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Preface

The organization of this book follows the lines in the author’s unpublished lecture
notes at University of Erlangen-Nürnberg [123] partly combined with other lecture
notes [127]. But the basic setting has been changed from non-symmetric Dirichlet
forms to lower bounded semi-Dirichlet forms. In this book, we intend to extend those
results for symmetric Dirichlet forms given in [55] to lower bounded semi-Dirichlet
forms and to time dependent semi-Dirichlet forms as well. In Chapter 1 and Chapter 2,
we present basic analytic properties related to the lower bounded semi-Dirichlet forms.
In particular, the Markov property and the related potential theory similar to the sym-
metric Dirichlet forms are formulated. Although the dual semigroups are only positiv-
ity preserving and not Markovian in general, many of the results can be obtained with
minor modifications of the arguments for the non-symmetric Dirichlet forms presented
in [123] and [104]. Furthermore, by changing the basic measure using a coexcessive
function, we can obtain a dual Markov resolvent relative to the measure. For this dual
pair of the Markov resolvents, we introduce an auxiliary bilinear form. Although it
does not satisfy the sector condition in general, it works efficiently in carrying out the
corresponding stochastic calculus.

From Chapter 3 to Chapter 5, properties of the Markov processes associated with
regular lower bounded semi-Dirichlet forms are studied. In particular, stochastic cal-
culus related to the associated Hunt process M is investigated. Usually the stochastic
calculus for Markov processes is developed in connection with their dual Markov pro-
cesses. For a regular semi-Dirichlet form, by changing the basic measure using a suit-
able family of coexcessive functions, we can obtain a family of dual Hunt processes
of M relative to the changed measures. Furthermore, we can construct a pseudo Hunt
process which is in duality with M relative to the original basic measure. Since the
pseudo Hunt process can be treated as if it is an ordinary Hunt process, the stochastic
calculus related to the semi-Dirichlet forms can be performed by modifying the cal-
culus for symmetric Dirichlet forms. But, due to the lack of the excessiveness of the
basic measure, some results need to be changed from the symmetric or non-symmetric
Dirichlet forms. The essential difference is to use the weak sense energy instead of the
energy. The symmetric or non-symmetric cases correspond to the case that the constant
function 1 can be taken as a coexcessive function.

The contents of Chapter 6 are essentially taken from Chapter 5 of the author’s
note [127]. For a given time dependent family of semi-Dirichlet forms possessing a
common domain and a common basic measure, an associated space-time Markov pro-
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cess is constructed and a related parabolic potential theory is developed via stochastic
calculus.

Contrary to the time independent case, the space-time Markov process involves non-
exceptional semipolar sets so that a partially different approach to the related stochastic
calculus is required. Although only certain basic parts of it will be presented in this
section, it is possible to modify most of the arguments of Chapter 5 to get the parallel
results in the time dependent cases.

We intend this to be a self-contained textbook. Most results are stated accompanied
by their proof. References are given for those statements without proof.

The author would like to express his hearty thanks to Professor N. Jacob for his
constant and warm encouragement in writing this book. He is grateful to Professor
M. Fukushima for the kind advice to change the frameworks from the non-symmetric
Dirichlet forms to the semi-Dirichlet forms and the valuable comments on the orga-
nization of this book. He also thanks Professor R. Schilling for his kind suggestion to
publish this book and Professor K. Kuwae, Professor T. Uemura and Mr. R. Kinoshita
for their kind suggestions improving the proofs. He is also grateful to Professor Z. M.
Ma and W. Sun, who kindly gave the author many valuable comments on some essen-
tial parts. Thanks are also due to Dr. Y. Tawara for making the first version of the TeX
file of the original lecture note. Thanks are due to the editorial staff of De Gruyter for
their pleasant cooperation.
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Chapter 1

Dirichlet forms

In this chapter, basic settings throughout this book are presented. The semi-Dirichlet
forms .E , F / that this book concerns itself with are bilinear forms satisfying .E .1/ �
.E .4/. For a semi-Dirichlet form, associated semigroups and resolvents are constructed
and their Markov property is established in Section 1.1. Since we mainly consider the
semi-Dirichlet forms, we call them Dirichlet forms for short. Closability to generate
regular Dirichlet forms is explained in Section 1.2. Irreducibility, transience and their
related properties are studied in Section 1.3. As a preparation for the stochastic cal-
culus developed after Chapter 3, we consider in Section 1.4 a dual Markov resolvent
relative to a basic measure being changed by a suitable coexcessive function bhı to-
gether with an associated auxiliary bilinear form A.ı/. We introduce condition .E .5/
on the original Dirichlet form E so that A.ı/ is well controlled by E . Furthermore, an
additional condition .E .6/ and its consequence are stated also in Section 1.4. Condi-
tion .E .5/ will be assumed for Dirichlet form E in most parts after Chapter 3, while
.E .6/ will only be used in Theorem 5.1.4 and its consequences. In the final Section
1.5, we give typical examples of diffusion type as well as jump type Dirichlet forms
satisfying .E .5/ and .E .6/.

1.1 Semi-Dirichlet forms and resolvents

Let X be a locally compact separable metric space and B.X/ the Borel � -algebra on
X . We shall fix an everywhere dense positive Radon measure m on X and denote by
.�, �/ and k � k the inner product and the norm in L2.X ;m/, respectively. Let C.X/ be
the space of all continuous functions on X . For a family of functions D , let us denote
by D0, DC and Db the sub-family of compact support, non-negative and bounded
functions of D , respectively. For a dense linear subspace F of L2.X ;m/, if a bilinear
form E defined on F � F satisfies the following conditions .E .1/, .E .2/ and .E .3/,
then we call .E , F / a closed form on L2.X ;m/.

.E .1/ E is lower bounded: There exists a non-negative constant ˛0 such that

E˛0.u,u/ � 0 for all u 2 F , (1.1.1)

where E˛.u, v/ D E.u, v/C ˛.u, v/.

.E .2/ E satisfies the sector condition: There exists a constant K � 1 such that

jE.u, v/j � KE˛0.u,u/1=2E˛0.v, v/1=2 for all u, v 2 F . (1.1.2)
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.E .3/ F is a Hilbert space relative to the inner product

E.s/
˛ .u, v/ D 1

2
.E˛.u, v/C E˛.v,u// for all ˛ > ˛0.

For ˛ > ˛0, putK˛ D KC˛=.˛�˛0/. Since .u,u/ � 1
˛�˛0

E˛.u,u/, (1.1.2) implies

jE˛.u, v/j � K˛E˛.u,u/1=2E˛.v, v/1=2 for all u, v 2 F . (1.1.3)

If equation (1.1.1) holds for ˛0 D 0, then .E , F / is called non-negative. .E , F /

is called symmetric if E.u, v/ D E.v,u/ for all u, v 2 F . If .E , F / is non-negative
and symmetric, then equation (1.1.2) holds for ˛0 D 0 and K D 1 by the Schwarz
inequality.

For later use, we shall first show the following Stampacchia’s theorem.

Theorem 1.1.1. Let � be a non-empty closed convex subset of F . If J is a continuous
linear functional on F with respect to E˛ for ˛ > ˛0, then there exists a unique
function v 2 � satisfying

E˛.v,w � v/ � J.w � v/ for all w 2 � . (1.1.4)

Proof. Let us fix ˛ > ˛0.
Uniqueness: Assume that v1 and v2 satisfy equation (1.1.4). Then

E˛.v1, v2 � v1/ � J.v2 � v1/ and E˛.v2, v1 � v2/ � J.v1 � v2/.

Hence

E˛.v2 � v1, v2 � v1/ D E˛.v2, v2 � v1/ � E˛.v1, v2 � v1/

� J.v2 � v1/ � J.v2 � v1/ D 0,

which implies that v2 D v1 m-a.e.
Existence: We shall first prove equation (1.1.4) under the assumption that E is sym-
metric.

