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Preface

The 1930s became the golden decade of mathematical logic. The
new generation of logicians, like Kurt Gödel, Alfred Tarski, Jacques
Herbrand, Gerhardt Genzten, Arend Heyting, Alonzo Church and
Alan Turing joined older masters, like Hilbert, Brouwer or Skolem.
The received paradigm of logic, emphatically and optimistically ex-
pressed by Hilbert’s famous phrase “Wir müssen wissen, und wir
werden wissen”, had to be replaced by a more limited one and forced
by discoveries of incompleteness, undefinability and undecidability.
In 1936 three men, Church, Post and Turing, almost simultaneously
and mutually independently, proposed the identification of the in-
tuitive concept of computability and the mathematical concept of
recursiveness. Although this proposal had three fathers, it was bap-
tized as Church’s thesis (CT) and this label has been preserved even
to this day. This thesis became one of the conceptual highlights of all
time, at least in the area of logic and the foundations of mathematics.
In fact, it is a very rare case in history when a proposal which has

all the features of a definition, becomes as dexterous as Church’s the-
sis. On the one hand, almost everyone accepts it as very satisfying,
but, on the other hand, it is continuously discussed by mathemati-
cians, logicians, philosophers, computer scientists and psychologists.
The discussion is many-sided and concerns the evidence for Church’s
thesis, its history, various formulations, possible objections, the role
in mathematics or applications in philosophy. This collection of pa-
pers, mostly commissioned specifically for the present volume, is in-
tended as a testimony of a great significance and a fascinating story
of the statement that computability is equivalent to recursiveness.
Our assumption was to focus on the following topics: Church’s for-
mulation of his thesis and its interpretations, different formulations
of CT, CT and intuitionism, CT and intensional mathematics, CT
and physics, epistemic status of CT, CT and philosophy of mind,
(dis)provability of CT, CT and functional programming. Yet we
have decided to publish these articles in the alphabetical order of
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the authors’ names. We hope that the result gives proper justice to
this beautiful landmark in the history of conceptual analysis. How-
ever, we cannot abstain from reporting an anecdote. We began our
attempts to start this project with an offer to one of the leading
world publishers, hoping that the password ‘Church’s thesis’ opens
every door. Our query was forwarded to their religious (sic!) de-
partment, for which, in turn, this book was not interesting enough
to publish. Habent sua fata libelli. Fortunately, Ontos Verlag had no
problem with finding out the proper meaning of ‘Church’s thesis’.
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Darren Abramson∗

Church’s Thesis and Philosophy of Mind

1. Introduction

In this paper I examine implications of Church’s Thesis, and re-
lated theses, for the philosophy of mind. I will argue that the present
indeterminate status of theses concerning what functions physical
objects compute have significant import for some arguments over
what mental states are. I show, however, that other arguments are
not affected by this status, and I argue against claims that we can
prove that certain views in philosophy of mind fail by consideration
of computability.

2. The Church–Turing Thesis and the Chinese Room

B. Jack Copeland has written extensively on the topic he calls
‘hypercomputation’ [Copeland 2002b], occasionally with reference to
the philosophy of mind [Copeland 2000; 2002c]. Hypercomputation
is referred to as ‘computation beyond the Turing limit’ [Copeland
and Sylvan 1999]. A machine that hypercomputes, then, can pro-
duce values of a function that is not Turing computable. Copeland’s
thesis is that a crucial error has crept into the writings of numerous
philosophers of mind that becomes clear upon consideration of
hypercomputation. In his writings, Copeland claims to find a
widespread philosophical error that concerns the Church–Turing
Thesis, often called Church’s Thesis. I will refer to it here as ‘CTT’.
Since Copeland takes such great care to distinguish ‘CTT properly
so-called’ from other related theses, let us agree to understand by
CTT the definition he gives.

∗D. Abramson, Department of Philosophy, Dalhousie University, Halifax, Nova
Scotia, Canada, B3H 4P9, da@dal.ca



10 Darren Abramson

CTT: “[...] no human computer, or machine that mimics a human
computer, can out-compute a universal Turing machine” [Copeland
2002a, p. 67].

Copeland’s complaint can be easily summarized. The locutions
‘computable by a physical device’ and ‘computable by a machine
following an effective procedure’ mean different things, and may
describe different sets of functions. Copeland thus distinguishes
between CTT and another thesis, which we may call ‘PCTT’ for
‘physical Church–Turing Thesis’.

PCTT: The physically computable functions are a subset of the
Turing computable functions.

The so-called ‘Church–Turing Fallacy’ is the conflation of PCTT
with CTT. In some of his papers, Copeland cites examples in which,
he claims, well known philosophers of mind and cognitive scientists
argue as follows. Some proposition P follows from CTT; every-
one thinks CTT is true; therefore P . However, Copeland says, the
Church–Turing Fallacy is committed insofar as P only follows from
PCTT and not CTT.
To better understand what is at stake, let us examine a supposed

instance of the fallacy. Copeland claims that Searle’s famous Chinese
Room Argument founders on the Church–Turing Fallacy [Copeland
2002c].
Recall the form that Searle’s Chinese Room Argument takes. Its

conclusion is that there is no computer program such that, merely
by implementing it, can a machine possess understanding.1 Searle
imagines himself, a philosopher who speaks no Chinese, and an im-
plementation of a program which supposedly can take as inputs Chi-
nese stories and then understand them, interacting in an enclosed
room. Searle imagines himself carrying out the program’s instruc-
tions inside the enclosed room and observes that neither he, nor the
room, understands Chinese, regardless of what people outside the
room may think.

1Note that this thesis is consistent with computational functionalism, which
states merely that implementing some programs is sufficient for having mental
states. Whether mental states count as understanding may depend on facts other
than computational ones.
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We will now look at aspects of Searle’s argument relevant to
CTT a little closer. The so-called ‘many-mansions reply’ consists of
the claim that Searle has merely shown that existing computers do
not understand, and there may come a point in the future in which
other, human-constructed machines, do in fact think, perhaps due
to novel causal powers they possess. Here is Searle’s response to the
many-mansions reply.

The interest of the original claim made on behalf of artificial

intelligence is that it was a precise, well defined thesis: mental

processes are computational processes over formally defined

elements. I have been concerned to challenge that thesis. If

the claim is redefined so that it is no longer that thesis, my

objections no longer apply because there is no longer a testable

hypothesis for them to apply to. [Searle 1980, p. 197]2

Of considerable relevance to our discussion is the ambiguity in
the word ‘computational’ in Searle’s original article. A charitable in-
terpretation, given Copeland’s concern over misinterpreting CTT, is
‘effectively computable’. However, Copeland points out that Searle’s
later writings ask us to read the Chinese Room Argument as con-
cerning any form of computation, where computation simpliciter is
“the manipulation of formal symbols” [Copeland 2002c, p. 120].
Let us generalize the argument to take into account arbitrary

manipulations of symbols by supposing that instead of a program,
we are considering any rule-governed relationship between inputs and
outputs that may be implemented in physical matter. Then, success-
fully constructing the thought experiment requires the assumption
that John Searle could effectively follow the functional specification
associated with understanding Chinese.
If Searle is limiting his view to effectively computable functions,

then his assumption, that he could implement an arbitrary imple-
mentation of such a function, would be justified. After all, ‘effec-
tively computable’ simply describes those functions that a person,
with enough time, paper, and pencil, can compute. However, as we
have seen, he takes ‘functional specification’ to be more general than
‘effectively computable’. He takes it to mean ‘any symbol manipula-
tion that may occur’. So, to conclude that the symbol manipulations
which functionalism claims to underlie cognition can be effectively

2Pagination follows the reprint of Searle’s article in [Haugeland 1997].
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computed, Searle needs PCTT. We might think that some interme-
diate thesis is required, for example that all of the ‘humanly com-
putable’ functions are Turing computable, where a humanly com-
putable function is one that a person can compute, effectively or
otherwise. However, this thesis is too weak, since the functions that
underlie cognition may not be computable by humans.3

So, Copeland says, Searle commits the Church–Turing Fallacy.
If PCTT is false, which it very well may be, then some physically
computable functions might not be Turing computable. Then, from
CTT, it follows that some physically computable functions are not
effectively computable, by John Searle or anyone else. So, the Chi-
nese Room Argument proves nothing about whether cognition really
is formal symbol manipulation.
This is, in essence, Copeland’s argument. A first response that

one might make is that Searle really is, despite lack of care in some
places, concerned with what Turing-equivalent computers can do.
After all, in the article that introduced the Chinese Room Argu-
ment, Searle [1980] is explicitly interested in evaluating the claims
of contemporary practitioners of ‘Strong AI’, those who believe that
the programs they are writing to be run on mainframe and desktop
computers do really understand stories, and can reason. For the time
being, though, let us agree with Copeland’s exigesis: Searle intends
his argument against computational functionalism in general. After
all, irrespective of Searlean hermeneutics, it is of interest to see if
some kind of computational functionalism can survive the Chinese
Room Argument.
Notice that Copeland’s analysis leads in the right direction, but

ignores a key property of Searle’s argument: its thoroughgoing modal
character. Copeland says that Searle needs PCTT to be able to
pick an arbitrary function, and then imagine himself computing it in
the Chinese room. However, he needs the following stronger thesis:
2PCTT. Thought experiments work by showing us what is possible.
If we claim a necessary identity and are then shown that this breaks
down in a possible world, we must revise our identity claim. How-
ever, we just don’t know if PCTT is true. We construct a thought
experiment to investigate what it’s like to compute whatever func-
tions underlie cognition. To do so, we must assume that PCTT holds

