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Preface
The mathematical concept of a distribution originates from physics. It was first used
by O. Heaviside, a British engineer, in his theory of symbolic calculus and then by
P.A.M. Dirac around 1920 in his research on quantum mechanics, in which he in-
troduced the delta-function (or delta-distribution). The foundations of the mathe-
matical theory of distributions were laid by S. L. Sobolev in 1936, while in the 1950s
L. Schwartz gave a systematic account of the theory. The theory of distributions has
numerous applications and is extensively used inmathematics, physics and engineer-
ing. In the early stages of the theory one used the term generalized function rather
than distribution, as is still reflected in the term delta-function and the title of some
textbooks on the subject.

This book is intended as an introduction to distribution theory, as developed by
Laurent Schwartz. It is aimed at an audience of advanced undergraduates or begin-
ning graduate students. It is based on lectures I have given at Utrecht and Leiden
University. Student input has strongly influenced the writing, and I hope that this
book will help students to share my enthusiasm for the beautiful topics discussed.

Starting with the elementary theory of distributions, I proceed to convolution
products of distributions, Fourier and Laplace transforms, tempered distributions,
summable distributions and applications. The theory is illustrated by several exam-
ples, mostly beginning with the case of the real line and then followed by examples
in higher dimensions. This is a justified and practical approach in our view, it helps
the reader to become familiar with the subject. A moderate number of exercises are
added with hints to their solutions.

There is relatively little expository literature on distribution theory compared to
other topics inmathematics, but there is a standard reference [10], and also [6]. I have
mainly drawn on [9] and [5].

The main prerequisites for the book are elementary real, complex and functional
analysis and Lebesgue integration. In the later chapters we shall assume familiarity
with some more advancedmeasure theory and functional analysis, in particular with
the Banach–Steinhaus theorem. The emphasis is however on applications, rather
than on the theory.

For terminology and notations we generally follow N. Bourbaki. Sections with
a star may be omitted at first reading. The index will be helpful to trace important
notions defined in the text.

Thanks are due to my colleagues and students in The Netherlands for their re-
marks and suggestions. Special thanks are due to Dr J. D. Stegeman (Utrecht) whose
help in developing the final version of the manuscript has greatly improved the pre-
sentation.

Leiden, November 2012 Gerrit van Dijk
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1 Introduction
Differential equations appear in several forms. One has ordinary differential equa-
tions and partial differential equations, equations with constant coefficients andwith
variable coefficients. Equations with constant coefficients are relatively well under-
stood. If the coefficients are variable, much less is known. Let us consider the singular
differential equation of the first order

xu′ = 0 . (∗)

Though the equation is defined everywhere on the real line, classically a solution is
only given for x > 0 and x < 0. In both cases u(x) = c with c a constant, different
for x > 0 andx < 0 eventually. In order to find a global solution, we consider a weak
form of the differential equation. Let ϕ be a C1 function on the real line, vanishing
outside some bounded interval. Then equation (∗) can be rephrased as

〈
xu′, ϕ

〉 = ∞∫
−∞
xu′(x)ϕ(x)dx = 0 .

Applying partial integration, we get〈
xu′, ϕ

〉 = − 〈u, ϕ + xϕ′〉 = 0 .

Take u(x) = 1 for x ≥ 0, u(x) = 0 for x < 0. Then we obtain

〈
xu′, ϕ

〉 = − ∞∫
0

[
ϕ(x)+ xϕ′(x)

]
dx = −

∞∫
0

ϕ(x)dx +
∞∫
0

ϕ(x)dx = 0 .

Call this function H, known as the Heaviside function. We see that we obtain the
following (weak) global solutions of the equation:

u(x) = c1H(x)+ c2 ,

with c1 and c2 constants. Observe that we get a two-dimensional solution space. One
can show that these are all weak solutions of the equation.

The functionsϕ are called test functions. Of course one can narrow the class of
test functions to Ck functions with k > 1, vanishing outside a bounded interval. This
is certainly useful if the order of the differential equation is greater than one. It would
be nice if we could assume that the test functions areC∞ functions, vanishing outside
a bounded interval. But then there is really something to show: do such functions
exist? The answer is yes (see Chapter 2). Therefore we can set up a nice theory of
global solutions. This is important in several branches of mathematics and physics.
Consider, for example, a point mass in R3 with force field having potential V = 1/r ,



2 Introduction

r being the distance function. It satisfies the partial differential equation ΔV = 0

outside 0. To include the origin in the equation, one writes it as

ΔV = −4πδ

with δ the functional given by 〈δ,ϕ〉 = ϕ(0). So it is the desire to go to global
equations and global solutions to develop a theory of (weak) solutions. This theory
is known as distribution theory. It has several applications also outside the theory
of differential equations. To mention one, in representation theory of groups, a well-
known concept is the character of a representation. This is perfectly defined for finite-
dimensional representations. If the dimension of the space is infinite, the concept of
distribution character can take over that role.



