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Preface

This book presents advanced stochastic models and simulation methods for random
flows and transport of particles by turbulent velocity fields and flows in porous me-
dia. Two main classes of models are constructed: (1) turbulent flows are modeled as
synthetic random fields which have certain statistics and features mimicking those of
turbulent fluid in the regime of interest, and (2) the models are constructed in the form
of stochastic differential equations for stochastic Lagrangian trajectories of particles
carried by turbulent flows. In both these classes, we develop Random flight models
for the trajectories of tracer particles in turbulence and in flows through porous media.
The boundary value problems in stochastic formulation for high-dimensional PDEs
present a powerful research instrument in many modern branches of science and tech-
nology, in particular, in the turbulence simulation, transport in porous media, random
load analysis in mechanical systems, geodesy, composite materials, elastography for
biological tissues, acoustic scattering from rough surfaces, defects in metals, X-ray
diffraction analysis of epitaxial layers, dislocations in crystals, etc. Interesting exam-
ple is related to the coagulation of particles carried in turbulent flows governed by
Smoluchowski nonlinear systems of coagulation equations with random coefficients.
We present detailed results of numerical simulations for these applied problems and
discuss stochastic interpretations related to the physics of the relevant problems.

A considerable amount of material is devoted to the random field description and
different stochastic simulation methods, mainly the stochastic spectral and Fourier-
wavelet methods for homogeneous vector Gaussian random fields, and the Karhunen–
Loève expansions for inhomogeneous random fields. Of special interest are the so-
called partially homogeneous random fields which we use in the development of sto-
chastic models for boundary value problems with random boundary conditions, in
particular, for Stokes flows, which are presented in the last chapter.

The book is written for mathematicians, physicists, and engineers studying pro-
cesses associated with probabilistic interpretation, researchers in applied and computa-
tional mathematics, in environmental and engineering sciences dealing with turbulent
transport and flows in porous media, as well as nucleation, coagulation, and chem-
ical reaction analysis under fluctuation conditions. It can be of interest for students
and post-graduates studying numerical methods for solving stochastic boundary value
problems of mathematical physics and dispersion of particles by turbulent flows and
flows in porous media.

Acknowledgments. Support of the Russian Fund of Basic Research under grant 12-
01-00635-à is kindly acknowledged.

Berlin, Novosibirsk, June 2012 Karl K. Sabelfeld
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Chapter 1

Introduction

1.1 Why random fields?

Probabilistic approach and stochastic simulation are becoming more and more popular
in all branches of science and technology, especially in problems where the data are
randomly fluctuating, or they are highly irregular in a deterministic sense. As a rule,
in such problems it is very difficult and expensive to carry out measurements to ex-
tract the desired data. Important examples we deal with in this book are the turbulent
flow simulation [146], and construction of flows through porous media [34, 65]. The
temporal and spatial scales of the input parameters in this class of problems vary enor-
mously, and their behavior is very complicated, so that there is no chance of describing
it deterministically. In the stochastic approach, the input parameters are considered as
random fields, and one needs to know only a few of their functions, such as the mean
and correlation tensor, whose behavior in time and space is much more regular, so that
usually it is considerably easier to extract them through measurements.

In most applications, it is assumed that the random fields are Gaussian, or that they
can be obtained by a functional transformation of Gaussian fields. Generally, it is very
difficult to construct efficient simulation methods for inhomogeneous random fields,
even if they are Gaussian. Therefore, the most developed methods deal with homo-
geneous or quasihomogeneous random fields where the characteristic scales of the
variations of the means of the field are considerably larger than the correlation scale.
There are highly intensive studies and literature concerned with the simulation of ho-
mogeneous random fields.

The most important class of simulation methods seeks to construct stochastic mod-
els based on spectral representations. We shall consider general real-valued Gaussian
homogenous random fields u.x/ defined on the multidimensional Euclidean space
IRd . Under quite general conditions, a real-valued Gaussian homogenous random field
u.x/ can be represented through a stochastic Fourier integral [146]:

u.x/ D
Z

IRd
e� 2� ik�xE1=2.k/ QW .dk/, (1.1)

where QW .dk/ is a complex-valued white noise random measure on IRd , with QW .B/ D
QW .�B/, h QW .B/i D 0, and h QW .B/ QW .B 0/i D �.B \ B 0/ for the Lebesgue measure
� and all Lebesgue-measurable sets B , B 0. We use angle brackets h�i to denote statis-
tical (ensemble) averages. The spectral density E.k/ is a nonnegative even function
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representing the strength (energy) of the random field associated to the wavenumber k,
meaning the length scale 1=jkj and direction k=jkj.

We mention several simulation methods based on the spectral representation: (i) the
discrete spectral method (DSM) [226] which is simply a deterministic discrete approx-
imation of the Fourier Stieltjes integral; (ii) the randomized spectral method (RSM)
[102, 142, 191]) which is based on a randomized approximation of the same Fourier
Stieltjes integral; (iii) the Fourier wavelet method (FWM) [49,50,104,118] is a differ-
ent approximation of the Fourier Stieltjes integral based on reexpansion in a special
family of orthogonal functions, and is obtained by an expansion of the Gaussian white
noise in a wavelet basis.

Another class of methods includes methods which deal with the expansions in the
physical space, in the relevant system of orthonormal functions: (i) methods based on
expansions in the wavelet basis (WM) [231,264]; (ii) the Karhunen–Loève expansion
method (K–L) [230,249] based on the expansions in eigenfunctions of the correlation
operator – note that this also works for inhomogeneous random fields; (iii) the moving
averages mMethod (MAM) [140], based on the representation of the random field
in the form of a convolution of a deterministic function (more precisely, a Fourier
transform of a square root of the spectral function) with the Gaussian white noise in the
physical space. We mention the the fast Fourier transform spectral method (FFTSM)
(e. g., see [39, 168]) which is a particular case of the discrete spectral method whose
nodes are chosen as a diadic mesh to apply further the fast Fourier method. The matrix
factorization method (MFM) [40, 224] and the circulant embedding method (CEM)
[41] are based on the Holessky decomposition of the covariance matrix.

The methods listed above all have their advantages as well as their disadvantages.
For example, DSM, RSM, and MAM are simple and convenient for implementation;
they provide the possibility to calculate the values of the random field at some points
on demand. But in multidimensional cases, DSM and MAM are less efficient. FFTSM
is also simple for implementation, but it calculates the random field only on a diadic
mesh and has therefore a disadvantage that the samples are periodic. Furthermore,
FWM and WM models are efficient for simulating multiscale processes but they are
difficult in implementation.

The K–L model is highly efficient but is not universal, since it is necessary to solve
the eigenvalue problem for the correlation operator.