3We can easily imagine an epistemic limitation on our ability to ascertain
what functions biological tissue computes, for example.
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in the arbitrary possible world we are considering. So, the Searlean
strategy requires 2PCTT, not merely PCTT or 3PCTT.
However, the bare PCTT is already a modal claim. To say that

all physically computable functions are Turing computable, presum-
ably, doesn’t trivially fail in a finite universe. In other words, we
take ‘physically computable’ to be some sort of augmentation of ‘ef-
fectively computable’. In investigating the class of effectively com-
putable functions we, as Turing did, see what you can do with access
to unbounded quantities of time, pencil, and paper. When we in-
vestigate PCTT, presumably, we ought still to consider unbounded
access to resources. We may add, therefore, to any physical compu-
tation an unbounded number of steps which involve use of physical
devices and/or substances, say, chunks of radium and geiger coun-
ters. Now, suppose that all the radium and geiger counters in the
universe are made inaccessible, by being thrown into a black hole. In
investigating PCTT we would still want to know what we could com-
pute with access to objects consistent with the laws of physics. So,
we would ignore the contingent unavailability of radium and geiger
counters and reason over their use in deciding if PCTT were true.
Notice that widespread agreement that all people are mortal does
not prevent us from thinking that people can add—and the adding
function has an infinite domain. If it turns out that effective meth-
ods do not capture all the methods at work in physical computation,
then we must treat physical methods in the same unbounded fashion
with which we treat effective methods.
If we take PCTT to be ‘intrinsically modal’ in the sense described

above, and subscribe to popular views of rigid designation and sci-
entific law, PCTT implies 2PCTT. For, suppose it is the case that
all the functions which are physically computable are Turing com-
putable. By an externalist theory of reference, we take ‘the laws
of physics’ to determine a set of possible worlds such that anything
that is consistent with the laws of physics in our world is consistent
with the laws of physics in those worlds. If it turns out that nothing
can travel faster than the speed of light in this world, then in no
physically possible world can anything travel faster than the speed
of light. The same goes for physical computability.
Of course, if we construe PCTT non-modally, or at least with

only the same modal relaxations as CTT, then we get different re-
sults. Then, Searle really does need 2PCTT. For, suppose that there
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is some physical property P which human brains need unbounded
access to in order to compute the functions underlying, say, Chinese
understanding. Suppose also that, in the limit, measuring P results
in an uncomputable series of values. Then assuming that PCTT is
true won’t permit us to conclude that in other possible worlds what
is physically computable is Turing- and effectively computable. For,
the actual world might have finite physical resources, while some pos-
sible worlds might have infinite physical resources. With deference
to Copeland, I find it most convenient to simply read PCTT in the
thoroughgoing modal nature described above. As we will see very
shortly, the matters of rigid designation and possible worlds are of
central importance to understanding the impact of hypercomputa-
tion on the philosophy of mind. After looking at another argument
involving conceivable worlds and functionalism, I will be in a po-
sition to offer a new, relaxed thesis—a generalized computational
functionalism.

3. A Second Modal Argument

In this section I examine a more recent argument that attempts
to argue that, on the basis of the purported failure of a version
of CTT, that computational functionalism is false. In their recent
book, Bringsjord and Zenzen [2003] make this claim. However, since
their goal is to convince their reader that at least part of what con-
stitutes our mental life is hypercomputation, they are sensitive to
issues of computability. Following Searle’s [1992] lead, they argue
that, given certain a priori considerations, these three propositions
are not cotenable.

1. Persons are material things, viz., their brains (or some proper
part of their nervous systems).

2. There is a conceptual or logical connection between P-
consciousness, i.e. phenomenal consciousness, as in [Block
1995], and the structure of, and information flow in, brains.
Necessarily, if a person a enjoys a stretch of P-consciousness
from ti to tk, this consciousness is identical to some computa-
tion c from ti to tk of some Turing machine or other equivalent
computational system m, instantiated by a’s brain.
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3. A person’s enjoying P-consciousness is conceptually or logically
distinct from that person’s brain being instantiated by a Turing
machine running through some computation.

With Searle [ibid.], they note that the following scenario both
seems plausible, and demonstrates that these three propositions can-
not be simultaneously held. A neuroscientist incrementally replaces
portions of my brain with little silicon-based computers designed to
mimic the information flow of brain matter perfectly. As bits of brain
matter are replaced, conscious experience disappears bit by bit, but
my outward behavior remains the same.
Bringsjord and Zenzen argue that, if this scenario seems possible

then we must reject the second proposition above, and thereby reject
computationalism. Here is their argument in a nutshell. The second
proposition tells us that in all possible worlds, having a brain with
the right Turing-computable information flow implies the possession
of particular conscious experiences. However, this is incompatible
with the third proposition above, and the plausible claim that con-
ceivability is a guide to possibility. The possible scenario described
shows the conceptual distinction between P-consciousness and in-
stantiating a Turing machine running through some computation.
What happens, however, when we remove the second clause of

the second proposition above? Suppose we simply hold that ‘there is
a conceptual or logical connection between P-consciousness and the
structure of, and information flow in, brains’. Given the truncated
version of the second proposition, it seems at first that we can employ
precisely the same scenario as before to reject the claim of necessary
identity between objects instantiating the right information flow, and
objects having P-consciousness. However, Copeland’s lesson against
the Chinese Room Argument can be recast.
For, suppose that the information flow instantiated in our brains

is not recursive. Consider an arbitrary set S that is not recursively
enumerable. Now, suppose that if computational neuroscientists
could discover the truth of the matter, they would find that a fun-
damental property of the brain is to receive summed inputs from
afferent neurons, convert that input to a real number r, and fire to
an efferent neuron if and only if the initial, non-repeating decimal
value of r is in S.
First, this is an exemplary instance of ‘structured information

flow’. Second, despite commitments we may have against PCTT,
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this is at least as plausible as any zombie scenario. Finally, notice
that we cannot even construct the zombie scenario once we admit
that this outlandish, mathematical characterization of brain activity
might be true. For, all the computers we know how to build are im-
plementations of Turing-complete architectures. In other words, any
set of natural numbers decidable by our bits of silicon are decidable
by a Turing machine. So, we can deny that the scenario involving
the surgeon and his replacement parts pick out any possible world.
Once we observe that recursion theory shows us the conceptual possi-
bility of physical structures that implement non-Turing computable
functions, both zombies and the Chinese Room fail alike as coun-
terexamples to a generalized form of computational functionalism.

4. Thought Experiments and Philosophy of Mind

Careful attention to CTT and related theses does not solve all of
the problems we might have in holding computational functionalism.
To show this, I will invoke Kripke’s arguments concerning rigid des-
ignation of natural kind terms. According to Lycan, Kripke’s com-
ments on identity, necessity, and materialism can be easily modified
to concern not the identity theorists he has in mind in his writings,
but functionalists also [Lycan 1974]. Lycan considers the now quaint
machine-state functionalism. However, let us paraphrase, with slight
alterations, his application of rigid designators to machine-state func-
tionalism, allowing that having mental states may be identical to
computing of a function that no Turing machine can compute. ‘Ac-
cording to us, my pain is identical with my functional state (of type)
Sp. “My functional state Sp” is just whatever state of me can be
construed as obeying the symbolically sensitive method that defines
Sp’ [see ibid., p. 688 for comparison]. Given the failure of machine-
state functionalism, we must offer something other than ‘state of a
Turing machine’ for defining Sp.
In a moment I will show why I think we cannot answer Lycan’s

version of Kripke’s challenge by appeal to the failure of CTT. First,
however, we will examine more closely what the above statement
of computational functionalism amounts to. I concede that Block’s
argument against the validity of any finitely bounded Turing Test
shows that we are committed to counting as important for pos-
sessing mental abilities “the character of the internal information
processing that produces [them]” [Block 1981, p. 5]. However, I
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am reluctant to use the phrase ‘algorithm’, or especially, ‘effective
method’ in defining Sp since we are discussing the possibility that
there might be other forms of information processing. So, by consid-
eration of the fact that physical computability might outrun effective
computability, we have a proposal for a modified version of compu-
tational functionalism. Sp includes any method, effective, physical,
or otherwise that biological systems have available for converting in-
puts to ouputs. I call this a ‘relaxed’ version of computational func-
tionalism because it takes its general form while permitting more
computational methods. While this view seems to deal with certain
arguments against traditional computational functionalism, we will
now see that it is not immune to others.
Recall Kripke’s famous challenge. We can conceive of worlds

in which we have pain but instantiate none of the correlates the
materialist tell us are identical to pain. Lycan shows us that the
same is true for functionalism. Since we fix the reference of pain
directly, we cannot claim that we are mistaking conceivable worlds
in which there merely appears to be pain for ones in which there
actually is pain, at least not in the usual way.
When we are told why it is that we can conceive of worlds in

which there appears to be, say, heat but not mean molecular kinetic
energy, we accept that we fix the reference of heat by something
contingently related to the heat itself—namely, by our experiences
of heat. We can’t use this strategy in the case of pain since we do fix
its reference directly. Moreover, there is no difficulty in imagining
possible worlds in which we have mental states, but there are only
disembodied souls and no machines computing any functions at all.
The move that countered the zombie and Chinese Room cases does
not work here because we begin by imagining mental phenomena,
which we can do easily, and the thought experiment does not rely on
our ability to imagine some other phenomena.
I take it that there are live, interesting projects for showing why

we are mistaken in taking these apparently conceivable worlds to be
possible. I can’t do the topic justice here, but for two examples of
an attempt to provide a non-Kripkean (i.e., disanalogous to the heat
case) solution to the problem of apparently conceivable worlds as
just described see George Bealer’s paper ‘Mental Properties’ [1994]
and the recent book Names, Necessity, and Identity by Christopher
Hughes [2004]. Because our imagination limits itself here to the
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possible existence of disembodied souls (say), we cannot block the
crucial step against a theory of mind by invoking the Church–Turing
fallacy.
However, we should be optimistic that progress has been made.

