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L’ubomı́r Baňas, Zdzisław Brzeźniak,
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Introduction

We study thermally activated magnetization dynamics of ferromagnetic nanos-
tructures. A classical microscopic description of an interacting spin system
which couples with the surrounding microscopic degrees of freedom (i.e. phonons,
conducting electrons, nuclear spins, etc.) is based on the principles of Hamil-
tonian mechanics [61, Chapter 6]. A mesoscopic description of the statistical
properties can be motivated from these equations to reduce the complexity of
the model: a general Langevin type model which describes the interaction of
atomistic ferromagnetic N -spin ensembles X ≡ (X1, . . . , XN ) : R+×Ω → (S2)N

in a heat bath is the stochastic Landau-Lifshitz-Gilbert equation (SLLG), see
[24, 62, 82, 22, 61],

∂X

∂t
= X×

(
Heff +Hthm

)
− αX×

(
X×Heff

)
. (1)

The deterministic version of this equation (i.e. Hthm ≡ 0) has been introduced
in 1935 by Landau and Lifshitz as a phenomenological equation to describe
the magnetization at positive temperatures. It was extended to the form (1)
by W.F. Brown [24] to account for thermal effects in the case of a single spin
(N = 1). Here, Heff ≡ Heff(X) = −∇E(X) denotes the effective field which
acts on spins in the ensemble and which is governed by the total energy of
the system E : (S2)N → R. This energy is the sum of the exchange energy
Eexch to describe spin-spin interactions, the anisotropy energy Eani to model
energetically favored alignment of spins with crystallographic axes with the
help of the density φ : S2 → R+

0 , and the external energy Eext to account for
applied forces hext,

E(X) =
A

2

N∑
m,l=1

J l
m〈Xl, Xm〉+ K

2

N∑
i=1

φ(Xi)−
〈〈
hext,X

〉〉
. (2)

Here
〈〈
·, ·
〉〉

denotes the scalar product in (R3)N , 〈·, ·〉 stands for the scalar
product in R3, and J = (J l

m)Nm,l=1 ∈ RN×N is some given symmetric positive
definite matrix. The dynamics of magnetic nanostructures in a heat bath may
not be described by classical thermodynamics which is used for macroscopic
systems, and where the behavior is reproducible; instead, their modelling is
based on non-equilibrium stochastic thermodynamics [102], where irreversible
heat losses between the system and the surrounding heat bath are described
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by relevant thermal fluctuations far away from the equilibrium. In the above
model (1), the stochastic field Hthm : R+ × Ω → (R3)N accounts for the inter-
action of the spin system with thermal fluctuations which allows the system
to overcome energy barriers, and to realize related relaxation dynamics. In or-
der to model non-equilibrium thermodynamics, it is customarily assumed that
Hthm ≡ (H1

thm, . . . , H
N
thm) is Gaussian noise which is uncorrelated in space and

time (t, s ≥ 0), i.e.,

E
[
H i

thm(t)
]
= 0 , E

[〈
H i

thm(t), H
j
thm(s)

〉]
= ν2 δijδ(t− s) , (3)

for all 1 ≤ i, j ≤ N . Here ν ≡ ν(τ) ∝ τ > 0 is a temperature dependent
constant to scale the intensity of thermal fluctuations relative to dissipative
effects. The intensity obeys a fluctuation-dissipation relation such that the
coupled system converges towards a thermal equilibrium which is described by
a Gibbs distribution; see Chapter 1 for further details.

A practically relevant task is to study relaxation dynamics towards thermal
equilibrium at elevated temperatures, which often goes along with a sponta-
neous magnetization reversal to migrate from a metastable magnetic state to
another one with lower energy; the quantitative behavior then depends on the
intensity ν ≡ ν(τ) > 0 in (3). Different approaches by Neel and Brown for
single spins [104] provide strong evidence that probabilities for a corresponding
thermally induced magnetization reversal to overcome an energy barrier ΔE
follow the Arrhenius law, which to leading order is proportional to

√
τe

− ΔE
kBτ .

However, the thermodynamic properties of non-uniform magnetization reversal
for general energies E from (2) are more involved, which is why less is known
about corresponding energy barriers. In this case, computational studies may
provide valuable insight in the coupling dynamics. A better understanding
of the magnetization dynamics at elevated temperatures helps to develop im-
proved nano-scale data storage devices, where too short relaxation times may
result in a loss of initially stored data: the smaller memory elements are, the
more relevant becomes thermal noise, and its ability to trigger noise-induced
magnetization reversal. Another application is heat-assisted magnetic record-
ing to alleviate magnetization reversal on hard-disks by laser pulses, and a
corresponding study of the response of spins depending on the temperature.

Chapter 1 addresses finitely many interacting spins and related long-time
dynamics, which is inspired by the early work [24] for a single ferromagnetic
spin. A question of considerable interest is whether these results also hold
for a system which consists of infinitely many spins, cf. [21], and if e.g. the
corresponding L2(O,R3)-valued noise may be correlated in space or not to
allow for thermodynamically consistent long-time dynamics. For systems which
consist of infinitely many spins occupying the ferromagnetic body O ⊂ Rn,
n ≤ 3, the following mesoscopic continuum model describes the magnetization
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process mmm : R+ ×O × Ω → S2 at elevated temperatures,

∂mmm

∂t
=mmm×

(
Heff +Hthm

)
− αmmm× (mmm×Heff) on R+ ×O × Ω

∂mmm

∂n
= 0 on R+ × ∂O × Ω (4)

mmm(0, ·) =mmm0 on O × Ω ,

where Heff(mmm) = −DE(mmm), and

E(mmm) =
A

2

∫
O
|∇mmm|2 dx+

K

2

∫
Rd

φ(mmm) dx−
∫
O
〈hext,mmm〉 dx . (5)