More details about the above mentioned methods can be found in [25, 47, 54, 103,
104, 165] where a comparative analysis of some methods is also given. In particular,
in [25, 47], RSM and FWM are compared by analyzing a fractal random field with
the spectral function F.k/ D k�˛ .1 < ˛ < 3/, where the calculated structure func-
tion was compared with the exact result. The main conclusion is that to construct the
samples of a multiscale random field with a fixed desired accuracy, the cost of RSM
is considerably lower than that of FWM if lg.lmax=lmin/ � 4 where lmin and lmax are
the minimal and maximal spatial scales of the random field, respectively. In [104] we
have shown that a logarithmically uniform subdivision of the spectral space (we have
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introduced such a subdivision in [119]) when calculating two- and a few-point statis-
tical characteristics of the fractal random field, the RSM is more efficient than FWM
for all values of lmax=lmin. In particular, when calculating the structure function of a
multiscale random field with ˛ D �5=3, lmax=lmin D 1012 it was found that the cost
of FWM was 12 times larger than that of RSM; results were obtained for 9 decades,
with a fixed accuracy.

Up to now, we discussed the calculation of statistical characteristics by ensemble
averaging over the samples constructed by the relevant method. In many practical
problems (e. g., in underground hydrology) only data obtained through spatial aver-
aging is at hand, for instance, statistical characteristics obtained by spatial averages,
or over a family of Lagrangian trajectories generated in one fixed sample of the field
(e. g., see [35, 65]). If the random field is ergodic, then the ensemble averages can be
well approximated by the appropriate space averages. This is very important when a
boundary value problem with random parameters is solved: then, in contrast to the en-
semble averaging, we have to solve the problem only once and then make the relevant
space averaging. In practical calculations, to increase the efficiency, it is sometimes
reasonable to combine both the space and ensemble averaging, e. g., see [99,120]. The
same technique is used also in simulation of turbulent transport [63, 240].

And so we stress that good ergodic properties of the constructed random field model
are very important and highly desired in practical problems. In [104] we studied the
ergodic properties of RSM and FWM. Calculations of structure functions through en-
semble and space averaging have shown that the ergodic properties of FWM are much
better than those of RSM. Therefore, to obtain a good approximation through space av-
eraging in RSM, it is necessary to take many thousands of harmonics per each decade.
However, this conclusion was made only for random processes (i. e., random fields
depending on one scalar variable).

Thus, as discussed above, random fields provide a useful mathematical framework
for representing disordered heterogeneous media in theoretical and computational
studies. The random fields may appear in a very simple form in the problem, and then
the focus is only on a detailed and accurate simulation of the samples. For instance, in
many optic problems there is a need to simulate a random surface with a given correla-
tion function, while the reflected light intensity is then easily calculated as in integral
over a certain angle region.

In more sophisticated models, random fields enter differential or integral equations
in the form of a coefficient, a kernel, a right-hand side, a boundary condition, or even
the boundary itself.

1.2 Some examples

Let us give some examples. First we mention turbulent transport, where the velocity
field representing the turbulent flow is modeled as a random field Ev.x, t /with statistics
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encoding important empirical features, and the temporal dynamics of the position EX.t/
and velocity EV .t/ D d EX

dt of immersed particles is then governed by equations involv-
ing this random field such as

m d EV .t/ D ��� EV .t/ � Ev. EX.t/, t /� d t C
p

2kBT � dW.t/, (1.2)

where m is particle mass, � is its friction coefficient, kB is Boltzmann’s constant,
T is the absolute temperature, and W.t/ is a random Wiener process representing
molecular collisions.

In more complicated stochastic models of turbulent flows, both the drift and the
dispersion terms are constructed as some functions using data extracted from physical
and statistical laws.

Let us consider a passive scalar dispersed by the turbulent velocity field. The pas-
sive scalar is assumed to follow the streamlines of the flow. We assume that the source
of particles is quite arbitrary; for instance, it might be situated on the surface or in
the space, or even at given points. Let us denote by q.x, t / the spatial-temporal den-
sity distribution function of the source, i. e„ the number of emitted particles per unit
volume in a unit time interval at the phase point .x, t /. Initially, the spatial density
of particles is given by q0.x/. The particles are transported by a 3D turbulent ve-
locity field Eu.x, t / D .u1.x, t /,u2.x, t /,u3.x, t //. Let us denote by X.t ; x0, t0/ and
V.t ; x0, t0/ D Eu.X.t ; x0, t0/, t / the Lagrangian spatial coordinates and the velocity,
respectively. Then, neglecting molecular diffusion, the instantaneous concentration
c.x, t / is governed by

@c.x, t /

@t
C

3
X

iD1

ui .x, t /
@c

@xi
D q.x, t /, t > 0, c.x, 0/ D q0.x/. (1.3)

The turbulent velocity field Eu.x, t / is considered to be an incompressible 3D random
field. Accordingly, the concentration c.x, t /, satisfying equation (1.3) with random
coefficients ui , is a scalar random field, and we are interested in calculating the mean
concentration hc.x, t /i and the mean fluxes hui .x, t /c.x, t /i, i D 1, 2, 3. These func-
tions can be evaluated by tracking Lagrangian trajectories, which are obtained in turn
by solving the system of stochastic differential equations

dX.t/ D V.t/dt ,

dV.t/ D a.t , X.t/, V.t//dt C
p

C0 N".X.t/, t / dW.t/,

where the function a is to be defined in each specific situation, C0 is the universal
Kolmogorov constant (C0 � 4 + 6), N".x, t / is the mean dissipation rate of the kinetic
energy of turbulence, and W.t/ is a standard 3D Wiener process.

A second example concerns transport through porous media, such as groundwater
aquifers, in which the hydraulic conductivity K.x/ is modeled as a random field re-
flecting the empirical variability of the porous medium. The Darcy flow rate Eq.x/ in
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response to pressure applied at the boundary is governed by the Darcy equation

Eq.x/ D �K.x/ grad �.x/, (1.4)

div Eq D 0,

in which the random hydraulic conductivity function appears as a coefficient, and the
applied pressure is represented in the boundary conditions for the internal pressure
head �. Our concern is with the computational simulation of random fields for appli-
cations such as these. Interesting insights into the dynamics of transport in disordered
media can be achieved already through relatively simple random models for the ve-
locity field, such a finite superposition of Fourier modes, with each amplitude inde-
pendently evolving according to an Ornstein–Uhlenbeck process. Here efficient and
accurate numerical simulations of the flow can be achieved through application of the
well-developed literature on simulating stochastic ordinary differential equations.