Let I.v/ D E˛.v, v/ � 2J.v/ and let d D infv2� I.v/. Since

I.v/ � E˛.v, v/ � 2kJ kE˛.v, v/1=2

D .E˛.v, v/1=2 � kJ k/2 � kJ k2 � �kJ k2,

it follows that d > �1. Let vn 2 � be a sequence satisfying d � I.vn/ < d C 1
n

.
Then

E˛.vn � vm, vn � vm/ D 2E˛.vn, vn/C 2E˛.vm, vm/

� 4E˛.
vn C vm

2
,
vn C vm

2
/

D 2I.vn/C 2I.vm/ � 4I.
vn C vm

2
/

< 2.d C 1

n
/C 2.d C 1

m
/ � 4d

! 0, n,m ! 1.
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Hence ¹vnº converges to some v 2 � relative to E˛ and limn!1 I.vn/ D I.v/ D d .
For any w 2 � and 0 < � < 1, since .1 � �/v C �w D v C �.w � v/ 2 � ,

0 � I.v C �.w � v// � I.v/
D 2�E˛.v,w � v/ � 2�J.w � v/C �2E˛.w � v,w � v/.

This implies equation (1.1.4). In the general case, put

E.s/
˛ .u, v/ D 1

2
.E˛.u, v/C E˛.v,u//

E.a/
˛ .u, v/ D 1

2
.E˛.u, v/ � E˛.v,u// .

Further putB.ˇ/
˛ .u, v/ D E

.s/
˛ .u, v/CˇE

.a/
˛ .u, v/. Then the theorem holds for ˇ D 0.

Hence, assuming that there exists a function v 2 � such thatB.ˇ0/
˛ .v,w�v/ � J.w�

v/ for all w 2 J , it is enough to show the same inequality replaced ˇ0 by ˇ satisfying
ˇ0 � ˇ < ˇ0 C 1=K˛ . By the assumption, for any fixed u 2 F and ˇ0 � ˇ <

ˇ0 C 1=K˛ , since J.v/� .ˇ�ˇ0/E
.a/
˛ .u, v/ is a continuous linear functional relative

to B.ˇ0/
˛ , there exists unique function T .u/ 2 � such that B.ˇ0/

˛ .T .u/,w � T .u// �
J .w � T .u// � .ˇ � ˇ0/E

.a/
˛ .u,w � T .u// for all w 2 � . In particular, by putting

v1 D T .u1/, v2 D T .u2/ for u1,u2 2 F , it holds that

B.ˇ0/
˛ .v1, v1 � v2/ � J .v1 � v2/ � .ˇ � ˇ0/E

.a/
˛ .u1, v1 � v2/

B.ˇ0/
˛ .v2, v1 � v2/ � J .v1 � v2/ � .ˇ � ˇ0/E

.a/
˛ .u2, v1 � v2/ .

Therefore, noting that E.a/.v1 �v2, v1 �v2/ D 0 and using equation (1.1.3) we obtain
that

E˛.v1 � v2, v1 � v2/ D B.ˇ0/
˛ .v1 � v2, v1 � v2/

� .ˇ � ˇ0/E
.a/
˛ .u2 � u1, v1 � v2/

� .ˇ � ˇ0/K˛E˛.u2 � u1,u2 � u1/
1=2

� E˛.v1 � v2, v1 � v2/
1=2.

This implies that

E˛.v1 � v2, v1 � v2/ � .K˛.ˇ � ˇ0//
2E˛.u1 � u2,u1 � u2/,

that is, T is a contraction operator relative to E˛ ifK˛.ˇ�ˇ0/ < 1. Hence there exists
a fixed point v 2 � such that T .v/ D v, that is

B.ˇ0/
˛ .v,w � v/ � J.w � v/ � .ˇ � ˇ0/E

.a/
˛ .v,w � v/.

This yields the desired relation

B.ˇ/
˛ .v,w � v/ � J.w � v/ for all w 2 � .
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Theorem 1.1.2. Suppose that .E , F / is a closed form on L2.X ;m/. Then there exist
strongly continuous semigroups ¹Ttºt>0 and ¹bT tºt>0 on L2.X ;m/ such that kTt k �
e˛0t , kbT tk � e˛0t , .Ttf ,g/ D .f ,bT tg/ and whose resolvents G˛ and bG˛ given by
G˛f D R1

0 e�˛tTtf dt and bG˛f D R1
0 e�˛t

bT tf dt satisfy

E˛.G˛f ,u/ D .f ,u/ D E˛.u,bG˛f /, (1.1.5)

for all f 2 L2.X ;m/, u 2 F and ˛ > ˛0.

Proof. For any ˇ > 0 and f 2 L2.X ;m/, applying Theorem 1.1.1 to E˛0Cˇ ,
J.v/ D .f , v/ and � D F , we obtain a unique function G˛0Cˇf 2 F satisfying
E˛0Cˇ

�

G˛0Cˇf ,w �G˛0Cˇf
� � .f ,w � G˛0Cˇf / for all w 2 F . By putting

w D G˛0Cˇf ˙ u for any u 2 F , it holds that E˛0Cˇ .G˛0Cˇf ,u/ D .f ,u/.

Similarly, for any g 2 L2.X ;m/ and ˇ > 0, there exists bG˛0Cˇg 2 F satisfying

E˛0Cˇ .u,bG˛0Cˇg/ D .u, g/ for all u 2 F . Obviously

.G˛0Cˇf ,g/ D E˛0Cˇ .G˛0Cˇf ,bG˛0Cˇg/ D .f ,bG˛0Cˇg/, (1.1.6)

for all f ,g 2 L2.X ;m/. Furthermore, for any ˇ, � > 0, since

E˛0Cˇ .G˛0C�f � .ˇ � �/G˛0CˇG˛0C�f , v/

D E˛0C� .G˛0C�f , v/C .ˇ � �/.G˛0C�f , v/ � .ˇ � �/.G˛0C�f , v/

D .f , v/,

for any v 2 F , it follows that G˛0C�f � .ˇ � �/G˛0CˇG˛0C�f D G˛0Cˇf , that is
¹G˛0C˛º satisfies the resolvent equation

G˛0Cˇf �G˛0C�f C .ˇ � �/G˛0CˇG˛0C�f D 0. (1.1.7)

Since

ˇkG˛0Cˇf k2 � E˛0Cˇ .G˛0Cˇf ,G˛0Cˇf / D .f ,G˛0Cˇf / � kf k � kG˛0Cˇf k,

it follows that kG˛0Cˇf k � 1
ˇ

kf k.

Similarly, there exists a resolvent ¹bG˛0Cˇ ºˇ>0 such that ˇkbG˛0Cˇf k � kf k and

E˛0Cˇ .G˛0Cˇf ,u/ D .f ,u/ D E˛0Cˇ .u,bG˛0Cˇf /

for all f 2 L2.X ;m/ and u 2 F .
Define the generator L of ¹G˛0Cˇ º by D.L/ D ¹G˛0Cˇf : f 2 L2.X ;m/º

and Lu D ˇu � f for u D G˛0Cˇf 2 D.L/ and ˇ > 0. Since G˛0C�f D
G˛0Cˇ

�

f C .ˇ � �/G˛0C�f
�

by equation (1.1.7), D.L/ is independent of the
choice of ˇ.

