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Preface
The monograph is devoted to spherical and plane integral operators for high-dimen
sional boundary value problems of mathematical physics. The derived integral opera
tors are used to provide equivalent integral formulations of the boundary value prob
lems. Direct and converse mean value theorems are proved for scalar elliptic equa
tions such as the Laplace, Helmholtz, and diffusion equations, parabolic equations,
high-order elliptic equations, e.g. the biharmonic and metaharmonic equations, and
systems of elliptic equations like the Lamé equation and other systems of elasticity
equations. These results are presented in the first part of the book, which includes
Chapters 1–8 and follow mainly our book Spherical Means for PDEs published in 1997
by VSP [167]. The second part, Chapters 9–13, deals with the applications of the devel
oped integral operator relations to numerics for PDEs. The integral operators defined
on disks, spheres, 2D half-planes, 3D half-spaces, and some other domains are used to
construct new numerical methods for solving relevant boundary value problems for
a wide class of domains. We consider mainly two basic approaches: the first is devel
oped for domains that can be composed as a union of overlapped disks, spheres, half-
planes andhalf-spaces. The second is similar to themethod of fundamental solutions,
but is based on a numerical inversion of the integral operators by a randomized spec
tral projection method. We also show how the integral operators can be used to solve
PDEs with random loads and stochastic boundary conditions.

The book iswritten formathematicianswhowork in the field of partial differential
and integral equations, physicists, and engineers dealing with computational meth
ods and applied probability, for students and postgraduates studying mathematical
physics and numerical mathematics.
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1 Introduction
It is well known that many boundary value problems for partial differential equations
can be reformulated in the integral form. We mention the classical example from po
tential theory where the original boundary value problems are reformulated in terms
of equivalent integral equations (on the boundary, or in the volume, as in the Green
formula, see, e.g. [33; 75; 93; 154]). The advantages of the integral formulation are well
known: the solution is obtained on the whole, the boundary conditions are automati
cally taken into account, and the questions of existence and uniqueness are resolved
on the basis of the well-developed Fredholm theory.

In this book,wedealwith integral formulation of PDEs in the formof local integral
equations whose kernels are defined on disks, spheres, planes, and other standard
domains.

Let us recall the famous mean value relation for harmonic functions. Assume for
simplicity that G is a bounded domain inRn and let S(x, r) ⊂ Ḡ be a sphere of radius r
centered at a point x. Let u(x) be a regular harmonic function in G, i.e.

Δu(x) = 0 , x ∈ G , u ∈ C2(G) . (1.1)

This means that the function u(x) satisfies the Laplace equation in G and the second
derivatives of u are continuous in G. Then for all x ∈ G and all S(x, r) ⊂ Ḡ the follow
ing spherical mean value relation is true:

u(x) = 1
ωnrn−1

∫
S(x,r)

u(y)dS(y) . (1.2)

On the right-hand side is the spherical mean of u, i.e. the integral of u over the sphere
S(x, r) with respect to the surface element measure dS(y); ωn is the surface area of a
unit sphere in Rn.

The following converse mean value relation is well known [33].

Theorem 1.1 (Weak converse mean value theorem). If a function u(x) ∈ C2(G) satis
fies the mean value relation (1.2) for all x ∈ G and for all S(x, r) ⊂ Ḡ, then u(x) is
harmonic in G.

Less known is the following remarkable converse mean value theorem.

Theorem 1.2 (The strong converse mean value theorem). Assume that the Dirichlet
problem

Δu(x) = 0 , u|Γ = φ , u ∈ C2(G)∩ C(Ḡ) , (1.3)

G bounded, has a solution for any continuous function φ. Then if a function v ∈ C(Ḡ)
satisfies the mean value relation for at least one sphere S(x, r) ⊂ Ḡ, for all x ∈ G, then
v(x) is harmonic in G.
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2 | 1 Introduction

This exciting statement can be found in the book of Courant and Hilbert [33] where
examples were given showing that all the conditions of the theorem are necessary.
However, in [33], therewas no attempt to derive an integral formulation of theDirichlet
problem from this approach.

In this book, we deal with the integral formulations of the boundary value prob
lems for various PDEs whichwe derive from the strong converse spherical mean value
relations. In Chapter 2, we give the results for simple equations such as the Laplace
equation, the diffusion and Helmholtz equations, and the heat equation. Chapter 3
includes some high-order equations (biharmonic, polyharmonic, and metaharmonic
equations), and Chapter 4 deals with some elliptic systems. Chapters 5, 6, and 7 are
devoted to the Lamé equation, pseudovibration elastic, and thermoelastic equations,
respectively.

It should be noted that different mean value relations can be derived: we can re
late the spherical means of the solution and its derivatives to the values of these func
tions at the center of the sphere. There are many relations of this kind (e.g. see [189])
and we will use some of them. However, the most interesting are the mean value rela
tions which provide equivalent integral formulations of the original differential equa
tion such as the strong converse mean value theorem described above for the Laplace
equation. Therefore, our general objective is to give equivalent integral formulations
of the corresponding PDEs.

In Chapter 8, we give some applications: these are probabilistic numerical algo
rithms for solving PDEs (the so-called Random Walk on Spheres algorithms) which
we construct on the basis of the integral formulations. The solution in such methods
is represented in the form of expectations over Markov processes generated in some
sense by the sphericalmeans. The algorithms are simple enough and provide effective
numerical solutions to the boundary value problems for complicated domains of high
dimension. In addition, the implementation of the algorithms can easily be carried
out for parallel computers.

The spherical mean value relations can also be applied to solving different prob
lems of mathematical physics, for example, getting information about eigenvalues,
constructing high-order finite difference schemes, finding asymptotics of the solu
tions, solving inverse problems of the potential theory, etc.

The probabilistic representations described in Chapter 8 assume minimum a pri
ori information about the smoothness of the solution (e.g. the integral equation equiv
alent to the Laplace equation assumes only that the solution is continuous in Ḡ). Ac
tually an approach based on spherical mean value relations enables us to construct
generalized solutions (see, e.g. [141]). Another interestingadvantageof these represen
tations is the possibility of solving numerically the exterior boundary value problems
in complicated high-dimensional domains.

It should be noted that there is not much literature concerning spherical mean
value relations for PDEs. First, there is the classical book of Courant and Hilbert [33].
In [189] (see also the references in this book) a short reviewof theworks in this fieldhas
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1 Introduction | 3

been carried out. The book [124] contains a set of mean value relations for metahar
monic equations. A series of articles by Diaz and Payne [39] deal with the mean value
relations for elasticity problems. In [97], the mean value relations for some parabolic
equations, and in [67], the mean value relations for telegraph equations were derived.
We also mention the mean value relations where the integration is taken over other
domains, for instance, ellipsoids [51].