In conventional deterministic numerical methods, boundary value problems for ran-
dom PDEs are solved as follows. First, one constructs a synthesized sample of the
input random parameter. Then the obtained deterministic equation is solved numeri-
cally, say, by the finite element method, and gives the solution in all points of the grid
domain. These two steps are repeated many times, so that the obtained statistics are
sufficient for calculation of the desired sufficiently accurate averages. This approach
is used in stochastic finite element methods (e. g., see [2, 150, 230, 249]). Obviously,
this technique is generally time consuming, and to solve problems of practical interest
one needs supercomputers to extract sufficient statistical information.

In the Monte Carlo approach, the algorithms are designed so that the solution is cal-
culated only in the desired set of points without constructing the solution in the whole
domain (e. g., see [191, 203, 204]). To evaluate different statistical characteristics of
random boundary value problems we use the double randomization technique (e. g.,
see [191]).

This approach is possible if the desired statistical characteristics (e. g., the mean or
the correlation tensor) can be represented in the form of a double expectation over
the input random parameters, and over the trajectories of a Markov process used in
a stochastic estimator for solving the deterministic equation. The advantage of this
method is that there is no need to solve the equation many times, hence, the cost of
this method is drastically decreased compared to the stochastic finite element method.
The well-known drawback of stochastic simulation methods should be mentioned: the
error behaves like " � O.N�1=2/, where N is the number of samples; hence, it is
reasonable to apply the Monte Carlo methods if the desired accuracy is not too high.
So, for realistic applied problems the typical Monte Carlo accuracy lies in the range
of 0.1 % to several percent.

The basic idea behind double randomization can be explained by the following very
simple example. Assume we have to evaluate an integral

J.x;!/ D
Z

D

f .x, y;!/dy, (1.5)
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where f .x, y;!/ is a random function indexed through x, y, defined on a probabil-
ity space, ! being the relevant random element. Obviously of interest are statistical
characteristics of the random process J.x;!/, like the expectation hJ.x;!/i and the
covariance hJ.x1;!/J.x2;!/i.

In deterministic methods, to calculate the expectation hJ.x;!/i, one has first to
construct a sample of the random function f , say, f .x, y;!1/, and then calculate the
integral J.x;!1/ by one of the quadrature formulas. This is then repeated N times,
N large enough to guarantee that the average overN samples provides a good approx-
imation to hJ.x;!/i. Thus, in short, one must solve a deterministic problem (in this
case, evaluation of the integral) N times, N being the number of samples.

Double randomization is based on the representation of the desired functional as a
double expectation. Indeed, we choose an arbitrary probability density function p.y/,
y 2 D, arbitrary enough but so that p.y/ ¤ 0 for y, where f .x, y;!/ ¤ 0 for all x
and !. Then we can write

J.x;!/ D Ep
�

f .x, �;!/=p.�/
�

(1.6)

where Ep stands for the average over the random points � distributed in D according
to the density p. Therefore,

hJ.x;!/i D ˝

Ep
�

f .x, �;!/=p.�/
�˛ D E.!,p/

�

f .x, �;!/=p.�/
�

, (1.7)

where E.!,�/ stands for averaging over random elements .!, �/. This statement is ex-
actly the Fubini theorem, and it shows that the desired result can be obtained by aver-
aging over random samples of ! and � .

This approach works also when the deterministic problem is not simply an integral
evaluation, but a PDE, or an integral equation, or nonlinear system of equations, e. g.,
like the Smoluchowski equations. The main challenging problem here is to transform
the solution of the original problem to the evaluation of an expectation over relevant
stochastic elements, including averaging in functional spaces. In our case the expecta-
tions are often constructed over Markov chains and Gaussian random fields. Note that
in applied problems, we deal also with generalized random fields, but in Monte Carlo
simulations they do not complicate the situation, but, quite the contrary, the stochastic
simulation algorithms can efficiently use this feature.

Let us illustrate this by the following simple but important example when
the input randomness enters the problem as a generalized 2D random field u.x, !/,
x 2 Œ0,L�, ! D .!1,!2, : : : ,!m/, in the form:

u.x, !/ D
m
X

jD1

ı.x � !j /, (1.8)

where ı is the Dyrac delta function, and the random points !1,!2, : : : ,!m are dis-
tributed on Œ0,L� with a density p.!/ independent of the spatial coordinate x. The
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random points !1,!2, : : : ,!m may have a quite different distribution on Œ0,L�, i. e.,
they may be all independent of each other, they may form a Markov chain with a
certain transition probability density, or they may be placed almost periodically, with
small but correlated random shifts !j from a mean fixed step hı!j i: !jC1 D !j Cı!j
where hı!j i D ��1 D m=L is the mean density of the points on Œ0,L�. Thus the ran-
dom field u.x, !/ is stationary with the mean hu.x, y; !/i D �, as can be found by
direct calculation.

This kind of random process enters the boundary elastic displacements produced
by the nets of misfit dislocations in crystals [87], in many problems related to renewal
processes, in the analysis of statistic of neuronal spike trains (for instance, see [52,68,
180]), etc.

In the analysis of dislocations in crystals, the goal is to evaluate the x-ray diffraction
peak profiles from distributions of misfit and threading dislocations [87]. The x-ray
scattering amplitude from a film of thickness d is given by an integral of the form

A.qx , qz/ D
Z 1

�1
dx

Z d

0
dz exp

®

iŒqxx C qzz C V.x, z/�
¯

, (1.9)

where

V.x, z/ D
Z

K.x � x0, z/u.x0, !/dx0 (1.10)

is the resulting displacement field due to all misfit dislocations, the kernel K.x �
x0, z/ is the Green function given explicitly, and the random field u.x0,!/ is defined by
(1.8). The scattered intensity I.qx , qz/ D ˝jA.qx , qz/j2

˛

can be directly calculated by
the Monte Carlo double randomization method, as explained above, by a randomized
evaluation of the integral representation:

I.qx , qz/ D
Z 1

�1
dx

Z d

0

Z d

0
dz1 dz2 e

iŒqxxCqz.z1�z2/�
˝

eiŒV.x1,z1/�V.x2,z2/�
˛

. (1.11)

Note that in the case where the random field u is Gaussian, it is possible to evaluate
the expectation explicitly (see [87]).

Thus the boundary value problems with random coefficients, parameters, random
source terms, stochastically distributed boundary functions, or even with randomly
moving boundaries are used as a powerful instrument in modern science and technol-
ogy. We mention here applied fields such as structural mechanics, composite mate-
rials [2], porous media and soils [34, 99, 196, 260], biological tissues [258], geodesy
[182, 212], turbulence, [13, 103, 104, 146, 191], etc. In engineering-related stochastic
boundary value problems, the common computational techniques include Monte Carlo
methods, stochastic finite elements, finite difference, and spectral methods. Among
these methods, the finite volume and boundary element techniques are the methods
most adaptable to problems in solid and structural mechanics characterized with highly
irregular and complex structures [2, 230, 249]. We mention also classical potential
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problems dealing with random boundary conditions and sources [31] where the Monte
Carlo methods are very efficient (e. g., see [191, 206–208]).