There is again physical evidence [37] that the related deterministic LLG model
(i.e. Hthm ≡ 0) which describes the dynamics of magnetizations m : R+×O →
S2 requires a modification at elevated temperatures: in this case, an enhanced
damping property of the spin system is observed in experiments, as well as a
non-constant (sample averaged) magnetization magnitude in both, space and
time, which may not be explained by the deterministic model. As a conse-
quence, a stochastic version of the deterministic LLG model is used to statisti-
cally describe small-scale effects which are too complex to be described in detail
by a microscopic model. From a mathematical viewpoint, problem (4)–(5) is a
stochastic nonlinear partial differential equation where the solution process is
S2-valued, see also [32]. The related deterministic LLG model has been ana-
lyzed in the literature for n = 2, 3: global weak solutions are known to exist,
and the possible formation of singularities at finite times from smooth initial
data (n ≥ 2) is motivated by the numerical studies in [17, 10]. In Chapter 2, we
evidence a regularizing effect on solutions of (4)–(5) in the case of space-time
white noise in (4) by means of computational experiments which are obtained
from a convergent space-time discretization.

Simulations to obtain relevant statistical information from (4)–(5) are in
general based on Monte-Carlo methods, and are computationally intensive.
Hence, a major goal is to derive effective macroscopic equations of motion
for averaged magnetizations which accurately account for thermal effects. A
phenomenological description for a single macro-spin m = E[mmm] which allows
for proper relaxation dynamics has been derived in [59] within a mean-field
approximation, which is based on the following consequence of equation (4),

∂m

∂t
= ΛNm+ E

[
mmm×Heff

]
− αE

[
mmm× (mmm×Heff)

]
on R+ ×O , (6)

where ΛN ≡ ΛN(τ) ∝ τ in front of the Bloch relaxation term is known as the
Neel time; see [59]. It is this term which allows for a varying length of the
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macro-spin m for different temperatures. An approximation of the nonlinear
terms in (6) which yields a closed effective equation for the macro-spin m is then
often referred to as Landau-Lifshitz-Bloch equation (LLB). It has been shown
to properly describe domain wall motion in the presence of a non-constant mag-
netization length, macroscopic magnetization magnitudes, observed enhanced
macroscopic damping, or longitudinal — next to transverse — relaxation dy-
namics at elevated temperatures.

A different approach to construct effective magnetization models which ac-
count for thermal activation is proposed in [14], where mutual orthogonality of
vectors m, m×Heff, and m× (m×Heff) is used to describe the temperature-
dependent damped gyroscopic precession by means of

∂m

∂t
= κm+m×Heff −

α̂

m
m× (m×Heff) on R+ ×O

∂m

∂n
= 0 on R+ × ∂O (7)

m(0, ·) = m0 on O .

The leading Bloch relaxation term again allows for shrinking (κ < 0), extension
(κ > 0), and conservation (κ = 0) of the magnetization length at finite temper-
atures, where the function κ is chosen to meet the following phenomenological
power-law by Landau below the Curie temperature τC ,

m̃(τ) = m̃0

(
1− τ

τC

)β
,

for some β > 0. Both models, the one which comes from a moment closure
approximation of (6), and (7) are phenomenological and lack a rigorous deriva-
tion from the mesoscopic model (4)–(5), so that it remains unclear whether
these descriptions properly describe the magnetization dynamics at elevated
temperatures which is governed by (4)–(5). A major advantage of both macro-
spin models is their capability to describe space-time multiscale magnetization,
while the spin model (4)–(5) is practically restricted to nanometer scales; a
major disadvantage, however, is that additional material functions are needed,
such as e.g. α̂ ≡ α̂(τ) in order to reliably model microscopic dissipative effects
on a macroscopic scale for temperatures τ ∈ [0, τC).

This work reports on recent developments concerning the analytical and the
numerical treatment of the SLLG equation, addressing in particular the follow-
ing questions:

(i) Finite ensembles: long-time behavior. The fluctuation-dissipation relation
from physics determines the noise in dissipative non-equilibrium systems.
For one spin and a simplified field Heff, formal arguments in [62] show that
the stationary distribution of (1) is Gibbsian. We remark that (1) is not
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a gradient system with additive noise, for which the invariant measure is
known to be of this type. In Chapter 1, we show uniqueness, and exponen-
tial ergodicity of an invariant measure of Gibbs type for (1). A structure-
preserving numerical discretization is proposed which yields S2-valued iter-
ates, inherits the Lyapunov structure, as well as the discrete ergodicity prop-
erty, and thus converges to the solution of the SLLG equation both, at finite
and infinite times. We remark that to construct a convergent discretization
is non-trivial because of the Stratonovich stochastic integral and the weak
coercivity properties of the nonlinear drift function in (1), which is why gen-
eral time-explicit integrators may even not converge at finite times [84, 62],
or may fail to be ergodic; see e.g. [91, 88, 92]. Another subject which is
addressed is the interplay of stochasticity and (R3)N -valued solutions which
approximate (S2)N by a penalization strategy: a main observation here is
that such an approximation also requires a modification of the noise term in
order to ensure a proper long-time dynamics.