If a function g 2 L2.X ;m/ satisfies .G˛0Cˇf ,g/ D 0 for all f 2 L2.X ;m/,

then bG˛0Cˇg D 0. This implies that .u, g/ D E˛0Cˇ .u,bG˛0Cˇg/ D 0 for all
u 2 F . Hence g D 0 by the denseness of F in L2.X ;m/. Therefore, ¹G˛0Cˇf :
f 2 L2.X ;m/º is dense in L2.X ;m/. In particular, since k�G�Gˇf � Gˇf k D
kG�f � ˇG�Gˇf k � 1

��˛0
kf � ˇGˇf k and the right-hand side converges to
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zero as � increases to infinity, it follows that lim�!1 �G�u D u in L2.X ;m/
for all u D Gˇf 2 D.L.˛0// and hence for all u 2 L2.X ;m/. Furthermore,
since the domain D.L.˛0// of the generator L.˛0/ is dense in L2.X ;m/, the Hille–
Yoshida theorem implies that there exists a strongly continuous contraction semi-
group T .˛0/

t on L2.X ;m/ with resolvent ¹G˛0Cˇ º. Similarly, ¹bG˛0Cˇ º is also a re-

solvent of a strongly continuous contraction semigroup bT .˛0/
t . Put Ttf D e˛0tT

.˛0/
t f

and bT tf D e˛0t
bT

.˛0/
t f . Then they are strongly continuous semigroups such that

kTtk � e˛0t and kbT tk � e˛0t . Furthermore, their resolvents are respectively given
by G˛f D G˛0C.˛�˛0/f and bG˛f D bG˛0C.˛�˛0/f for ˛ > ˛0. Equation (1.1.5) is
clear from this.

Define the approximating form E˛ of E by E˛.u, v/ D ˛.u � ˛G˛u, v/ for u, v 2
L2.X ;m/ and put E˛

ˇ
.u, v/ D E˛.u, v/C ˇ.u, v/.

Lemma 1.1.3. For any ˛ > ˛0 and ˇ � ˛0 .˛=.˛ � ˛0//
2, the following inequalities

hold:

E.˛G˛u,˛G˛u/ � E˛.u,u/; (1.1.8)

jE˛.u, v/j � KE˛
ˇ .u,u/1=2E˛0.v, v/1=2; (1.1.9)

jE˛.u,u/j � K2E˛0.u,u/CK
p

ˇkukE˛0.u,u/1=2. (1.1.10)

In particular, if ˛0 D 0 then, for any ˛ > 0 and u 2 F ,

E.˛G˛u,˛G˛u/ � E˛.u,u/ � K2E.u,u/. (1.1.11)

Proof. Let ˛ > ˛0. Then equation (1.1.8) follows from

E˛.u,˛G˛u/ D ˛.u � ˛G˛u,˛G˛u/ D E.˛G˛u,˛G˛u/

D E˛.u,u/ � ˛.u � ˛G˛u,u � ˛G˛u/

� E˛.u,u/.

To show equation (1.1.9), by using .E .2/ we have

jE˛.u, v/j D jE.˛G˛u, v/j � KE˛0.˛G˛u,˛G˛u/
1=2E˛0.v, v/1=2.

In the right-hand side, using equation (1.1.8), it holds that

0 � E˛0.˛G˛u,˛G˛u/ � E˛.u,u/C ˛0

�

˛

˛ � ˛0

�2

kuk2 � E˛
ˇ .u,u/,

which shows equation (1.1.9). By putting v D u in equation (1.1.9) it holds that

E˛.u,u/2 � K2 �jE˛.u,u/j C ˇ.u,u/
�

E˛0.u,u/.

Hence

jE˛.u,u/j � K2

2
E˛0.u,u/C

�

K2ˇkuk2E˛0.u,u/C K4

4
E˛0.u,u/2

�1=2

.
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By noting the inequality
p
aC b � p

aC p
b holding for a, b � 0, equation (1.1.10)

follows easily from this. Equation (1.1.11) follows from equation (1.1.10) by putting
˛0 D 0 and ˇ D 0.

Since E˛.u, v/ D ˛.u, v � ˛bG˛v/, by a similar argument to the proof of Lemma
1.1.3, we have

E.˛bG˛u,˛bG˛u/ � E˛.u,u/, .1.1.8/0

jE˛.u, v/j � KE˛0.u,u/1=2E˛
ˇ .v, v/1=2. .1.1.9/0

Theorem 1.1.4. (i) A function u 2 L2.X ;m/ belongs to F if and only if
lim˛!1E˛.u,u/ < 1.

(ii) If u, v 2 F , then lim˛!1 E˛.u, v/ D E.u, v/.

(iii) If u 2 F , then for any ˇ > ˛0, lim˛!1 Eˇ .˛G˛u � u,˛G˛u � u/ D 0.

Proof. Since .u � ˛G˛C˛0u,u/ � 0,

E˛.u,u/ D ˛.u � ˛G˛C˛0u,u/ � ˛0˛
2.G˛G˛C˛0u,u/ � � ˛0˛

˛ � ˛0
.u,u/.

Hence lim˛!1E˛.u,u/ � �˛0.u,u/. To show the assertion in (i), assume that
u 2 F . Then lim˛!1E˛.u,u/ < 1 by equation (1.1.10). Suppose conversely that
lim˛!1E˛.u,u/ < 1. Then lim˛!1Eˇ .˛G˛u,˛G˛u/ < 1 for any ˇ > ˛0.
Hence there exists a subsequence ¹˛nG˛n

uº converging weakly to some v 2 F rela-

tive to the inner product E
.s/

ˇ
. By the continuity of the resolvent, limn!1 ˛nG˛n

u D u

in L2.X ;m/ and consequently u D v 2 F which gives the if part of (i). Since

lim
˛!1 E˛.u, v/ D lim

˛!1
�

Eˇ .˛G˛u, v/ � ˇ.˛G˛u, v/
� D E.u, v/,

(ii) follows from (iii).
To prove (iii), as in the proof of Theorem 1.1.2, let us introduce the generator L

of ¹Gˇ º with domain D.L/ D ¹Gˇf : f 2 L2.X ;m/º which is independent of
ˇ > ˛0. If it is shown that D.L/ is dense in F , then any function u 2 F can be
approximated by a sequence of functions of D.L/ relative to Eˇ . Then, by virtue of
equations (1.1.8) and (1.1.10), ˛G˛u is also approximated by functions of the form
˛G˛un with un 2 D.L/ uniformly for ˛ relative to Eˇ . If u D Gˇf 2 D.L/ for
f 2 L2.X ;m/, then (iii) is obvious from lim˛!1 Eˇ .˛G˛u � u,˛G˛u � u/ D
lim˛!1.˛G˛f � f ,˛G˛u � u/ D 0.

To show the denseness of D.L/ in F , take any function u 2 F . By equation (1.1.8)
and (i), Eˇ .nGnu, nGnu/ is bounded relative to n � 1 forˇ > ˛0. Hence we can apply
the Banach–Saks theorem to obtain a sequence of CesJaro means of ¹nGnuº which
converges to u relative to Eˇ . More precisely, choose a subsequence uk D nkGnk

u

which converges weakly to u as k ! 1 relative to E
.s/

ˇ
. By choosing a subsequence,

we may assume that max¹jE.s/

ˇ
.u � u`,u � uk/j : 1 � ` � k � 1º < 1=k for any k.
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Then

Eˇ

�

u � 1

k
.u1 C � � � C uk/,u � 1

k
.u1 C � � � C uk/

�

D 1

k2

k
X

iD1

Eˇ .u � ui ,u � ui /C 1

k2

k
X

i¤j

E
.s/

ˇ
.u � ui ,u � uj /

� 4

k
sup

n
Eˇ .un,un/C 2

k2

k
X

iD2

i � 1

i
.

This shows that ¹ 1
k

Pk
iD1 uiº is an Eˇ -Cauchy sequence converging to u inL2.X ;m/.

Hence it converges strongly in .E , F / to u. Since .1=k/
Pk

iD1 ui belongs to D.L/,
this shows the denseness of D.L/ in F .

Theorem 1.1.5. Suppose that .E , F / is a closed form and let ¹Tt ºt>0 be the semi-
group corresponding to .E , F / by Theorem 1.1.2. Then the following conditions are
mutually equivalent.

.E .4/ For all u 2 F and a � 0, u ^ a 2 F and E.u ^ a,u � u ^ a/ � 0.