There is intuitive appeal to the idea that the possible worlds which
afford counterexamples to different conditionals must be dealt with
in different ways. The first conditional at work in the Chinese Room
Argument is that, in any possible world, if I have certain functional
properties then I have certain mental ones also. The conditional be-
ing examined now is that, in any possible world, if I have mental
properties, I have certain computational ones also. Suppose we start
with a theory according to which mental states, events, and pro-
cesses, are identical to computational ones. Then, when we conceive
of worlds with the computational phenomena but not the mental
ones, there should be something about the computational phenom-
ena we have failed to notice. Similarly, when we we are dazzled by
our apparent ability to imagine the mental phenomena but not the
functional ones, it should be the imagined properties of the mental
phenomena that reveal our error. So, I claim that the failure to
address Kripke’s problem for computational functionalism is to be
expected. Also, it is no small matter to deal directly with threat-
ening thought experiments in which there are all the computational
phenomena but none of the mental ones.
Suppose we think with Yablo that “[almost] everything in The

Conscious Mind [Chalmers 1997] turns on the single claim. The
claim is that there can be zombie worlds: worlds physically like our
own but devoid of consciousness.” [Yablo 1999, p. 455]. Then we
have ammunition against some of the most prominent, recent threats
to materialism. Note that the argument presented here against the
conceivability of zombie worlds can be applied to other cases includ-
ing dancing and inverted qualia. In responding to Yablo, Chalmers
tells us “[most commentators on his book] bite the bullet and argue
that psychophysical necessities are different in kind from the Krip-
kean examples, and not explicable by the two-dimensional [semantic]
framework.” [Chalmers 1999, p. 477]. With the line of argument
being presented, we can avoid bullet biting and take on necessary
psychophysical (token) identification directly.
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5. Do We Hypercompute?

So far, I have claimed that it is possible that people hypercom-
pute, and that this possibility is enough to defend a relaxed form
of computationalism against some familiar thought experiments. In
this section, I will insist on taking the middle ground: I don’t think
we can prove that we hypercompute. In a recent paper Bringsjord
and Arkoudas have presented an argument which they think proves
that people do hypercompute [Bringsjord and Arkoudas 2004]. In
essence, they apply Kripke’s technique for arguing against mate-
rialists in order to show that we hypercompute. Let Dxyz mean
‘Turing machine x determines whether Turing machine y halts on
input z. Let m range over Turing machines. Then, the unsolvability
of the halting problem tells us that there is a particular Turing
machine m0 such that

Proposition 1 ∀m∃i¬3Dmm0i

Let p range over people. Then, we are told, computationalism
can be construed as

Proposition 2 ∀p∃m p = m

1 and 2 together let us derive

Proposition 3 ∀p∃i¬3D pm0i

In plain language, 3 says that no matter who you are, there is a
Turing machine out there—the one the proof that shows the halting
problem is unsolvable says exists—and some input, such that we
cannot determine whether that machine halts on that input.
To complete their reductio against computationalism, Bringsjord

and Arkoudas introduce the following premise which is inconsistent
with 3:

Proposition 4 ∀p∀i3Dpm0i

3 and 4 together yield a contradiction. Since we are not prepared
to reject Turing’s proof of the unsolvability of the halting problem,
we must instead reject 2. Since people compute functions, and are
identical to no Turing machine, Bringsjord and Arkoudas conclude
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that people hypercompute. 4 says that for any person and any input,
it possible for that person to decide whether Turing machinem0 halts
on that input. They do, of course, recognize that 4 is tendentious,
and provide some arguments for it.
Two main lines of argument can be isolated. First, they claim,

mathematical practice by children, let alone experts, reveals the
method by which we hypercompute. A favorite example, given in
[Bringsjord and Zenzen 2003] as well as the paper under discussion,
is the familiar pictorial argument for lim

n→∞
1/2n = 0. According to

the authors, we can complete an infinite number of steps in a finite
amount of time to see that the equality holds—by completing such
supertasks, human beings can hypercompute. However, understand-
ing the precise relationship between the phenomenal nature of doing
mathematics and the computational resources underlying this abil-
ity is difficult to say the least. Nor does the mere fact that we use
calculus or picture proofs imply that we ever actually complete an
infinite number of mathematical steps in a proof.
The second argument for 4 runs as follows. For over 50 years,

mathematicians, including Turing and Gödel, have investigated the
properties of notional machines that solve the halting problem. Many
results concerning the structure of the arithmetical hierarchy make
extensive use of such machines: see the classic discussion in [Rogers
1967, p. 129] for an introduction. So, it seems to involve no contra-
diction to suppose that our brain mechanisms make regular queries
of the halting set just as oracle machines do.
Could this possibility be an illusion? It is far from obvious that

hypercomputation is an intrinsic property of our mental life in the
same way that pain sensations are constitutive of being in pain. As a
matter of fact, either we hypercompute or we don’t. If we do, then it
is possible that we do. But if we do not hypercompute, then despite
the imaginability of our brains behaving as though they are Turing
machines with oracles attached, we may one day discover that we do
not hypercompute.
We are in precisely the same position with respect to claims

that ‘persons possibly hypercompute’ as 15th century alchemists
were with respect to the claim that ‘heat can exist in the absence
of mean molecular kinetic energy’. Bringsjord and Arkoudas para-
phrase Chalmers [1997] and say that “when some state of affairs ψ
seems, by all accounts, to be perfectly coherent, the burden of proof
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is on those who would resist the claim that ψ is logically or mathe-
matically possible” [Bringsjord and Arkoudas, p. 183]. I have hinted
at how this burden must be borne, and now will do so explicitly.
For any Turing degree T , one can coherently hold the view that

mentation is the same as instantiating information flow which is not
above T in the Kleene hierarchy. Now, if it is constitutive of having
a human mental life to instantiate functions of a particular Turing
degree, then anyone who thinks that they can imagine a person com-
puting functions above that degree have deluded themselves. It is
true that we don’t know which Turing degree, or less, is the correct
one for fixing our mental properties. For that very reason, we may
deny that some scenarios, such as those in which we solve the halting
problem, are possible. We may grant that such scenarios hold epis-
temic possibility. We do not have recourse, as Kripke does, to the
fact that we fix the reference of mental states directly by phenomenal
feel.
In fact, first-order axiomatizations of mathematics suggest that

we have good reason for limiting the epistemic possibility of hyper-
computation. That is, if mathematicians think that, despite the
tedium involved, all mathematical results are really consequences of
the Peano, or Zermelo–Fraenkel Axioms, then I have positive rea-
sons to deny the possibility claimed by Bringsjord and Arkoudas. A
significant argument, which is not yet on offer, is that mathemat-
ics is what mathematics feels like. In short, we may question the
metaphysical possibility of hypercomputation—and reject 4—on the
basis of necessary identity and an epistemic position provided by the
philosophy of mathematics.

6. Conclusion

I have shown three things. Assume that we don’t know whether
it is constitutive of us to hypercompute. Then zombie argu-
ments fail, because we are unable to construct the relevant thought
experiments—the same goes for the Chinese Room. Second, we can-
not conclude that we do hypercompute from the mere appearance
that it seems logically possible. Finally, those who seek the philo-
sophical benefits of computationalism may find them in its relaxed
form, in which ‘information flow’, Turing computable or not, under-
lies our mental lives. Each of these conclusions has been reached by
consideration of CTT and related theses.
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It might be argued that these conclusions are merely of condi-
tional interest. If we have good reason to think that hypercomputa-
tion is not possible, and that PCTT or a modal counterpart holds,
then the conclusions I have argued for would be in vain. Deflation-
ary arguments such as offered in [Kreisel 1982] and [Davis 2005] rely
on epistemological arguments against the metaphysical possibility of
hypercomputation, and so are less than convincing. I do not have
the resources here to offer a positive argument for a model of hyper-
computation; however, I leave the reader to the other papers in this
collection that do.
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Andreas Blass, Yuri Gurevich∗

Algorithms: A Quest for Absolute

Definitions

What is an algorithm? The interest in this foundational prob-

lem is not only theoretical; applications include specification,

validation and verification of software and hardware systems.

We describe the quest to understand and define the notion of

algorithm. We start with the Church–Turing thesis and con-

trast Church’s and Turing’s approaches, and we finish with

some recent investigations.

1. Introduction

In 1936, Alonzo Church published a bold conjecture that only re-
cursive functions are computable [Church 1936]. A few months later,
independently of Church, Alan Turing published a powerful specula-
tive proof of a similar conjecture: every computable real number is
computable by the Turing machine [Turing 1937]. Kurt Gödel found
Church’s thesis “thoroughly unsatisfactory” but later was convinced
by Turing’s argument. Later yet he worried about a possible flaw in
Turing’s argument. In Section 2 we recount briefly this fascinating
story, provide references where the reader can find additional details,
and give remarks of our own.
By now, there is overwhelming experimental evidence in favor of

the Church–Turing thesis. Furthermore, it is often assumed that the
Church–Turing thesis settled the problem of what an algorithm is.
That isn’t so. The thesis clarifies the notion of computable function.
And there is more, much more to an algorithm than the function it
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computes. The thesis was a great step toward understanding algo-
rithms, but it did not solve the problem what an algorithm is.
Further progress in foundations of algorithms was achieved by

