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Preface

Typical piezoelectric structures of devices such as resonators, actuators, and transducers
have been known as targets for analysis with the consideration of coupled fields including
mechanical, electrical, and thermal, to name a few, in applications concerning electronic
functions for frequency control and detection and sensors for data collection. Indeed, uti-
lization of piezoelectric structures with primary objective of accurate vibration frequency
has been found in a wide arrange of practical problems and in-depth studies are required
particularly in the strongly demanded biological and chemical sensor technology as sens-
ing elements. To meet application needs, research work focusing on issues in the analysis
of piezoelectric elements in devices and structures for sensor and control applications has
been conducted for refined predictions of characteristics and behavior towards optimal de-
sign and improvement. Such methods and solutions are widely presented in conferences
and publications of applied mechanics, which is not well communicated with application
engineers of electronic devices for many reasons.

The core requirements for the analysis of piezoelectric structures are deformation, vi-
bration frequency, mode shapes, electric potential, and electric charge distribution, among
others. These results can be used for the precise design of device structures for sensor
and actuator applications with properties in terms of both mechanical and electrical vari-
ables. It is clear that the precise analysis is the key to good design which can be better
achieved with analytical techniques rather than empirical approaches through the combi-
nation of experiments and experiences of good and acceptable designs. To this goal, many
works have been done with analytical solutions based on approximate theories with the
consideration of configuration, materials, and complications. Such theories have also been
expanded to consider the coupled fields required in the analysis of devices with primary
considerations of thermal and electrical variables, which are also needed in the formula-
tion and estimation of electrical parameters. Indeed, such efforts have been successful in
certain applications with sophisticated methods and techniques for the analysis and de-
sign of devices and structures meeting the precision needs of product development such as
quartz crystal resonators based on the Mindlin plate equations and follow-up expansion
for the thermal considerations. In addition, the Mindlin plate equations have been ex-
tended to the finite element analysis for accurate and practical analysis. The advantage of
approximate theory has been well demonstrated with the accuracy and simplicity of such
analysis with both analytical techniques and numerical methods, showing benefits of ap-
proximate methods as one of the needed proofs for further research on the methods. It
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is certainly well accepted in device and structure analysis because similar efforts have
been made in related manners and the results in accelerated analysis have been embraced
through improvements.

To summarize recent progress on the analysis of piezoelectric structures in engineer-
ing applications, we have invited a few active researchers on this subject matter to provide
state-of-art accounts on a few topics with broad interests. From these contributions, we
can find original research work closely related to structural analysis, device design, funda-
mental theory, complication factors, and performance evaluation through both theoretical
and experimental approaches. Such theory and methods are important in many appli-
cations such as actuators, energy harvesters, sensors, resonators with the consideration
of novel materials (photostrictive, multiferroic, functionally graded, layered) and various
configurations (plates, shells, composites). The wave modes involved in the analysis cover
the commonly utilized surface acoustic waves (SAW), bulk acoustic waves (BAW) as the
key functioning modes for extensive studies. In addition, there are novel approaches to
establish new methods and techniques for the analysis of traditional device structures for
possible fast and accurate predictions of essential vibration properties such as the fre-
quency, mode shapes, charge distribution, and effects of complication factors such as sur-
face, thermal, acceleration, stress, electric field and drive-level, and so on. These results
can be used not only for the validation and optimization of designs, but also in the cal-
culation of electrical parameters of devices which are commonly functioning as electrical
elements in modern electronic circuits. The importance of such analytical techniques and
methods is increasingly apparent not only in the computer-based product development
process with advantages over time and cost but also international collaboration in the
manufacturing and product conceiving process. Clearly, major efforts pioneered through
such research should be appreciated and further advances with emphasis on the experi-
mental validation of analytical models and results to improve the product development
cycle without any gap left should also be encouraged.

The overall research on the acoustic wave devices and structures involving materi-
als, physical acoustics, and electrical parameters has been active in core groups meet-
ing the growing need of new types of electronic and intelligent products, and many of
the contributors of this volume have been playing leading roles in research and teach-
ing. More importantly, these active researchers are also heading different directions in
diversified communities and groups spanning geologically in the electronic, materials,
physical acoustic, and mechanics fields. Such activities will bring the urgent technical
challenges to be known by more engineers and scientists with the expected outcome of
enriched know ledge and increased involvement in research and studying. Undoubtedly,
this will make the subject matters more appealing to generations of students and prac-
tical engineers as we have been hoping. This book present the frontiers of piezoelectric
structures and devices research in a unified and grouped collection, and will certainly
help students, engineers, professors, and technologists to find the information and meth-
ods needed to guide their participation and anticipation in the field and industry. This
is the latest addition to our dedication of a broader professional and technical exchange
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through conferences such as the IEEE Frequency Control and Ultrasonics Symposia, the
SPAWDA, and other workshops and meetings we have been organizing in last decades.