There is also an interesting class of approximatemean value relations [58; 141; 132]
which characterize the relevant equations. Special mean value relations are used in
the Monte Carlo Random Walk on Spheres methods and can be found in the corre
sponding literature [51], [160].

In Chapters 9 and 10, we present further applications of the spherical and plane
integral operators described in Chapters 1–7. The approach presented in Chapters 9
and 10 are based on the Poisson-type integral representations for disks, spheres, half-
planes, half-spaces, and other standard domains. The original differential boundary
value problem is equivalently reformulated in the form of a system of integral equa
tions defined on the intersection surfaces of these standard domains. Then, we invert
the system of integral equations by a spectral expansion of the kernels.

In Chapter 11, we present a stochastic boundary method which can be considered
as a randomized version of the method of fundamental solutions (MFS). We suggest to
solve the large systemof linear equations for theweights in the expansionover the fun
damental solutions by a randomized singular value decomposition method we intro
duced in [178]. In addition, we also deal with solving inhomogeneous problems where
we use the integral representation through the Green integral formula. The relevant
volume integrals are calculated by a Monte Carlo integration technique which uses
the symmetry of the Green function. We also construct a stochastic boundary method
based on the spectral inversion of the Poisson formula representing the solution in
a disk. This is done for the Laplace equation, and the system of elasticity equations.
We stress that the stochastic boundary method proposed is of high generality, and it
can be applied to any bounded and unbounded domainwith any boundary condition
provided the existence and uniqueness of the solution are proven. We present a series
of numerical results that illustrate the performance of the suggested methods.

Chapter 12 deals with an elasticity problem with random loads.
In Chapter 13, we study boundary value problemswith stochastic boundary condi

tions. We construct exact proper orthogonal decomposition for some classical bound
ary value problems, for a disk, ball, half-plane, and a half-space, with a Dirichlet and
Neumann boundary conditions, where the boundary functions are white noise or ho
mogeneous (2π-periodic) random processes. In case the boundary function is a white
noise, the solutions are treated as generalized random fields with the convergence
in the proper spaces and relevant generalized treatment of boundary conditions. In
the last section of this chapter we study a response of an elastic half-space to ran
dom excitations of displacements on the boundary under the condition of no shear
ing forces. We analyze the white noise excitations and general random fluctuations of
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4 | 1 Introduction

displacements prescribed on the boundary. We consider the case of partially ordered
defects on the boundarywhose positions are governed by an exponential–cosine-type
correlation function. The analysis is based on a Poisson-type integral formula which
we derive here for the case of zero shearing forces on the boundary. We obtain exact
representations for the displacement correlation tensor and the Karhunen–Loève ex
pansion for the solution of the Lamé equation itself and analyze some features of the
correlation structure of the displacements. The Monte Carlo technique developed can
be applied to a wide class of differential equations with randomboundary conditions.

Acknowledgment
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2 Scalar second-order PDEs

2.1 Spherical mean value relations for the Laplace
equation and integral formulation of the
Dirichlet problem

We consider equations in a domain G whose boundary ∂G is denoted by Γ and the
closure by Ḡ. Note that the domainGmaybe unbounded. Throughout thewhole book,
we use the following notations (partially already introduced in the previous chapter):
– S(x, r) – a sphere of radius r centered at the point x,
– B(x, r) – a ball of radius r centered at the point x,
– Ω – the unit sphere S(0, 1),
– dΩ – the surface element of Ω,
– dS = do – the surface element of S(0, r).
– ωm – the area of the surface of the unit sphere in Rm.
– Nru(x) = 1

ωm

∫
Ω u(x + rs)dΩ(s) – the spherical mean of the function u(x).

Let us start with a simple case, the Dirichlet problem for the Laplace equation in a
domain G ⊂ Rm:

Δu(x) = 0 , x ∈ G , (2.1)
u(y) = φ(y) , y ∈ Γ . (2.2)

We seek a regular solution to (2.1) and (2.2), i.e. u ∈ C2(G)
⋂
C(Ḡ).

2.1.1 Direct spherical mean value relation

It is well known that every regular solution to (2.1) satisfies the spherical mean value
relation

u(x) = Nru(x) := 1
ωm

∫
Ω

u(x + rs) dΩ(s) (2.3)

for each x ∈ G and for all spheres S(x, r) contained in Ḡ := G
⋃
Γ. The same is true for

the volume mean value relation (it can be obtained directly from (2.3) by integrating)

u(x) = m
ωmrm

∫
B(x,r)

u(y) dy. (2.4)

Themean value relation (2.3) can bederived by differentmethods. For small r, it is pos
sible to use the method based on the power expansion of the integrand. We present
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6 | 2 Scalar second-order PDEs

this method here and we will use it later to derive the mean value relations for dif
ferent equations. The following statement is very useful, in particular, to get power
expansions of the spherical means.

WedenotebyD thedifferential operatorD =
(
−i ∂

∂xk

)
1≤k≤m andD

α = Dα1
1 · · ·Dαm

m ,
where α is the multiindex:

α = (α1, . . . , αm) , α! = α1! . . . αm! , Dk = −i ∂
∂xk

, |α| = α1 + ·· · + αm .

In [189], the following result is presented.

Lemma 2.1. Let η be a measure in Rm with a compact support and let h(y) = η̂ be the
Fourier transform of η:

h(y) = η̂ =
∫
Rm

exp{−i(y, s)}dη(s) .

Then ∫
u(x+ ry) dη(y) = {h(−rD) u} (x) (2.5)

for x, r, and u for which the left-hand side exists and the right-hand side converges.

Proof. The integral exists for sufficiently small r > 0 and as a function of r is ana
lytic; the same for the right-hand side. Thus it is sufficient to prove the statement for
sufficiently small r. The expansion of the integrand and the integration yields∫

Rm

e−i(y,s)dη(s) =
∞∑
k=0

1
k!

∫
[−i(y, s)]kdη(s)

=
∞∑
k=0

(−i)k
k!

⎧⎨⎩
∫ ∑
|α|=k

(
k
α

)
yαsαdη(s)

⎫⎬⎭
=

∞∑
k=0

(−1)k
k!

⎧⎨⎩ ∑
|α|=k

(
k
α

)
yα
∫
sαdη(s)

⎫⎬⎭
=
∑
α

1
α!
(−iy)α

{∫
sαdη(s)

}
.