Kolmogorov and his student Uspensky in the 1950s [Kolmogorov
1953; Kolmogorov and Uspensky 1958]. The Kolmogorov machine
with its reconfigurable “tape” has a certain advantage over the Tur-
ing machine. The notion of pointer machine was an improvement
of the notion of Kolmogorov machine. These issues are discussed in
Section 3.
This paper started as a write-up of the talk that the second au-

thor gave at the Kolmogorov Centennial conference in June 2003 in
Moscow. The talk raised several related issues: physics and compu-
tation, polynomial time versions of the Turing thesis, recursion and
algorithms. These issues are very briefly discussed in Section 4.
In 1991, the second author published the definition of sequential

abstract state machines (ASMs, called evolving algebras at the time)
[Gurevich 1991]. In 2000, he published a definition of sequential
algorithms derived from first principles [Gurevich 2000]. In the same
paper he proved that every sequential algorithm A is behaviorally
equivalent to some sequential ASM B. In particular, B simulates
A step for step. In Section 5 we outline the approach of [Gurevich
2000].
In 1995, the second author published the definition of parallel and

distributed abstract state machines [Gurevich 1995]. The Founda-
tions of Software Engineering group at Microsoft Research developed
an industrial strength specification language AsmL that allows one
to write and execute parallel and distributed abstract state machines
[AsmL]. In 2001, the present authors published a definition of par-
allel algorithms derived from first principles as well as a proof that
every parallel algorithm is equivalent to a parallel ASM [Blass and
Gurevich 2003]. Section 6 is a quick discussion of parallel algorithms.
The problem of defining distributed algorithms from first princi-

ples is open. In Section 7 we discuss a few related issues.
Finally let us note that foundational studies go beyond satisfy-

ing our curiosity. Turing machines with their honest counting of
steps enabled computational complexity theory. Kolmogorov ma-
chines and pointer machines enabled better complexity measures.
Abstract state machines enable precise executable specifications of
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software systems though this story is only starting to unfold [ASM,
AsmL, Börger and Stärk 2003].
Added in proof. This paper was written in 2003. Since then the

ASM characterization has been extended to small-step interactive
algorithms. Work continues on other aspects [Gurevich 2005].

2. The Church–Turing Thesis

2.1. Church + Turing

The celebrated Church–Turing thesis [Church 1936, Turing 1937]
captured the notion of computable function. Every computable func-
tion from natural numbers to natural numbers is recursive and com-
putable, in principle, by the Turing machine. The thesis has been
richly confirmed in practice. Speaking in 1946 at the Princeton Bi-
centennial Conference, Gödel said this [Gödel 1990 (article 1946)]:

Tarski has stressed in his lecture (and I think justly) the great

importance of the concept of general recursiveness (or Tur-

ing’s computability). It seems to me that this importance is

largely due to the fact that with this concept one has for the

first time succeeded in giving an absolute definition of an in-

teresting epistemological notion, i.e., one not depending on the

formalism chosen. In all other cases treated previously, such

as demonstrability or definability, one has been able to define

them only relative to the given language, and for each indi-

vidual language it is clear that the one thus obtained is not

the one looked for. For the concept of computability, how-

ever, although it is merely a special kind of demonstrability

or decidability, the situation is different. By a kind of mira-

cle it is not necessary to distinguish orders, and the diagonal

procedure does not lead outside the defined notion.

2.2. Turing − Church

It became common to speak about the Church–Turing thesis. In
fact the contributions of Church and Turing are different, and the
difference between them is of importance to us here. Church’s thesis
was a bold hypothesis about the set of computable functions. Turing
analyzed what can happen during a computation and thus arrived
at his thesis.
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Church’s Thesis. The notion of an effectively calculable function
from natural numbers to natural numbers should be identified with
that of a recursive function.

Church [1936] had in mind total functions. Later Kleene [1938]
improved on Church’s thesis by extending it to partial functions.
The fascinating history of the thesis is recounted in [Davis 1982]; see
also [Sieg 1997].
Originally Church hypothesized that every effectively calculable

function from natural numbers to natural numbers is definable in his
lambda calculus. Gödel didn’t buy that. In 1935, Church wrote to
Kleene about his conversation with Gödel [Davis 1982, p. 9].

In discussion [sic] with him the notion of lambda-definability,

it developed that there was no good definition of effective cal-

culability. My proposal that lambda-definability be taken as

a definition of it he regarded as thoroughly unsatisfactory. I

replied that if he would propose any definition of effective cal-

culability which seemed even partially satisfactory I would un-

dertake to prove that it was included in lambda-definability.

His only idea at the time was that it might be possible, in

terms of effective calculability as an undefined notion, to state

a set of axioms which would embody the generally accepted

properties of this notion, and to do something on this basis.

Church continued:

Evidently it occurred to him later that Herbrand’s definition

of recursiveness, which has no regard to effective calculability,

could be modified in the direction of effective calculability,

and he made this proposal in his lectures. At that time he

did specifically raise the question of the connection between

recursiveness in this new sense and effective calculability, but

said he did not think that the two ideas could be satisfactorily

identified “except heuristically”.

The lectures of Gödel mentioned by Church were given at the
Institute for Advanced Study in Princeton from February through
May 1934. In a February 15, 1965, letter to Martin Davis, Gödel
wrote [Davis 1982, p. 8]:

However, I was, at the time of these lectures [1934], not at all

convinced that my concept of recursion comprises all possible

recursions.
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Soon after Gödel’s lectures, Church and Kleene proved that the
Herbrand–Gödel notion of general recursivity is equivalent to lambda
definability (as far as total functions are concerned), and Church be-
came sufficiently convinced of the correctness of his thesis to publish
it. But Gödel remained unconvinced.
Indeed, why should one believe that lambda definability captures

the notion of computability? The fact that lambda definability is
equivalent to general recursivity, and to various other formalizations
of computability that quickly followed Church’s paper, proves only
that Church’s notion of lambda definability is very robust.
To see that a mathematical definition captures the notion of

computability, one needs an analysis of the latter. This is what
Turing provided to justify his thesis.

Turing’s Thesis. Let Σ be a finite alphabet. A partial function
from strings over Σ to strings over Σ is effectively calculable if and
only if it is computable by a Turing machine.

Remark. Turing designed his machine to compute real numbers
but the version of the Turing machine that became popular works
with strings in a fixed alphabet. Hence our formulation of Turing’s
thesis.

Turing analyzed a computation performed by a human computer.
He made a number of simplifying without-loss-of-generality assump-
tions. Here are some of them. The computer writes on graph paper;
furthermore, the usual graph paper can be replaced with a tape di-
vided into squares. The computer uses only a finite number of sym-
bols, a single symbol in a square. “The behavior of the computer
at any moment is determined by the symbols which he is observing,
and his ‘state of mind’ at that moment”. There is a bound on the
number of symbols observed at any one moment. “We will also sup-
pose that the number of states of mind which need to be taken into
account is finite [...] If we admitted an infinity of states of mind,
some of them will be ‘arbitrarily close’ and will be confused”. He
ends up with a Turing machine simulating the original computation.
Essentially Turing derived his thesis from more or less obvious first
principles though he didn’t state those first principles carefully.
“It seems that only after Turing’s formulation appeared,” writes

Kleene in [1981, p. 61], “did Gödel accept Church’s thesis, which had
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then become the Church–Turing thesis.” “Turing’s arguments,” he
adds in [Kleene 1988, p. 48], “eventually persuaded him.”
Church’s lambda calculus was destined to play an important

role in programming theory. The mathematically elegant Herbrand–
Gödel–Kleene notion of partial recursive functions served as a spring-
board for many developments in recursion theory. The Turing ma-
chine gave us honest step counting and became eventually the foun-
dation of complexity theory.

2.3. Remarks on Turing’s Analysis

Very quickly the Church–Turing thesis acquired the status of a
widely shared belief. Meantime Gödel grew skeptical of at least one
aspect of Turing’s analysis. In a remark published after his death,
Gödel writes this [Gödel 1990 (article 1972a, p. 306)].

A philosophical error in Turing’s work. Turing in his [Turing

1937, p. 250], gives an argument which is supposed to show

that mental procedures cannot go beyond mechanical proce-

dures. However, this argument is inconclusive. What Turing

disregards completely is the fact that mind, in its use, is not

static, but constantly developing, i.e. that we understand ab-

stract terms more and more precisely as we go on using them,

and that more and more abstract terms enter the sphere of

our understanding. There may exist systematic methods of

actualizing this development, which could form part of the

procedure. Therefore, although at each stage the number and

precision of the abstract terms at our disposal may be finite,

both (and therefore, also Turing’s number of distinguishable

states of mind) may converge toward infinity in the course of

the application of the procedure.

Gödel was extremely careful in his published work. It is not
clear whether the remark in question was intended for publication
as is. In any case, the question whether mental procedures can go
beyond mechanical procedures is beyond the scope of this paper,
which focuses on algorithms. Furthermore, as far as we can see,
Turing did not intend to show that mental procedures cannot go
beyond mechanical procedures. The expression “state of mind” was
just a useful metaphor that could be and in fact was eliminated: “we
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avoid introducing the ‘state of mind’ by considering a more physical
and definite counterpart of it” [Turing 1937, p. 253].
But let us consider the possibility that Gödel didn’t speak about

biology either, that he continued to use Turing’s metaphor and wor-
ried that Turing’s analysis does not apply to some algorithms. Can
an algorithm learn from its own experience, become more sophisti-
cated and thus compute a real number that is not computable by
the Turing machine? Note that the learning process in question is
highly unusual because it involves no interaction with the environ-
ment. (On the other hand, it is hard to stop brains from interacting
with the environment.) Gödel gives two examples “illustrating the
situation”, both aimed at logicians.

Note that something like this indeed seems to happen in the

process of forming stronger and stronger axioms of infinity in

set theory. This process, however, today is far from being

sufficiently understood to form a well-defined procedure. It

must be admitted that the construction of a well-defined pro-

cedure which could actually be carried out (and would yield a

non-recursive number-theoretic function) would require a sub-

stantial advance in our understanding of the basic concepts

of mathematics. Another example illustrating the situation

is the process of systematically constructing, by their distin-

guished sequences αn → α, all recursive ordinals α of the sec-

ond number-class.