The book is organized as follows. Chapter 2 presents different simulation methods
for Gaussian random fields. Chapter 3 deals with the stochastic Lagrangian models
of relative dispersion of a pair of fluid particles. In Chapter 4 a new version of the
2-particle relative turbulent dispersion model is developed. A combined Eulerian–
Lagrangian model is presented in Chapter 5. In Chapter 6 we describe a stochastic
Lagrangian model extended to the intermittent turbulence. Chapter 7 presents results
of numerical experiments. A 1-particle stochastic Lagrangian model for a horizonatlly
homogeneous turbulent flow is described in Chapter 8. Formulation of the footprint
problem and the methods based on backward Lagrangian trajectories are presented in
Chapter 9. Applications of the stochastic Lagrangian models to evaluate the particle
transport in the boundary layer of the atmosphere are given in Chapter 10. Compar-
isons of different 2-particle models are described in Chapter 11. Algorithms for con-
centration and fluxes in turbulent flows by stochastic Lagrangian models are presented
in Chapter 12. Application to the footprint problem for the case of an abrupt change of
roughness is given in Chapter 13. A Lagrangian stochastic model for the transport in
porous medium is presented in Chapters 14 and 15. Chapter 16 deals with the analysis
of the coagulation of aerosol particles in intermittent turbulent flows. Finally, in Chap-
ter 17 we give an example of a Stokes flow which is governed by Stokes equations with
random boundary conditions.

1.3 Fundamental concepts

We introduce two main classes of stochastic simulation models presented in this book:
an Eulerian class which is based on a random velocity field model defined on a fixed
coordinate system. The velocity field is generated over a prescribed spatial domain, but
by a direct stochastic construction rather than the much more expensive simulation of
the nonlinear Navier–Stokes PDE’s.

In the Lagrangian class the motion of fluid particles is stochastically modeled as a
random trajectory X.t/ of any immersed particle representing, for example, a tracer,
pollutant, or chemical reactant. It is computed using the local value of the stochas-
tically constructed velocity. The random trajectory thus can be defined as a random
process determined from the random ordinary differential equation dX.t/

dt
D u.t ;X.t/

where u.� , r/ is a random field, or, alternatively, it can be determined from a stochastic
Ito-type differential equation dX.t/ D Adt C B dW.t/.

These two classes of models use different mathematical apparatus: the Eulerian
stochastic models focus on the simulation of spatial-temporal random fields with a de-
sired statistical characteristics, while the stochastic Lagrangian models are based on
the so-called Ito-type stochastic differential equations, known in physics as Langevin-
type equations.
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As mentioned in [103], the primary challenge in most Eulerian fluid Monte Carlo
simulations is the generation of a synthetic random velocity u.x; t / which has certain
statistics and features mimicking those of a turbulent fluid in the regime of interest.
Thus a fully developed turbulent flow at a sufficiently high Reynolds number should
possess a wide inertial range of scales over which the statistics of the velocity field
assume a self-similar fractal structure. A quantitative way to express this criterion is

hju.x C r ; t / � u.x; t /j2i D SIv jr j2H for LK � jr j � L0,

where h�i denotes a statistical average, 0 < H < 1 is the Hurst exponent which takes
the Kolmogorov valueH D 1=3 for fully developed turbulence, LK is the dissipation
length scale and L0 is the integral length scale, which define the extent of the inertial
scaling range, and SIv is a (dimensional) scaling prefactor. Other desired properties in
turbulence simulations are the incompressibility of the fluid and appropriate geometric
symmetries such as isotropy.

1.3.1 Random functions in a broad sense

Let us start with an informal description of random functions. A random function, as
well as a deterministic function, is defined by some dependence �.	/ which describes
a mapping from the space of parameters 	 2 ‚ to the space of values of �.	/, thus
it can be real- or complex-valued, or generally vector-valued. But in the stochastic
case, �.	/ is a random value for each fixed 	 . Thus, a random function is a family of
random variables �.	/ D �.	 ,!/ defined on a probability space .
, F ,P / depending
on a parameter 	 2 ‚. The deterministic function �.	 ,!0/ for a fixed value ! D !0

is called a sample function (or a sample trajectory). Here we recall that a finite set of
random variables �1, �2, : : : �n is fully defined by the mutual distribution function

F.x1, x2, : : : , xn/ D P
®

�1 < x1, �2 < x2, : : : , �n < xn
¯

. (1.12)

In the case of random functions, we have to characterize an infinite family of random
variables. So we can say that the infinite family of random variables �.	/ is defined if
statistical characteristics of any finite sets of random variables

�.	1/, �.	2/, : : : �.	n/, 	i 2 ‚, i D 1, 2 : : : , n; n D 1, 2 : : : , (1.13)

i. e., any finite-dimensional distributions are defined, which means, the random func-
tion �.	/ is defined by its finite-dimensional distributions

F�1,�2,:::,�n
.x1, x2, : : : , xn/, 	i 2 ‚; i D 1, 2 : : : ,n; n D 1, 2 : : : , (1.14)

and any functionF�1,�2,:::,�n
.x1, x2, : : : , xn/ is interpreted as a mutual distribution func-

tion of the set of random variables (1.13).
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To make this interpretation correct, the family of distributions should satisfy some
assumptions. These assumptions are quite natural:

F�1,�2,:::,�n,�nC1,:::,�nCm
.x1, x2, : : : , xn, C1, : : : , C1/

D F�1,�2,:::,�n
.x1, x2, : : : , xn/, (1.15)

F�1,�2,:::,�n
.x1, x2, : : : , xn/ D F�1,�2,:::,�n

.xi1 , xi2 , : : : , xin/, (1.16)

where i1, i2, : : : , in is any permutation of the indices 1, 2 : : : ,n.
Thus we are in a position to give the following definition.

Random function on a set of parameters 	 2 ‚ having real values �.	/ is defined as
a family of distributions (1.14) which satisfies the conditions (1.15) and 1.16). The
functions F�1,�2,:::,�n

.x1, x2, : : : , xn/ are called finite-dimensional distributions of the
random function �.	/.

This definition is clear and simple, and is sufficient when we are interested in statis-
tical characteristics for a finite set of the parameter’s values. But it is not satisfactory
when we are trying to characterize the function in its entirety, for all infinite values of
the parameter. For instance, this definition cannot provide us with a graph of the ran-
dom function. With this definition, we cannot even answer such an important question
as whether the sample of the random function is continuous or differentiable. A differ-
ent definition considers the random function as an element of an appropriate functional
space and will be given later. In this section we deal with the definition of the random
function in athewise sense given above by the family of distribution functions.