Editors

Daining Fang Ji Wang Weiqiu Chen
Peking University Ningbo University Zhejiang University

August, 2012
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Chapter 1

Non-uniform Actuations of Plates and Shells with
Piezoelectric and Photostrictive Skew-quad
Actuator Designs

Jing Jiang1, HongHao Yue1, ZongQuan Deng1, and HornSen Tzou2

1School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, 150001,
China
2Institute of Applied Mechanics, StrucTronics and Control Lab., School of Aeronautics
and Astronautics, Zhejiang University, Hangzhou, 310027, China

Abstract Conventional distributed actuators laminated on shells and plates usually only
introduce uniform control forces and moments. Structural actuation and control based on
uniform control forces and moments have been investigated for over two decades. This
study is to exploit a new actuator design, i.e., a skew-quad (SQ) actuator system made of
piezoelectric and photostrictive materials. This new actuator system composed of four re-
gions can induce non-uniform control forces and moments owing to the uneven boundary
conditions of each region. The non-uniform distribution of actuator induced forces and
moments are defined based on the variation method and validated by ANSYS. The cou-
pling equation of a simply supported plate laminated with the piezoelectric SQ actuator is
derived. Distributed control action resulting from the non-uniform control moments is also
defined in the modal domain. Control actions of center-placed and corner-placed actuators
on a square plate are defined and compared. Furthermore, wireless non-contact actuation
of cylindrical shells coupled with the center-placed and corner-placed photostrictive SQ
actuator systems are evaluated respectively. The modal control actions change with re-
spect to the modes and the actuator coverage and thus, the actuator size and location are
very important to the modal control effectiveness. In order to improve the control actions
of the SQ actuator system, control schemes are designed for piezoelectric and photostric-
tive SQ actuator system respectively to regulate the sign of control forces of each region
and to improve actuation effectiveness.
Keywords distributed control, plate, cylindrical shell, piezoelectric and photostrictive
actuator design, non-uniform control action
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1.1 Introduction

Spatially distributed vibration control of flexible structures with distributed actuators has
been extensively studied for over two decades [1-5]. Earlier studies indicate that actuator
design and placements are crucial to effective actuation and control of distributed param-
eter systems (DPSs), e.g., shells and plates [6-11]. A number of different design configu-
rations, e.g., segmentation [12-16] and shaping [17-20], have been thoroughly evaluated
over the years. Most of these actuator designs usually induce uniform control forces and
moments. The inherent uniformly distributed control forces and control moments, how-
ever, often limit the control effectiveness and efficacy of structures. For example, a single-
piece centrally and symmetrically placed distributed actuator reveals control deficiencies
to anti-symmetrical modes of symmetrical structures [12,13]. This symmetry problem can
be resolved by spatially regulating the output characteristics of actuators [2,21], which can
be realized by spatially varying either control signals or thickness of actuators. Sullivan
et al. [2] proposed an approximation to a continuous non-uniform distribution of control
actions with a combination of gain-weighted and shaped transducers. In this study, a new
actuator design, with the two inner adjacent edges fixed and the other two edges freed,
is proposed and evaluated. The actuator’s boundary conditions are specifically selected
to realize the continuous non-uniform distribution of actuator induced control forces and
control moments. Based on the variation method [22], the non-uniform distribution func-
tions of induced forces and moments are calculated and validated. A new skew-quad
(SQ) actuator design composed of four regions of the above actuator configuration is
proposed and its actuation effectiveness to flexible structures is evaluated. Due to the
novel design and the boundary conditions of its each region, this new SQ actuator system
can induce multi-DOF (degree-of-freedom) non-uniform control forces and moments and
consequently lead to stronger control actions at its four corners. New SQ actuator systems
composed of piezoelectric and photostrictive actuation mechanisms are respectively dis-
cussed next. Control actions of piezoelectric and photostrictive SQ actuator systems with
different surface coverage, location and control scheme are respectively evaluated in case
studies.

Piezoelectric actuation is based on the converse piezoelectric effect. Distributed actu-
ation and control of shells and plates or DPSs have been investigated [21]. Among com-
monly used piezoelectric materials, flexible polymeric polyvinylidene fluoride (PVDF)
film is versatile in shell applications, owing to its flexibility, durability, sensitivity, manu-
facturability, etc. [23]. The coupling equations of a simply supported plate laminated with
the piezoelectric SQ actuator system is derived based on the generic distributed sensing
and control theories of thin shells [21,24,25]. Distributed control action is also defined
in the modal domain. Control effects of two locations, i.e., center-located and corner-
located, of the new SQ actuator are evaluated respectively. In each case, control actions
with different surface coverage (i.e., actuator sizes) are evaluated in the first part of this
chapter. Furthermore, in order to reduce control deficiencies on anti-symmetrical modes
of symmetrical plates when the new SQ actuator is centrally and symmetrically placed,
four segmented sensors are also used to regulate the sign of control voltages in each re-
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gion and their control effectiveness is also evaluated. Photostrictive actuation of shells is
discussed next and detailed actuation characteristics of shells are presented in the second
part of the chapter.