The logic community has not been swayed. “I think it is pie
in the sky!” wrote Kleene [1988, p. 51]. Here is a more expansive
reaction of his [Kleene 1988, p. 50].

But, as I have said, our idea of an algorithm has been such

that, in over two thousand years of examples, it has separated

cases when mathematicians have agreed that a given proce-

dure constitutes an algorithm from cases in which it does not.

Thus algorithms have been procedures that mathematicians

can describe completely to one another in advance of their

application for various choices of the arguments. How could

someone describe completely to me in a finite interview a pro-

cess for finding the values of a number-theoretic function, the

execution of which process for various arguments would be

keyed to more than the finite subset of our mental states that
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would have developed by the end of the interview, though the

total number of mental states might converge to infinity if we

were immortal? Thus Gödel’s remarks do not shake my belief

in the Church–Turing thesis [...]

If Gödel’s remarks are intended to attack the Church–Turing the-
sis, then the attack is a long shot indeed. On the other hand, we
disagree with Kleene that the notion of algorithm is that well un-
derstood. In fact the notion of algorithm is richer these days than
it was in Turing’s days. And there are algorithms, of modern and
classical varieties, not covered directly by Turing’s analysis, for ex-
ample, algorithms that interact with their environments, algorithms
whose inputs are abstract structures, and geometric or, more gener-
ally, non-discrete algorithms. We look briefly at the three examples
just mentioned.

Interactive algorithms. This is a broad class. It includes ran-
domized algorithms; you need the environment to provide random
bits. It includes asynchronous algorithms; the environment influ-
ences action timing. It includes nondeterministic algorithms as well
[Gurevich 2000 (sec. 9.1)]. Clearly, interactive algorithms are not
covered by Turing’s analysis. And indeed an interactive algorithm
can compute a non-recursive function. (The nondeterministic Turing
machines, defined in computation theory courses, are known to com-
pute only partial recursive functions. But a particular computation
of such a machine cannot in general be simulated by a deterministic
Turing machine.)

Computing with abstract structures. Consider the following
algorithm P that, given a finite connected graph G = (V, E) with
a distinguished vertex s, computes the maximum distance of any
vertex from s.

A S := {s} and r := 0.

B If S = V then halt and output r.

C If S 6= V then S := S∪{y : ∃x (x ∈ S∧E(x, y))} and r := r+1.

D Go to B.

P is a parallel algorithm. Following Turing’s analysis we have to
break the assignment S := {y : ∃x (x ∈ S∧E(x, y))} into small tasks
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of bounded complexity, e.g. by going systematically though every
x ∈ S and every neighbor y of x. But how will the algorithm go
through all x ∈ S? The graph G is not ordered. A nondeterministic
algorithm can pick an arbitrary vertex and declare it the first vertex,
pick one of the remaining vertices and declare it the second vertex,
etc. But a deterministic algorithm cannot do that.
Algorithms like P are not covered directly by Turing’s analysis.

But there is an easy patch if you don’t care about resources and use
parallelism. Let n be the number of vertices. In parallel, the desired
algorithm orders the vertices in all n! possible ways and then carries
on all n! computations.

Non-discrete computations. Turing dealt with discrete compu-
tations. His analysis does not apply directly e.g. to the classical,
geometrical ruler-and-compass algorithms. The particular case of
ruler-and-compass algorithms can be taken care of; such algorithms
do not allow you to compute a non-recursive function [Kijne 1956].
In general, however, it is not clear how to extend Turing’s analysis
to non-discrete algorithms.

3. Kolmogorov Machines and Pointer Machines

The problem of the absolute definition of algorithm was attacked
again in 1953 by Andrei N. Kolmogorov; see the one-page abstract
[Kolmogorov 1953] of his March 17, 1953, talk at the Moscow Math-
ematical Society. Kolmogorov spelled out his intuitive ideas about
algorithms. For brevity, we express them in our own words (rather
than translate literally).

• An algorithmic process splits into steps whose complexity is
bounded in advance, i.e., the bound is independent of the input
and the current state of the computation.

• Each step consists of a direct and immediate transformation of
the current state.

• This transformation applies only to the active part of the state
and does not alter the remainder of the state.

• The size of the active part is bounded in advance.
• The process runs until either the next step is impossible or a
signal says the solution has been reached.
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In addition to these intuitive ideas, Kolmogorov gave a one-
paragraph sketch of a new computation model. The ideas of
[Kolmogorov 1953] were developed in the article [Kolmogorov and
Uspensky 1958] written by Kolmogorov together with his student
Vladimir A. Uspensky. The Kolmogorov machine model can be
thought of as a generalization of the Turing machine model where
the tape is a directed graph of bounded in-degree and bounded
out-degree. The vertices of the graph correspond to Turing’s
squares; each vertex has a color chosen from a fixed finite palette
of vertex colors; one of the vertices is the current computation
center. Each edge has a color chosen from a fixed finite palette
of edge colors; distinct edges from the same node have different
colors. The program has this form: replace the vicinity U of a fixed
radius around the central node by a new vicinity W that depends
on the isomorphism type of the digraph U with the colors and
the distinguished central vertex. Contrary to Turing’s tape whose
topology is fixed, Kolmogorov’s “tape” is reconfigurable.

Remark. We took liberties in describing Kolmogorov ma-
chines. Kolmogorov and Uspensky require that the tape graph
is symmetric—for every edge (x, y) there is an edge (y, x). The
more liberal model is a bit easer to describe. And the symmetry
requirement is inessential in the following sense: any machine of
either kind can be step-for-step simulated by a machine of the other
kind.

Like Turing machines, Kolmogorov machines compute functions
from strings to strings; we skip the description of the input and out-
put conventions. In the footnote to the article title, Kolmogorov and
Uspensky write that they just wanted to analyze the existing defi-
nitions of the notions of computable functions and algorithms and
to convince themselves that there is no hidden way to extend the
notion of computable function. Indeed, Kolmogorov machines com-
pute exactly Turing computable functions. It seems, however, that
they were more ambitious. Here is a somewhat liberal translation
from [Kolmogorov and Uspensky 1958, p. 16]:

To simplify the description of algorithms, we introduced some

conventions that are not intrinsic to the general idea, but it

seems to us that the generality of the proposed definition re-
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mains plausible in spite of the conventions. It seems plausible

to us that an arbitrary algorithmic process satisfies our def-

inition of algorithms. We would like to emphasize that we

are talking not about a reduction of an arbitrary algorithm

to an algorithm in the sense of our definition but that every

algorithm essentially satisfies the proposed definition.

In this connection the second author formulated a Kolmogorov–
Uspensky thesis [Gurevich 1988, p. 227]: “every computation, per-
forming only one restricted local action at a time, can be viewed as
(not only being simulated by, but actually being) the computation of
an appropriate KU machine”. Uspensky concurred [Uspensky 1992,
p. 396].
Kolmogorov’s approach proved to be fruitful. It led to a more

realistic complexity theory. For example, given a string x, a Kol-
mogorov machine can build a binary tree over x and then move
fast about x. Leonid Levin used a universal Kolmogorov machine
to construct his algorithm for NP problems that is optimal up to a
multiplicative constant [Levin 1973; Gurevich 1988]. The up-to-a-
multiplicative-constant form is not believed to be achievable for the
multitape Turing machine model popular in theoretical computer
science. Similarly, the class of functions computable in nearly lin-
ear time n(log n)O(1) on Kolmogorov machines remains the same if
Kolmogorov machines are replaced e.g. by various random access
computers in the literature; it is not believed, however, that the
usual multitape Turing machines have the same power [Gurevich
and Shelah 1989].
Kolmogorov machines allow one to do reasonable computations

in reasonable time. This may have provoked Kolmogorov to ask
new questions. “Kolmogorov ran a complexity seminar in the 50s
or early 60s,” wrote Leonid Levin, a student of Kolmogorov, to us
[Levin 2003a]. “He asked if common tasks, like integer multiplica-
tion, require necessarily as much time as used by common algorithms,
in this case quadratic time. Unexpectedly, Karatsuba reduced the
power to log2(3) [Karatsuba and Ofman 1963].” (Readers interested
in fast integer multiplication are referred to [Knuth 1981].)
It is not clear to us how Kolmogorov thought of the tape graph.

One hypothesis is that edges reflect physical closeness. This hypothe-
sis collides with the fact that our physical space is finite-dimensional.
As one of us remarked earlier [Gurevich 2000, p. 81], “In a finite-



Algorithms: A Quest for Absolute Definitions 35

dimensional Euclidean space, the volume of a sphere of radius n is
bounded by a polynomial of n. Accordingly, one might expect a
polynomial bound on the number of vertices in any vicinity of radius
n (in the graph theoretic sense) of any state of a given KU machine,
but in fact such a vicinity may contain exponentially many vertices.”
Another hypothesis is that edges are some kind of channels. This

hypothesis too collides with the fact that our physical space is finite-
dimensional.
Probably the most natural approach would be to think of infor-

mational rather than physical edges. If vertex a contains informa-
tion about the whereabouts of b, draw an edge from a to b. It is
reasonable to assume that the amount of information stored at ev-
ery single vertex a is bounded, and so the out-degree of the tape
graph is bounded. It is also reasonable to allow more and more ver-
tices to have information about b as the computation proceeds, so
that the in-degree of the tape graph is unbounded. This brings us
to Schönhage machines. These can be seen as Kolmogorov machines
(in the version with directed edges) except that only the out-degrees
are required to be bounded. The in-degrees can depend on the input
and, even for a particular input, can grow during the computation.
“In 1970 the present author introduced a new machine model

(cf. [Schönhage 1970]) now called storage modification machine
(SMM),” writes Schönhage in [1980], “and posed the intuitive thesis
that this model possesses extreme flexibility and should therefore
serve as a basis for an adequate notion of time complexity.” In
article [Schönhage 1980], Schönhage gave “a comprehensive presen-
tation of our present knowledge of SMMs”. In particular, he proved
that SMMs are “real-time equivalent” to successor RAMs (random
access machines whose only arithmetical operation is n 7→ n + 1).
The following definitions appear in [Schönhage 1980, p. 491].

