − ∆4) (1.2)

where ci are 4 coefficients to be determined and ∆i are spatial increments on

both sides of xi and can be expressed in terms of the non-uniform grid spaces.

Transforming Equation (1.2) into the Fourier domain, we obtain an equation in

terms of the wavenumber k,

ik = c1 exp (ik∆1) + c2 exp (−ik∆2) + c3 exp (ik∆3) + c4 exp (−ik∆4) (1.3)

The exponentials in Equation (1.3) can be expanded into Taylor series and

we can truncate the Taylor expansion to 4th-order. Using the first term on the

right-hand-side as an example, we have,

exp(ik∆1) ≈ 1 + ik∆1 −
k2∆2

1

2
− i

k3∆3
1

6
(1.4)

Bringing Equation (1.4) into Equation (1.3) and collecting the terms according

to the order of k, we obtain

ik = (c1 + c2 + c3 + c4) + ik(c1∆1 − c2∆2 + c3∆3 − c4∆4)

+
k2

2
(−c1∆

2
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2
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2
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2
4)
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k3

6
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3
2 − c3∆

3
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3
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(1.5)

Equation (1.5) can be expressed in a matrix form as




1 1 1 1

∆1 −∆2 ∆3 −∆4

−∆2
1 −∆2

2 −∆2
3 −∆2

4

−∆3
1 ∆3

2 −∆3
3 ∆3

4







c1

c2

c3

c4


 =




0

1

0

0


 (1.6)

which can be solved for the coefficients ci. The same analysis can also be per-

formed on the y- and z-axis. Explicit expressions for ci in terms of ∆i can be

obtained by solving Equation (1.6) using a computer algebra system such as

Maple and Mathematica. Once the non-uniform mesh has been set up, the spa-

tial increments ∆i are known and the coefficients ci only need to be computed

once and stored on disk. For a staggered-grid mesh, two sets of ci need to be

computed for field variables located on the grid points and those located on

positions shifted by half the grid space.

Perhaps an even more efficient implementation would be a combination of a

discontinuous mesh with a non-uniform mesh. In Liu and Archuleta (2002), the
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mesh is allowed to be discontinuous in the vertical direction with a grid space ra-

tio H/h = 3 and also non-uniform in all three spatial dimensions. The perfectly-

matched-layer (PML) boundary condition is implemented for all boundaries of

the modeling volume except for the free-surface and the 4th-order staggered-grid

finite-difference scheme is adopted for all interior grid points. This code has been

parallelized using the message-passing-interface (MPI). It is used in some of our

own modeling and inversion studies in which the effects of surface topography

and the curvature of the Earth do not need to be considered. The improvement

in computational efficiency is really astonishing compared with a uniform-mesh

4th-order staggered-grid finite-difference code. In cases where irregular surface

topography and/or subsurface fault structures need to be accounted for, we use

the ADER-DG method for solving the seismic wave equation. More discussions

about our ADER-DG implementation are presented in Sections 1.1.3 and 1.1.4.

1.1.2 Accelerating Finite-Difference Methods Using GPUs

In the past four decades, the development in the computing chip industry has

roughly followed the Moore’s law. Many of the performance improvements were

due to increased clock speeds and sophisticated instruction scheduling in a sin-

gle core. As the transistor density keeps increasing, the industry is now facing

a number of engineering difficulties with using a large number of transistors ef-

ficiently in individual cores (e.g., power consumption, power dissipation). The

effect is that clock speeds are staying relatively constant and core architecture

is expected to become simpler. As a consequence, when we consider future

platforms for high-performance scientific computing, there are some inevitable

trends, for instance, the increase in the number of cores in general-purpose CPUs,

and the adoption of many-core accelerators (e.g., Field Programmable Gate Ar-

ray, Graphic Processing Unit, Cell Broadband Engine) due to their footprints

smaller and power consumptions per flop lower than general-purpose CPUs. The

users who want to once again experience substantial performance improvements

as before need to learn how to exploit multiple/many cores.