Generalization to vector random functions is obvious: a vector random function
�.	/ is defined as a vector with n components, scalar random functions: �.	/ D
.�1.	/, �2.	/, : : : �n.	//. The distribution function of this vector random function is
the function of nm variables

F�1,�2,:::,�n
.x11, x12, : : : , xnm/

D P
®

�1.	1/ < x11, �1.	2/ < x12, : : : , �n.	m/ < xmn
¯

.

The distribution functions can be represented through the probability density
f�1,:::,�n

.x1, : : : , xn/:

F�1,:::,�n
.x1, : : : , xn/ D

Z x1

�1
� � �
Z xn

�1
f�1,:::,�n

.y1, : : : , yn/ dy1 : : : yn.

From this the following well-known property follows

f�1,:::,�n
.x1, : : : , xn/

D
Z x1

�1
� � �
Z xn

�1
f�1,:::,�n,�nC1,:::�nCm

.x1, : : : xn, y1, : : : , ym/ dy1 : : : ym.
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A characteristic function of a finite-dimensional distribution is defined by

'�1,:::,�n
D E exp

²

i
n
X

kD1

�.	k/uk

³

,

where E stands for the mathematical expectation, and u1, : : : un are real numbers. If
the density f�1,:::,�n

exists, then

'�1,:::,�n
D
Z

IRn

e

n
P

iD1
xiui

f�1,:::,�n
.x1, : : : , xn/ dx1 : : : dxn,

i. e., the characteristic function is a Fourier transform of the probability density.

Moment functions of �.	/ are defined by

mj1,:::,js
.	1, : : : , 	s/ D EŒ�.	1/�

j1 : : : Œ�.	s/�
js , jk � 0, .k D 1, 2, : : : , s/

if the expectation on the right-hand side exists for all 	i 2 ‚, i D 1, 2, : : : , s.

A random function �.	/ belongs to the class Lp.‚/, .� 2 Lp.‚/) if Ej�.	/jp < 1
for all 	 2 ‚. So if .� 2 Lp.‚/, then all moments of the order q � p are finite.

If the characteristic functions of the finite-dimensional distributions are given, then
the moments of any integer order can be obtained by taking derivatives. Indeed, if
.� 2 Lp.‚/, then

mj1,:::,js
.	1, : : : , 	s/ D .�1/q

@q'.u1, : : : ,us/

@u
j1
1 : : : u

js
s

for q � p where q D j1 C � � � C js .

Centered moments are defined by

Nmj1,:::,js
.	1, : : : , 	s/ D E

�

�.	1/ �m1.	1/
�j1 : : :

�

�.	s/ �m1.	s/
�js .

Here mi .	/ is the expectation of �i .	/: mi .	/ D E�i .	/.

The correlation function R.	1, 	2/ is defined by

R.	1, 	2/ D E
�

�.	1/ �m.	1/
��

�.	2/ �m.	2/
�

.

The variance is the quantity �2.	/ D R.	 , 	/, and the correlation coefficient is just
the normalized correlation function:

r.	1, 	2/ D R.	1, 	2/

�.	1/ �.	2/
.
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If the random variables �.	1/ and �.	2/ are independent, then the correlation coeffi-
cient is zero. Note that the reverse is not true: zero correlation does not imply that the
variables are independent. However, if the mutual 2D distribution of �.	1/ and �.	2/

is Gaussian, then the zero correlation implies that �.	1/ and �.	2/ are independent.
Generalization to complex-valued random functions is straightforward. A complex-

valued random function is defined by �.	/ D �.	/C i
.	/ and can be considered as a
2-dimensional vector of real-valued random functions. For a complex-valued function
�.	/ 2 Lp.‚/ means that

Ej�.	/jp < 1, 	 2 ‚, i . e., � 2 Lp.‚/ and 
 2 Lp.‚/.
The correlation function for a complex-valued random function is defined by

R.	1, 	2/ D E
�

�.	1/ �m.	1/
��

�.	2/ �m.	2/
�

,

where � stands for the complex conjugate of � .
The following properties of the correlation functions can be easily checked:

1. R.	 , 	/ � 0, where the equality appears if and only if the random function is
constant with probability one.

2. R.	1, 	2/ D R.	2, 	1/.

3. jR.	1, 	2/j2 � R.	1, 	1/R.	2, 	2/.

4. For any integer n, 	1, : : : 	n and complex numbers �1, : : : ,�n,
n
X

j ,kD1

R.	j , 	k/ �j N�k � 0.

Note that properties 1–3 follow from property 4.
For two random functions �1.	/ and �2.	/ (belonging to Lp.‚/) one defines the

cross-correlation function

R�1�2.	1, 	2/ D E
�

�1.	1/ � E�1.	1/
� �

�2.	2/ � E.	2/
�

Extension to multidimensional complex-values random functions. Let �1.	/, �2.	/,
: : : , �r.	/ be a set of random complex-valued functions. It is considered as a complex-
valued random function �.	/ D .�1.	/, �2.	/, : : : , �r.	//T , 	 2 ‚. Here .�/T stands
for the transpose, so �.	/ D .�1.	/, �2.	/, : : : , �r.	//T , 	 2 ‚ is a column.

For two columns, � D .�1, �2, : : : , �r/T and 
 D .
1, 
2, : : : , 
r /T , we define a
matrix �
� by

�
� D

0

B

B

@

�1 N
1 �1 N
2 : : : �1 N
m
�2 N
1 �2 N
2 : : : �2 N
m
: : : : : : : : : : : :

�r N
1 �r N
2 : : : �r N
m

1

C

C

A

.
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For a random vector function �.	/ D .�1.	/, : : : �1.	r//
T we put

m.	/ D .m1.	/, : : : ,mr.	//
T D E�.	/ D .E�1.	/, : : : ,E�r.	//T,

R.	1, 	2/ D
�

Rij .	1, 	2/
�

i ,jD1,:::r
D E

�

Œ�.	1/ �m.	1/� Œ�.	2/ �m.	2/�
��
ij

D
�

EŒ�i .	1/ �mi .	2/� Œ�j .	2/ �mj .	2/�
�

ijD1,:::,r
.

The vectorm.	/ is an r-dimensional complex-valued vector function; it is the expec-
tation, called also a mean of the random function �.	/. The matrix R.	1, 	2/ is called
a correlation matrix.

1.3.2 Gaussian random vectors

There is an important class of random functions completely defined by their first two
moments, the expectation and correlation function. They are called Gaussian random
functions and by definition have a Gaussian form of the finite-dimensional distribu-
tions. So we recall here first the case of random vectors.