(ii) Infinite ensembles: blow-up behavior and long-time dynamics at elevated
temperatures. Possible finite-time finite-energy blow-up behavior of initially
smooth solutions of the deterministic Landau-Lifshitz-Gilbert equation on
bounded domains O ⊂ R2 is motivated by computational studies in [17]. In
Chapter 2, an implementable finite element based space-time discretization
is proposed for bounded Lipschitz domains O ⊂ Rn (n ≤ 3), where iterates
construct a weak martingale solution of the SLLG equation (4)–(5) for van-
ishing discretization parameters. This discretization is structure-preserving,
i.e. solutions satisfy a (pointwise) sphere-property, as well as an energy es-
timate. Computational studies motivate possible pathwise blow-up of so-
lutions, but a smooth evolution of related expectations in the presence of
space-time white noise.

(iii)Effective macro-spin magnetization dynamics in a heat bath. A challeng-
ing goal is to derive macroscopic equations to properly describe macro-spin
magnetization dynamics for a broad range of temperatures. Macro-spin
magnetizations m = E[mmm] are first moments of solutions of the infinite-
dimensional SLLG equation (4)–(5), which in the case of the single spin
model is approximated in [59] by the solution of the phenomenological LLB
model. An independent, simple description of magnetization dynamics leads
to (7), where changes of the magnetizations are described in terms of the
current magnetization, the torque, and the damping term, together with
the Landau power law to account for temperature effects on the saturation
magnetization. Comparative computational studies for both, the stochas-
tic mesoscopic system (4)–(5), and the macroscopic model (7) are provided,
which motivate increased dissipativity for system (7) at elevated tempera-
tures.
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The main goal in this work is to use constructive methods to verify mathemat-
ical results — for instance, to construct an invariant measure in part (i) by
a structure-preserving time discretization, and a weak martingale solution in
(ii) by finite element based space-time discretizations. This approach then pro-
vides a theoretical foundation for computational simulations with such schemes
to study phenomena which so far lack a rigorous analytical understanding —
such as e.g. the (long-time) dynamics of the stochastic partial differential equa-
tion (4)–(5) with space-time white noise. The following three chapters address
items (i) to (iii). Chapters 1 and 2 each start with a preliminary section which
provides relevant background material. Numerical schemes are proposed in the
main parts of the different chapters in order to construct strong SDE-solutions
and corresponding invariant measures (Chapter 1), a weak martingale solution
for the SPDE (4)–(5) (Chapter 2), and a weak resp. strong solution of (7)
(Chapter 3). These schemes are implemented, and corresponding simulations
are discussed in each chapter to complement our theoretical results.

Most of the work was done when the third author (M. N.) was affiliated
with the Universität Tübingen and supported by the DFG-project: ‘Long-time
dynamics of the Landau-Lifshitz-Gilbert equation’ (2011–2013); partial support
by the ARC Discovery grant DP120101886 is also gratefully acknowledged.
Chapters 1 resp. 2 base on ideas from [95] resp. [12], which are considerably
extended here. The analysis of the model in Chapter 3 uses concepts from [14].



Chapter 1

The role of noise in finite ensembles of
nanomagnetic particles

We study the effect of noise on a ferromagnetic chain consisting of N spins,
where the magnetization process X : R+ × Ω → (S2)N evolves according to

∂X

∂t
= X×

(
Heff +Hthm

)
− αX×

(
X×Heff

)
. (1.1)

Thermal fluctuations are usually taken into account by augmenting the effective
field Heff ≡ Heff(X) = −∇E(X) (see (2)) in the Landau-Lifshitz-Gilbert equa-
tion with an isotropic Gaussian white noise field to represent different processes
involving magnon, phonon and electron interactions; cf. (1)–(3). This model has
been suggested by Brown [24] to study transition states for thermally activated
magnetization reversal of a single spin. Empirical studies indicate a different
magnetization dynamics at elevated temperatures, such as enhanced damping,
increased relaxation rates, and a shrinking saturation magnetization for increas-
ing temperatures [38, 62]. However, starting with [24], most works study only
a single spin and the anisotropic energy E = Eani in (2), see e.g. [82, 62], and
the references therein. In particular, it has been shown formally in [62] that
the Gibbs distribution (with N = 1)

μ[dx] =
e−

2α
ν2

E(x)dx∫
(S2)N

e−
2α
ν2

E(x) dx
(1.2)

is the stationary distribution of the stochastic Landau-Lifschitz-Gilbert equa-
tion (SLLG) (1.1). Here Hthm = ν Ẇ, where W denotes an (R3)N -valued
Wiener process, and the Stratonovich form of the stochastic integrals is used
in (1.1). On the other hand, according to statistical mechanics, a system in
thermal equilibrium is described by the Maxwell-Boltzmann statistics, and con-
sequently the stationary distribution has the form

e
− 1

kBτ
E(x)dx∫

(S2)N
e
− 1

kBτ
E(y) dy

,

where kB is the Boltzmann constant, and τ ≥ 0 denotes the temperature of the
system. Thus we can deduce the following fluctuation–dissipation relation

2α

ν2
=

1

kBτ
, (1.3)
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which determines the constant ν > 0 in terms of the temperature in (3). We
recall that the basis of this relation to hold is a separation of time scales, where
the relaxation time of the heat bath is assumed to be much faster than that of
the spin system.

Next to thermodynamically consistent equilibria, a physically relevant quan-
tity in the modelling of non-uniform magnetization reversal is the relaxation
time, which is the characteristic time for the N -spin system to reach an equi-
librium. In Theorem 1.7, we state exponentially fast relaxation of (1.1) to its
unique equilibrium for finite ensembles of nanomagnetic particles, i.e. we prove
ergodicity of the Gibbs distribution (1.2), with exponential rate of convergence
ρ > 0. For simplicity, we consider only the exchange energy Eexch, but the
other two energies Eani, Eext may easily be added and do not alter the result;
cf. Remark 1.26 for the general case. The rate ρ is related to the Néel-Brown
relaxation time τNB = 1

ρ of the system, which is the subject of a vast number
of physical papers, see e.g. [1, 24, 42], and others.