The graphic processing unit (GPU) has become an attractive many-core co-

processor for general-purpose scientific computing in the past few years. In the

conventional CPU architecture, a large amount of transistors are dedicated for

caches, prediction and speculation, which is mainly to battle the memory bot-

tleneck caused by bandwidth limitations and memory-fetch latency. Unlike in

a conventional CPU, in a typical GPU, many more transistors are dedicated

for arithmetic calculations rather than data caching and flow control. The

abundance of cheap computing power on a GPU allows us to effectively hide

memory-access latencies with massive parallelism. In particular, on a GPU one
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can launch a large number of threads and the thread scheduler can effectively

overlap memory transactions for some threads with arithmetic calculations on

other threads. Such a massive parallelism offered by GPUs is particularly well

suited for addressing data-parallel calculations such as those used in solving seis-

mic wave equations. In fact, most of the numerical algorithms used for solving

seismic wave equations can be expressed in terms of simple local-scale operations

applied in parallel on many different pieces of distributed data with limited or

no interdependence, i.e., single-instruction-multiple-data (SIMD) style.

In the past, programming on GPUs was difficult and different from that on

CPUs because of the significant barriers to recast scientific algorithms into unfa-

miliar graphic programming frameworks. Recent efforts by GPU vendors, in par-

ticular, NVIDIA’s CUDA (Compute Unified Device Architecture) programming

model, the OpenCL (Open Computing Language) framework and the OpenACC

compiler directives and APIs, have significantly increased the programmability

of commodity GPUs. Using these tools, a programmer can directly issue and

manage data-parallel computations on GPUs using high-level instructions with-

out the need to map them into a set of graphic-processing instructions. For

readers who are not familiar with CUDA or GPU programming, we give a very

brief introduction about the programming model in the following section.

1.1.2.1 CUDA programming model

The CUDA software stack is composed of several layers, including a hardware

driver, an application programming interface (API) and its runtime environ-

ment. There are also two high-level, extensively optimized CUDA mathematical

libraries, the fast Fourier transform library (CUFFT) and the basic linear alge-

bra subprograms (CUBLAS), which are distributed together with the software

stack. The CUDA API comprises an extension to the C programming language

for a minimum learning curve. The complete CUDA programming toolkit is

distributed free of charge and is regularly maintained and updated by NVIDIA.

A CUDA program is essentially a C program with multiple subroutines (i.e.,

functions). Some of the subroutines may run on the “host” (i.e., the CPU) and

others may run on the “device” (the GPU). The subroutines that run on the de-

vice are called CUDA “kernels”. A CUDA kernel is typically executed on a very

large number of threads to exploit data parallelism, which is essentially a type of

SIMD operation. Unlike on CPUs where thread generation and scheduling usu-

ally takes thousands of clock cycles, GPU threads are extremely “light-weight”

and cost very few cycles to generate and manage. The very large amounts of

threads are organized into many “thread blocks”. The threads within a block

are executed in groups of 16, called a “half-warp”, by the “multiprocessors” (a
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type of vector processor), each of which executes in parallel with the others.

A multiprocessor can have a number of “stream processors”, which are some-

times called “cores”. A high-end Fermi GPU has 16 multiprocessors and each

multiprocessor has two groups of 16 stream processors, which amounts to 512

processing cores.

The memory on a GPU is organized in a hierarchical structure. Each thread

has access to its own register, which is very fast, but the amount is very limited.