Conventional actuators, e.g., piezoelectric, require hard-wire connections to transmit
energy sources and control commands to activate the actuator mechanisms. The hard-
wire signal transmission busses can easily attract undesirable electric noises influenced
by electric and/or magnetic fields. Accordingly, noises and uncertainties are often in-
volved and control commands may not be accurately executed. Opto-mechanical actua-
tors controlled by high-energy lights represent a new class of non-contact precision ac-
tuators based on the photodeformation process [26]. Irradiating high-energy lights, such
as lasers or ultraviolet lights, on a certain class of photostrictive materials can trigger
the photodeformation and, consequently, the induced photodeformation can be used for
non-contact precision actuation and control. Light-driven opto-mechanical actuators have
many advantages over conventional hard-wired electromechanical actuators, such as 1©
high electrical output voltage, 2© non-contact actuation, 3© compact and lightweight, 4©
immune from electric/magnetic disturbances, and 5© remote control. One-dimensional
(beam type) and two-dimensional (plate type) opto-mechanical actuators with applica-
tions to distributed vibration control have been investigated [27-31]. Multi-DOF photo-
strictive actuators are proposed and their performance are evaluated [32,33]. In the second
part of this chapter, cylindrical shell control with the photostrictive SQ actuator system
made of four single-piece photostrictive slabs is investigated. Uniform and non-uniform
micro-photodeformations are defined first. Photostrictive SQ actuator system design and
its non-uniform actuation behavior are discussed, followed by modal control effectiveness
of a flexible cylindrical panel respectively coupled with the center-placed and corner-
placed new SQ actuator systems. Closed-loop actuation to improve control effective-
ness of unsymmetrical shell modes is also evaluated. Again, distributed control actions
of piezoelectric and photostrictive SQ actuator systems with different surface coverage,
location and control scheme are respectively reported in this chapter.

1.2 New SQ actuator system

As discussed previously, uniform actuation and control of shells and plates have been
studied over the years. Non-uniform actuation and control are emphasized in this chap-
ter. An actuator element with uneven boundary conditions is introduced first and its non-
uniform actuation behavior is evaluated. A new SQ actuator design based on the actuator
element is proposed and its actuation effectiveness to plates and shells are presented later.
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1.2.1 The distribution profile of induced non-uniform forces
and moments

When a control voltage is applied to an unconstrained piezoelectric actuator, the actua-
tor usually induces uniform strains or actuations. However, an actuator can induce non-
uniform strains when its boundary conditions are carefully manipulated. As shown in
Fig.1.1, an actuator element, with the two inner adjacent edges fixed and the other two
edges freed, can induce non-uniform strains or actuations. In this section, the non-uniform
deformation and actuation behavior is evaluated.

Fig. 1.1 An actuator element with fixed-fixed-free-free boundary conditions.

When a control voltage is applied to a single mono-axial piezoelectric piece fixed at
one end, the actuator element induces a uniform strain

S =
d31φ a

ha (1.1)

where d31 is the piezoelectric constant, φ a is a control voltage applied to the actuator,
and ha is the actuator thickness. The equivalent uniform tension stress T a

11 exerted by the
actuator can be expressed as

T a
11 =

d31Yaφ a

ha = SYa (1.2)

where Ya is Young’s modulus of the piezoelectric actuator. However, with the boundary
conditions shown in Fig.1.1, the deformation is obviously zero at the fixed side and the
deformation is the maximum at the free corner. This deformation profile (or an equiva-
lent force profile when fixed) can be calculated using the variation method. Because of
the linear relationship between the actuator deformation and the tension stress T a

11, the
magnitude of T a

11 is normalized, i.e., 1, to simplify the profile calculation. Thus, the true
deformation is the calculated value multiplied by the true actuator stress T a

11, once the
actuator material, control signal and dimensions are specified. Since the actuator is very
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thin, this is a plane problem in elasticity. According to the displacement boundary con-
ditions, this problem can be solved by the planar displacement variation method. The
displacements in the x and y directions can be respectively set as

u = u0 +∑
m

Amum (1.3)

= 0 +∑
m

Bm m (1.4)

where u and are the displacements in the x and y directions respectively; Am and Bm

are 2m independent coefficients; and u0, 0, um and m are functions set to satisfy the
given boundary conditions. The boundary values of u0 and 0 are equal to the known
boundary displacements; the values of um and m are zero on this boundary in this
case. The boundary conditions is illustrated in Fig.1.1, i.e., u(x,y)(x = 0,y = 0) = 0,
(x,y)(x = 0,y = 0) = 0, and hence u0 = 0, 0 = 0. The x and y displacement functions

are assumed to be

u(x,y) = xy(A1 +A2y+A3xy+A4x+A5xy2 +A6x2y+A7x2y2 +A8x2y3

+A9x3y2 +A10x3y3 +A11x3y4 + · · ·) (1.5)

(x,y) = xy(B1 +B2x+B3xy+B4y+B5x2y+B6xy2 +B7x2y2 +B8x3y2

+B9x2y3 +B10x3y3 +B11x4y3 + · · ·) (1.6)

The potential energy for a plane stress problem can be expressed as [22]

Vε =
Ya

2(1−µ2)

∫∫ [(
∂u
∂x

)2

+
(

∂
∂y

)2

+2µ
∂u
∂x

∂
∂y

+
(1−µ)

2

(
∂
∂x

+
∂u
∂y

)2
]

dxdy

(1.7)
where Vε is the deformation potential energy, µ is actuator’s Poisson’s ratio. The 2m
coefficients can be derived by

∂Vε
∂Am

=
∫∫

fxumdxdy+
∫

fxumds (1.8)

∂Vε
∂Bm

=
∫∫

fy mdxdy+
∫

fy mds (1.9)

where fx and fy are body forces, fx and fy are surface forces acted on the actuator re-
spectively in the x and y directions. As shown in Fig.1.1, the body forces fx = fy = 0 and
the surface forces fy = T a

11, fx = 0. The 2m independent coefficient Am and Bm can be
determined by solving Eqs.(1.5)-(1.9). The calculated displacement changes with respect
to the number of coefficients m. The parameters of this single-piece actuator element are
La = 0.05 m, W a = 0.05 m, Ya = 2.0×109 N/m2. The induced deformation in the y direc-
tion of the corner point (W a,La) with respect to coefficients m are summarized in Table
1.1. Analysis results indicate that when the number of coefficients m is set to 6, 7, 8, 9
and 10, solutions of the corner displacement is consistent with each other, i.e., the dis-
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placement solution is converged. In later calculations, the number of coefficients is set as
10.