The Gaussian random vector � D .�1, �2, : : : , �n/T is defined by its characteristic
function

'.u/ D E ei.u,�/ D exp

²

i .m, u/ � 1

2
.Ru, u/

³

, (1.17)

where m D .m1, : : : ,mn/, u D .u1, : : : ,un/, R is a nonnegative definite real-
valued symmetric matrix R D .rik/, i , k D 1, 2, : : : ,n. Here we use the conven-
tional definition of a scalar product so that .m, u/ D Pn

kD1mkuk and .Ru, u/ D
Pn
j ,kD1 rjk uj uk .

The following statement explains the role of the above definition.

The function

 .u/ D exp

²

i.m, u/ � 1

2
.Ru, u/

³

is a characteristic function of a random vector � if and only if the real-valued matrixR
is non-negative definite and symmetric. The rank of the matrixR equals the dimension
of a subspace where the distribution of the vector � is concentrated.

If r , the rank of the matrix R is less than n, then the random vector is concentrated
in an r-dimensional hyperplane; hence it has no density. Such a distribution is called
a singular Gaussian distribution. If r D n, the random vector � has the density

f .x/ D 1
p

�.2�/n
exp

²

� 1

2
.R�1.x �m/, .x �m//

³

, (1.18)

where R�1 is the inverse of the matrix R, � D det.R/ is the determinant of R.
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Let us give a series of statements which are well known from the probability theory,
e. g., see [71].

1. In the expression (1.17), m D .m1, : : : ,mn/T is the vector of expectations, and R
is the correlation function: m D E� , rjk D EŒ.�j �mj /.�k �mk/�.

2. If the correlation function of a Gaussian vector � is not singular, then there exists
an n-dimensional probability density f .x/ which is defined by (1.18).

3. The mutual distribution of any group of components of a Gaussian vector is Gaus-
sian.

4. If � D .�1, : : : , �n/T is a Gaussian vector, and random vectors � 0 D .�1, : : : , �r/T ,
� 00 D .�rC1, : : : , �n/T are noncorrelated, then � 0 and � 00 are independent.

5. Gaussian distributions remain Gaussian under linear transformation.

Let us give some other properties of the Gaussian distributions which are use-
ful in practice. Assume we are given two vectors with Gaussian distributions: � D
.�1, : : : , �n/T and 
 D .
1, : : : , 
m/T . We are interested in the conditional distribu-
tion of the vector � , assuming that 
 is fixed. Without loss of generality we suppose
that the correlation matrixR22 of the vector 
 is nonsingular. Indeed, ifR22 is singular,
it means some components of 
 are linearly dependent on the other components. Then,
we exclude these components, and the dimension of 
 is decreased. So let m1 D E� ,
m2 D E
, and let R11 be the correlation matrix of the vector � , and R12 be the cross-
correlation matrix of the vectors � and 
:R12 D E.� �m1/
�m2/

�. Let us introduce
a vector Q� D m1 C R12R

�1
22 .
 � m2/. Then the conditional distribution of the vec-

tor � , under the condition that 
 is fixed, is Gaussian with the conditional expectation
E.�j
/ D Q� and the conditional correlation matrix

E
°

�

� � Q�� �� � Q���ˇˇ

±

D R11 �R12R
�1
22 R21.

Notice the following important property: the matrix of the conditional correlations of
the vector � , 
 fixed, is not random, and in particular, it does not depend on the value
of 
.

1.3.3 Gaussian random functions

A vector n-dimensional random function �.	/ D ¹�1.	/, : : : �n.	/º is called a Gaus-
sian random function if the mutual distribution function of all components of the ran-
dom vectors �.	1/, : : : , �.	n/ is Gaussian. The correlation matrix R of the mutual
distribution of the vectors �.	1/, : : : , �.	n/ has a dimension sn 	 sn and can be di-
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vided in square blocks of size s 	 s as follows:

R D

0

B

B

@

R.	1, 	1/ R.	1, 	2/ : : : R.	1, 	n/
R.	2, 	1/ R.	2, 	2/ : : : R.	2, 	n/
: : : : : : : : : : : :

R.	n, 	1/ R.	n, 	2/ : : : R.	n, 	n/

1

C

C

A

,

where R.	1, 	2/ is the correlation matrix of the function �.	/.
The reverse statement is true: for any real-valued vector function m.	/ and a non-

negative definite symmetric matrix function R.	1, 	2/ there exists an r-dimensional
Gaussian random function for which m.	/ is the expectation, and R.	1, 	2/ is the
correlation matrix.

The Gaussian random functions play an extremely important role in many practical
problems. This can be explained generally as follows. The real processes are usually
affected by many random independent factors and the resulting superposition of these
factors tends to a Gaussian distribution. This can be rigorously formulated as a limit
theorem of normal correlations, which is a generalization of the well-known central
limit theorem. Let us present this statement.

A sequence of random functions �n.	/, 	 2 ‚, n D 1, : : : is said to be weakly
convergent to a random function �.	/, 	 2 ‚ if for any s the mutual distribution of
the series of random variables ¹	n.	1/, : : : , �.	s/º is weakly convergent, as n ! 1,
to the distribution of ¹�.	1/, : : : , �.	s/º.

Theorem 1.1 (see [71]). Assume we are given a family of sums of random functions


n.	/ D
mn
X

kD1

˛nk.	/, 	 2 ‚, n D 1, 2 : : :

and the following conditions are satisfied:
1. For fixed n, the random variables ˛n1.	1/,˛n2.	2/, : : : ,˛nm.	m/ are all mutually
independent for each 	1, 	2, : : : 	m, and have finite second moments such that

E˛nk.	/ D 0, E˛2
nk.	/ D b2

nk.	/.

2. The correlation function Rn.	1, 	2/ D EŒ
n.	1/
n.	2/�, converges to a limit:

lim
n!1 Rn.	1, 	2/ D R.	1, 	2/.

3. The sums 
n.	/ D Pmn

kD1 ˛nk.	/ satisfy, for each 	 , the Lindeberg condition: for
each � > 0

1

B2
n

mn
X

kD1

Z

jxj>	Bn

x2 d…nk.	 , x/ ! 0,
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where …nk.	 , x/ is the distribution function of the random variable ˛nk.	/, and

B2
n D

mn
X

kD1

b2
nk.	/ D Rn.	 , 	/.

Then the random function 
n.	/ is weakly convergent, as n ! 1, to a Gaussian
random function with zero expectation and correlation function R.	1, 	2/.