Here (
k
α

)
= k!

α!(k − |α|)! .
Let

u(x + z) =
∑
α
aα(x)zα , aα(x) = 1

α!
∂|α|u(x)

∂xα11 · · · ∂xαmm
.

Then∫
u(x + rs)dη(s) =

∫ {∑
α
aα(x)r|α|sα

}
dη(s) =

∑
α
aα(x)r|α|

{∫
sαdη(s)

}
=
∑
α

1
α!
(iDα)u(x)r|α|

{∫
sαdη(s)

}
.
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2.1 Spherical mean value relations for the Laplace equation | 7

We consider the case when η is the uniform measure dΩ. To formulate the result we
define a functionWm(·) of the dimension m. Let Jν(z) be the Bessel function

Jν(z) =
∞∑
k=0

(−1)k
Γ(k + ν + 1) Γ(k + 1)

( z
2

)2k+ν
. (2.6)

Here Γ(·) is the Euler Gamma-function. Let us introduce the function

Wm(z) = Γ
(m
2

)( 2
z

)m/2−1
Jm/2−1(z) . (2.7)

Theorem 2.1. Let u(x) be a real-valued analytic function. Then

Nru(x) =
{
Wm

(
ir
√
Δ
)}

u(x) (2.8)

for x, r, and u for which the left-hand side is defined and the right-hand side exists.

Proof. We get (2.8) from (2.5) by choosing the measure η as dΩ/ωm and taking into
account that the Fourier measure of dΩ/ωm isWm(|y|i), and |D| = (−Δ)1/2.
For example, in R3

h(iy) = 1
4π

2π∫
0

dφ
π∫
0

sin(θ)dθ exp(|y| cos θ) = sh(|y|)
|y| ;

hence (2.5) has the form

Nru(x) =
{
sh
(
r
√
Δ
)

r
√
Δ

}
u(x) . (2.9)

Note that the last relation is the expansion in powers of the Laplace operator given in
[33]

u(x) = Nru(x)−
∞∑
k=1

r2k
(2k + 1)! Δ

ku(x) (2.10)

since

Wm
(
ir
√
λ
)
=

∞∑
k=0

λk r2k
2k k! m(m + 2) · · · (m + 2k − 2) .

In R2 the “spherical” (a circular) mean has the representation

1
2π

2π∫
0

u(x + reiφ)dφ =
{
J0
(
r
√−Δ

)}
u(x) =

∞∑
k=0
(k!)−2

( r
2

)2k
Δku(x) .

Here J0(|x|) is the Bessel function that is obtained as the Fourier transform of the
uniformmeasure dφ/2π.

Note that if we choose the uniform measure in the disk whose Fourier transform
is 2J1(|x|)/|x|, we get

1
π

2π∫
0

1∫
0

u(x + rteiα)tdtdα =
∞∑
k=0

1
k!(k + 1)!

( r
2

)2k
Δku(x) .
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8 | 2 Scalar second-order PDEs

This relation can be generalized by choosing a general distribution ρ on the inter
val [0, 1] which leads to

1
2π

2π∫
0

1∫
0

u(x + rteiα)dρ(t)dα =
∞∑
k=0
(k!)−2

( r
2

)2k
akΔku(x) ,

where

ak =
1∫
0

(t/2)2kdρ(t) .

Remark 2.1. Note that the power expansions were given by Pizetti [137] (see also [33]):
if a function u(x) = u(x1 , . . . , xm) belongs to C2p+2(G), G ⊂ Rm, then for all x ∈ G
and all sufficiently small r

Nru(x) =
p∑

k=0
r2kCku(x)+ Qp(r)u(x) ,

and

NBu(x) ≡ m
ωmrm

∫
B(x,r)

u(x + y)dy

=
p∑

k=0
r2kC′ku(x)+ Q′p(r)u(x) ,

where Ck and C′k are the differential operators of the form

Ck = Γ(m/2)
22kk!Γ(m/2+ k)

Δk ,

and
C′k =

m
m + 2k Ck , k ≥ 0 .

The remainders can be estimated: for instance, in 3D

Qp(r)u(x) = 1
4π(2p + 1)!

∫
B(x,r)

(r − |y|)2p+1
r|y| Δp+1u(x + y)dy ,

hence
|Qp(r)u(x)| ≤ c(p)r2p+2‖u(2p+2)‖B ,

where the norm ‖u(2p+2)‖B is defined by

‖u(2p+2)‖B =
m∑

i1 ,i2, ...,iν=1
sup

x∈B(x,r)

∣∣∣∣∣ ∂
∂xi1

∂
∂xi2

· · · ∂
∂xiν

u(x)
∣∣∣∣∣ .
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The spherical mean value relation for small radii for the harmonic functions fol
lows from the obtained expansion (2.10). Generalization for all S(x, r) ⊂ Ḡ can be
obtained by the analytical continuation or by using the Green formula. Let us illus
trate this in the caseRm, m ≥ 3. The Green formula reads

u(x) =
∫
∂G

{
E(x, y) ∂∂ν u(y)− u(y) ∂∂νE(x, y)

}
do(y)

−
∫
G

Δu(z)E(x, z)dz .

Here
E(x, y) = |x − y|2−m

(m − 2)ωm
,

ν is the outward normal vector to the boundary ∂G and

do(y) = rm−1dωm = ωmrm−1dΩ .

From this formula we immediately get the desired mean value relation, since ∂/∂ν =
∂/∂r for G = B(x, r), Δu = 0 and ∫

S(x,r)

∂
∂ν udo = 0 .

The last equality follows from the well-known Green formula∫
G

(uΔv − vΔu)dx =
∫
∂G

(
u ∂v∂ν − v ∂u∂ν

)
do ,

which is true for arbitrary functions u, v ∈ C2(G).
We would now like to answer the questions:
Does the spherical mean value relation uniquely characterize the harmonic func

tions?
Is it possible to use the spherical mean value relation (in one form or another) to

give an equivalent integral formulation of the Dirichlet problem for the Laplace equa
tion?

How do we solve numerically the integral equation generated by the relevant
spherical mean value relation?

In the next section, we shall give answers to these questions.
In [224], the following general problem was studied: does the weak spherical

mean value relation uniquely characterize the corresponding differential equation?
We now present the relevant statements.