The threads within the same block have access to a small pool of low-latency

“shared memory”. The total amount of registers and shared memory available on

a GPU restricts the maximum number of active warps on a multiprocessor (i.e.,

the “occupancy”), depending upon the amount of registers and shared memory

used by each warp. To maximize occupancy, one should minimize the usage of

registers and shared memory in the kernel. The most abundant memory type

on a GPU is the “global memory”, however, accesses to the global memory have

much higher latency. To hide the latency, one needs to launch a large number

of thread blocks so that the thread scheduler can effectively overlap the global

memory transactions for some blocks with the arithmetic calculations on other

blocks. To reduce the total number of global memory transactions, each access

needs to be “coalesced” (i.e., consecutive threads accessing consecutive memory

addresses), otherwise the access will be “serialized” (i.e., separated into multiple

transactions), which may heavily impact the performance of the code.

In addition to data-parallelism, GPUs are also capable of task-parallelism,

which is implemented as “streams” in CUDA. Different tasks can be placed in

different streams and the tasks will proceed in parallel despite the fact that

they may have nothing in common. Currently task parallelism on GPUs is not

yet as flexible as on CPUs. Current-generation NVIDIA GPUs now support

simultaneous kernel executions and memory copies either to or from the device.

1.1.2.2 CUDA implementations of finite-difference methods

With the rapid development of the GPU programming tools, various numerical

algorithms have been successfully ported to GPUs and GPU-CPU hybrid com-

puting platforms and substantial speedups, compared with pure-CPU implemen-

tations, have been achieved for applications in different disciplines. In the area

of acoustic/elastic seismic wave propagation simulations, finite-difference meth-

ods (e.g., Abdelkhalek et al., 2009; Michéa and Komatitsch, 2010; Okamoto et

al., 2010; Wang et al., 2010; Unat et al., 2012; Zhou et al., 2012), the spectral-

element method (e.g., Komatitsch et al., 2009; Komatitsch et al., 2010) and the

ADER-DG method (Mu et al., 2013) have been successfully ported to GPUs us-

ing the CUDA programming model. The speedup obtained varies from around
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20-fold to around 60-fold depending on several factors, e.g., whether a particular

calculation is amenable to GPU acceleration, how well the reference CPU code is

optimized, the particular CPU and GPU architectures used in the comparisons

and the specific compilers, as well as the compiler options, used for generating

the binary codes. In this section, we discuss CUDA implementations of finite-

difference methods. In Section 1.4, we will discuss the CUDA implementation

of the ADER-DG method.

In most of the finite-difference methods, the majority of the calculations in-

volve a central point and a set of neighboring points in space. The spatial

derivatives of the field variable at the central point are approximated using a

weighted average of field variables at neighboring points. This neighborhood in

space is often referred to as the stencil. The stencil operator applied to every

point is the same, except for possible differences in the weights in non-uniform

meshes. In a typical C-language implementation, the computation is imple-

mented as nested for-loops, in which the loop indices sweep through every grid

point in the mesh and update the field variables in place. A straightforward

parallelization scheme is to use one thread to handle one central point. For a

4th-order finite-difference scheme, each stencil is composed of 13 grid points. If

all the field variables are stored in the global memory, to compute the spatial

derivatives of the field variable at the central point, each thread will need 13

accesses to the global memory, which will result in very poor performance since

the global memory has the highest access latency. But in practice, it is not nec-

essary for each thread to carry out all 13 accesses because neighboring stencils

share many grid points and the field variables on those shared grid points can

be fetched from the high-latency global memory and stored in the low-latency

shared memory. If the number of threads in a thread block is large enough, on

average each thread will only need one access to the global memory to fetch the

field variable located at its own central point and store it into the shared memory

and the rest 12 fetches will be from the low-latency shared memory. For the few

threads located at the boundary of a thread block, more fetches from the global

memory are needed because different thread blocks cannot share data directly

on current-generation GPUs.