The technical difficulty of the result stems from the fact that the noise is de-
generate if we consider the evolution of the system in (R3)N . Consequently, we
need to incorporate the ‘sphere-property’ of each single spin into the configu-
ration space of the system, and hence study the evolution of the system on the
compact Riemannian manifold (S2)N . Another difficulty, when compared to
results in [88], lies in the fact that the noise is multiplicative and, consequently,
control-type arguments as in [88, Lemma 3.4] to establish the irreducibility of
the system are not applicable. Indeed, it is well–known that in general the
solution of a SDE is not a continuous function of the driving process in the
topology of the space of continuous functions. To circumvent these issues, we
apply instead the Girsanov theorem to find a proper representation of transi-
tion semigroups, which allows to conclude its irreducibility by the one of the
corresponding Wiener process. Furthermore, we show that the energy E is a
Lyapunov function of (1.1), and that the transition semigroup satisfies certain
regularity properties. The Lyapunov property also proves to be important in
Chapter 2 about the corresponding stochastic PDE (4): it appears as an energy
inequality in the infinite dimensional situation and allows to show convergence
of the numerical scheme which is discussed in this chapter.

The result in Theorem 1.7 does not provide a precise rate of convergence
towards the equilibrium, which motivates Theorem 1.8 where we show that the
exponential rate of convergence in the weaker L2

(
(S2)N ;μ

)
-topology is esti-

mated from below by

β = ν2Nκe
− 2 osc(E)

kBτ , (1.4)

where N is the number of spins, κ is the spectral gap of the Laplace-Beltrami
operator on the sphere S2, and osc(E) = sup E − inf E . Notice that β is an
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increasing function of the temperature τ , and hence a decreasing function with
respect to the damping parameter α by (1.3), which contradicts the intuition
that the more damping we put on the system the faster becomes the conver-
gence to equilibrium (see Figure 1.1 for numerical simulations of the rate of
convergence).

We develop several strategies to approximate problem (1.1). We start in
Subsection 1.2.4 with an ‘outer approximation’ in (R3)N with the help of the
Ginzburg-Landau penalization term. This approach is motivated by numer-
ical demands where the restriction to schemes with sphere-valued solutions
requires to construct non-standard discretizations, and rules out many well-
known (high-order) discretizations; another motivation is to study the impact
of stochastic forcing onto approximately sphere-valued solutions, including the
asymptotic regime t → ∞. A main observation is that a relaxation of the sphere
property of solutions has to go together with a modification of the noise in or-
der to ensure proper (approximate) long-time dynamics. For this purpose, we
compare two approximate problems (cases δ = 0 and δ > 0 in system (1.55)).
In the first one the noise of the penalized system is the same as for the lim-
iting system. The second one has an additional additive noise. Our results
show that the system (1.55) with conservative noise (δ = 0) behaves better
on the finite time interval. The problem inherits a natural energy inequality
(Proposition 1.37), the solution stays in the unit ball, and converges on each
finite time interval to the solution of the non-penalized system if initial data are
sphere-valued (Theorem 1.10). The system allows for several natural choices
of a configuration space but, as discussed in the Remark 1.33, neither of them
justifies the strong irreducibility property; thus, ergodicity of the system is not
clear. The modification of the noise (case δ > 0) improves control over the
long-time dynamics of the system (1.55): we are then able to show the geo-
metric ergodicity of the system, i.e. the system exponentially converges to the
unique invariant measure (Theorem 1.9). Furthermore, if the additive noise is
sufficiently small, the solution converges to the solution of the non-penalized
system (Corollary 1.39). Thus, we see that the behavior of the system is very
sensitive with respect to the type of the used noise, and convergence to the
limiting system for finite times is guaranteed only for sufficiently small δ > 0.
These issues motivate a second approximation strategy, which uses discretiza-
tion in time of the system (1.1) where the geometric constraint is preserved at
each step of the simulation. In Section 1.3, we present two numerical schemes
to simulate system (1.1); as it is well-known, naive time discretizations of SDEs
may easily loose not only the geometric rate of convergence, but overall asymp-
totic convergence properties; see Subsection 1.4.2 for computational evidence.
The first scheme (Scheme 1.11) is nonlinear implicit and yields an (S2)N -valued
discrete Markov chain, which inherits the Lyapunov function property from the
limiting system. As a consequence, we may show geometric exponential ergod-
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icity of the system with the same method which is used to verify Theorem 1.7.
Furthermore, we show local in time strong rates of convergence towards the
continuous process for corresponding iterates. This result, together with the
geometric ergodicity property for the limiting equation (1.1) from Theorem 1.7
implies convergence of invariant measures from the numerical scheme to the
Gibbs measure (1.2), as a consequence of the general results of Shardlow &
Stuart in [101]. The second scheme (Scheme 1.16) is linear implicit, and hence
computationally more efficient. Iterates of this discrete Markov chain are again
(S2)N -valued, but the discrete Lyapunov condition is not available any more.
As a consequence, tools for the first scheme do not apply to verify geometric
ergodicity. However, we are able to show convergence of invariant measures
to the unique time-asymptotic Gibbs distribution (1.2) of (1.1) for a vanish-
ing discretization parameter by the perturbation result of Shardlow & Stuart
in [101]. We also show an optimal rate of weak convergence for finite times.
These results are complemented by computational studies in Section 1.4, where
evidence is provided that numerical schemes may fail to approximate proper
long-time dynamics if the sphere-property of iterates is not accounted for; an-
other series of experiments studies the effect of penalization. Furthermore,
computational studies with different projection methods are reported which
are related to penalization concepts, and are often used to solve the related
deterministic problem (LLG).