Assume that u is a real-valued analytic function which satisfies the mean value
relation

u(x0) =
∫
u(x0 + ry)dσ(y) , (2.11)
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where σ is a measure with compact support. Then, taking in Lemma 2.1 the measure
η = σ − δx0 , δx0 being the Dirac measure concentrated at the point x0 and

h(z) =
∑
α
bαzα ,

we get ∑
α
(−1)|α|r|α|bαDαu(x) = 0 . (2.12)

From this, for sufficiently small r > 0, we get that

Qj(D)u = 0 , j = 0, 1, 2, . . . , (2.13)

where
Qj(D) =

∑
|α|=j

bαDα .

Thus the spherical mean value relation (2.11) for a real-valued analytic function holds
if and only if the function u satisfies the infinite system of differential equations (2.13).

More generally, for continuous functions, the following statement holds (see
[224]).

Theorem 2.2. A function u ∈ C(G), G bounded, satisfies the mean value relation (2.11)
for all x ∈ G and all 0 < r < d(x) if and only if the function u is a weak solution to the
system (2.13).

It is interesting to find out when the system (2.13) is equivalent to a single equation
L(D)u = 0. In this case σ is a distribution characterizing the operator L(D).

Theorem 2.3. The system (2.13) is equivalent to a single equation of the type

L(D)u = 0 ,

where L(ξ) is a homogeneous polynomial if and only if the polynomial L(ξ) is divisible
through all Qj and there is an integer k such that L = cQk, c being a constant.

Finally, the form of the characterizing distribution is given in the following statement.

Theorem 2.4. For each homogeneous polynomial L there exists a mass with a compact
support such that a function u ∈ C(G) is a weak solution to L(D)u = 0 if and only if the
spherical mean value relation (2.11) holds for all x ∈ G and all 0 < r < d(x). Each mass
of the form L(D)m (m is a distribution with a compact support and m̂(0) ≠ 0) has this
property.

In the next section, we deal with the strong converse mean value theorem which
uniquely characterizes not only the equation but also the solution of the Dirichlet
problem and provides an equivalent integral equation.
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2.1 Spherical mean value relations for the Laplace equation | 11

2.1.2 Converse mean value theorem

The mean value relation (2.3) characterizes the solutions to (2.1). We start with the
weak converse mean value theorem, whose proof is well known (e.g. see [33]).

Proposition 2.1. Suppose that a function u(·) is continuous in G and for every sphere
S(x, r) contained in G, u(·) satisfies themeanvalue relation (2.3). Then u(·) is harmonic
in G.

The proof follows from expansion (2.10).
We formulate a stronger result which presents an equivalent formulation of the

problem (2.1), (2.2).

Theorem 2.5 (Strong converse mean value theorem). Let φ(·) be a given continuous
and bounded function on Γ; if G is unbounded, we suppose

(H) the solution u(·) to the Dirichlet problem associated with φ(·) tends to 0 at infinity
for the dimensions m ≥ 3 and is bounded in the case m = 2.

Assume that G is a domain for which the problem (2.1), (2.2) has a unique solution
for any continuous and bounded function φ. Suppose that there exists a function
v ∈ C(G

⋃
Γ), v|Γ = φ, such that the mean value relation (2.3) holds at every

point x ∈ G for at least one sphere S(x, r) ⊂ G
⋃
Γ; if G is unbounded, we suppose that

v(·) tends to 0 at infinity in dimensions m ≥ 3 and is bounded when m = 2.
Then v(·) is the unique regular solution to the problem (2.1), (2.2). The same conclu

sion holds if the volume mean value relation

v(x) = m
σmrm

∫
B(x,r)

v(y) dy

holds for every point x ∈ G and at least one ball B(x, r) ⊂ G
⋃
Γ.

Proof. We use the same arguments as those given in [33], where the converse mean
value theorem for the harmonic functions for bounded domains was given.

We shall now give the proof for the volume mean value relation (the same argu
ments work in the case of the spherical mean value relation).

Let u be the solution to the Dirichlet problem and x be fixed in G. Since u satisfies
the volumemean value relation for every ball B(y, r) contained in G, we conclude that
the function u− v satisfies the volume mean value relation for B(x, r). Let F be the set
of points of G where u − v attains its maximum M: even if G is unbounded, as u − v
tends to 0 at infinity (or is bounded, in dimensions m = 2), F is a compact set; let
x0 be a point of F whose distance to Γ is minimum. If x0 were an interior point of G,
we could find a ball B(x0 , r0) ⊂ G for which the volume mean value relation holds
and then u − v would be equal to M inside B(x0, r0), which is a contradiction with
the definition of x0. Therefore, x0 belongs to Γ. We repeat the same argument for the
minimum of u − v. Since, by hypothesis, (u − v)|Γ = 0, we conclude u ≡ v in G.
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Using this converse mean value relation we can formulate an integral equation equiv
alent to the Dirichlet problem.

2.1.3 Integral equation equivalent to the Dirichlet problem

In this section, we use the strong converse mean value relation to derive an equivalent
integral equation of the second kind.

Let us denote by d(x) the distance from a point x ∈ G to the boundary Γ and let

d∗ = sup
x∈G

d(x) .

We also introduce an “ε-boundary”:

Γε = {x ∈ G : d(x) ≤ ε} .
Let

δx(y) = δ(|x − y| − d(x)) .

For simplicity, we use this notation to indicate that δx(y) is equal to 1/ωm if |x− y| =
d(x) and to 0 otherwise. We define a kernel function kε by

kε(x, y) :=
⎧⎨⎩δx(y) if x ∈ G \ Γε ,
0 if x ∈ Γε ,

(2.14)

and define the integral operator Kε by

Kεψ(x) :=
∫
G

kε(x, y)ψ(y)dy (2.15)

for each ψ(·) ∈ C(G).
We now fix the boundary function φ and suppose that the conditions of the con

verse mean value relation are satisfied. Denote by u the solution to the Dirichlet prob
lem corresponding to φ and by fε(x) the function

fε(x) =
⎧⎨⎩0 if x ∈ G \ Γε,
u(x) if x ∈ Γε.

Consider the integral equation

v(x) = Kεv(x) + fε(x) . (2.16)

Note that the mean value relation implies (2.16). Thus if we assume that u(x) is known
in Γε, (2.16) presents thedesired integral equationof the secondkind, and the converse
mean value theorem states that this equation has a unique solution which coincides
with the solution to the Dirichlet problem for the Laplace equation.

It remains to propose a method of calculation of the solution to (2.16). We show
that the conventional successive iteration method applied to (2.16) is convergent.
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2.1 Spherical mean value relations for the Laplace equation | 13

Theorem 2.6. For any ε > 0, the integral equation (2.16) has a unique solution given by
the Neumann series

v(x) = fε(x)+
∞∑
i=1

Ki
ε fε(x) (2.17)

and it coincides with the solution to (2.1) and (2.2) if the assumptions of the converse
mean value relation are satisfied.