.E .4a/ For all u 2 F , uC ^ 1 2 F and E.uC ^ 1,u � uC ^ 1/ � 0.

.E .4b/ For all u 2 F , uC^1 2 F and E.uCuC^1,u�uC^1/ � �˛0ku�uC^1k2.

.E .4c/ ¹Ttº is sub-Markov: If f 2 L2.X ;m/ satisfies 0 � f � 1 m-a.e., then
0 � Ttf � 1 m-a.e.

.E .4d/ ¹bT tº is positivity preserving and contractive in L1.X ;m/: If f 2 L1.X ;m/
satisfies f � 0 m-a.e., then bT tf � 0 m-a.e. and kbT tf kL1 � kf kL1 .

Proof. .E .4/ ) .E .4a/: For any u 2 F , uC D .�u/ ^ 0 2 F . Hence by noting that
uC ^ 1 D .u ^ 1/C and u� D .u ^ 1/�, we obtain .E .4a/ by

E.uC ^ 1,u � uC ^ 1/

D E..u ^ 1/C,u ^ 1 � .u ^ 1/C/C E.uC ^ 1,u � u ^ 1/

D E..u ^ 1/C,u ^ 1 � .u ^ 1/C/C E.uC ^ 1,uC � uC ^ 1/ � 0.

.E .4a/ ) .E .4b/ follows from

E.uC uC ^ 1,u � uC ^ 1/ D E.u � uC ^ 1,u � uC ^ 1/

C 2E.uC ^ 1,u � uC ^ 1/

� �˛0ku � uC ^ 1k2.
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.E .4b/ ) .E .4c/: Put u D ˛G˛f for f 2 L2.X ;m/ such that 0 � f � 1 m-a.e.
and ˛ > ˛0. Then

˛0ku � uC ^ 1k2 � �1

2
¹E.uC uC^1,u � uC^1/C E.u � uC^1,u � uC^1/º

D �E.u,u � uC ^ 1/ D ˛.u � f ,u � uC ^ 1/

D ˛ku � uC ^ 1k2 C ˛.uC ^ 1 � f ,u � uC ^ 1/.

Since 0 � f � 1,
.uC ^ 1 � f ,u � uC ^ 1/ � 0,

which implies that .˛� ˛0/ku�uC ^ 1k � 0. Hence u�uC ^ 1 D 0, which implies
that 0 � ˛G˛f � 1. The sub-Markov property of the associated semigroup is clear
from this.
.E .4c/ ) .E .4/: Suppose that .E .4c/ holds. For any u 2 F and a � 0, since
˛G˛.u ^ a/ � a, .u � a/C � .˛G˛ � I /.u ^ a/ � 0. Hence

E˛.u ^ a,u � u ^ a/ D �˛ �.˛G˛ � I /.u ^ a/, .u � a/C� � 0.

Hence, using .1.1.9/0 we get that

E˛
�

.u � a/C, .u � a/C� D E˛.u, .u � a/C/ � E˛.u ^ a, .u � a/C/
� E˛.u, .u � a/C/
� KE˛0.u,u/1=2E˛

ˇ ..u � a/C, .u � a/C/1=2

for ˇ D ˛0.˛=.˛�˛0//
2. This yields that lim˛!1E˛..u�a/C, .u�a/C/ < 1 and

hence .u � a/C 2 F . Since u ^ a D u � .u � a/C, u ^ a 2 F and

E.u ^ a,u � u ^ a/ D lim
˛!1 E˛.u ^ a,u � u ^ a/ � 0.

.E .4c/ , .E .4d/: If .E .4c/ holds. Then for any f 2 L2.X ;m/ such that 0 � f � 1
and g 2 L1C.X ;m/\L2.X ;m/, since 0 � .Ttf ,g/ � kgkL1.X ;m/, it follows that 0 �
.f ,bT tg/ � kgkL1.X ;m/. This implies .E .4d/. Similarly .E .4d/ implies .E .4c/.

By virtue of .E .4c/, since Ttf1 � Ttf2 for any f1, f2 2 L2.X ;m/ such that f1 �
f2, for any f 2 L1C .X ;m/, by taking a sequence fn 2 L2.X ;m/ such that fn " f ,
Ttf is well defined by Ttf D limn!1 Ttfn. In fact, if ¹f 1

n º, ¹f 2
n º � L2.X ;m/ are

two increasing sequences converging to f a.e., then the limits T 1
t f D limn!1 Ttf

1
n

and T 2
t f D limn!1 Ttf

2
n exist. For any g 2 L2C.X ;m/,

.g,T i
t f / D lim

n!1.g,Ttf
i

n / D lim
n!1.

bT tg, f i
n / D .bT tg, f /

which implies T 1
t f D T 2

t f . For any f 2 L1.X ;m/, by considering f D f C �f �,
Ttf is well defined by Ttf D Ttf

C � Ttf
�. By the sub-Markov property, the ex-

tended resolvent on L1.X ;m/ satisfies kTtf k1 � kf k1. Also, its resolvent ¹G˛º
can be extended to a sub-Markov resolvent on L1.X ;m/ satisfying k˛G˛f k1 �
kf k1.
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By the duality relation, since .Ttf ,g/ D .f ,bT tg/ � 0 for any non-negative func-
tions f ,g 2 L2C.X ;m/, bT tg � 0 for any g 2 L2C.X ;m/. Hence bT t and bG˛ are
extended to a semigroup and a resolvent on L1.X ;m/. By the duality relation, the ex-
tended operators satisfy kbT tf kL1.m/ � kf kL1.m/ and k˛bG˛f kL1.m/ � kf kL1.m/

for any f 2 L1.X ;m/.
Let bT t and bG˛ be those in Theorem 1.1.2. Then, similarly to Theorem 1.1.5, they

are sub-Markov if and only if

. OE .4/ E.u � u ^ a,u ^ a/ � 0

for all u 2 F and a � 0.

Definition 1. A bilinear form .E , F / is called a lower-bounded semi-Dirichlet form
if it satisfies .E .1/, .E .2/, .E .3/, and .E .4/. In this monograph, we call the lower
bounded semi-Dirichlet form simply as Dirichlet form. In particular, if ˛0 D 0, then
.E , F / is called non-negative Dirichlet form. Furthermore, if a non-negative Dirich-
let form .E , F / satisfies the dual sub-Markov property . OE .4/, then .E , F / is called a
non-symmetric Dirichlet form. A non-symmetric Dirichlet form is called a symmetric
Dirichlet form if E is symmetric.

For a Dirichlet form .E , F /, since

˛ .juj � ˛G˛juj, juj/ � ˛ .u � ˛G˛u,u/ ,

Theorem 1.1.4 implies that juj 2 F and

E.juj, juj/ � E.u,u/ (1.1.12)

for any u 2 F . In particular, if u, v 2 F , then u ^ v D 1
2.uC v � ju � vj/ 2 F .

1.2 Closability and regular Dirichlet forms

Let E be a bilinear form defined on D.E/�D.E/ satisfying .E .1/ and .E .2/ for a dense
linear subspace D.E/ of L2.X ;m/. We say that .E , D.E// is closable on L2.X ;m/
if the following condition holds:

If un 2 D.E/ satisfies lim
m,n!1 E.un � um,un � um/ D 0

and lim
n!1.un,un/ D 0, then lim

n!1 E.un,un/ D 0. (1.2.1)

Suppose that E is closable on L2.X ;m/. Denote by F the family of functions u 2
L2.X ;m/ for which there exists an E-Cauchy sequence ¹unº such that limn!1 un D
u in L2.X ;m/. In this case, we call the sequence ¹unº an approximating sequence of
u and .E , F / the smallest closed extension of .E , D.E//.