Table 1.1 Solutions obtained by the variation method.

Number of coefficients 6 7 8 9 10

Corner displacement /(×10−11m) 2.638 2.661 2.635 2.634 2.637

In order to validate the results, the actuator deformation profile is also calculated by the
finite element software ANSYS. The two displacement curves calculated respectively by
ANSYS and by the variation method are plotted in Fig.1.2 and they do compare very
favorably. Thus, the deformation profile of one mono-axial actuator element with the
boundary condition of two inner adjacent edges fixed and the other two edges freed is
defined and the actuation force can also be derived accordingly.

Fig. 1.2 Comparison of actuator deformations.

When m is set to 10, the actuator deformation in the y direction shown in Fig.1.2 can
be expressed as

(x,y) = xy(B1 +B2x+B3xy+B4y+B5x2y+B6xy2

+B7x2y2 +B8x3y2 +B9x2y3 +B10x3y3) (1.10)

The total actuator deformation in the y direction can be defined by substituting y = La into
Eq.(1.10). Thus, the induced equivalent actuator strain can be written as

S′ =
T a

11 (x,La)
La =

SYa (x,La)
La (1.11)

The non-uniform actuation force of the actuator element can be defined accordingly. De-
sign of a new SQ actuator system and its control forces and moments are discussed next.
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1.2.2 Design of an SQ actuator system

A new SQ actuator system is made of four regions (Fig.1.3). Two inner adjacent edges of
each region of the SQ system are fixed to a stable cross fixture and the other two outer
adjacent edges are free. With these boundary conditions, each region can induce non-
uniform deformation when a control signal is applied to the actuator. Consequently, it can
induce non-uniform forces and moments when attached to plate or shell structures. The
deformation function of each region of this new actuator system is defined next. With the
deformation profile, the equivalent control forces and control moments are derived. Actu-
ation and control characteristics of piezoelectric and photostrictive SQ actuator systems
applied to plate and shell structures are respectively investigated later.

Fig. 1.3 A new SQ actuator system.

1.3 Plate control with a piezoelectric SQ actuator system

Piezoelectric SQ actuator design consists of four flexible mono-axial piezoelectric pieces
or actuator regions. Based on the above calculations, distributions of induced non-uniform
control forces and moments of each region are defined. Independent modal control actions
of a square simply supported plate attached with the center-located and the corner-located
SQ actuator are studied respectively in this section. In each case, control actions with
different surface coverage (i.e., actuator sizes) are evaluated. Control effectiveness and
modal actuations of these two locations are compared. Closed-loop control characteristics
with four segmented sensors are used to regulate the sign of control voltages in each region
and their control effectiveness is also evaluated in case studies.
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1.3.1 Non-uniform forces and moments induced by the SQ actuator
system

A new piezoelectric SQ actuator design consists of four flexible mono-axial piezoelectric
elements respectively fixed to a center cross fixture. Figure 1.4 illustrates an SQ actuator
system (with length La and width W a) centrally placed on a plate (with length a and
width b). When an electric control signal is applied to this actuator system, it induces
non-uniform control forces and moments to the plate. The directions and distributions
of induced control forces of each region are also shown in Fig.1.4. Non-uniform control
forces and moments are defined in this section; modal control effects of rectangular plates
are presented in the next section.

Fig. 1.4 A plate attached with a center-located SQ actuator system (not to scale).

According to the above variation procedures, the distribution profile of induced non-
uniform forces and moments of each region can be written as

f1(x) = B1xb1 +B2x2b1 +B3x2b2
1 +B4xb2

1 +B5x3b2
1

+B6x2b3
1 +B7x3b3

1 +B8x4b3
1 +B9x3b4

1 +B10x4b4
1 (1.12)

f2(y) = −(B1ya1 +B2y2a1 +B3y2a2
1 +B4ya2

1 +B5y3a2
1

+B6y2a3
1 +B7y3a3

1 +B8y4a3
1 +B9y3a4

1 +B10y4a4
1) (1.13)

f3(x) = B1xb1−B2x2b1−B3x2b2
1 +B4xb2

1 +B5x3b2
1

−B6x2b3
1 +B7x3b3

1−B8x4b3
1 +B9x3b4

1−B10x4b4
1 (1.14)

f4(y) = −B1ya1 +B2y2a1 +B3y2a2
1−B4ya2

1−B5y3a2
1

+B6y2a3
1−B7y3a3

1 +B8y4a3
1−B9y3a4

1 +B10y4a4
1 (1.15)