Proof. Let ε be fixed. It is simple to show the convergence of the series

fε(x)+
N∑
i=1

Ki
ε fε(x) , (2.18)

if d∗ < ∞. It is then sufficient to prove the existence of 0 < λ < 1 such that for any
continuous and bounded function g

‖K2
εg‖L∞ < λ‖g‖L∞

(this fact also implies the uniqueness of the solution to (2.17)). Let

ν(ε) = ε2/(4d∗2) . (2.19)

For x ∈ G \ Γε we have∫
G

kε(x, y)
∫
G

kε(y, y′)dy′ dy =
∫

G\Γε
δx(y)

⎛⎜⎝∫
G

δy(y′)dy′
⎞⎟⎠ dy

=
∫

G\Γε
δx(y)dy ≤ 1− ν(ε) < 1 .

Let v(x) := fε(x)+
∑∞

i=1 Ki
ε fε(x). It is clear that v satisfies

v(x) = Kεv(x)+ fε(x) .

If x belongs to Γε, then, for any y, kε(x, y) = 0 and thus v(x) = fε(x) = u(x). On
the other hand, if x belongs to G \ Γε, then the definition of kε implies that v satisfies
the mean value relation at x with the sphere of radius d(x). We conclude by using
Theorem 2.5.

Remark 2.2. Note that the condition d∗ < ∞ is not necessary for the convergence
of the iteration method. However, it is difficult to study the convergence of the itera
tionmethod in this general case. In the last chapter, we prove the convergence for the
half-spaceR3+ and the exterior of a sphere.

In the integral equation (2.16) and in the iteration method we used the spheres
S(x, d(x)). However, the strong converse mean value relation implies that in each
step of the iteration method we can use a sphere of an arbitrary radius, say, rx, such
that S(x, rx) ⊂ Ḡ. In the last chapter, wewill see that this schemewith a special choice
of rx is reasonable when solving the Poisson equation by the RandomWalk method.
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14 | 2 Scalar second-order PDEs

2.1.4 Poisson–Jensen formula

More generally, a local integral equation can be derived if we replace the mean value
relation by the Poisson formula representing the solution at an arbitrary point x ∈
S(x0 , r) ⊂ R3:

u(x) =
∫

S(x0,r)

H(x, y)u(y) dS(y) , (2.20)

where
H(x, y) = r2 − x2

4πr|x − y|3 ,

if we suppose that this equality holds for every x0 ∈ G at least for one sphere
S(x0 , r) ⊂ Ḡ, then u(·) is the unique regular solution to the Dirichlet problem.

In 2D, there is a further generalization of formula (2.20) – the so-called Poisson–
Jensen formula [108]. Let u(z) = u(r, θ) be a univalent function harmonic in a disk
K(0, R) except for a set of singularities where u has logarithmic poles. We denote the
nonzero poles by {ζi}, i = 1, . . . , where the indexing is chosen so that |ζ1| < |ζ2| <
· · · < |ζi| < · · · . Let μj ln |z − ζj| be the principal part corresponding to ζj. It is also
convenient to introduce the principal part μ0 ln |z| corresponding to the point z = 0
taking μ0 = 0 if this point is not a logarithmic pole of u(z).

Let us consider the conform mapping of the disk |z| ≤ ρ on itself by

lζ (z) = ρ2 z − ζ
ρ2 − ζ̄ z

,

where |z| ≤ ρ < R. This transformation maps the point ζ into the center of the disk.
Since lζ (z) is an analytic function in the disk |z| < ρ2/|ζ |, having a single simple zero
point at z = ζ and |lζ (z)| = ρ at all points of the circle |z| = ρ, then the function

uζ (z) = ln
[
1
ρ
|lζ (z)|

]

is harmonic if |z| < ρ2/|ζ |, z ≠ ζ and has in this disk a logarithmic pole at the point
z = ζ with the principal part ln |z − ζ | and u = 0 on the boundary z = ρ. If one part
of the logarithmic poles of u(z), namely, the points 0, ζ1 , . . . , ζν(ρ) lies inside this disk
and the rest is outside of it then

v(z) = u(z)−
ν(ρ)∑
k=0

μkuζk(z) = u(z)−
ν(ρ)∑
k=0

μk ln
∣∣∣∣∣ρ(z − ζk)
ρ2 − ζ̄kz

∣∣∣∣∣
is harmonic in all the points of a disk whose radius is larger than ρ (the radius is equal
to the minimum of the two values: |ζν(ρ)+1| and ρ2/|ζ ν(ρ)|), while on the boundary
|z| = ρ this function coincides with u(z). Therefore, for all |z| = r < ρ we get

v(r, θ) = 1
2π

2π∫
0

v(ρ, α) r2 − ρ2
r2 + ρ2 − 2rρ cos(θ − α)

dα ;
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2.2 The diffusion and Helmholtz equations | 15

hence

u(r, θ) = 1
2π

2π∫
0

v(ρ, α) r2 − ρ2

r2 + ρ2 − 2rρ cos(θ − α)
dα

+
ν(ρ)∑
k=0

μk ln
∣∣∣∣∣ρ(z − ζk)
ρ2 − ζ̄kz

∣∣∣∣∣
(2.21)

which is known as the Poisson–Jensen formula. If the function has no logarithmic
poles, then all the values μj are zeros, and we come to the Poisson formula.

2.2 The diffusion and Helmholtz equations

The aim of this section is to treat the diffusion equation

Δu(x) − λu(x) = 0 , u|Γ = φ , (2.22)

where λ is a nonnegative constant and the Helmholtz equation

Δu(x)+ λu(x) = 0 , u|Γ = φ . (2.23)

Using the function Wm(z) introduced by (2.7) in the previous section we define a
new function

wm(r, λ) = Wm(ir
√
λ) .

Since Iν(z) = Jν(iz)/iν, we get the expansion

wm(r, λ) = Γ
(m
2

)( 2
r
√
λ

)m/2−1
Im/2−1(r

√
λ)

= Γ
(m
2

) ∞∑
k=0

λkr2k
22kk!Γ(k +m/2)

=
∞∑
k=0

λkr2k
2kk!m(m + 2) · · · (m + 2k − 2)

,

(2.24)

since
Γ
(
k + m

2

)
= Γ

(m
2

)
m(m + 2) · · · (m + 2k − 2)/2k .