Definition. A machine M ′ is said to simulate another machine M
“in real time”, denoted M

r→M ′, if there is a constant c such that
for every input sequence x the following holds: if x causes M to
read an input symbol, or to print an output symbol, or to halt at
time steps 0 = t0 < t1 < · · · < tl, respectively, then x causes M ′

to act in the very same way with regard to those external actions
at time steps 0 = t′0 < t′1 < · · · < t′l where t′j − t′j−1 ≤ c(tj − tj−1)
for 1 ≤ j ≤ l. For machine classes M,M′ real time reducibility
M r→M′ is defined by the condition that for each M ∈ M there
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exists an M ′ ∈ M′ such that M
r→M ′. Real time equivalence

M r↔M′ meansM r→M′ andM′ r→M. ¤

Dima Grigoriev proved that Turing machines cannot simulate
Kolmogorov machines in real time [Grigoriev 1980].
Schönhage introduced a precise language for programming his

machines and complained that the Kolmogorov–Uspensky descrip-
tion of Kolmogorov machines is clumsy. For our purposes here, how-
ever, it is simplest to describe Schönhage machines as generalized
Kolmogorov machines where the in-degree of the tape graph may be
unbounded. It is still an open problem whether Schönhage machines
are real time reducible to Kolmogorov machines.
Schönhage states his thesis as follows: “M r→ SMM holds for all

atomistic machine modelsM.”
Schönhage writes that Donald E. Knuth “brought to his atten-

tion that the SMM model coincides with a special type of ‘linking
automata’ briefly explained in volume one of his book (cf. [Knuth
1968, pp. 462–463]) in 1968 already. Now he suggests calling them
‘pointer machines’ which, in fact, seems to be the adequate name for
these automata.” Note that Kolmogorov machines also modify their
storage. But the name “pointer machine” fits Knuth–Schönhage ma-
chines better than it fits Kolmogorov machines.
A successor RAM is a nice example of a pointer machine. Its tape

graph consists of natural numbers and a couple of special registers.
Each special register has only one pointer, which points to a natural
number that is intuitively the content of the register. Every natural
number n has only a pointer to n + 1, a pointer to another natural
number that is intuitively the content of register n, and a pointer to
every special register.
The notion of pointer machine seems an improvement over the

notion of Kolmogorov machine to us (and of course the notion of
Kolmogorov machine was an improvement over the notion of Turing
machine). And the notion of pointer machine proved to be useful in
the analysis of the time complexity of algorithms. In that sense it
was successful. It is less clear how much of an advance all these de-
velopments were from the point of view of absolute definitions. The
pointer machine reflected the computer architecture of real comput-
ers of the time. (The modern tendency is to make computers with
several CPUs, central processing units, that run asynchronously.)
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Remark. In an influential 1979 article, Tarjan used the term
“pointer machine” in a wider sense [Tarjan 1979]. This wider notion
of pointer machines has become better known in computer science
than the older notion.

4. Related Issues

We mention a few issues touched upon in the talk that was the
precursor of this paper. It is beyond the scope of this paper to
develop these issues in any depth.

4.1. Physics and Computations

What kind of computations can be carried out in our physical
universe? We are not talking about what functions are computable.
The question is what algorithms are physically executable. We don’t
expect a definitive answer soon, if ever. It is important, however, to
put things into perspective. Many computer science concerns are
above the level of physics. It would be great if quantum physics
allowed us to factor numbers fast, but this probably will not greatly
influence programming language theory.
Here are some interesting references.

• Robin Gandy attempted to derive Turing’s thesis from a num-
ber of “principles for mechanisms” [Gandy 1980]. Wilfried Sieg
continues this line of research [Sieg 1999].

• David Deutsch [1985] designed a universal quantum computer
that is supposed to be able to simulate the behavior of any finite
physical system. Gandy’s approach is criticized in [Deutsch,
Ekert and Lupaccini 2000, pp. 280–281]. Deutsch’s approach
and quantum computers in general are criticized in [Levin
2003b (sec. 2)].

• Charles H. Bennett and Rolf Landauer pose in [1985] impor-
tant problems related to the fundamental physical limits of
computation.

• Marian Boykan Pour–El and Ian Richards [1989] investigate
the extent to which computability is preserved by fundamental
constructions of analysis, such as those used in classical and
quantum theories of physics.
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4.2. Polynomial Time Turing’s Thesis

There are several versions of the polynomial time Turing’s thesis
discussed in theoretical computer science. For simplicity, we restrict
attention to decision problems.
To justify the interest in the class P of problems solvable in poly-

nomial time by a Turing machine, it is often declared that a problem
is feasible (=practically solvable) if and only if it is in P. Complexity
theory tells us that there are P problems unsolvable in time n1000.
A more reasonable thesis is that a “natural problem” is feasible if
and only if it is in P. At the 1991 Annual Meeting of the Association
of Symbolic Logic, Steve Cook argued in favor of that thesis, and
the second author argued against it. Some of the arguments can be
found in [Cook 1991] and [Gurevich 1993] respectively.
A related but different version of the polynomial time Turing the-

sis is that a problem is in P if it can be solved in polynomial time at
all, by any means. The presumed reason is that any polynomial time
computation can be polynomial time simulated by a Turing machine
(so that the computation time of the Turing machine is bounded by
a polynomial of the computation time of the given computing de-
vice). Indeed, most “reasonable” computation models are known to
be polytime equivalent to the Turing machine. “As to the objection
that Turing machines predated all of these models,” says Steve Cook
[2003], “I would reply that models based on RAMs are inspired by
real computers, rather than Turing machines.”
Quantum computer models can factor arbitrary integers in poly-

nomial time [Shor 1997], and it is not believed that quantum com-
puters can be polynomial time simulated by Turing machines. For
the believers in quantum computers, it is more natural to speak
about probabilistic Turing machines. We quote from [Bernstein and
Vazirani 1997].

Just as the theory of computability has its foundations in the

Church–Turing thesis, computational complexity theory rests

upon a modern strengthening of this thesis, which asserts that

any “reasonable” model of computation can be efficiently sim-

ulated on a probabilistic Turing Machine (an efficient simula-

tion is one whose running time is bounded by some polynomial

in the running time of the simulated machine). Here, we take

reasonable to mean in principle physically realizable.
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Turing’s analysis does not automatically justify any of these new
theses. (Nor does it justify, for example, the thesis that polynomial
time interactive Turing machines capture polynomial time interac-
tive algorithms.) Can any of the theses discussed above be derived
from first principles? One can analyze Turing’s original justifica-
tion of his thesis and see whether all the reductions used by Turing
are polynomial time reductions. But one has to worry also about
algorithms not covered directly by Turing’s analysis.

4.3. Recursion

According to Yiannis Moschovakis, an algorithm is a “recursor”,
a monotone operator over partial functions whose least fixed point
includes (as one component) the function that the algorithm com-
putes [Moschovakis 2001]. He proposes a particular language for
defining recursors. A definition may use various givens: functions or
recursors.
Moschovakis gives few examples and they are all small ones. The

approach does not seem to scale to algorithms interacting with an
unknown environment. A posteriori the approach applies to well un-
derstood classes of algorithms. Consider for example non-interactive
sequential or parallel abstract state machines (ASMs) discussed be-
low in Sections 5 and 6. Such an ASM has a program for doing a
single step. There is an implicit iteration loop: repeat the step un-
til, if ever, the computation terminates. Consider an operator that,
given an initial segment of a computation, augments it by another
step (unless the computation has terminated). This operator can be
seen as a recursor. Of course the recursion advocates may not like
such a recursor because they prefer stateless ways.
We are not aware of any way to derive from first principles the

thesis that algorithms are recursors.

5. Formalization of Sequential Algorithms

Is it possible to capture (=formalize) sequential algorithms on
their natural levels of abstraction? Furthermore, is there one ma-
chine model that captures all sequential algorithms on their natural
levels of abstraction? According to [Gurevich 2000], the answer to
both questions is yes. We outline the approach of [Gurevich 2000]
and put forward a slight but useful generalization.
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As a running example of a sequential algorithm, we use a
version Euc of Euclid’s algorithm that, given two natural numbers,
computes their greatest common divisor d.

1. Set a = Input1, b = Input2.

2. If a = 0 then set d = b and go to 1

else set a, b = b mod a, a respectively and go to 2.

Initially Euc waits for the user to provide natural numbers Input1
and Input2. The assignment on the last line is simultaneous. If, for
instance, a = 6 and b = 9 in the current state then a = 3 and b = 6
in the next state.

5.1. Sequential Time Postulate

A sequential algorithm can be viewed as a finite or infinite state
automaton.

Postulate (Sequential Time). A sequential algorithm A is asso-
ciated with

• a nonempty set S(A) whose members are called states of A,

• a nonempty1 subset I(A) of S(A) whose members are called
initial states of A, and

• a map τA : S(A) −→ S(A) called the one-step transformation
of A.

The postulate ignores final states [Gurevich 2000 (sec. 3.3.2)].
We are interested in runs where the steps of the algorithm are inter-
leaved with the steps of the environment. A step of the environment
consists in changing the current state of the algorithm to any other
state. In particular it can change the “final” state to a non-final
state. To make the one-step transformation total, assume that the
algorithm performs an idle step in the “final” states. Clearly Euc is
a sequential time algorithm. The environment of Euc includes the
user who provides input numbers (and is expected to take note of
the answers).

1In [Gurevich 2000], I(A) and S(A) were not required to be nonempty. But
an algorithm without an initial state couldn’t be run, so is it really an algorithm?
We therefore add “nonempty” to the postulate here.
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This sequential-time postulate allows us to define a fine notion
of behavioral equivalence.