10 Chapter 1 Dirichlet forms

Theorem 1.2.1. Suppose that .E , D.E// is closable on L2.X ;m/. For u, v 2 F , and
its approximating sequences ¹unº and ¹vnº of u and v, respectively,

E.u, v/ D lim
n!1 E.un, vn/ (1.2.2)

exists independently of the choice of the approximating sequences. Furthermore, the
smallest closed extension .E , F / of .E , D.E// is a closed form.

Proof. Let ¹unº be an approximating sequence of u 2 F . Since E˛0.un,un/ � 0 for
any un 2 D.E/, it satisfies the triangle inequality:

jE˛0.un,un/
1=2 � E˛0.um,um/

1=2j � E˛0.un � um,un � um/
1=2. (1.2.3)

Hence limn!1 E˛0.un,un/ and hence limn!1 E.un,un/ exists. Since

jE.un, vn/ � E.um, vm/j � KE˛0.un,un/
1=2E˛0.vn � vm, vn � vm/

1=2

CKE˛0.vm, vm/
1=2E˛0.un � um,un � um/

1=2,

the uniform boundedness of ¹E˛0.un,un/º and ¹E˛0.vm, vm/º yields the existence of
equation (1.2.2). .E .1/ and .E .2/ of .E , F / follows easily from the corresponding
properties of .E , D.E//. If ¹wnº � F is an E˛-Cauchy sequence, then for the approx-
imating sequences ¹wn,kº � D.E/ of wn, the diagonal sequence ¹wn,nº converges to
w 2 F . This implies .E .3/ for .E , F /.

Theorem 1.2.2. Let .E , D.E// be a closable form satisfying .E .4/ for D.E/ instead
of F . Then the smallest closed extension .E , F / also satisfies .E .4/, that is, .E , F / is
a Dirichlet form on L2.X ;m/.

Proof. Let ¹G˛º be the resolvent associated with .E , F /. Then it is enough to show
that the resolvent ¹G˛º is sub-Markov.

Take a function f 2 L2.X ;m/ such that 0 � f � 1 m-a.e. and put u D ˛G˛f

for ˛ > ˛0. Since u 2 F , there exists an approximating sequence ¹unº � D.E/ such
that limn!1 un D u relative to E˛. By virtue of Theorem 1.1.5, if .E , D.E// satisfies
.E .4/, then it satisfies .E .4a/ and .E .4b/. In particular uC

n ^ 1 2 D.E/ and

�˛0kuC
n ^ 1k2 � E.uC

n ^ 1,uC
n ^ 1/ � E.uC

n ^ 1,un/

� KE˛0.u
C
n ^ 1,uC

n ^ 1/1=2E˛0.un,un/
1=2.

This implies that E.uC
n ^1,uC

n ^1/ is bounded relative to n � 1. Since equation (1.1.2)
holds for un, vn 2 D.E/, it also holds for u, v 2 F by the definition of .E , F /. Hence
the E˛0 -boundedness of ¹un�uC

n ^1º implies that limn!1 E.un�u,un�uC
n ^1/ D 0.
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Therefore, by using .E .4a/ and equation (1.1.1),

˛0ku � uC ^ 1k2 D ˛0 lim
n!1 kun � uC

n ^ 1k2

� � lim
n!1 E.un � uC

n ^ 1,un � uC
n ^ 1/

� � lim
n!1

®

E.un � uC
n ^ 1,un � uC

n ^ 1/C E.uC
n ^ 1,un � uC

n ^ 1/
¯

D � lim
n!1 E.un,un � uC

n ^ 1/ D � lim
n!1 E.u,un � uC

n ^ 1/

D lim
n!1˛.u � f ,un � uC

n ^ 1/ D ˛.u � f ,u � uC ^ 1/

D ˛ku � uC ^ 1k2 C .uC ^ 1 � f ,u � uC ^ 1/.

Since .uC ^ 1 � f ,u � uC ^ 1/ � 0, this shows that u D uC ^ 1.

Definition 2. A Dirichlet form .E , F / on L2.X ;m/ is called a regular Dirichlet form
with core C1 if C1 is a sub-family of C0.X/ such that F \ C1 is E˛-dense in F and
uniformly dense in C0.X/.

For a regular Dirichlet form .E , F / and its associated resolvent ¹G˛º, since
R

X G˛g.x/f .x/m.dx/ is a non-negative bilinear form relative to f ,g 2 C0.X/, it
is represented as

Z

X

G˛g.x/f .x/m.dx/ D
Z

X

Z

X

f .x/g.y/G˛.dxdy/ (1.2.4)

for a positive Radon measure G˛.dxdy/ on X � X . Note that G˛.dxdy/ does not
charge any set of zero m˝m-measure.

As a particular case, suppose that .E , F / is a symmetric regular Dirichlet form.
Then the approximating form E˛ can be written as

E˛.u,u/ D ˛2

2

Z

X

Z

X

.u.x/ � u.y//2G˛.dxdy/

C ˛

Z

X

u2.x/ .1 � ˛G˛1.x//m.dx/. (1.2.5)

By virtue of Theorem 1.1.4, u 2 L2.X ;m/ belongs to F if and only if E˛.u,u/
remains bounded as ˛ increases to infinity. In particular, for any u, v 2 Fb , it follows
from equation (1.2.5) and the inequalities juv.x/j � ju.x/jjv.x/j and

juv.x/ � uv.y/j � kvk1ju.x/ � u.y/j C kuk1jv.x/ � v.y/j

m-a.e. x, y, that uv 2 F and

E.uv,uv/1=2 � kvk1E.u,u/1=2 C kuk1E.v, v/1=2. (1.2.6)
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1.3 Transience and recurrence of Dirichlet forms

For a given Dirichlet form .E , F / on L2.X ;m/, let ¹Ttºt>0 and ¹bT tºt>0 be the semi-
groups on L2.X ;m/ associated with .E , F / by Theorem 1.1.2. A Borel measurable
subset B of X is called an invariant set relative to ¹Ttº if, for all t > 0 and f 2
L2.X ;m/,

1BTtf D 1BTt .1Bf / m-a.e. (1.3.1)

An invariant set relative to ¹bT tº is defined similarly. If B is an invariant set relative
to ¹Tt º, then for any g 2 L2.X ;m/,

.f ,bT t .1Bg// D .1BTtf ,g/ D .1BTt .1Bf /,g/ D .1Bf ,bT t .1Bg//.

Hence bT t .1Bg/ D 1B
bT t .1Bg/ and hence

bT tg � bT t .1XnBg/ D bT t .1Bg/ D 1B

�

bT tg � bT t .1XnBg/
�

.

This implies

1XnB
bT tg D 1XnB

bT t .1XnBg/ for all t > 0 and g 2 L2.X ;m/, (1.3.2)

that is X n B is an invariant set relative to ¹bT tº. Since the converse assertion also
holds, B is an invariant set relative to ¹Tt º if and only if X n B is an invariant set
relative to ¹bT tº.

Lemma 1.3.1. For any non-negative Borel function f and ˛ > 0, ¹x : G˛f .x/ > 0º
is an invariant set relative to ¹Ttº.

Proof. Put B D ¹x : G˛f .x/ D 0º. For any non-negative function g 2 L1.X ;m/
such that g D 0 m-a.e. on X n B ,

0 D .G˛f ,g/ � e�˛t .TtG˛f ,g/ D e�˛t
�

G˛f ,bT t .1Bg/
�

� e�˛t
�

1XnB �G˛f ,bT t .1Bg/
�

Hence 1XnB
bT t .1Bg/ D 0 m-a.e. and hence bT t .1Bg/ D 1B

bT t .1Bg/. This implies

that B is an invariant set of ¹bT tº and hence X n B is an invariant set of ¹Tt º.