1.3.4 Random fields

Assume that our parameter 	 is a point x 2 IRn. Let �.x/ D .�1.x/, : : : , �d .x//T be
a vector random function possibly with complex values, defined for all x 2 IRn. It is
called a sl random field. Note that if n D 1, one uses the notion of random process.
The random field �.x/ is called homogeneous in a broad sense if

E�.x/ D m D const, E.�.x/ �m/.�.x/ �m/� D R.x � y/,

where R.x/ is a continuous matrix function, the correlation of the homogeneous ran-
dom field. The matrix function R.x/ is nonnegative definite. This means that for any
d -dimensional complex vectors zk , points xk 2 IRm, k D 1, : : : ,n, and for any
integer n

n
X

k,jD1

z�k R.xk � xj /zj � 0.

A random field �.x/, x 2 IRm is called meansquare continuous (m.s.c.) if from
x.n/ ! x it follows that Ej�.x.n// � �.x/j2 ! 0 as n ! 1.

The correlation functions and nonnegative definite functions are related by the fol-
lowing theorem.

Theorem 1.2 (Bochner–Khinchin theorem). A matrix function R.x/, x 2 IRd is a
correlation function of a homogeneous, m.s.c. random field if and only if it can be
represented in the form

R.x/ D
Z

IRd

ei.x,bf u/ F.du/, (1.19)

where F.A/ is a matrix-valued complex countable-additive function defined on Borel
sets in IRm such that z�F.A/z � 0 for any complex vector z and any Borel set A 

IRd , and the trace Sp F.IRm/ < 1.

A random field �.x/ is called isotropic if it is homogeneous and it correlation func-
tion R.x/ depends on the length jxj. Thus for an isotropic random field R.x/ D R.�/
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1.3.5 Stochastic measures and integrals

In this section we introduce integrals with respect to stochastic measures, known as
stochastic integrals.

Let .
,F ,P / be a probability space, Ef D R

dP is the expectation, L2.
/ D
L2.
,F ,P / is a class of random variables � with finite second moment. Let X be a
set, and K be a semi-ring of the subsets of X . Assume that each � 2 K is related to
a complex-valued random variable �.�/ which satisfies the following conditions:

1. �.�/ 2 L2.
/, �.;/ D 0,

2. �.�1
S

/�2/ D �.�1/C �.�2/.mod.P /, if �1
T

�2 D ;,

3. E�.�1/�.�2/ D m.�1
T

�2/,

where m.�/ is a function defined on the sets of K .
A family of random variables ¹�.�/, � 2 Kº satisfying the conditions 1–3 is

called an elementary orthogonal stochastic measure, and m.�/ is its structure mea-
sure. The orthogonality property of the stochastic measure is expressed by condition 3:
if �1

T

�2/ D ;, then E�.�1/�.�2/ D 0. From the definition of m.�/ follows that
it is nonnegative:

m.�/ D Ej�.�/j2 � 0, m.;/ D 0

and additive, i. e., if �1
T

�2/ D 0, then

m
�

�1

[

�2

�

D Ej�.�1/C �.�2/j2

D m.�1/Cm.�2/C 2m
�

�1

\

�2

�

D m.�1/Cm.�2/.

Now, a class L0¹Kk of simple functions is introduced:

f .x/ D
n
X

rD1

cr�
r
.x/, �r 2 K , r D 1, 2, : : : n, (1.20)

where n is arbitrary, and �A.x/ is the indicator of the set A, c1, : : : cr are complex
numbers.

The stochastic integral of a simple function f .x/ 2 L0.K/ with respect to a
stochastic measure �.�/ is defined by the formula


 D
Z

f .x/�.dx/ D
n
X

rD1

cr�.�r /. (1.21)

For any two functions f .x/,g.x/ 2 L0.K/ the following equality holds:

E
�

Z

f .x/�.dx/

Z

g.x/�.dx/

	

D
Z

f .x/ Ng.x/m.dx/. (1.22)
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Assume that m satisfies the semi-additive condition and hence can be prolonged to
a complete measure ¹X , B,mº. Then L0¹Kº is a linear subset of the Hilbert space
L2.m/ D L2¹¹X , B,mº. Denote by L2¹Kº the close of L0.K/ in L2.m/. Now we
introduce a linear span L0¹�º of the family of random variables �.�/,� 2 Kº i. e., a
set of random variables which can be represented in the form (1.21); the space L2.�/

is defined as a closure of L0.�/ in the Hilbert space of random variables L2.
,F ,P /.
Notice that the relation (1.21) establishes an isometrical mapping 
 D  .f / between
L0.K/ andL0.�/. This mapping can be prolonged to an isometry betweenL2¹Kº and
L2¹�º. If 
 D  .f /, f 2 L2¹Kº, then we define 
 D  .f / D R

f .x/�.dx/. The
random variable 
 is then called a stochastic integral of f with respect to the measure
�. From this follows the following.

The following statement is true (see [71].

Theorem 1.3.
(a) For a simple function .1.20/ the stochastic integral is defined by the for-

mula .1.21/.
(b) For any f and g from L2¹mº D L2¹X , B,mº, the equality .1.22/ holds.

(c)
Z

�

˛ f .x/C ˇ g.x/
�

�.dx/ D ˛

Z

f .x/�.dx/C ˇ

Z

g.x/�.dx/.

(d) For an arbitrary sequence of functions f .n/.x/ 2 L2¹X , B,mº such that

Z

jf .x/ � f .n/.x/j2m.dx/ ! 0,

the following relation is true:

Z

f .x/ �.dx/ D l.i.m.
n!1

Z

f .n/.x/ �.dx/.

Here l.i.m. means a limit in mean square sense, i. e., l.i.m.
n!1 �n D � implies lim

n!1Ej�n�
�j2 D 0.

The existence of a sequence of simple functions approximating an arbitrary function
f .x0 2 L2¹X , B,mº follows from the general theorems of the measure theory. Thus
the stochastic integral can be considered as a mean square limit of the relevant integral
sums.

Let us denote by B0 the class of all subsets A 2 B with m.A/ < 1, and define a
random function of sets Q�.A/ by

Q�.A/ D
Z

�A.x/�.dx/ D
Z

A

�.dx/. (1.23)
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We list the following properties of this function:

1. Q�.A/ is defined on the class of sets B0;

2. if An 2 B0, n D 0, 1, : : : ,A0 D S1
nD1An, q Ak

T

Ar D ; for k ¤ r , k > 0,

then Q�.A0/ D P1
nD1

Q�.An/ in mean square sense;

3. E Q�.A/ Q�.B/ D m.A
T

B/, A,B 2 B0;

4. Q�.�/ D �.�/ for � 2 K .

An orthogonal stochastic measure is defined as a random set function Q� satisfying the
above conditions 1–4.

Note that property 4 means that Q� is a prolongation of the elementary stochastic
measure �.�/. Thus the following statement is true [71].

Theorem 1.4. If the structure measure of the elementary stochastic measure �.�/. is
semi-additive, then �.�/ can be prolonged to a stochastic measure Q�.�/.