The use of the shared memory improves the performance of the CUDA code

significantly by removing most of the redundant accesses to the high-latency

global memory. To further improve performance of the code, we need to make

sure that the remaining accesses to the global memory are coalesced. In our

case, this problem involves understanding two different issues, i.e., how a three-

dimensional array is laid out in the global memory and what is the indexing

scheme for a three-dimensional thread block. In both C and CUDA, a three-

dimensional field variable, say vz[NY][NX][NZ], is laid out linearly in memory

as, vz[0][0][0], vz[0][0][1], vz[0][0][2], . . . , vz[0][0][NZ-1], vz[0][1][0], vz[0][1][1], . . . ,

which is known as “row-major ordering”. For this particular example, we often
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say that “the z-axis is the fastest direction and the y-axis is the slowest direction

for array vz”. In a three-dimensional thread block, each thread is indexed using

three integers, threadIdx.x, threadIdx.y and threadIdx.z and in CUDA thread

topology, threadIdx.x is the fastest direction and the threadIdx.z is the slowest

direction. To ensure that consecutive threads are accessing consecutive addresses

in the global memory, for our example, one would like to match threadIdx.x with

the z-axis of the array vz and threadIdx.y with the x-axis of vz and threadIdx.z

with the y-axis of vz. In practice, one often uses a two-dimensional thread

topology. In such a case, threadIdx.x should be matched with the z-axis of

array vz, threadIdx.y should be matched with the x-axis of vz and each thread

corresponds to one point in the x-z plane of vz and has to loop through the

entire y-axis of vz.

For a two-dimensional thread block, to compute spatial derivatives of field

variables in the y-axis one can store multiple x-z planes of field variables in

shared memory if the amount of shared memory on the GPU is large enough.

For a 4th-order finite-difference scheme, one widely used algorithm is to store 4

consecutive x-z planes in shared memory. Then for each iteration in the loop

direction (y-axis in our example), 3 out of the 4 x-z planes from the previous

iteration can be re-used and we only need to fetch one x-z plane from the global

memory. The 4 x-z planes in shared memory are constantly updated during

the loop with one old plane being discarded and one new plane being added.

This rotation process reduces about 75% of global memory accesses after all the

threads in the thread block loop through the entire y-axis.

There are also other issues need to be considered to fully take advantage

of the computing capability of the GPU. Certain directive-based C-to-CUDA

translation software, such as mint (Unat et al., 2012), can be used to facilitate

this process for finite-difference calculations. We have successfully ported the

discontinuous, non-uniform mesh, finite-difference code of Liu and Archuleta

(2002) to GPU. On the latest Kepler K20 GPU, we obtained a speedup of around

15-fold when compared with a single Intel Nehalem 2.4 GHz CPU with 4 cores.

1.1.3 The ADER-DG Method

The ADER-DG method for solving the seismic wave equation is both flexible

and robust. It allows unstructured meshes and easy control of accuracy without

compromising simulation stability. Like the SE method, the solution inside each

element is approximated using a set of orthogonal basis functions, which leads

to diagonal mass matrices. These types of basis functions exist for a wide range

of element types. Unlike the SE or typical FE schemes, the solution is allowed

to be discontinuous across element boundaries. The discontinuity is treated us-
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ing well-established ideas of numerical flux functions from the high-order finite-

volume framework. The spatial approximation accuracy can be easily adjusted

by changing the order of the polynomial basis functions within each element

(i.e., p-adaptivity). The ADER time-stepping scheme is composed of three ma-

jor ingredients, a Taylor expansion of the degree-of-freedoms (DOFs, i.e., the

coefficients of the polynomial basis functions in each element) in time, the solu-

tion of the Derivative Riemann Problem (DRP) (Toro and Titarev, 2002) that

approximates the space derivatives at the element boundaries and the Cauchy-

Kovalewski procedure for replacing the temporal derivatives in the Taylor se-

ries with spatial derivatives. We summarize major equations of the ADER-DG

method for solving the three-dimensional isotropic elastic wave equation on un-

structured tetrahedral meshes in the following. Please refer to Dumbser and

Käser (2006) for details of the numerical scheme.