2.2.1 Diffusion equation

From (2.8), we deduce the mean value relation for the solution to (2.22):

u(x) = w−1m (r, λ)Nru(x) . (2.25)
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16 | 2 Scalar second-order PDEs

We obtain this mean value relation for arbitrary S(x, r) ⊂ Ḡ using a different ap
proach.

Let
v(x, r) = Nru = 1

ωm

∫
Ω

u(x + sr)dΩ(s) .

Then the function v(x, r) satisfies the Darboux equation [33]

∂2v
∂r2

+ m − 1
r

∂v
∂r
− Δv = 0 (2.26)

with the initial conditions

v(x, 0) = u(x), ∂v
∂r
(x, 0) = 0 .

Indeed, using the Gauss theorem we get

∂v(x, r)
∂r

= 1
ωm

∫
Ω

⎛⎝ m∑
i=1

si
∂u
∂xi

⎞⎠ dΩ

= 1
ωmrm−1

∫
S(x,r)

∂u
∂ν

do = 1
ωmrm−1

∫
B(x,r)

Δudy .
(2.27)

Here ∂
∂ν
=

m∑
i=1

si
∂
∂xi

denotes the differentiation with respect to the outward normal vector to the sphere Ω
and dy is the volume element.

Differentiating once more yields the desired result

∂2v
∂r2

= −m − 1
ωmrm

∫
B(x,r)

Δudy + 1
ωmrm−1

∫
S(x,r)

Δudo = −m − 1
r

∂v
∂r
+ Δv .

The operator Δ and the spherical mean operator Nr are permutable [33]; therefore,
from (2.22), we get Δv = λv. Thus substituting Δv = λv in the Darboux equation we
find that v = Nru(x) solves the problem

∂2v
∂r2

+ m − 1
r

∂v
∂r
− λv = 0 ,

v(x, 0) = u(x) , ∂v
∂r
(x, 0) = 0 .

The solution to this problem is

v(x, r) = v(x, 0) · wm(λ, r) ,

which is the desired spherical mean value relation. In G ⊂ R3, we have from (2.9)

u(x) =
√
λr

sinh (
√
λr)

Nru(x) . (2.28)
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Note that (2.25) and (2.28) are true for complex λ such that Re
√
λr < π.

The diffusion equation is treated exactly according to the scheme described for
the Laplace equation, since the integral formulation can also be given for (2.22).

Proposition 2.2. We suppose that the Dirichlet problem for the diffusion equation has
a unique solution for any continuous function φ; if G is unbounded, we suppose (H).
Let φ(·) be a given continuous and bounded function on Γ. Assume that u ∈ C(G

⋃
Γ)

satisfies the mean value relation (2.25) for each x ∈ G at least for one sphere S(x, rx) ⊂
G and v|Γ = φ. Then u(·) solves the Dirichlet problem (2.22).

Proof. Theproof repeats the arguments used in the case of the Laplace equation, since
the strong maximum principle holds (this follows from the inequality |wm(r, λ)| ≥ 1
for nonnegative λ).

2.2.2 Helmholtz equation

If λ < 0, we come to the Helmholtz equation.
We suppose in this case that G ⊂ R3 is a bounded domain and 0 > λ > λ0(G)

where λ0(G) is the principal eigenvalue of the Laplace operator in G.
Note that

√
λ < π

d∗ ; indeed, it iswell known that ifG2 ⊂ G1, then λ0(G2) ≥ λ0(G1);
in our case, for all x ∈ G, S(x, d∗) ⊂ G, and the eigenvalue λ0(S(x, d∗)) is equal to
π2
d∗2 .

Then the solution to (2.23) can be written inR3 in the form

u(x) =
√
λr

sin (
√
λr)

Nru(x) , (2.29)

for any r such that S(x, r) is included in G.
Under these restrictions themaximumprinciple is true (see [56]) andwe conclude

that the converse spherical mean value theorem is true.
Note that for the Helmholtz equation we can derive the volume mean value rela

tion in a ball B(x, r) ⊂ Rn

u(x) = 1
Vr2n/2Γ( n2 + 1)τn/2(

√
λr)

∫
B(x,r)

u(y)dV(y) ,

where Vr = πn/2rn/Γ(n/2+ 1) is the volume of the ball B(x, r) and τα(z) = z−αJα(z).
We notice that the function τα(z) is related to the functionWα(z) by

Wα(z) = Γ(α/2)2α/2−1τα/2−1(z) .

The above volume mean value relation is obtained by integrating the spherical mean
value relation for the Helmholtz equation

u(x) = 1
Wnωn

∫
Ω

u(x + rs)dΩ .
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18 | 2 Scalar second-order PDEs

Remark 2.3. The weak spherical mean value relations characterize the high-order el
liptic equations with constant coefficients. Let us mention the following result (see,
e.g. [55] and [56]) which we briefly mentioned above.

Let μ be a nonnegative Borel measurewith total mass equal to 1, such that the support
of μ is contained in the unit sphere ofRm and not contained in any hyperplane. If u is
a continuous function on some open set G ⊂ Rm having the mean value property

u(x) =
∫
u(x + ry)μ(dy)

for every x ∈ G and every positive r < d(x), then u ∈ C∞(G) and

∑
i1+···+im=n

Ai1 ...im
∂nu

∂xi11 · · · ∂ximm
= 0, n = 1, 2, . . . ,

where the coefficients are the moments

Ai1 ...im =
∫
xi11 · · · ximm μ(dx) .

Conversely, every infinitely differentiable solution of the last system of differential
equations has the above mean-value property.

2.3 Generalized second-order elliptic equations
The expansions of the spherical mean of the type (2.10), (see also (3.10) below) sug
gest a device for defining a generalized Laplacian of nondifferentiable functions. For
example, if in

Δv(x) = f

the functions v and f are merely continuous, one can say that Δv = f in a generalized
sense if

lim
r→0

1
r2 [

Nrv − v] = f
2m

.

An analogous point of view is reported in [141] and [187].
From an expansion that we will obtain in Chapter 5 it is possible to define gener

alized solutions to the Lamé equation

μΔu(x)+ (λ + μ)grad divu(x) = f(x) ,

where x ∈ Rn, u = (u1 , . . . , un), as continuous functions satisfying the relation

lim
r→0

1
r2
[
N1
ru− u

] = f
2(λ + μ(n + 1))

. (2.30)
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Here, the averaging matrix operator N1
r is defined by(

N1
ru
)
i (x) =

1
ωn

∫
Ω

(a + bs2i )ui(x + rs) dΩ

+ b
ωn

n∑
j �=i

∫
Ω

sisjuj(x + rs) dΩ , i = 1, . . . , n ,

where a = 1− β, b = nβ, and

β = (n + 2)(λ + μ)
2(λ + μ(n + 1))

.