Thus, the actuator induced control forces and moments (i.e., Na
ii and Ma

ii) are
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Na
xx =

SYa

La/2
Yaha · { f4(y) · [us(x− x∗2)−us(x− x∗3)] · [us(y− y∗1)−us(y− y∗2)]

− f2(y) · [us(x− x∗1)−us(x− x∗2)] · [us(y− y∗2)−us(y− y∗3)]} (1.16)

Na
yy =

SYa

W a/2
Yaha · { f1(x) · [us(x− x∗2)−us(x− x∗3)] · [us(y− y∗2)−us(y− y∗3)]

− f3(x) · [us(x− x∗1)−us(x− x∗2)] · [us(y− y∗1)−us(y− y∗2)]} (1.17)

where us(·) is a step function. The two sets of step functions define the location of the
actuator induced forces. The actuator induced control moments are

Ma
xx = Na

xx ·
(h+ha)

2
(1.18)

Ma
yy = Na

yy ·
(h+ha)

2
(1.19)

Non-uniform control forces and moments induced by the new SQ actuator system are
used to control the rectangular plate. Modal control effectiveness of plates is evaluated
next.

1.3.2 Modal control

It is assumed that the transverse bending oscillation dominates the plate motion, i.e., the
in-plane membrane oscillations are neglected. The transverse governing equation of the
plate with the distributed actuator can be expressed as [21]

D
(

∂ 4u3

∂x4 +2
∂ 4u3

∂x2∂y2 +
∂ 4u3

∂y4

)
+ρhü3 + cu̇3 =

∂ 2Ma
xx

∂x2 +
∂ 2Ma

yy

∂y2 (1.20)

where D is the bending stiffness, D = Y h3/(1− µ2), Y is the plate Young’s modulus,
µ is the plate Poisson’s ratio; ρ is the plate mass density; u3 is the plate transverse dis-
placement; h is the plate thickness; c is the damping constant; and ü3 and u̇3 are the
plate transverse acceleration and velocity respectively. Note that the membrane control
force does not contribute any control action to the transversely oscillating plate. It is also
assumed that the plate is simply supported on all four edges. Based on the modal expan-
sion technique, the dynamic response of the system can be represented by a sum of the
responses of all participating modes, i.e.,

u3(x,y, t) =
∞

∑
m=1

∞

∑
n=1

η3mn(t)U3mn(x,y) (1.21)

where U3mn is the mnth transverse mode shape function and η3mn is the modal participation
factor. Using the modal expansion and imposing the modal orthogonality of natural modes
yields the mnth transverse modal equation of the plate [21].
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η̈mn +2ζmnωmnη̇mn +ω2
mnηmn = Fc

mn (1.22)

where ζmn is the modal damping ratio, ωmn is the natural frequency of the mnth mode, and
the modal control force Fc

mn is

Fc
mn =

1
ρhNmn

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂ 2Ma

xx

∂x2 +
∂ 2Ma

yy

∂y2

)
U3mn(x,y)dxdy (1.23)

where Nmn is defined by the squared mode shape functions:

Nmn =
∫

x

∫

y
U2

3mndxdy (1.24)

In case studies, control actions and comparison of a center-located and a corner-located
piezoelectric SQ actuator system on a square plate are respectively evaluated next.

1.3.3 Case studies: control of plates

As mentioned above, distributed modal actuations and control of a center-located and a
corner-located piezoelectric SQ actuator system on a square plate are respectively investi-
gated. Their modal actuation characteristics and effectiveness of these two cases are also
compared.

1.3.3.1 Center-located piezoelectric SQ actuator on square plates

In this case, the SQ actuator is symmetrically located at the plate center and both the
actuator and the plexiglas plate are square, that is a = b and La = W a. Dimensions of the
square plate are 0.2 m × 0.2 m × 0.0016 m (a× b× h). Material properties of the plate
and the actuator are listed in Appendix: Table 1.A1 and Table 1.A2. Since the structure
and the actuator system are symmetrical, the origin is assumed at the center of the plate
(Fig.1.4). Thus, the transverse mode shape function of a simply supported plate (with
dimensions a×b) in this coordinate system is

U3mn = sin




mπ
(

x+
a
2

)

a


 · sin




nπ
(

y+
b
2

)

b


 (1.25)

where a and b are respectively the length and the width of the plate. Effects of actuator
sizes defined by the length ratio ∆ , i.e., ∆ = La/a (actuator length/plate length), are also
evaluated. Substituting Eqs.(1.18), (1.24) and (1.25) into the first term of the right side of
the modal control force in Eq.(1.23) yields
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4
ρhab

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂ 2Ma

xx

∂x2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa

La

2

Yaha (h+ha)
2

∫ + a
2

− a
2

∫ + b
2

− b
2

∂ 2

∂x2 { f4(y) · [us(x− x∗2)

−us(x− x∗3)] · [us(y− y∗1)−us(y− y∗2)]
− f2(y) · [us(x− x∗1)−us(x− x∗2)] · [us(y− y∗2)−us(y− y∗3)]}U3mn(x,y)dxdy

= SM̃xmn (1.26)

Similarly, substituting Eqs.(1.18), (1.19), (1.24) and (1.25) into the second term of the
modal control force in Eq.(1.23) gives