The chapter is organized as follows: in Section 1.1, we collect background
material on ergodic properties of Markov chains, which is used in Section 1.2
to verify exponential ergodicity of the invariant Gibbs measure (1.2) for (1.1).
Time discretization schemes, and penalization methods to approximate (1.1)
are studied in Section 1.3. Computational studies are reported in Section 1.4.

0 1 2 3 4 5 6
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time
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Figure 1.1. Scheme 1.11: Speed of convergence to the stationary distribution of (1)
for different values of the parameter α ∈ {0, 0.5, 2, 5}.
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1.1 Preliminaries

We collect some results on geometric ergodicity of Markov chains in Subsec-
tion 1.1.1. In Subsection 1.1.2 we recall strategies to conclude ergodicity with
rates for solutions of SDEs. Subsection 1.1.3 surveys different convergent dis-
cretizations of the deterministic LLG equation.

1.1.1 Geometric ergodicity of Markov chains

Here we recall the Meyn-Tweedie theory [89]. We follow the presentation from
[88].

Let X ⊂ Rd be a smooth Riemannian manifold, and T be either R+ or Z+.
Let X := {X(t); t ∈ T} be a Markov process (or a Markov chain) on a state
space

(
X,B(X)

)
, where B(X) is the σ-field of Borel subsets of X. Let

P (t,x,A ) := P
[
{X(t) ∈ A ; X(0) = x}

]
∀ t ∈ T ∀x ∈ X ∀A ∈ B(X)

be the transition kernel of the process X. Let Bb(X) denote the set of Borel
measurable bounded real-valued functions. Define the semigroup Pt : Bb(X) →
Bb(X) for t ∈ T, which is associated with the process X by its values on the
indicator function of Borel subsets of X:

Pt�A (x) := P (t,x,A ) ∀ t ∈ T ∀x ∈ X ∀A ∈ B(X) .

If T := R+ then we denote by L the infinitesimal generator of the semigroup
{Pt; t ∈ T}. Let Bδ(x) ⊂ Rd denote a closed ball around x of radius δ > 0.

Definition 1.1. A Markov process (or chain) X with transition probability
P (t, ·, ·) is weakly irreducible iff there exists a compact set C ⊂ X with non-
empty interior such that for some y∗ ∈ Int(C ), for any δ > 0, there exists
t ≡ t(δ,y∗) ∈ T such that P

(
t,x, Bδ(y

∗)
)
> 0 for all x ∈ C . A Markov process

(or chain) X with transition probability P (t, ·, ·) is strongly irreducible iff for
any y ∈ X, t > 0 and any open set A ⊂ B(X) we have P (t,y,A ) > 0.

Definition 1.2. A Markov process (or chain) X with transition probability
P (t, ·, ·) is regular iff the transition kernel has a nonnegative density

{
p(t,x,y);

t ∈ T, x,y ∈ X
}
, such that

P (t,x,A ) =

∫
A

p(t,x,y) dy ∀ t ∈ T ∀x ∈ X ∀A ∈ B(X) ,

where p(t, ·, ·) ∈ C(X2) for any t ∈ T.
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Definition 1.3. A Markov process (or chain) X satisfies the minorization con-
dition iff there exist s ∈ T, an η > 0, a compact set C ⊂ X, and a probability
measure ν on

(
C ,B(C )

)
such that

P (s,x,A ) ≥ η ν[A ] ∀A ∈ B(C ) ∀x ∈ C .

Lemma 1.4. If a Markov process X is weakly irreducible and regular then it
satisfies the minorization condition.

Proof. Step 1. Local discussion. By the irreducibility assumption, there exist
a compact set C ⊂ X, and y∗ ∈ Int(C ) such that for any δ > 0 there exists a
time t = t(δ) > 0 such that P

(
t,y∗, Bδ(y

∗)
)
> 0. Then we can find a possibly

smaller neighborhood Bδ1(y
∗) ⊂ C , and t1 > 0 such that P

(
t1,y

∗, Bδ1(y
∗)
)
>

0. Indeed, since y∗ is in the interior of C , there exists a γ > 0 such that
Bγ(y

∗) ⊂ C and we may take δ1 := γ
2 and t1 := t(γ2 ). The existence of a

density implies that there exists z∗ ∈ Bδ1(y
∗) ⊂ C , and some ε > 0 such that

p(t1,y
∗, z∗) ≥ 2ε > 0 .

By the regularity assumption, there exist neighborhoods Br(y
∗), Br(z

∗) ⊂ C
such that

p(t1,y, z) ≥ ε ∀y ∈ Br(y
∗) ∀ z ∈ Br(z

∗) .

Hence we have that

P (t1,y,A ) =

∫
A

p(t1,y, z) dz ≥
∫

A ∩Br(z∗)

p(t1,y, z) dz (1.5)

≥ εLeb
[
A ∩Br(z

∗)
]

∀y ∈ Br(y
∗) ∀A ∈ B(X) ,

where Leb : B(X) → R+ is the Riemannian volume measure on X.

Step 2. Global discussion in C . By the irreducibility assumption, there exists
a time t2 > 0 such that

P
(
t2,x, Br(y

∗)
)
> 0 ∀x ∈ C .