Definition. Two sequential time algorithms are behaviorally
equivalent if they have the same states, the same initial states and
the same one-step transformation.

The behavioral equivalence is too fine for many purposes but it
is necessary for the following.

Corollary. If algorithms A and B are behaviorally equivalent then
B step-for-step simulates A in any environment.

The step-for-step character of simulation is important. Consider
a typical distributed system. The agents are sequential-time but the
system is not. The system guarantees the atomicity of any single step
of any agent but not of a sequence of agent’s steps. Let A be the
algorithm executed by one of the agents. If the simulating algorithm
B makes two steps to simulate one step of A then another agent can
sneak in between the two steps of B and spoil the simulation.

5.2. Small-Step Algorithms

An object that satisfies the sequential-time postulate doesn’t
have to be an algorithm. In addition we should require that there
is a program for the one-step transformation. This requirement is
hard to capture directly. It will follow from other requirements in
the approach of [Gurevich 2000].
Further, a sequential-time algorithm is not necessarily a sequen-

tial algorithm. For example, the algorithm P in subsection 2.3 is not
sequential. The property that distinguishes sequential algorithms
among all sequential-time algorithms is that the steps are of bounded
complexity. The algorithms analyzed by Turing [1937] were sequen-
tial:

The behavior of the computer at any moment is determined

by the symbols which he is observing and his ‘state of mind’ at

that moment. We may suppose that there is a bound B to the

number of symbols or squares which the computer can observe

at one moment. If he wishes to observe more, he must use
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successive observations. We will also suppose that the number

of states of mind which need be taken into account is finite.

The algorithms analyzed by Kolmogorov in [1953] are also se-
quential: “An algorithmic process is divided into separate steps of
limited complexity.”
These days there is a tendency to use the term “sequential al-

gorithm” in the wider sense of the contrary of the notion of a dis-
tributed algorithm. That is, “sequential” often means what we have
called “sequential-time”. So we use the term “small-step algorithm”
as a synonym for the term “sequential algorithms” in its traditional
meaning.

5.3. Abstract State Postulate

How does one capture the restriction that the steps of a small-
step algorithms are of bounded complexity? How does one measure
the complexity of a single-step computation? Actually we prefer to
think of bounded work instead of bounded complexity. The work
that a small-step algorithm performs at any single step is bounded,
and the bound depends only on the algorithm and does not depend
on input. This complexity-to-work reformulation does not make the
problem easier of course. How does one measure the work that the
algorithm does during a step? The algorithm-as-a-state-automaton
point of view is too simplistic to address the problem. We need to
know more about what the states are. Fortunately this question can
be answered.

Postulate (Abstract State).

• States of a sequential algorithm A are first-order structures.

• All states of A have the same vocabulary.

• The one-step transformation τA does not change the base set
of any state.

• S(A) and I(A) are closed under isomorphisms. Further, any
isomorphism from a state X onto a state Y is also an isomor-
phism from τA(X) onto τA(Y ).

The notion of first-order structure is well-known in mathematical
logic [Shoenfield 1967]. We use the following conventions:
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• Every vocabulary contains the following logic symbols: the
equality sign, the nullary relation symbols true and false,
and the usual Boolean connectives.

• Every vocabulary contains the nullary function symbol undef.

• Some vocabulary symbols may be marked static. The remain-
ing symbols are marked external or dynamic or both.2 All
logic symbols are static.

• In every structure, true is distinct from false and undef, the
equality sign has its standard meaning, and the Boolean con-
nectives have their standard meanings on Boolean arguments.

The symbols true and false allow us to treat relation symbols as
special function symbols. The symbol undef allows us to deal with
partial functions; recall that first-order structures have only total
functions. The static functions (that is the interpretations of the
static function symbols) do not change during the computation. The
algorithm can change only the dynamic functions. The environment
can change only the external functions.
It is easy to see that higher-order structures are also first-order

structures (though higher-order logics are richer than first-order
logic). We refer to [Gurevich 2000] for justification of the abstract-
state postulate. Let us just note that the experience of the ASM
community confirms that first-order structures suffice to describe
any static mathematical situation [ASM].
It is often said that a state is given by the values of its variables.

We take this literally. Any state of a sequential algorithm should be
uniquely determined (in the space of all states of the algorithm) by
the interpretations of the dynamic and external function symbols.
What is the vocabulary (of the states) of Euc? In addition to the

logic symbols, it contains the nullary function symbols 0, a, b,
d, Input1, Input2 and the binary function symbol mod. But what
about labels 1 and 2? Euc has an implicit program counter. We have

2This useful classification, used in [Gurevich 1991; 1995] and in ASM appli-
cations, was omitted in [Gurevich 2000] because it wasn’t necessary there. The
omission allowed the following pathology in the case when there is a finite bound
on the size of the states of A. The one-step transformation may change the values
of true and false and modify appropriately the interpretations of the equality
relation and the Boolean connectives.
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some freedom in making it explicit. One possibility is to introduce
a Boolean variable, that is a nullary relational symbol, initialize
that takes value true exactly in those states where Euc consumes
inputs. The only dynamic symbols are a, b, d, initialize, and
the only external symbols are Input1, Input2.

5.4. Bounded Exploration Postulate and the Definition of Sequential

Algorithms

Let A be an algorithm of vocabulary Υ and let X be a state of
A. A location ` of X is given by a dynamic function symbol f in Υ
of some arity j and a j-tuple ā = (a1, ..., aj) of elements of X. The
content of ` is the value f(ā).
An (atomic) update of X is given by a location ` and an element

b of X and denoted simply (`, b). It is the action of replacing the
current content a of ` with b.
By the abstract-state postulate, the one-step transformation pre-

serves the set of locations, so the state X and the state X ′ = τA(X)
have the same locations. It follows that X ′ is obtained from X by
executing the following set of updates:

∆(X) = {(`, b) : b = ContentX′(`) 6= ContentX(`)}

If A is Euc and X is the state where a = 6 and b = 9 then
∆(X) = {(a, 3), (b, 6)}. If Y is a state of A where a = b = 3 then
∆(Y ) = {(a, 0)}.
Now we are ready to formulate the final postulate. Let X, Y be

arbitrary states of the algorithm A.

Postulate (Bounded Exploration). There exists a finite set T
of terms in the vocabulary of A such that ∆(X) = ∆(Y ) whenever
every term t ∈ T has the same value in X and Y .

In the case of Euc, the term set {true, false, 0, a, b, d, b mod a,
initialize} is a bounded-exploration witness.

Definition. A sequential algorithm is an object A that satisfies the
sequential-time, abstract-state and bounded-exploration postulates.
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5.5. Sequential ASMs and the Characterization Theorem

The notion of a sequential ASM rule of a vocabulary Υ is defined
by induction. In the following definition, all function symbols
(including relation symbols) are in Υ and all terms are first-order
terms.

Definition. If f is a j-ary dynamic function symbol and t0, ..., tj
are first-order terms then the following is a rule:

f(t1, ..., tj) := t0.

Let ϕ be a Boolean-valued term, that is ϕ has the form f(t1, ..., tj)
where f is a relation symbol. If P1, P2 are rules then so is

if ϕ then P1 else P2.

If P1, P2 are rules then so is
do in-parallel

P1

P2

The semantics of rules is pretty obvious but we have to decide
what happens if the constituents of the do in-parallel rule pro-
duce contradictory updates. In that case the execution is aborted.
For a more formal definition, we refer the reader to [Gurevich 2000].
Syntactically, a sequential ASM program is just a rule; but the rule
determines only single steps of the program and is supposed to be
iterated. Every sequential ASM program P gives rise to a map
τP (X) = Y where X, Y are first-order Υ-structures.

Definition. A sequential ASM B of vocabulary Υ is given by
a sequential ASM program Π of vocabulary Υ, a nonempty set
S(B) of Υ-structures closed under isomorphisms and under the
map τΠ, a nonempty subset I(B) ⊆ S(B) that is closed under
isomorphisms, and the map τB which is the restriction of τΠ to S(B).

Now we are ready to formulate the theorem of this section.

Theorem [*] (ASM Characterization of Small-Step Algo-
rithms). For every sequential algorithm A there is a sequential
abstract state machine B behaviorally equivalent to A. In particu-
lar, B simulates A step for step.
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If A is our old friend Euc, then the program of the desired ASM
B could be this.

if initialize then

do in-parallel

a := Input1

b := Input2

initialize := false

else

if a = 0 then

do in-parallel

d := b

initialize := true

else

do in-parallel

a := b mod a

b := a

We have discussed only deterministic sequential algorithms. Non-
determinism implicitly appeals to the environment to make the
choices that cannot be algorithmically prescribed [Gurevich 2000].
Once nondeterminism is available, classical ruler-and-compass con-
structions can be regarded as nondeterministic ASMs operating on
a suitable structure of geometric objects.
A critical examination of [Gurevich 2000] is found in [Reisig

2003].

6. Formalization of Parallel Algorithms

Encouraged by the success in capturing the notion of sequential
algorithms in [Gurevich 2000], we “attacked” parallel algorithms in
[Blass and Gurevich 2003]. The attack succeeded. We gave an ax-
iomatic definition of parallel algorithms and checked that the known
(to us) parallel algorithm models satisfy the axioms. We defined
precisely a version of parallel abstract state machines, a variant of
the notion of parallel ASMs from [Gurevich 1995], and we checked
that our parallel ASMs satisfy the definitions of parallel algorithms.
And we proved the characterization theorem for parallel algorithms:
every parallel algorithm is behaviorally equivalent to a parallel ASM.
The scope of this paper does not allow us to spell out the ax-

iomatization of parallel ASMs, which is more involved than the ax-
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iomatization of sequential ASMs described in the previous section.
We just explain what kind of parallelism we have in mind, say a few
words about the axioms, say a few words about the parallel ASMs,
and formulate the characterization theorem. The interested reader
is invited to read—critically!—the paper [Blass and Gurevich 2003].
More scrutiny of that paper is highly desired.