In [58], elliptic equations with nonconstant coefficients were considered:

Lu = 0 ,

where

L =
m∑

i,k=1
aik

∂2
∂xi∂xk

,

and the coefficients are supposed merely measurable and bounded and the matrix
a(x) = (aik(x)) is symmetric and positive definite. Fulks [58] (see also [141]) proved
that

1
ωm

∫
Ω

u(x + ra(x)1/2s)Hm−1(ds) − u(x) = r2
2m

Lu(x)+ O(r2) (2.31)

as r → 0, u being any twice continuously differentiable function. Here, a(x)1/2 denotes
the positive square root of thematrix a(x) andHm−1 the (m−1)-dimensionalmeasure.
From (2.31) it is convenient to pass to the mean over an ellipsoid. Multiplying (2.31)
by mrm−1 and integrating with respect to r, we obtain, using an obvious change of
variables in the m-fold repeated integral

1
measE(x, r)

∫
E(x,r)

u(y)dy − u(x) = r2
2(m + 2)

Lu(x) + O(r2) , (2.32)

where E(x, r) is the ellipsoid
E(x, r) = {y ∈ Rm : (a−1(x)(y − x), y − x) < r2

}
,

with the center at x and axes on the eigenvectors of the matrix a(x), while

measE(x, r) = (ωm/m)rm[det a(x)]1/2 .

Note that the boundaries ∂E(x, r) of the ellipsoidsE(x, r) are the level surfaces of the
Levi function

L(x, y) = 1
(m − 2)ωm[det a(x)]1/2

(
a−1(x)(y − x), y − x

)1−m/2 ,
the fundamental solution of the constant elliptic operator L, x fixed.

Note that the sameapproachwasused in [51]whenconstructing theRandomWalk
on ellipsoids.
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Remark 2.4. Let C = (cjk) be a symmetric n × n-matrix and r ≠ 0, and let

σr,Cx (u) =
∫
Er

u(x + y)do(y) ,

where the integration is taken over the surface of the ellipsoid

Er =
{
y :

∑
cjkyjyk = r2

}
.

It can be shown (e.g. see [73]) that if u is the solution to the following equation with
constant matrix of coefficients A = (ajk):

n∑
j,k=1

ajk
∂2u

∂xj∂xk
= 0 ,

then the ellipsoidal mean value relation

σr,Cx (u) = σr,C+tAx (u)

is true for all t.

For the Laplace equation it means that the integrals of harmonic functions over the
confocal ellipsoids do not depend on the parameter t (if the function is considered in
a domain G, then t is such that the convex hull of supp σr,C+tAx (u) lies in G).

2.4 Parabolic equations

2.4.1 Heat equation

Let Q be a domain inRn+1 whose points will be denoted by (x, t) = (x1 , x2, . . . , xn, t).
We deal in this section with the heat equation

∂u
∂t
= Δu(x, t)+ f(x, t), (x, t) ∈ Q . (2.33)

Let

Z(x, t) = θ(t)[4πt]−n/2 exp
{
|x|2
4t

}
be the fundamental solution to (2.33),where θ(t) is theHeaviside step function: θ(t) =
0 if t ≤ 0 and θ(t) = 1 if t > 0. Introduce the function

Z(α) = Z(x, t)− (4πα)−n/2 ,

depending on a positive parameter α and define a family of domains Bα(x, t):

Bα(x, t) =
{
(x′ , t′) ∈ Rn+1 : t′ < t, Z(α)(x − x′ , t − t′) > 0

}
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with the boundaries

∂Bα(x, t) =
{
(x′, t′) ∈ Rn+1 : t′ ≤ t, Z(α)(x − x′ , t − t′) = 0

}
.

We also define a family of domains B(β)α (x, t) depending on the parameter β, 0 < β ≤
α:

B(β)α (x, t) = Bα(x, t)∩Rn × (t − β, t) ,

and let
∂B(β)α (x, t) = ∂Bα(x, t)∩Rn × [t − β, t] .

We call the domain Bα(x, t) a balloid and the set ∂Bα(x, t), a spheroid of radius α
with the center at (x, t). The domains B(β)α (x, t) and ∂B(β)α (x, t) are called truncated
balloid and truncated spheroid, respectively.

We now obtain a mean value theorem where the solution of (2.33) at the point
(x, t) is expressed in terms of its values integrated over a spheroid or a truncated
spheroid with the center at (x, t). Then by averaging we derive the relations where
the solution of (2.33) at the point (x, t) is expressed in terms of its values integrated
over the spheroid and balloid with the center at (x, t).

Note that the balloid Bα(x, t) is situated between the planes t′ = t and t′ = t− α.
The intersection of Bα(x, t) and the plane t′ = t − τ (0 < τ < α) is an n-dimensional
ball B(x, R(τ)) where

R(τ) = (2τn ln(α/τ))1/2 .
Themaximumof the radius R(τ) is attained at τ = α/e; its value is Rmax = (2nα/e)1/2.
Hence,

Bα(x, t) ⊂ B(x, Rmax)× (t − α, t) , (2.34)

and
∂B(β)α (x, t) ⊂ B(x, Rmax)× (t − β, t) .

Relation (2.34) shows that the balloid Bα(x, t) tends to the point (x, t) as α → 0. There
fore, for each point (x, t) ∈ Q, there exists α such that

Bα(x, t) ⊂ Q . (2.35)

Thus let (x, t) ∈ Q, and we suppose that α is chosen so that condition (2.35) is satis
fied. Obviously,

∂
∂t′ Z

(α)(x − x′ , t − t′)+ Δx′Z(α)(x − x′ , t − t′) = 0, t < t′ , (2.36)

where Δy is the Laplace operator (differentiation with respect to the variable y). From
(2.33) and (2.36) we get

Z(α)(x − x′ , t − t′)Δx′u(x′, t′)− u(x′ , t′)Δx′Z(α)(x − x′ , t − t′)

= ∂
∂t′

{
Z(α)(x − x′ , t − t′)u(x′, t′)

}
− Z(α)(x − x′ , t − t′)f(x′ , t′) .