Theorem 1.3.2. B is an invariant set relative to both ¹Tt º and ¹bT tº if and only if
IBu, IBv 2 F for all u, v 2 F and satisfies

E.u, v/ D E.1Bu, 1Bv/C E.1XnBu, 1XnBv/. (1.3.3)
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Proof. Suppose that B is an invariant set relative to both ¹Tt º and ¹bT tº. Then, as we
noted before Lemma 1.3.1, X n B is also an invariant set relative to ¹Tt º and ¹bT tº.
Hence, for all u 2 F , 1BG˛u D 1BG˛.1Bu/ and 1XnBG˛u D 1XnBG˛.1XnBu/.
Therefore,

.u,u � ˛G˛u/ D .1Bu, 1Bu � ˛G˛.1Bu//C �

1XnBu, 1XnB � ˛G˛.1XnBu/
�

.

Hence, by Theorem 1.1.4 (i) and (ii), 1Bu, 1XnBu 2 F and equation (1.3.3) holds.
Conversely, suppose that 1Bu, 1Bv 2 F and equation (1.3.3) hold for all u, v 2 F .

By putting 1Bu and 1XnBv instead of u, v, respectively, it holds that

E.1Bu, 1XnBv/ D 0 u, v 2 F . (1.3.4)

For any ˛ > ˛0, since

E˛

�

G˛f , 1XnBv
� D .f , 1XnBv/ D E˛

�

G˛.1XnBf /, 1XnBv
�

,

it follows that E˛

�

G˛f �G˛.1XnBf /, 1XnBv
� D 0. In particular, by putting v D

G˛f � G˛.1XnBf /, we get that E˛

�

v, 1XnBv
� D 0. Hence, by equation (1.3.4) we

get that
E˛

�

1XnBv, 1XnBv
� D 0,

which shows that 1XnBv D 0, that is 1XnBG˛f D 1XnBG˛.1XnBf /. Similarly, by
taking B in place of X n B , we have 1BG˛f D 1BG˛.1Bf /.

A Dirichlet form .E , F / (or semigroup ¹Tt º) is called irreducible if any invariant
set B relative to ¹Tt º satisfies m.B/ D 0 or m.X n B/ D 0. As noted before Lemma
1.3.1, if B is a ¹Tt º-invariant set, then X n B is an invariant set relative to ¹bT tº.
Hence .E , F / is irreducible if and only if any invariant set B relative to ¹bT tº satisfies
m.B/ D 0 or m.X n B/ D 0.

As we have seen after Theorem 1.1.5, ¹G˛º can be considered as a sub-Markov
L1.X ;m/-resolvent. For any f 2 L1C .X ;m/, since G˛f is increasing as ˛ de-
creases, the potential operator

Gf D lim
n!1G1=nf (1.3.5)

is well defined. Similarly, ¹bG˛º can be considered as a contractive L1.X ;m/-resol-
vent. If f 2 L1C.X ;m/, bG˛f is also increasing as ˛ decreases. Hence we can define
the copotential operator

bGf D lim
n!1

bG1=nf . (1.3.6)

A Dirichlet form .E , F / is called transient if there exists a strictly positive function
f 2 L1.X ;m/ such that

Gf < 1 m-a.e. (1.3.7)

An irreducible Dirichlet form is called recurrent if it is non-transient.
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If .E , F / is transient, then there exists a strictly positive function f 2 L1.X ;m/
satisfying equation (1.3.7). Let ¹Bnº be an increasing sequence of compact sets such
that [Bn D X and Gf .x/ � n for a.e. x 2 Bn. Then the function g defined by
g.x/ D P1

nD1.1=nm.Bn//2�n1Bn
.x/ is a strictly positive function satisfying g 2

L1.X ;m/ \ L1.X ;m/ and

.f ,bGg/ D
1
X

nD1

1

nm.Bn/2n
.Gf , 1Bn

/ < 1.

In particular,
bGg < 1 m-a.e. (1.3.8)

Similarly, if there exists a strictly positive function g 2 L1.X ;m/ satisfying equation
(1.3.8), then there exists a strictly positive function f 2 L1.X ;m/ such that equa-
tion (1.3.7) holds. We shall show in Theorem 1.3.4 that this is also equivalent to the
condition that equation (1.3.8) holds for all g 2 L1.X ;m/. To show it, we need the
following Hopf’s maximal ergodic inequality.

Lemma 1.3.3. For a given function f 2 L1.X ;m/ and a positive number ˛, let E˛

be the set defined by E˛ D ¹x 2 X : supn
bG˛=nf .x/ > 0º. Then

Z

E˛

bG˛f .x/m.dx/ � 0. (1.3.9)

Proof. Let En
˛ D ¹x 2 X : max1�k�n

bG˛=kf .x/ � 0º. If x 2 En
˛ , then

bG˛f .x/C max
1�k�n

.bG˛=kf � bG˛f /
C.x/

� max
1�k�n

bG˛=kf .x/ D max
1�k�n

.bG˛=kf /
C.x/.

Noting that

max
1�k�n

.bG˛=kf � bG˛f /
C.x/ D max

1�k�n

�

k � 1

k

�

˛.bG˛
bG˛=kf /

C.x/

� ˛bG˛ max
1�k�n

.bG˛=kf /
C.x/,

we have
Z

En
˛

bG˛f .x/m.dx/

�
Z

En
˛

�

max
1�k�n

.bG˛=kf /
C.x/ � ˛bG˛. max

1�k�n
.bG˛=kf /

C/.x/
�

m.dx/

D
Z

X

max
1�k�n

.bG˛=kf /
C.x/m.dx/ �

Z

En
˛

˛bG˛. max
1�k�n

.bG˛=kf /
C/.x/m.dx/

�
Z

X

max
1�k�n

.bG˛=kf /
C.x/m.dx/ �

Z

X

˛bG˛. max
1�k�n

.bG˛=kf /
C/.x/m.dx/

� 0.
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Theorem 1.3.4. .E , F / is transient if and only if there exists a strictly positive func-
tion g 2 L1.X ;m/ such that bGg < 1 m-a.e.

Proof. Suppose that g 2 L1.X ;m/ satisfies g > 0 m-a.e. and bGg < 1 m-a.e. For
any f 2 L1C.X ;m/, define E˛ as in Lemma 1.3.3 by taking f � cg in place of f .

Then it holds that
R

E˛

bG˛.f � cg/.x/m.dx/ � 0. Since the set B D ¹bGf D 1º is
contained in E˛ up to a negligible set,

1

˛

Z

X

fdm �
Z

E˛

bG˛fdm � c

Z

E˛

bG˛gdm.

Hence, for any compact set K and integer N , .1=c/
R

X fdm � ˛
R

B\K
bG˛.g ^

N/dm. Since g^N 2 L2.X ;m/, letting ˛ tend to infinity, we have .1=c/
R

X fdm �
R

B\K.g ^ N/dm. Then let K " X , N " 1 and c " 1 to get
R

B gdm D 0 which
implies m.B/ D 0.

For a non-negative measurable function g 2 L1.X ;m/ \ L1.X ;m/, define a bi-
linear form Eg by

Eg.u, v/ D E.u, v/C .u, v/g �m, (1.3.10)

where .u, v/g �m D R

X u.x/v.x/g.x/dm.x/. Since E.u,u/ � Eg.u,u/ � E˛.u,u/
for ˛ � kgk1, .Eg , F / satisfies .E .1/, .E .2/ and .E .3/. Hence there corresponds a
semigroup ¹T g

t º and its resolvent ¹Gg
˛ º on L2.X ;m/ satisfying kT g

t f k � e˛0tkf k
and

Eg
˛ .G

g
˛f ,u/ D .f ,u/ (1.3.11)

for all f 2 L2.X ;m/,u 2 F and ˛ > ˛0. Furthermore, if E satisfies .E .4/, then so
does Eg . In particular, ¹Gg

˛ º can be extended to ˛ > 0 as a sub-Markov resolvent on
L1.X ;m/. Denote by g �G˛ the operator defined by .g �G˛/ f .x/ D g.x/G˛f .x/.