The three-dimensional elastic wave equation for an isotropic medium can be

expressed using a first-order velocity-stress formulation and written in a compact

form as

∂tQp + Apq∂xQq + Bpq∂yQq + Cpq∂zQq = 0 (1.7)

where Q is a 9-vector consisting of the 6 independent components of the symmet-

ric stress tensor and the velocity vector Q = (σxx, σyy, σzz , σxy, σyz, σxz, u, v, w)T

and Apq, Bpq and Cpq are space-dependent 9×9 sparse matrices with the nonzero

elements given by the space-dependent Lamé parameters and the buoyancy (i.e.,

the inverse of the density). Summation for all repeated indices is implied in all

equations. The seismic source and the free-surface and absorbing boundary con-

ditions can be considered separately as shown in Käser and Dumbser (2006) and

Dumbser and Käser (2006).

Inside each tetrahedral element T (m), the numerical solution Qh can be ex-

pressed as a linear combination of space-dependent and time-independent poly-

nomial basis functions Φl(ξ, η, ζ) of degree N with support on T (m),

[Q
(m)
h ]p(ξ, η, ζ, t) = Q̂

(m)
pl (t)Φl(ξ, η, ζ) (1.8)

where Q̂
(m)
pl (t) are time-dependent DOFs and ξ, η, ζ are coordinates in the refer-

ence element TE . Explicit expressions for the orthogonal basis functions Φl(ξ, η, ζ)

on a reference tetrahedral element are given in Cockburn et al. (2000) and the

appendix A of Käser et al. (2007). Bringing Equation (1.8) into Equation (1.7),

multiplying both sides with a test function Φk, integrating over an element T (m)

and then applying integration by parts, we obtain

∫

T (m)

dV (Φk∂tQp) +

∫

∂T (m)

dS(ΦkFh
p )

−
∫

T (m)

dV (∂xΦkApqQq + ∂yΦkBpqQq + ∂zΦkCpqQq) = 0

(1.9)



28 Dawei Mu, En-Jui Lee, and Po Chen

The numerical flux Fh
p between the element T (m) and one of its neighboring

elements, T (mj), j = 1, 2, 3, 4, can be computed from an exact Riemann solver,

Fh
p =

1

2
T j

pq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣
) (

T j
rs

)−1
Q̂

(m)
sl Φ

(m)
l

+
1

2
T j

pq

(
A

(m)
qr −

∣∣∣A(m)
qr

∣∣∣
) (

T j
rs

)−1
Q̂

(mj)
sl Φ

(mj)
l

(1.10)

where T j
pq is the rotation matrix that transforms the vector Q from the global

Cartesian coordinate to a local normal coordinate that is aligned with the bound-

ary face between the element T (m) and its neighbor element T (mj). Bringing

Equation (1.10) into Equation (1.9) and converting all the integrals from the

global xyz -system to the ξηζ-system in the reference element TE through a co-

ordinate transformation, we obtain the semi-discrete discontinuous Galerkin for-

mulation,

|J |∂tQ̂
(m)
pl Mkl − |J |

(
A∗

pqQ̂
(m)
ql Kξ

kl + B∗
pqQ̂

(m)
ql Kη

kl + C∗
pqQ̂

(m)
ql Kζ

kl

)

+
1

2

4∑

j=1

|Sj |T j
pq

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣
) (

T j
rs

)−1
Q̂

(m)
sl F−,j

kl

+
1

2

4∑

j=1

|Sj |T j
pq

(
A(m)

qr −
∣∣∣A(m)

qr

∣∣∣
) (

T j
rs

)−1
Q̂

(mj)
sl F+,j,i,h

kl = 0

(1.11)

where |J | is the determinant of the Jacobian matrix of the coordinate transfor-

mation being equal to 6 times the volume of the tetrahedron, |Sj | is the area of

face j between the element T (m) and its neighbor element T (mj), A∗
pq, B

∗
pq and

C∗
pq are linear combinations of Apq, Bpq and Cpq with the coefficients given by

the Jacobian of the coordinate transformation, Mkl, K
ξ
kl, K

η
kl and Kζ

kl are the

mass and stiffness matrices and the flux matrices are given by

F−,j
kl =

∫

∂(TE)j

[
Φk

(
ξ(j)(χ, τ)