6.1. What Parallel Algorithms?

The term “parallel algorithm” is used for a number of different
notions in the literature. We have in mind sequential-time algo-
rithms that can exhibit unbounded parallelism but only bounded
sequentiality within a single step. Bounded sequentiality means
that there is an a priori bound on the lengths of sequences of events
within any one step of the algorithm that must occur in a specified
order. To distinguish this notion of parallel algorithms, we call such
parallel algorithms wide-step. Intuitively the width is the amount
of parallelism. The “step” in “wide-step” alludes to sequential time.

Remark. Wide-step algorithms are also bounded-depth where the
depth is intuitively the amount of sequentiality in a single step; this
gives rise to a possible alternative name shallow-step algorithms for
wide-step algorithms. Note that the name “parallel” emphasizes
the potential rather than restrictions; in the same spirit, we choose
“wide-step” over “shallow-step”.

Here is an example of a wide-step algorithm that, given a directed
graph G = (V, E), marks the well-founded part of G. Initially no
vertex is marked.

1. For every vertex x do the following.

If every vertex y with an edge to x is marked

then mark x as well.

2. Repeat step 1 until no new vertices are marked.

6.2. A few Words on the Axioms for Wide-Step Algorithms

Adapt the sequential-time postulate, the definition of behavioral
equivalence and the abstract-state postulate to parallel algorithms
simply by replacing “sequential” with “parallel”. The bounded-
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exploration postulate, on the other hand, specifically describes se-
quential algorithms. The work that a parallel algorithm performs
within a single step can be unbounded. We must drop the bounded-
exploration postulate and assume, in its place, an axiom or axioms
specifically designed for parallelism.
A key observation is that a parallel computation consists of a

number of processes running (not surprisingly) in parallel. The con-
stituent processes can be parallel as well. But if we analyze the
computation far enough then we arrive at processes, which we call
proclets, that satisfy the bounded-exploration postulate. Several
postulates describe how the proclets communicate with each other
and how they produce updates. And there is a postulate requiring
some bound d (depending only on the algorithm) for the amount of
sequentiality in the program. The length of any sequence of events
that must occur in a specified order within any one step of the algo-
rithm is at most d.
There are several computation models for wide-step algorithms

in the literature. The two most known models are Boolean circuits
and PRAMs [Karp and Ramachandran 1990]. (PRAM stands for
“Parallel Random Access Machines”.) These two models and some
other models of wide-step algorithms that occurred to us or to the
referees are shown to satisfy the wide-step postulates in [Blass and
Gurevich 2003].

6.3. Wide-Step Abstract State Machines

Parallel abstract state machines were defined in [Gurevich 1995].
Various semantical issues were elaborated later in [Gurevich 1997].
A simple version of parallel ASMs was explored in [Blass, Gurevich
and Shelah 1999]; these ASMs can be called BGS ASMs. We
describe, up to an isomorphism, an arbitrary state X of a BGS
ASM. X is closed under finite sets (every finite set of elements of X
constitutes another element of X) and is equipped with the usual
set-theoretic operations. Thus X is infinite but a finite part of X
contains all the essential information. The number of atoms of X,
that is elements that are not sets, is finite, and there is a nullary
function symbol Atoms interpreted as the set of all atoms. It is easy
to write a BGS ASM program that simulates the example parallel
algorithm above.
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forall x ∈ Atoms
if {y: y ∈ Atoms: E(y,x) ∧¬ (M(y))} = ∅
then M(x) := true

Note that x and y are mathematical variables like the variables
of first-order logic. They are not programming variables and cannot
be assigned values. In comparison to the case of sequential ASMs,
there are two main new features in the syntax of BGS ASMs:

• set-comprehension terms {t(x) : x ∈ r : ϕ(x)}, and

• forall rules.

In [Blass and Gurevich 2000], we introduced the notion of a back-
ground of an ASM. BGS ASMs have a set background. The spec-
ification language AsmL, mentioned in the introduction, has a rich
background that includes a set background, a sequence background,
a map background, etc. The background that naturally arises in the
analysis of wide-step algorithms is a multiset background. That is
the background used in [Blass and Gurevich 2003].

6.4. The Wide-Step Characterization Theorem

Theorem [**] (ASM Characterization of Wide-Step Algo-
rithms). For every parallel algorithm A there is a parallel abstract
state machine B behaviorally equivalent to A. In particular, B
simulates A step for step.

Thus, Boolean circuits and PRAMs can be seen as special wide-
step ASMs (which does not make them any less valuable). The
existing quantum computer models satisfy our postulates as well
[Grädel and Nowack 2003] assuming that the environment provides
random bits when needed. The corresponding wide-step ASMs need
physical quantum-computer implementation for efficient execution.

7. Toward Formalization of Distributed Algorithms

Distributed abstract state machines were defined in [Gurevich
1995]. They are extensively used by the ASM community [ASM]
but the problem of capturing distributed algorithms is open. Here
we concentrate on one aspect of this important problem: interaction
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between a sequential-time agent and the rest of the system as seen
by the agent. One may have an impression that this aspect has
been covered because all along we studied runs where steps of the
algorithm are interleaved with steps made by the environment. But
this interleaving mode is not general enough.
If we assume that each agent’s steps are atomic, then interleaving

mode seems adequate. But a more detailed analysis reveals that even
in this case a slight modification is needed. See Subsection 7.1.
But in fact an agent’s steps need not be atomic because agents

can interact with their environments not only in the inter-step fash-
ion but also in the intra-step fashion. It is common in the AsmL
experience that, during a single step, one agent calls on other agents,
receives “callbacks”, calls again, etc. It is much harder to generalize
the two characterization theorems to intra-step interaction.

7.1. Trivial Updates in Distributed Computation

Consider a small-step abstract state machine A. In Section 5,
we restricted attention to runs where steps of A are interleaved with
steps of the environment. Now turn attention to distributed com-
puting where the agents do not necessarily take turns to compute.
Assume that A is the algorithm executed by one of the agents. Re-
call that an update of a location ` of the current state of A is the
action of replacing the current content a of ` with some content b.
Call the update trivial if a = b. In Section 5 we could ignore trivial
updates. But we have to take them into account now. A trivial
update of ` matters in a distributed situation when the location ` is
shared: typically only one agent is allowed to write into a location
at any given time, and so even a trivial update by one agent would
prevent other agents from writing to the same location at the same
time.
Recall that ∆(X) is the set of nontrivial updates computed by

the algorithm A at X during one step. Let ∆+(X) be the set of all
updates, trivial or not, computed by A at X during the one step. It
seems obvious how to generalize Section 5 in order to take care of
trivial updates: just strengthen the bounded-exploration postulate
by replacing∆ with∆+. There is, however, a little problem. Nothing
in the current definition of a small-step algorithm A guarantees that
there is a ∆+(X) map associated with it. (∆(X) is definable in
terms of X and τA(X).) That is why we started this subsection by
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assuming that A is an ASM. Euc also has a ∆+(X) map: if X is
the state where a = 6 and b = 9 then ∆+(X) = {(a, 3), (b, 6)}, and
if Y is a state of A where a = b = 3 then ∆(Y ) = {(a, 0)} and
∆+(Y ) = {(a, 0), (b, 3)}.
To generalize Section 5 in order to take into account trivial up-

dates, do the following.

• Strengthen the abstract-state postulate by assuming that there
is a mapping ∆+ associating a set of updates with every state
X of the given algorithm A in such a way that the set of non-
trivial updates in ∆+(X) is exactly ∆(X).

• Strengthen the definition of behavioral equivalence of sequen-
tial algorithms by requiring that the two algorithms produce
the same ∆+(X) at every state X.

• Strengthen the bounded exploration postulate by replacing ∆
with ∆+.

It is easy to check that Theorem [*], the small-step characteriza-
tion theorem, remains valid.

Remark. In a similar way, we refine the definition of wide-step algo-
rithms and strengthen Theorem [**], the wide-step characterization
theorem.

Remark. Another generalization of Section 5, to algorithms with
the output command, is described in [Blass and Gurevich 2003]. The
two generalizations of Section 5 are orthogonal and can be combined.
The output generalization applies to wide-step algorithms as well.

7.2. Intra-Step Interacting Algorithms

During the execution of a single step, an algorithm may call on
its environment to provide various data and services. The AsmL
experience showed the importance of intra-step communication be-
tween an algorithm and its environment. AsmL programs routinely
call on outside components to perform various jobs.
The idea of such intra-step interaction between an algorithm and

its environment is not new to the ASM literature; external functions
appear already in the tutorial [Gurevich 1991]. In simple cases, one
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can pretend that intra-step interaction reduces to inter-step inter-
action, that the environment prepares in advance the appropriate
values of the external functions. In general, even if such a reduc-
tion is possible, it requires an omniscient environment and is utterly
impractical.
The current authors are preparing a series of articles extending

Theorems [*] and [**] to intra-step interacting algorithms. In either
case, this involves

• axiomatic definitions of intra-step interacting algorithms,

• precise definitions of intra-step interacting abstract state ma-
chines,

• the appropriate extension of the notion of behavioral equiva-
lence,

• verification that the ASMs satisfy the definitions of algorithms,

• a proof that every intra-step interacting algorithm is behav-
iorally equivalent to an intra-step interacting ASM.

Acknowledgment

We thank Steve Cook, John Dawson, Martin Davis, Sol
Feferman, Leonid Levin, Victor Pambuccian and Vladimir Uspensky
for helping us with references. We thank John Dawson, Sol
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