Lemma 1.3.5. Let g be a strictly positive function of L1.X ;m/ \ L1.X ;m/. Then,
for all f 2 L2.X ;m/ and ˛ > ˛0 C kgk1,

Gg
˛f D

1
X

nD0

.�1/nG˛ .g �G˛/
n f . (1.3.12)

If f 2 L1.X ;m/ \ L2.X ;m/, then for any ˛ > 0,

G˛f D Gg
˛f CGg

˛ .g �G˛/f D Gg
˛f CG˛.g �Gg

˛ /f . (1.3.13)

Moreover, Ggg � 1 m-a.e and .Eg , F / is transient.
If .E , F / is irreducible, then .Eg , F / is also irreducible. In particular, if .E , F /

is recurrent, then Ggg D 1 m-a.e. for any non-negative function g 2 L1.X ;m/ \
L1.X ;m/ such that

R

X g.x/m.dx/ > 0.
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Proof. Since k.g � G˛/f k � kgk1kf k=.˛ � ˛0/, the right-hand side of equation
(1.3.12) is well defined and belongs to F because it can be written as G˛h for h D
P1

nD0.�1/n .g �G˛/
n f 2 L2.X ;m/. Let us denote the right-hand side of .1.3.12/

by NGg
˛f . Then, for any u 2 F ,

Eg
˛ .

NGg
˛ f ,u/ D E˛

� 1
X

nD0

.�1/nG˛.g �G˛/
nf ,u

�

C
� 1
X

nD0

.�1/nG˛.g �G˛/
nf ,u

�

g �m

D
1
X

nD0

.�1/n
�

.g �G˛/
nf ,u

� �
1
X

nD1

.�1/n
�

.g �G˛/
nf ,u

�

D .f ,u/.

This implies NGg
˛f D G

g
˛f for ˛ > ˛0 C kgk1. By the sub-Markov property, Gg

˛

and NGg
˛ can be extended to the operators on L1.X ;m/ and NGg

˛f D G
g
˛f for any

f 2 L1.X ;m/ and ˛ > 0. Equation (1.3.13) is clear from equation (1.3.12).
To show the inequality Ggg � 1, for ˇ > ˛0, note that .E , F / can be considered

as a Dirichlet form on L2.X ; .ˇ C g/ � m/ for which .E .1/, .E .2/ and .E .3/ hold by
taking ˛0=ˇ < 1 instead of ˛0. Let us denote by ¹Kˇ

˛ º˛>0 the resolvent of .E , F / on
L2.X ; .ˇ C g/ �m/ given by

E.Kˇ
˛ f ,u/C ˛.Kˇ

˛ f ,u/.ˇCg/�m D .f ,u/.ˇCg/�m
for all u 2 F . Since

E
�

G
g

ˇ
. f̌ C gf /,u

�

C
�

G
g

ˇ
. f̌ C gf /,u

�

.ˇCg/�m
D E

g

ˇ

�

G
g

ˇ
. f̌ C gf /,u

�

D . f̌ C gf ,u/

D .f ,u/.ˇCg/�m

for all u 2 F , Gg

ˇ
. f̌ C gf / D K

ˇ
1 f . Since ¹Kˇ

˛ º is a sub-Markov resolvent by

Theorem 1.1.5, 0 � K
ˇ
1 f � 1 for all ˇ > ˛0 and f satisfying 0 � f � 1. Further-

more, since ¹Gg

ˇ
º can be extended to ˇ > 0 as a resolvent on L1.X ;m/, Kˇ

1 can be
extended to ˇ > 0 as a bounded linear operator on L1.X ;m/. If � > ˇ > ˛0 and
f 2 L1.X ;m/ \ L2.X ;m/, since

E
�

K
ˇ
1 f �K�

1 f ,u
�

C
�

K
ˇ
1 f �K�

1 f ,u
�

.ˇCg/�m
D .� � ˇ/ �K�

1 f � f ,u
�

m

D .� � ˇ/
�

1

ˇ C g
.K

�
1 f � f /,u

�

.ˇCg/�m
,
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it follows that

K
ˇ
1 f �K�

1 f D .� � ˇ/Kˇ
1

�

1

ˇ C g
.K

�
1 f � f /

�

.

By putting .ˇ C g/f=.� C g/ instead of f , it follows that

K
ˇ
1 f D K

�
1

�

ˇ C g

� C g
f

�

CK
ˇ
1

�

� � ˇ
ˇ C g

K
�
1

�

ˇ C g

� C g
f

��

D K
�
1

k�1
X

nD0

�

� � ˇ
ˇ C g

K
�
1

�n �ˇ C g

� C g
f

�

CKˇ
1

�

� � ˇ
ˇ C g

K
�
1

�k �ˇ C g

� C g
f

�

.

This relation also holds for 0 < ˇ � ˛0 < � . Hence, it holds that

K
ˇ
1 f D K

�
1

� 1
X

nD0

�

� � ˇ
� C g

K
�
1

�n �ˇ C g

� C g
f

��

.

Since K�
1 f � 1 for any � > ˛0 and f 2 L2.X ;m/ with f � 1, for 0 < ˇ � ˛0, Kˇ

1

can be considered as an operator on L1.X ;m/ satisfying Kˇ
1 1 � 1. Therefore,

Ggg D lim
ˇ!0

G
g

ˇ
g � lim

ˇ!0
K

ˇ
1 1 � 1.

This implies the transience of .Eg , F /.
If ¹G˛º is irreducible, then equation (1.3.12) implies the irreducibility of ¹Gg

˛ º. If
.E , F / is recurrent, then for any non-negative function g such that

R

X gdm > 0,
Ggg � G˛g for any ˛ � kgk1. Put B D ¹x : G˛f .x/ > 0º for a non-negative
function f . For a.e. x 2 X n B , since 0 D G˛f .x/ � .ˇ � ˛/Gˇ .1BG˛f /.x/ for
ˇ > ˛, it follows that Gˇ .1BG˛f / D 0 and hence Gˇ 1B D 0 a.e. on X n B . Hence
B is an invariant set of ¹Tt º and hence B D X a.e., that is Ggg > 0 by irreducibility.
Furthermore, it holds that Ggg � 1 for non-negative function g. Then by letting ˛
tend to 0 in equation (1.3.13), we obtain that

G
�

g.1 �Ggg/
� D Ggg � 1.

Hence, the recurrence of .E , F / yields that Ggg D 1 a.e.

By using Lemma 1.3.5, we have the following maximum principle.

Corollary 1.3.6. Suppose that .E , F / is transient and let f 2 L1.X ;m/\L1.X ;m/
be a non-negative function such that Gf .x/ D lim˛!0G˛f .x/ < 1 a.e. For any
Borel set B , if f .x/ D 0 for a.e. x 2 X n B , then

kGf k1 D ess.sup ¹Gf .x/ : x 2 Bº .
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In particular, there exists a strictly positive m-integrable function g such that
kGgk1 < 1.

Proof. Put g D ˇ1B and ˛ D 0 in equation (1.3.13). Then, by the last result of Lemma
1.3.5,

Gf .x/ D GˇIBf .x/CGˇIB .ˇIB �Gf / .x/ � GˇIBf .x/C ess. sup
y2B

Gf .y/.

Furthermore, since Gˇ1B .ˇ1B/ � 1, it follows that

lim
ˇ!1

GˇIBf D lim
ˇ!1

GˇIB .IBf / D 0,

which yields the first assertion. To show the latter assertion, take a strictly positive
bounded m-integrable function h such that Gh < 1 a.e. Put Bn D ¹x : Gh.x/ � nº
and gn.x/ D 2�n.1=n/1Bn

h.x/. Then Ggn � 2�n.1=n/G.1Bn
h/ � 2�n. Hence it is

enough to put g.x/ D P1
nD1 gn.x/.

Theorem 1.3.7. .E , F / is recurrent if and only if Gf D 1 m-a.e. for all f 2
L1C.X ;m/ \ L1.X ;m/ such that

R

X fdm > 0.