4
ρhab

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂ 2Ma

yy

∂y2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa

W a

2

Yaha (h+ha)
2

∫ + a
2

− a
2

∫ + b
2

− b
2

∂ 2

∂y2 { f1(x) · [us(x− x∗2)

−us(x− x∗3)] · [us(y− y∗2)−us(y− y∗3)]
− f3(x) · [us(x− x∗1)−us(x− x∗2)] · [us(y− y∗1)−us(y− y∗2)]}U3mn(x,y)dxdy

= SM̃ymn (1.27)

The actuator is located from coordinates x∗1 to x∗3 and y∗1 to y∗3. As shown in Fig.1.4, x∗1 =
−La/2, x∗2 = 0, x∗3 = La/2, y∗1 =−W a/2, y∗2 = 0, and y∗3 = +W a/2. Substituting Eqs.(1.26)
and (1.27) into Eq.(1.23), one obtains

Fc
mn = S · (M̃xmn + M̃ymn) = S · F̃c

mn (1.28)

Thus, the total control action F̃c
mn (i.e., the magnitude of control moments) becomes

F̃c
mn = M̃xmn + M̃ymn (1.29)

where control actions M̃xmn and M̃ymn denote “actuation magnitudes” which are used as
comparison indices in future comparisons. Note that for an unbiased comparison, the
magnitude and sign of control voltages applied to the actuator system remains unchanged
in all cases. The modal control effectiveness of the actuator can be evaluated with these
control actions. Recall that the control action is determined by the material properties,
actuator and plate dimensions, the mode number and the location of the actuator. Modal
control actions of the new SQ actuator with different length ratios (∆ = 1/4, 1/3, 1/2, 2/3,
3/4, 1) or actuator coverage are calculated and summarized in Table 1.2.

This table suggests that the new SQ actuator has control effects on square plates only
when both m and n are odd wave numbers. Because the location of the actuator is center-
located and the mode shape function of the simply supported plate, the symmetrical
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modes, such as (1,1), (1,3), (3,3), etc., are effectively controlled. But the anti-symmetrical
modes, such as (2,2), (2,4), etc., are not controllable, because the positive and negative
control actions cancel out each other. To further evaluate the SQ actuator, plot this ac-
tuators’ control actions of the square plate with respect to the actuator/plate length ratio
(∆ = La/L) in Fig.1.5. Because it has no control effects on even modes when m = 2, e.g.,
(2,1), (2,2), (2,3), only the control actions of odd mode groups of m = 1 (Fig.1.5(a)) and
m = 3 (Fig.1.5(b)), e.g., (1,1), (1,2), (1,3), (3,1), (3,2), and (3,3), are plotted.

Fig. 1.5 Control actions of the center-located SQ actuator. (a) (1,1), (1,2), (1,3) modes; (b) (3,1), (3,2),
(3,3) modes.

From these two figures, it can be observed that the actuator has identical control actions
on modes (1,3) and (3,1), due to symmetry. The control actions on all controllable modes
fluctuate with respect to the length ratio, i.e., the actuator coverage. Thus, the actuator
size is very important to the overall modal control effectiveness. Figure 1.5(b) shows
that the new SQ actuator performs best on mode (3,3) when the length ratio approaches
to 1. This is contributed by the actuator configurations and the mode shape function of
simply supported plates. Note that the (3,3) actuation magnitude of the SQ actuator is
much larger (about 48%) than that of the multi-DOF actuator [34], due to its non-uniform
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boundary conditions, when ∆ = 1. As shown in Fig.1.6, the plate nodal lines of mode
(3,3) and the actuator area are respectively drawn in dashed lines and solid lines, and
the mode shapes are represented by “+” and “–” regions. Because in this case the sign
and magnitude of control voltage do not change, the real control action of mode (3,3)
is the difference between the control actions of “+” and “–” regions. Since the new SQ

Fig. 1.6 Control effectiveness of mode (3,3).

actuator induces non-uniform control forces and moments, it performs better at its four
corners. When the length ratio approaches to 1, the induced control actions on the “+”
regions would be much more significant than those on the “–” regions.

Thus, this center-located SQ actuator is only effective to odd modes and ineffective to
even modes. Accordingly, control effectiveness of a corner-located SQ actuator system is
evaluated next.

1.3.3.2 Corner-located piezoelectric SQ actuator on square plates

In this case, the SQ actuator is located at one quadrant of the square plate. The dimen-
sional and material properties of the square plate and those of the actuator are the same as
before. In order to simplify the calculation, the origin of the coordinate system is assumed
at the center of the actuator, as shown in Fig.1.7.

Following the previous procedures, one can define the modal control force of the
corner-located actuator system.

Fc
mn =

1
ρhNmn

∫ + 3a
4

− a
4

∫ + 3b
4

− b
4

(
∂ 2Ma

xx

∂x2 +
∂ 2Ma

yy

∂y2

)
U3mn(x,y)dxdy (1.30)

where the modal shape function in this new coordinate system can be rewritten as

U3mn = sin




mπ
(

x+
a
4

)

a


sin




nπ
(

y+
b
4

)

b


 (1.31)

and
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Fig. 1.7 The SQ actuator system is located at one corner of the plate.