Furthermore, by the regularity assumption, the function P
(
t2, ·, Br(y

∗)
)

is con-
tinuous on the compact set C . Thus,

min
x∈C

P
(
t2,x, Br(y

∗)
)
≥ γ1 > 0 .
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Figure 1.2. Illustration of the application of the Kolmogorov-Chapman equation in
formula (1.6)

Consequently, by the Chapman-Kolmogorov equation and (1.5) we find (see
Figure 1.2)

P
(
t1 + t2,x,A

)
≥

∫
Br(y∗)

p(t2,x,w)P (t1,w,A ) dw

≥ εLeb
[
A ∩Br(z

∗)
] ∫
Br(y∗)

p(t2,x,w) dw

≥ γ1εLeb
[
A ∩Br(z

∗)
]

(1.6)

= γ1εLeb
[
Br(z

∗)
]Leb

[
A ∩Br(z

∗)
]

Leb[Br(z∗)]
.

We may now put η := γ1εLeb
[
Br(z

∗)
]
, and ν := Leb[· ∩Br(z∗)]

Leb[Br(z∗)] .

Definition 1.5. The mapping V : X → [1,∞) is a Lyapunov function for the
Markov chain {Xj}∞j=0 if there exist numbers α ∈ (0, 1), and β ∈ [0,∞) such
that

E
[
V (Xj+1)

∣∣σ({X0,X1, . . . ,Xj}
)]

≤ αV (Xj) + β ,

and V is unbounded if the set X is unbounded, i.e.,

lim
dist(y,x)→∞

V (y) = ∞ ∀x ∈ X .

Furthermore, we assume that level sets {y ∈ X; V (y) ≤ a}, a > 1 are either
compact or contain compact subsets such that their union (over a) is X.

If T = R+, we can reformulate Definition 1.5 in terms of the infinitesimal
generator L of the semigroup {Pt; t ∈ T} associated with X.
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Definition 1.6. A mapping V : X → [1,∞) is a Lyapunov function for the
Markov process X with generator L if there exist constants 0 < c, d < ∞, such
that

LV ≤ −cV + d , (1.7)

and V is unbounded if the set X is unbounded, i.e.,

lim
dist(y,x)→∞

V (y) = ∞ ∀x ∈ X .

Furthermore, we assume that level sets {y ∈ X; V (y) ≤ a}, a > 1 are either
compact or contain compact subsets such that their union (over a) is X.

Below, we collect a series of propositions which describe the behavior of a
Markov process X under the assumption that there exists a Lyapunov function.
First we show that the constant β in Definition 1.5 can be replaced by zero
outside of a certain compact subset of X at the expense of an increased constant
α. Let �C : X → {0, 1} denote the characteristic function of C .

Proposition 1.7. Assume that {Xj}∞j=0 is a Markov chain with Lyapunov
function V : X → [1,∞). Let γ ∈ (α, 1), and s ≥ 1, and denote

C (s, γ) :=
{
x ∈ X; V (x) ≤ sβ

γ − α

}
.

Then

E

[
V (Xj+1)

∣∣σ({X0,X1, . . . ,Xj}
)]

≤ γV (Xj) + sβ �C (s,γ)(X
j
)
.

Proof. Fix j ≥ 0. The result is evident if Xj ∈ C (s, γ). Otherwise, V (Xj) >
sβ
γ−α . Consequently γV (Xj) > αV (Xj) + sβ ≥ αV (Xj) + β, and the result
follows.

The next results asserts polynomial convergence to 0 of a Lyapunov function
as time converges to infinity. Let a ∧ b := min{a, b}.

Proposition 1.8. Let {Xj}∞j=0 be a Markov process with Lyapunov function
V : X → [1,∞) (with parameters α and β), that Fj := σ

(
{X0,X1, . . . ,Xj}

)
, j ≥

0, J is a stopping time, γ ∈ (α, 1), and C := C (2, γ). Then there exists some
C > 0 such that

E
[
V (Xj)�{J>j}] ≤ E

[
V (Xj)�{J≥j}

]
≤ Cγj

(
E
[
V (X0)

]
+ E

[ j∧J∑
l=1

γ−l
�C (X

l−1)
])

≤ C
(
E
[
V (X0)

]
+ 1

) γj

1− γ
(j ≥ 1) .
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Proof. The first inequality is trivial. The third inequality immediately follows
from the following elementary estimate

γj
j∧J∑
l=1

γ−l
�C (X

l−1) ≤
j∑

l=1

γj−l ≤ 1

1− γ
.

To show the second inequality we consider a finite differences representation
for the function F : X× T → R+, defined by F (X, j) := γ−jV (X). We have

F
(
XJ∧j , J ∧ j

)
= F

(
X0, 0

)
+

J∧j∑
l=1

(
F
(
Xl, l

)
− F

(
Xl−1, l − 1)

)

= F
(
X0, 0

)
+

j∑
l=1

�{J>l−1}

(
F
(
Xl, l

)
− F

(
Xl−1, l − 1)

)
.

Taking the expectation and applying the tower property for conditional expec-
tation leads to

E

[
F
(
XJ∧j , J ∧ j

)]
= E

[
F
(
X0, 0

)]
+

+

j∑
l=1

E

[
E
[
�{J>l−1}

(
F
(
Xl, l

)
− F

(
Xl−1, l − 1

))∣∣Fl−1

]]
.

Notice that the event {J > l− 1} is Fl−1–measurable, and F
(
X0, 0

)
= V (X0).