�

�
Karl K. Sabelfeld, Irina A. Shalimova: Spherical and Plane Integral Operators for

PDEs — 2013/9/11 — 9:13 — page 22
�

�

�

�

�

�

22 | 2 Scalar second-order PDEs

Integrating this equality in the ball B(x, R(t − t′)) we get by the Green formula∫
B(x,R(t−t′))

∂
∂t′

{
Z(α)(x − x′, t − t′)u(x′ , t′)

}
dx′

=
∫

∂B(x,R(t−t′))

{
Z(α) ∂u

∂nx′
− u(x′, t′) ∂

∂nx′
Z(α)

}
dSx′

+
∫

B(x,R(t−t′))

{
Z(α)(x − x′ , t − t′)f(x′ , t′)

}
dx′ ,

(2.37)

where Z(α) = Z(α)(x − x′ , t − t′), nx′ is the exterior normal vector at x′, and dSx′ is
the surface element of the sphere ∂B(x, R(t− t′)) at the point x′. Notice that Z(α)(x−
x′ , t− t′) = 0 for x′ ∈ ∂B(x, R(t− t′)) (by definition); hence we can change the order
of the operator ∂

∂t′ and the integral on the left-hand side of (2.37). Thus we get from
(2.37)

∂
∂t′

⎧⎪⎨⎪⎩
∫

B(x,R(t−t′))
Z(α)u(x′, t′)dx′

⎫⎪⎬⎪⎭
=

∫
∂B(x,R(t−t′))

−∂Z(α)
∂nx′

u(x′ , t′)dSx′ +
∫

B(x,R(t−t′))
Z(α)f(x′ , t′)dx′ . (2.38)

We now integrate (2.38) with respect to t′ over [t − β, t], (0 < β ≤ α):

lim
t′→t

∫
B(x,R(t−t′))

Z(α)(x − x′ , t − t′)u(x′ , t′)dx′

−
∫

B(x,R(β))

Z(α)(x − x′ , β)u(x′, t − β)dx′

=
∫

∂B(β)α (x,t)

−∂Z(α)
∂nx′

(x − x′ , t − t′)u(x′, t′)dSx′dt′

+
∫

B(β)α (x,t)

Z(α)(x − x′ , t − t′)f(x′ , t′)dx′dt′ .

(2.39)

We prove that

lim
t′→t

∫
B(x,R(t−t′))

Z(α)(x − x′, t − t′)u(x′, t′)dx′ = u(x, t) . (2.40)

Indeed, let

𝛾(ρ, τ) = (4πτ)−n/2 exp
{
− ρ2
4τ

}
− (4πα)−n/2
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and let τ = t − t′. Then∫
B(x,R(τ))

Z(α)(x − x′ , τ)u(x′, t − τ)dx′

=
R(τ)∫
0

ρn−1dρ
∫

S(0,1)

𝛾(ρ, τ)u(x+ ρω, t − τ)dΩ(ω)

=
R(τ)∫
0

ρn−1dρ
∫

S(0,1)

𝛾(ρ, τ)u(x, t− τ)dΩ(ω)

+
R(τ)∫
0

ρn−1dρ
∫

S(0,1)

𝛾(ρ, τ)[u(x+ ρω, t − τ)− u(x, t − τ)]dΩ(ω) ,

(2.41)

where dΩ(ω) is the surface element of the unit sphere S(0, 1). Now,
R(τ)∫
0

ρn−1𝛾(ρ, τ)ωndρ

=
R(τ)∫
0

2ρn−1
Γ(n/2)

{
(4τ)−n/2 exp{−ρ2/4τ} − (4α)−n/2

}
dρ

=
n
2 ln

α
τ∫

0

rn/2−1
Γ(n/2)

(
e−τ −

( τ
α

)n/2)
dr → 1

(2.42)

as τ → 0. We used here the fact that ωm = 2πn/2/Γ(n/2). Analogously, we can prove
that

R(τ)∫
0

ρn𝛾(ρ, τ)dρ → 0 (2.43)

as τ → 0.
We get from (2.41) by (2.42) and (2.43) the desired relation (2.40). Thus, from (2.39)

and in view of (2.40), we get the following mean value relation:

Theorem 2.7. If the parameters α and β, 0 < β ≤ α, are chosen so that B(β)α (x, t) ⊂ Q,
then the regular solutions to the heat equation (2.33) satisfy the relation

u(x, t) =
∫

B(x,R(β))

Z(α)(x − x′ , β)u(x′, t − β)dx′

+
∫

∂B(β)α (x,t)

(
−∂Z(α)

∂nx′

)
u(x′ , t′)dSx′dt′

+
∫

B(β)α (x,t)

Z(α)(x − x′ , t − t′)f(x′ , t′)dx′dt′ .

(2.44)
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An important particular case of (2.44) is β = α:

u(x, t) =
∫

∂Bα(x,t)

−∂Z(α)
∂nx′

(x − x′ , t − t′)u(x′, t′)dSx′dt′

+
∫

Bα(x,t)

Z(α)(x − x′ , t − t′)f(x′, t′)dx′dt′ ,

which was derived in [97]. Further mean value relations can be obtained by the inte
gration of (2.44) with respect to β over the interval [0, α]. This yields

Theorem 2.8. Under the assumptions of the previous theorem, the followingmean value
relation holds:

u(x, t) =
∫

∂Bα(x,t)

(
1− t − t′

α

)(
−∂Z(α)

∂nx′
(x − x′ , t − t′)

)
u(x′ , t′)dSx′dt′

+ 1
α

∫
Bα(x,t)

Z(α)(x − x′ , t − t′)u(x′, t′)dx′dt′ + Fα(x, t) ,
(2.45)

where

Fα(x, t) =
∫

Bα(x,t)

(
1− t − t′

α

)
Z(α)(x − x′ , t − t′)f(x′, t′)dx′dt′ . (2.46)

Here we used the relations
α∫
0

dβ
∫

B(x,R(β))

Z(α)(x − x′, β)u(x′ , t − β)dx′

=
∫

Bα(x,t)

Z(α)(x − x′ , t − t′)u(x′, t′)dx′dt′ ,

α∫
0

dβ
∫

∂B(β)α (x,t)

−∂Z(α)
∂nx′

(x − x′, t − t′)u(x′ , t′)dSx′dt′

=
∫

∂Bα(x,t)

(α − (t − t′))
(
−∂Z(α)

∂nx′

)
u(x′ , t′)dSx′dt′ ,

α∫
0

dβ
∫

B(β)α (x,t)

Z(α)(x − x′ , t − t′)f(x′ , t′)dx′dt′

=
∫

Bα(x,t)

(α − (t − t′))Z(α)(x − x′ , t − t′)f(x′, t′)dx′dt′ .