Nmn =
∫

x

∫

y
U2

3mndxdy =
∫ + 3a

4

− a
4

∫ + 3b
4

− b
4

sin2




mπ
(

x+
a
4

)

a


sin2




nπ
(

y+
b
4

)

b


dxdy =

ab
4

(1.32)
Substituting Eqs.(1.31) and (1.32) into Eq.(1.30) yields the two control moments in-

duced by the corner-placed actuator system:

4
ρhab

∫ + 3a
4

− a
4

∫ + 3b
4

− b
4

(
∂ 2Ma

xx

∂x2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa
1
2

La
Yaha (h+ha)

2

∫ + 3a
4

− a
4

∫ + 3b
4

− b
4

∂ 2

∂x2 { f4(y) · [us(x− x∗2)−us(x− x∗3)]

·[us(y− y∗1)−us(y− y∗2)]− f2(y) · [us(x− x∗1)−us(x− x∗2)]
·[us(y− y∗2)−us(y− y∗3)]}U3mn(x,y)dxdy

= SM̃xmn (1.33)

4
ρhab

∫ + 3a
4

− a
4

∫ + 3b
4

− b
4

(
∂ 2Ma

yy

∂y2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa
1
2

W a
Yaha (h+ha)

2

∫ + 3a
4

− a
4

∫ + 3b
4

− b
4

∂ 2

∂y2 { f1(x) · [us(x− x∗2)−us(x− x∗3)]

·[us(y− y∗2)−us(y− y∗3)]− f3(x) · [us(x− x∗1)−us(x− x∗2)]
·[us(y− y∗1)−us(y− y∗2)]}U3mn(x,y)dxdy

= SM̃ymn (1.34)
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Similarly, the total control action F̃c
mn (i.e., the magnitude of control moments) becomes

F̃c
mn = M̃xmn + M̃ymn (1.35)

Assume the length ratio is set as its maximal value, i.e., ∆ = 1/2, comparisons of mode
control actions between the center-located actuator and the corner-located actuator are
summarized in Table 1.3. This table indicates that the corner-located actuator leads to
control effectiveness on all of the first nine modes. It provides the same control actions on
modes (1,2) and (2,1), (2,3) and (3,2), and less control actions on modes (1,1), (1,3) and
(3,3), as compared with the center-located actuator when the length ratio is 1/2.

Table 1.3 Comparison of mode control actions (∆ = 1/2). (unit: N/kg)

Mode Corner-located Center-located

(1,1) –2323 –4646

(1,2) –5641 0

(1,3) 314 7230

(2,1) –5641 0

(2,2) –7963 0

(2,3) –3509 0

(3,1) –7544 7230

(3,2) –3509 0

(3,3) –784 –1566

Magnitudes of control actions on all controllable modes also fluctuate with respect to
the length ratio or actuator size, as shown in Figs.1.8(a)-(c). These figures indicate that
when the length ratio is ∆ = 1/2, the actuator introduce the maximal control action on
modes (1,1), (1,2), (2,1), and (3,1). However, it does not provide the best control action
on modes (1,3), (2,2), (2,3), (3,2), (3,3). Unlike the center-located actuator, the maximal
coverage size of corner-located actuator is only 1/4, i.e., ∆ = 1/2.

The comparison between Fig.1.8 and Fig.1.5 suggests that the center-located actuator
performs better on symmetrical modes, such as (1,1), (1,3), (3,3), etc. The corner-located
actuator improves the control actions on anti-symmetrical modes, but degrades the control
effects on symmetrical modes. Another method to improve the modal control effective-
ness of the center-located SQ actuator is discussed next.
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Fig. 1.8 Modal control actions and size relationship of the corner-located SQ actuator system. (a) (1,1),
(1,2), (1,3) modes; (b) (2,1), (2,2), (2,3) modes; (c) (3,1), (3,2), (3,3) modes.

1.3.4 Closed-loop actuation with collocated sensors and actuators

As discussed previously, the corner-located actuator can control more modes than the
center-located actuator. However, it is less effective than the center-located actuator in
symmetrical plate modes, such as the (1,1) mode. To improve the control effectiveness,
the sensor segmentation technique and closed-loop feedback [21] are used to enable the
center-located SQ actuator to control all of the first nine modes. As shown in Fig.1.9,

Fig. 1.9 A plate attached with four sensor segments and a center-located SQ actuator system.
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four segmented biaxial piezoelectric sensors are located symmetrically to the plate’s cen-
ter. Each sensor segment responds to the local motion state and generates a signal output
which is fed back to its collocated region of the SQ actuator. In order to prevent the sensors
from short-circuiting, it is assumed that a small gap is left open between the two adjacent
sensor segments, but it is ignored in the mathematical model due to its smallness.