2 Definition and First Properties of Distributions
Summary
In this chapter we show the existence of test functions, define distributions, give some
examples and prove their elementary properties. Similar to the notion of support of
a function we define the support of a distribution. This is a rather technical part, but
it is important because it has applications in several other branches of mathematics,
such as differential geometry and the theory of Lie groups.

Learning Targets
� Understanding the definition of a distribution.
� Getting acquainted with the notion of support of a distribution.

2.1 Test Functions

We consider the Euclidean space Rn, n ≥ 1, with elements x = (x1, . . . , xn). One
defines ‖x‖ =

√
x2

1 + · · · + x2
n , the length of x.

Letϕ be a complex-valued function on Rn. The closure of the set of points {x ∈
Rn : ϕ(x) �= 0} is called the support ofϕ and is denoted by Suppϕ.

For any n-tuple k = (k1, . . . , kn) of nonnegative integers ki one defines the par-
tial differential operator Dk as

Dk =
(
∂
∂x1

)k1

· · ·
(
∂
∂xn

)kn
= ∂|k|

∂xk1
1 · · · ∂xknn

.

The symbol |k| = k1+· · ·+kn is called the order of the partial differential operator.
Note that order 0 corresponds to the identity operator. Of course, in the special case
n = 1 we simply have the differential operators dk/dxk (k ≥ 0).

A functionϕ : Rn → C is called a Cm function if all partial derivatives Dkϕ of
order |k| ≤m exist and are continuous. The space of all Cm functions on Rn will be
denoted by Em(Rn). In practice, once a value of n ≥ 1 is fixed, this space will be
simply denoted by Em.

A functionϕ : Rn → C is called a C∞ function if all its partial derivatives Dkϕ
exist and are continuous. A C∞ function with compact support is called a test func-
tion. The space of all C∞ functions onRn will be denoted by E(Rn), the space of test
functions on Rn byD(Rn). In practice, once a value of n ≥ 1 is fixed, these spaces
will be simply denoted by E andD respectively.

It is not immediately clear that nontrivial test functions exist. The requirement of
being C∞ is easy (for example every polynomial function is), but the requirement of
also having compact support is difficult. See the following example however.
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Example of a Test Function
First take n = 1, the real line. Letϕ be defined by

ϕ(x) =

⎧⎪⎨⎪⎩ exp
(
− 1

1− x2

)
if |x| < 1

0 if |x| ≥ 1 .

Then ϕ ∈ D(R). To see this, it is sufficient to show that ϕ is infinitely many times
differentiable at the points x = ±1 and that all derivatives at x = ±1 vanish. After
performing a translation, this amounts to showing that the function f defined by
f(x) = e−1/x (x > 0), f(x) = 0 (x ≤ 0) is C∞ at x = 0 and that f (m)(0) = 0 for
allm = 0,1,2, . . .. This easily follows from the fact that limx↓0 e−1/x/xk = 0 for all
k = 0,1,2, . . ..

For arbitraryn ≥ 1 we denote r = ‖x‖ and take

ϕ(x) =

⎧⎪⎨⎪⎩ exp
(
− 1

1− r 2

)
if r < 1

0 if r ≥ 1 .

Thenϕ ∈ D(Rn).
The spaceD is a complex linear space, even an algebra. And evenmore generally,

ifϕ ∈ D andψ a C∞ function, thenψϕ ∈ D. It is easily verified that Supp(ψϕ) ⊂
Suppϕ ∩ Suppψ.

We define an important convergence principle inD

Definition 2.1. A sequence of functions ϕj ∈ D (j = 1,2, . . .) converges toϕ ∈ D if
the following two conditions are satisfied:
(i) The supports of allϕj are contained in a compact set, not depending on j,
(ii) For any n-tuple k of nonnegative integers the functions Dkϕj converge uniformly

toDkϕ (j →∞).

2.2 Distributions

We can now define the notion of a distribution. A distribution on the Euclidean space
Rn (with n ≥ 1) is a continuous complex-valued linear function defined onD(Rn),
the linear space of test functions on Rn. Explicitly, a function T : D(Rn) → C is
a distribution if it has the following properties:
a. T(ϕ1 +ϕ2) = T(ϕ1)+ T(ϕ2) for allϕ1,ϕ2 ∈ D,
b. T(λϕ) = λT(ϕ) for allϕ ∈ D and λ ∈ C,
c. Ifϕj tends toϕ inD then T(ϕj) tends T(ϕ).

Instead of the term linear function, the term linear form is often used in the literature.