Proof. Suppose that .E , F / is recurrent and let B D ¹Gf D 1º. Then X n B is an
invariant set of ¹Tt º. In fact, for all t > 0 and g 2 L1C.X ;m/ such that g D 0 outside
of ¹Gf � nº,

1 > .Gf ,g/ � .TtGf ,g/ � .Tt .IBGf /,g/ D .IBGf ,bT tg/,

which implies thatbT tg D 0m-a.e. onB . Hence .Tt .IBu/,g/ D .IBu,bT tg/ D 0, that
is IXnBTt .IBu/ D 0. This implies 1XnBTtu D 1XnBTt .1XnBu/, that is X n B is an
invariant set of ¹Tt º. According to irreducibility, this implies thatm.B/ D 0 orm.X n
B/ D 0. Suppose that m.B/ D 0. By virtue of Lemma 1.3.1, since ¹x : Gf .x/ > 0º
is a non-trivial invariant set of ¹Ttº, Gf > 0 m-a.e. and hence G˛f > 0 m-a.e. for
any ˛ > 0. Then, by the resolvent equation, ˛GG˛f D Gf � G˛f � Gf < 1
m-a.e. which contradicts the hypothesis of recurrence.

If ˛G˛1 D 1 m-a.e. for all ˛ > 0, then .E , F / is called conservative.

Corollary 1.3.8. If .E , F / is recurrent, then it is conservative.

Proof. Letting ˇ tend to 0 inGˇ .1 � .˛�ˇ/G˛1/ D G˛1 � 1
˛

, we obtain thatG.1 �
˛G˛1/ � 1

˛
m-a.e. Since 1 � ˛G˛1 � 0, Theorem 1.3.7 implies that ˛G˛1 D 1.

Let us define the extended Dirichlet form .E , Fe/ of .E , F / as follows: Fe is the
family of functions u for which there exists an E-Cauchy sequence ¹unº � F such
that limn!1 un D u a.e. and E.u,u/ D limn!1 E.un,un/ exists.
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The sequence ¹unº is called an approximating sequence of u. Generally, E.u,u/
depends on the choice of the approximating sequence. But, if ˛0 D 0, then, for any
function u 2 Fe, E.u,u/ D limn!1 E.un,un/ is well defined independently of the
choice of the approximating sequence ¹unº. In fact, the symmetric part E.s/ becomes
non-negative and hence the triangle inequality holds. Hence, by

ˇ

ˇ

ˇ

E.un,un/
1=2 � E.um,um/

1=2
ˇ

ˇ

ˇ

� E.un � um,un � um/
1=2,

E.u,u/ exists. Furthermore, by the sector condition, for any u, v 2 Fe and their ap-
proximating sequences ¹unº, ¹vnº respectively, E.u, v/ D limn,m!1 E.un, vm/ is
well defined.

Theorem 1.3.9. Suppose that .E , F / is transient and ˛0 D 0. If .jf j,Gjf j/ < 1,
then Gf 2 Fe and satisfies

E.Gf ,u/ D
Z

X

f .x/u.x/m.dx/ (1.3.14)

for all u 2 Fe. In particular, .E.s/, Fe/ is a Hilbert space and there exists a strictly
positive bounded integrable function g and a constant Kg depending on g such that

Z

X

juj.x/g.x/m.dx/ � KgE.u,u/1=2 (1.3.15)

for all u 2 Fe.

Proof. Let . NE.s/, NF / be the Hilbert space determined as the abstract completion of
.E.s/, F /, that is Nu 2 NF is an equivalence class of E-Cauchy sequences ¹unº
and NE. Nu, Nu/ D limn!1 E.un,un/. By the sector condition .E .2/, NE. Nu, Nv/ D
limn,m!1 E.un, vn/ is well defined for Nu D ¹unº and Nv D ¹vnº. As in the last part
of the proof of Theorem 1.1.4, for any NE.s/-bounded sequence ¹unº � F , there exists
an element Nu 2 NF such that a subsequence of CesJaro means of ¹unº converges to Nu
relative to NE .

Assume that g 2 L1.X ;m/ \ L1.X ;m/ is a strictly positive function satisfy-
ing kGgk1 < 1. Since E.G˛g,G˛g/ D .g � ˛G˛g,G˛g/ � .g,Gg/, there ex-
ists a sequence ¹unº � F constituting a CesJaro sum of G˛n

g for ˛n # 0 which
is E-Cauchy. Put Nu 2 NF the equivalence class containing ¹unº. For any v 2 Fb ,
limn!1 E.un, v/ D NE. Nu, v/. On the other hand, since ¹unº is a convex combi-
nation of G˛n

g, limn!1 E.un, v/ D limn!1 E.G˛n
g, v/ D .g, v/ and hence

NE. Nu, v/ D .g, v/. In particular,
Z

X

jvj.x/g.x/m.dx/ � KgE.v, v/1=2 (1.3.16)

for any v 2 Fb and a constant Kg D K0 NE. Nu, Nu/1=2. Since any function of F can be
approximated by the functions of Fb , equation (1.3.16) holds for any v 2 F . If ¹vnº
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is an E-Cauchy sequence corresponding to Nv 2 NF , then equation (1.3.16) implies that
it converges to a function v in L1.X ;g �m/. By the definition of Fe , this implies that
v 2 Fe. Hence we can identify any element Nv 2 NF with a function of Fe. In particular,
.E , Fe/ is a Hilbert space and Gg 2 Fe. Assume that a non-negative function f
satisfies .f ,Gf / < 1. Then, for the function g given above, Gfn 2 Fe and satisfies
E.Gfn � Gfm,Gfn � Gfm/ D .fn � fm,Gfn � Gfm/ for fn D f ^ .ng/. Hence
limn,m!1 E.Gfn �Gfm,Gfn � Gfm/ D 0 which yields that Gf 2 Fe and that the
relation (1.3.14) holds. For a general function f , it is enough to consider f C and f �
separately.

1.4 An auxiliary bilinear form

As we have seen after Theorem 1.1.5, for any ˛ > 0, G˛ can be extended to a sub-
Markov resolvent on L1.X ;m/. Hence, G˛f can be further extended to all non-
negative measurable functions f byG˛f D limk!1G˛.f ^kg/ by using a strictly
positive function g 2 L1.X ;m/\L1.X ;m/. Similarly bG˛f is well defined for any
f 2 L1.X ;m/. Under this extension, a non-negative function u (resp. bu) is called
˛-excessive (resp. ˛-coexcessive) if

ˇG˛Cˇu � u .resp. ˇbG˛Cˇbu �bu/ m-a.e. (1.4.1)

for all ˇ. The 0-excessive function and 0-coexcessive function are called excessive
function and coexcessive function, respectively.

Theorem 1.4.1. The following conditions are equivalent to each other for u 2 F

(resp.bu 2 F ) and ˛ > ˛0.

(i) u is ˛-excessive (resp.bu is ˛-coexcessive).

(ii) E˛.u, v/ � 0 (resp.bu � 0 and E˛.v,bu/ � 0) for all v 2 F C.

(iii) E˛.u, v/ � 0 (resp.bu � 0 and E˛.v,bu/ � 0) for all v 2 F C \ C0.X/.

Proof. Since limˇ!1 ˇGˇu D u in L2.X ;m/, (i) ) (ii) follows from

E˛.u, v/ D lim
ˇ!1

¹ˇ.u � ˇGˇu, v/C ˛.u, v/º
D lim

ˇ!1
¹ˇ.u � ˇG˛Cˇu, v/C ˛.u � ˇGˇG˛Cˇu, v/º

D lim
ˇ!1

¹ˇ.u � ˇG˛Cˇu, v/C ˛.u � ˇGˇu, v/º
� 0.

The equivalence of (ii) and (iii) is obvious.