Because the sensing signals are primarily contributed by bending strains of the plate in
the transverse oscillation, membrane strains due to in-plane oscillation are ignored. The
mnth unit modal sensing signal of distributed piezoelectric sensor φ s

mn can be expressed as
a function of mode shape functions [13]:

φ s
mn =−hs

[
h31rs

1

(
∂ 2U3mn

∂x2

)
+h32rs

2

(
∂ 2U3mn

∂y2

)]
(1.36a)

φ s
mn =−(hs/As)

∫

As

[
h31rs

1

(
∂ 2U3mn

∂x2

)
+h32rs

2

(
∂ 2U3mn

∂y2

)]
dAs (1.36b)

where hs is the thickness of the distributed piezoelectric sensor layer, As is the ef-
fective electrode sensor area, h31 and h32 are piezoelectric constants, rs

i denotes the
distance measured from the neutral surface to the mid-plane of the sensor layer, and
rs

i = (h + hs
i )/2. Note that rs

1 = rs
2 = (h + hs)/2 for uniform-thickness plates and sen-

sor segments. Equation (1.36a) denotes the spatial distribution and Eq.(1.36b) denotes the
averaged signal output of the sensor segment. It is assumed that four distributed piezo-
electric sensors cover the whole surface of the plate. In order to simplify the calculation,
the origin of the coordinate system is set at the center of the plate. For the mnth mode, the
output signals φ s

mn of four sensor segments are respectively [12]

φ s1
mn = (hs/As1)[h31rs

1(mπ/a)2 +h32rs
2(nπ/b)2]

×
∫ a/2

0

∫ b/2

0
sin[mπ(x+a/2)/a]sin[nπ(y+b/2)/b]dxdy

= 4Smn[cos(mπ/2)− cos(mπ)] · [cos(nπ/2)− cosnπ] (1.37)
φ s2

mn = 4Smn[1− cos(mπ/2)] · [cos(nπ/2)− cosnπ] (1.38)
φ s3

mn = 4Smn[1− cos(mπ/2)] · [1− cos(nπ/2)] (1.39)
φ s4

mn = 4Smn[cos(mπ/2)− cosmπ][1− cos(nπ/2)] (1.40)

where Smn = (hs/mn)[h31rs
1(m/a)2 +h32rs

2(n/b)2] is the mnth modal sensitivity. With the
above four signal equations, the output signals exist for most modes, except for either m or
n is multiples of 4. The sign of feedback voltages to each region of the SQ actuator is reg-
ulated for different plate modes, and φ s1

mn = (−1)m · (−1)nφ s3
mn, φ s2

mn = (−1) · (−1)nφ s3
mn,

φ s4
mn = (−1) · (−1)mφ s3

mn. Again, it is assumed that the amplitude of feedback voltage
of each sensor is kept at a constant maximum |φ a|, and only the sign of each sensor’s
voltage is regulated with respect to the wave number, i.e., φ s1

mn = (−1)m · (−1)n|φ a|,
φ s2

mn = (−1) · (−1)n|φ a|, φ s3
mn = |φ a|, φ s4

mn = (−1) · (−1)m|φ a|, for both m and n are odd
number modes, such as modes (1,1), (1,3), (3,1), (3,3). Thus, this SQ actuator would in-
duce identical control actions as that without four sensors. However, for either m or n is
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even mode, such as (1,2), (2,1), (2,2), (2,3), (3,2), regulating the sign of feedback voltages
can introduce control effects to even modes and this is different from the earlier case with
a single uniform control voltage. When this SQ actuator is laminated with a plate, the
desired induced control forces/moments on even modes of its four regions are illustrated
in Fig.1.10.

Fig. 1.10 A plate attached with a center-located SQ actuator system and collocated sensor segments. (a)
(2,1), (2,3) modes; (b) (2,2) mode; (c) (3,2) mode.

Based on these signal output, the actuator induced modal control actions are

4
ρhab

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂ 2Ma

xx

∂x2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa
1
2

La
Yaha (h+ha)

2

×
∫ + a

2

− a
2

∫ + b
2

− b
2

∂ 2

∂x2 {−(−1)m · f4(y) · [us(x− x∗2)−us(x− x∗3)]
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·[us(y− y∗1)−us(y− y∗2)]+(−1)n · f2(y) · [us(x− x∗1)−us(x− x∗2)]
·[us(y− y∗2)−us(y− y∗3)]}U3mn(x,y)dxdy

= SM̃xmn (1.41)

4
ρhab

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂ 2Ma

yy

∂y2

)
U3mn(x,y)dxdy

=
4

ρhab
SYa
1
2

W a
Yaha (h+ha)

2

×
∫ + a

2

− a
2

∫ + b
2

− b
2

∂ 2

∂y2 {(−1)m · (−1)n · f1(x) · [us(x− x∗2)−us(x− x∗3)]

·[us(y− y∗2)−us(y− y∗3)]− f3(x) · [us(x− x∗1)−us(x− x∗2)]
·[us(y− y∗1)−us(y− y∗2)]}U3mn(x,y)dxdy

= SM̃ymn (1.42)

where
S = (d31 · |φ a|)/ha (1.43)

Closed-loop control actions of the new SQ actuator with different length ratios (∆ =
1/4, 1/3, 1/2, 2/3, 3/4, 1) are summarized in Table 1.4.

Table 1.4 suggests that the actuator induces identical actuation magnitudes on modes
(1,2) and (2,1), (1,3) and (3,1), (2,3) and (3,2). Comparing Table 1.2 with Table 1.4 sug-
gests that when both n and m are odd numbers, such as (1,1), (1,3), (3,1), (3,3) mode,
either with or without segmented sensors, the control actions of the SQ actuator system
are identical. Thus, with the collocated sensors, the control actions for even modes can
be improved without degrading the control actions for odd modes. The control actions
and the size relationship of the first nine modes are plotted in Fig.1.11 to further illustrate