)
Φl

(
ξ(j)(χ, τ)

)]
dχdτ, ∀1 � j � 4 (1.12)

F+,j,i,h
kl =

∫

∂(TE)j

[
Φk

(
ξ(j)(χ, τ)

)
Φl

(
ξ(i)

(
χ̃(h)(χ, τ), τ̃ (h)(χ, τ)

))]
dχdτ,(1.13)

∀1 � i � 4, ∀1 � h � 3

The mass, stiffness and flux matrices are all computed on the reference ele-

ment, which means that they can be evaluated analytically beforehand using a

computer algebra system (e.g., Maple, Mathematica) and stored on disk.

If we project Equation (1.7) onto the DG spatial basis functions, the temporal

derivative of the DOF can be expressed as

∂tQ̂pn(t) = (−M−1
nk Kξ

lkA∗

pq − M−1
nk Kη

lkB∗

pq − M−1
nk Kζ

lkC∗

pq)Q̂ql(t)

and the m-th temporal derivative can be determined recursively as

∂m
t Q̂pn(t) = (−M−1

nk Kξ
lkA∗

pq − M−1
nk Kη

lkB∗

pq − M−1
nk Kζ

lkC∗

pq)∂
m−1
t Q̂ql(t) (1.14)
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The Taylor expansion of the DOF at time tn is

Q̂pn(t) =

N∑

m=0

(t − tn)m

m!
∂m

t Q̂pn(tn)

which can be integrated from tn to tn+1,

Ipnql(∆t)Q̂ql(t
n) ≡

∫ tn+1

tn

Q̂pn(t)dt =

N∑

m=0

∆tm+1

(m + 1)!
∂m

t Q̂pn(tn) (1.15)

where ∆t = tn+1 − tn, and ∂m
t Q̂pn(tn) can be computed recursively using Equa-

tion (1.8).

Considering Equation (1.15), the fully discretized system can then be obtained

by integrating the semi-discrete system, Equation (1.11), from tn to tn+1,

|J |
[(

Q̂
(m)
pl

)n+1

−
(
Q̂

(m)
pl

)n
]

Mkl

= |J |(A∗
pqK

ξ
kl + B∗

pqK
η
kl + C∗

pqK
ζ
kl)Iqlmn(∆t)(Q̂

(m)
mn )n

−1

2

4∑

j=1

|Sj |T j
pq(A

(m)
qr + |A(m)

qr |)(T j
rs)

−1F−,j
kl Islmn(∆t)(Q̂(m)

mn )n

−1

2

4∑

j=1

|Sj |T j
pq(A

(m)
qr − |A(m)

qr |)(T j
rs)

−1F+,j,i,h
kl Islmn(∆t)(Q̂(mj)

mn )n

(1.16)

Equation (1.16), together with Equations (1.14) and (1.15), provides the math-

ematical foundation for our GPU implementation and optimization.

1.1.4 Accelerating the ADER-DG Method Using GPUs

The implementation and optimization of the ADER-DG method on a single

GPU was documented in Mu et al. (2013). Extending the implementation to a

cluster of GPUs is relatively straightforward. We give a brief summary in the

following and demonstrate the performance of our multi-GPU CUDA-MPI code

using specific examples.

Prior to running our wave-equation solver, a tetrahedral mesh for the entire

modeling domain was generated on a CPU using the commercial mesh genera-

tion software “GAMBIT”. The mesh generation process is fully automated and

the generated tetrahedral mesh conforms to all discontinuities built into the

modeling geometry, including irregular surface topography and subsurface fault

structures. The entire mesh was then split into subdomains, one per GPU, using