Hence,

E
[
F
(
XJ∧j , J ∧ j

)]
= E

[
V (X0)

]
+ (1.8)

+

j∑
l=1

E

[
�{J>l−1}E

[
F (Xl, l)− F (Xl−1, l − 1)

∣∣Fl−1

]]
.

We apply Proposition 1.7 with s = 2 to conclude that

E
[
F (Xl, l)|Fl−1

]
= γ−l E

[
V (Xl)

∣∣Fl−1

]
≤ γ−l

(
γV

(
Xl−1

)
+ 2β�C (X

l−1)
)

(1.9)

= F
(
Xl−1, l − 1

)
+ 2γ−lβ�C (X

l−1) .

We may combine identity (1.8) with inequality (1.9) to deduce that

E
[
F (XJ∧j , J ∧ j)

]
≤ E

[
V (X0)

]
+ 2β E

[ j∑
l=1

γ−l
�{J>l−1}�C (X

l−1)
]
.

The result then follows from the estimate

E
[
F (XJ∧j , J ∧ j)

]
≥ E

[
F
(
XJ∧j , J ∧ j

)
�J≥j

]
= γ−j E

[
V (Xj)�{J≥j}

]
.
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We obtain the following estimates on the first return time τC := min{j >
0; Xj ∈ C } to the set C .

Corollary 1.9. Let {Xj}∞j=0 be a Markov process with Lyapunov function V :
X → [1,∞), and C := C (2, γ) ⊂ X for γ ∈ (α, 1). Then there exists C > 0
such that

(i) P
[
{τC > j}

]
≤ C

(
E
[
V (X0)

]
+ 1

)
γj (j > 0) ,

(ii) E
[
γ−τC

]
≤ C

(
E
[
V (X0)

]
+ 1

)
.

Proof. We apply the second inequality of Proposition 1.8 with stopping time
J = τC . The definition of τC implies that

j∧τC∑
l=1

γj−l
�C (X

l−1) = γj−1
�C (X

0) .

Furthermore,

E
[
V (Xj)�τC>j

]
≥ 2β

γ − α
E[�τC>j ] =

2β

γ − α
P
[{

τC > j
}]

.

Hence assertion (i) follows.
To show assertion (ii), we observe that

E
[
γ−τC

]
=

∞∑
l=1

γ−l P
[{

τC = l
}]

≤
∞∑
l=1

γ−l P
[{

τC > l − 1
}]

.

Since γ ∈ (α, 1) we can apply (i) with γ′ ∈ (α, γ) to conclude that there exists
κ1 > 0 such that

E
[
γ−τC

]
≤ κ1

(
E
[
V (X0)

]
+ 1

) ∞∑
l=1

(
γ′

γ

)l

.

The previous Corollary can be generalized to estimate the time τr(C ) :=
τ[r](C ), r ≥ 0 of the [r]-th visit to the set C (put τ0 := 0).

Corollary 1.10. Assume that {Xj}∞j=0 is a Markov process with Lyapunov
function V : X → [1,∞), and C := C (2, γ) ⊂ X for γ ∈ (α, 1). There exists a
positive constant C ≡ C(C , V ) such that

E
[
γ−τr(C )

]
≤ Cr

(
sup
C

V + 1
)r−1(

E
[
V (X0)

]
+ 1

)
.
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Proof. By definition, we can assume that r ∈ N. Denote A(r) := E
[
γ−τr(C )

]
for r ∈ N. We have by elementary properties of the conditional expectation
that for r > 1

A(r) = E
[
γ−

∑r
l=1[τl(C )−τl−1(C )]

]
= E

[
E
[
γ−

∑r
l=1[τl(C )−τl−1(C )]|Fτr−1(C )

]]
= E

[
γ−

∑r−1
l=1 [τl(C )−τl−1(C )] E

[
γ−[τr(C )−τr−1(C )]|Fτr−1(C )

]]
= E

[
γ−

∑r−1
l=1 [τl(C )−τl−1(C )]E

[
γ−τ1(C )

∣∣Xτr−1(C )
]]

= A(r − 1)E
[
γ−τ1(C )

∣∣Xτr−1(C )
]
,

and the result follows from Corollary 1.9, (ii).

Corollary 1.11. Assume that {Xj}∞j=0 is a Markov process with Lyapunov
function V : X → [1,∞). Then there exists an invariant probability measure.

Proof. We apply Proposition 1.8 with a constant stopping time J = j to con-
clude that

sup
j≥1

E
[
V (Xj)

]
< ∞ .

Now the existence of invariant measure follows from a standard argument. In-
deed, by the Chebyshev inequality, and compactness of the level sets of function
V , the sequence of measures

μn :=
1

n

n∑
l=1

P

[
{Xl ∈ ·}

]
(n ∈ N) ,

is tight (Chapter 2, Definition 2.16). Therefore, by the Prohorov Theorem
(Chapter 2, Theorem 2.2) there exists a convergent subsequence to the mea-
sure μ. Consequently, the measure μ is finite and invariant. Normalizing it if
necessary, we obtain an invariant probability measure.

Theorem 1.1. Let X be a Markov process (or chain) with transition kernel
P . Fix T > 0. Let {Xj}∞j=0, with Xj := X(jT ) be an embedded Markov chain
with transition kernel P (T ). Assume that the Markov chain {Xj}∞j=0 has a
Lyapunov function V : X → [1,∞) (with parameters α and β), and satisfies the
minorization condition with the set

C := C (2, γ) =
{
x; V (x) ≤ 2β

γ − α

}
for some γ ∈ (

√
α, 1) and parameter η. Then there exist a unique invariant

measure μ, and constants r := r(γ) ∈ (0, 1), κ := κ(γ) ∈ (0,∞), such that∣∣∣EX0[
f(Xj)

]
−
∫
X

f dμ
∣∣∣ ≤ κrj

(
E
[
V (X0)

]
+ 1

)
∀ measurable f : |f | ≤ V .
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Proof. Step 1: Construction of an equivalent Markov chain with atomic struc-
ture. In this step we will construct a Markov chain {Zj}∞j=0 with the same
transition kernel as {Xj}∞j=0, which has an atomic structure, i.e. there exists a
subset of the configuration space of non-zero probability such that the transition
kernel of the Markov chain is the same for all points of the subset.

The minorization condition implies that we can define a new transition kernel
as follows:

P̃ (x,A ) :=

⎧⎨⎩ P (x,A ) (x /∈ C ) ,
P (x,A )−ην[A ]

1−η (x ∈ C ) .

Let
X̃j+1 = h̃(X̃j , ω̃) (ω̃ ∈ Ω)

be the corresponding Markov chain with transition kernel P̃ . Define the new
Markov chain

Zj+1 := h(Zj , ωj) (1.10)

where ωj :=
(
ω̃j , φj , ξξξj

)
are i.i.d. random variables,

h(x, ω) := �C (x)
[
φh̃(x, ω̃) + (1− φ)ξξξ

]
+
(
1− �C (x)

)
h̃
(
x, ω̃

)
,

and ω1 is distributed as ω :=
(
ω̃, φ, ξξξ

)
, where φ, ξξξ are random variables which

are independent from ω̃, such that P
[
φ = 1

]
= 1 − η, P

[
φ = 0

]
= η, and

ξξξ is distributed according to ν. Elementary calculations then imply that the
transition kernel of the chain {Zj}∞j=0 is the same as of the initial Markov chain
{Xj}∞j=0.

Step 2: A coupling argument. Let {Zj}∞j=0 and {Z̃j}∞j=0 be two realizations of
the Markov chain (1.10) with the same random variables ({φj}∞j=0, {ξξξj}∞j=0) and
independent random variables {ω̃1

j }∞j=0, {ω̃2
j }∞j=0. Denote Fj := σ{(Zl, Z̃l); l ≤

j} for j ≥ 0. Our aim is to estimate the difference∣∣∣E[f(Zj)
]
− E

[
f(Z̃j)

]∣∣∣ ,
for measurable f such that |f | ≤ V . Without loss of generality we can assume
that f is a non-negative function; otherwise, we may decompose f as a difference
of non-negative functions. We define the coupling time by

ψ := inf
j≥0

{
(Zj , Z̃j) ∈ C × C ; φj = 0

}
.

Notice that
E
[
f(Zj)

]
= E

[
f(Zj)�j≥ψ

]
+ E

[
f(Zj)�j<ψ

]
,
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and since
E
[
f(Zj)�j≥ψ

]
= E

[
f(Z̃j)�j≥ψ

]
≤ E

[
f(Z̃j)

]
,

and f ≤ V , we conclude that

E
[
f(Zj)

]
− E

[
f(Z̃j)

]
≤ E

[
V (Zj)�j<ψ

]
.

We reverse the roles of Z and Z̃ to deduce that

E
[
f(Z̃j)

]
− E

[
f(Zj)

]
≤ E

[
V (Z̃j)�j<ψ

]
.

Hence we can conclude that∣∣∣E[f(Z̃j)
]
− E

[
f(Zj)

]∣∣∣ ≤ E

[(
V (Zj) + V (Z̃j)

)
�j<ψ

]
. (1.11)

The last step of the proof is to show the following inequality: For any γ ∈
(
√
α, 1) there exists r ∈ (0, 1) such that

E

[(
V (Zj) + V (Z̃j)

)
�j<ψ

]
≤ C

(
E
[
V (Z0)

]
+ E

[
V (Z̃0)

]
+ 1

)
rj (j ≥ 1) .

(1.12)
Then we have∣∣∣E[f(Z̃j)

]
− E

[
f(Zj)

]∣∣∣ ≤ C
(
E
[
V (Z0)

]
+ E

[
V (Z̃0)

]
+ 1

)
rj (j ≥ 1) ,

and the result follows. In fact, we can take the second Markov chain {Z̃j}∞j=0

to be stationary, i.e. L(Z̃j) = μ for j ≥ 0, where μ is the invariant measure.

Step 3: Proof of the tail estimate (1.12). We will consider the product Markov
chain M ≡ {Mj}∞j=0 := {(Zj , Z̃j)}∞j=0. Define the function Ṽ : X × X → R+,
where Ṽ (x,y) := V (x) + V (y). Then Ṽ is a Lyapunov function for the chain
M. Indeed, by the definition of the Lyapunov function for the chains Z and Z̃
we have

E[Ṽ (Mj+1)|Fj ] ≤ αṼ (Mj) + 2β .

Hence we can apply Proposition 1.7 with parameter s = 1 to conclude that, for
any γ ∈ (α, 1), we have that

E
[
Ṽ (Mj+1)|Fj

]
≤ γṼ (Mj) + 2β�

C̃
(Mj) ,

where
C̃ :=

{
(x,y) ∈ X× X; Ṽ (x,y) ≤ 2β

γ − α

}
.

Evidently, if Mj =
(
Zj , Z̃j

)
∈ C̃ then Zj , Z̃j ∈ C . Define

ψ̃ := inf
j≥0

{(
Zj , Z̃j

)
∈ C̃ ; φj = 0

}
.