Note that
Z

f .x/�.dx/ D
Z

f .x/ Q�.dx/

since L2¹�º D L2¹ Q�º.

1.3.6 Integral representation of random functions

Using the results of the previous section we can represent random functions via sto-
chastic integrals. Let ‚ be an arbitrary parameter set, and .
,F ,P / a probability
space. Assume first that a p-dimensional random vector function �.	/, 	 2 ‚/ can be
written in the form

�.	/ D
Z

g.	 , x/�.dx/, (1.24)

where �./ is a stochastic measure on a measurable space .X , B/ with its values in Cp

and a structure measure m./, and g.	 , x/ is a scalar function such that for any 	 2 ‚

g.	 , x/ 2 L2.m0/ D L2.X , B,m0/, m0.�/ D Spm.�/ D
p
X

kD1

mkk.�/.

The correlation function reads

B.	1, 	2/ D E�.	1/�
�.	2/ D

Z

g.	1, x/g.	2, x/m.dx/. (1.25)

We recall that .X , B,m0/ is a space with a complete measure, L2.m0/ D
L2.X , B,m0/ is a Hilbert space of b-measurable complex-valued functions which
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are square m0-integrable:

L2.m0/ D
²

f : X ! C :
Z

jf .x/j2m0.dx/ < 1
³

.

By L2¹gº we denote the closure in L2.m0/ of a linear span generated by the family of
functions ¹g.	 , x/, 	 2 ‚º. Then, L2¹gº is a linear closed subspace of L2.m0/.

If L2¹gº D L2.m0/, then the family of functions ¹g.	 , x/, 	 2 ‚º is called com-
plete in L2.m0/ D L2.X , B,m0/.

Let ¹g.	/, 	 2 ‚º be a Hilbert random function with its values in Cp, and L0¹�º
is a set of all random vectors


 D
n
X

kD1

ck�.	k/, n D 1, 2, : : : , 	k 2 ‚,

where ck are arbitrary complex numbers, and L2¹�º is a closure of L0¹�º in the sense
of mean square convergence of random vectors.

A family of random vectors ¹
˛ ,˛ 2 Aº, 
˛ 2 L2.
/ is called subordinate to a
random function �.	/, 	 2 ‚º if 
˛ 2 L2.�/, ˛ 2 A.

For random functions whose correlation function can be represented in the form
(1.25) the following theorem can be formulated, see [71].

Theorem 1.5. Assume that the correlation matrix of a random function ¹�.	/, 	 2
‚º can be written in the form .1.25/ where m is a positive definite matrix measure
on .X , B/, g.	 , x/ 2 L2.m0/, 	 2 ‚ .m0 D Spm/, and the family ¹g.	 , x/, 	 2 ‚º
is complete in L2.X , B,m0/. Then �.	/ can be represented in the form .1.24/ where
¹�.B/,B 2 Bº is a stochastic orthogonal measure which is subordinate to the random
function ¹�.	/, 	 2 ‚º with a structure measure m./, and the equality .1.24/ holds
with probability one for each 	 .

Let �.x/ D .�1.x/, : : : , �d .x//, x 2 IRm is centered mean square continuous ho-
mogeneous (in a broad sense) random field with real- or complex values. Let R.x/
be the correlation function of this field. By the Bochner–Khinchin theorem, this cor-
relation function obeys the representation (1.19). This representation is a particular
case of (1.25) in which X D ‚ D IRm, g.	 , x/ D exp ¹i.x, 	/º. Since the family
¹exp ¹i.x, 	/º, 	 2 IRmº is complete in L2.m0/ D L2.X , b,m0/ where m0 is an ar-
bitrary bounded measure on the sigma-algebra Bm of IRm, we come to the following
corollary of the previous theorem which is known as the spectral theorem (see [71]).

Theorem 1.6. Any centered mean square continuous homogeneous vector random
field �.	/, 	 2 IRm can be represented in the form

�.	/ D
Z

ei.x,�/ �.dx/, 	 2 IRm,
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where �.A/, A 2 Bm is a vector orthogonal measure on Bm which is subordinate to
�.0/. Between L2¹�º and L2¹F º, F0 D SpF there is an isometry providing

(a) �.	/ 2 L2¹�º $ ei.x,�/ 2 L2¹F0º;

(b) if 
i $ gi .x/, 
i 2 L2¹�º,gi 2 L2¹F0º, i D 1, 2, then


i D
Z

gi .x/ �.dx/, E
1

�
2 D

Z

g1.x/g2.x/ F.dx/.

1.3.7 Random trajectories

A random trajectory can be defined as follows. A random trajectory is defined as a
solution to an ordinary differential equation with a random field in the right hand side:

dXi .t ,!/

dt
D fi .X.t ,!/, t ,!/, t � t0, ! 2 
, i D 1, : : : ,n, (1.26)

where f .x, t / D f .x, t ,!/ D .f1.x, t ,!/, : : : , fn.x, t ,!//, x 2 IRn is a vector
random field, X.t ,!/ D .X1.t ,!/, : : : ,X1.t ,!//. The samples of the random field
f .x, t / are assumed to be smooth enough in the sense that for each sample the classical
solution of the deterministic equation (1.26) exists. An important difference to the
classical deterministic ordinary differential equation is only in that in the considered
case the right-hand side depends on a parameter ! 2 
 where 
 is a probabilistic
space. So in contrast to the stochastic differential equations of the Ito type, the solution
is well defined in the classical sense, and there is no need to develop a special calculus
for studying (1.26) . However it does not imply that all the question about the solutions
to (1.26) can be answered by adapting the relevant results of the classical theory of
differential equations. For example, the existence of the solution of an initial value
problem for (1.26) is not equivalent to the existence of the solution for all (or almost
all) samples (i. e., all values of !), one needs the existence of the solutions as random
processes on one common interval (not depending on !). Let us give an illustrating
example. Assume we solve the following equation:

dX

dt
D � X2, X 2 IR1, t 2 Œ0, 1/,

where � D �.!/ is a standard Gaussian random variable. The solution of this equation
with the prescribed initial value X.0/ D x0 can be written explicitly as

X.t ,!/ D
´

0, if x0 D 0, 0 � t < 1
�

1
x0

� �.!/t
��1

, if jx0j ¤ 0, 0 � t < ı.

Here

ı D ı.x0,!/ D
² 1
� x0

, if x0� > 0
1, if x0� < 0
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is the explosion time instant, i. e., limt!ı jX.t/ D 1. This means, that for any x0 ¤
0, the solution may explode arbitrarily quickly, with positive probability, i. e., for any
" > 0, we get P.ı < "/ > 0. This implies that the problem has no sample solutions.

Another issue is the existence of statistical characteristics of the solution to (1.26).
For example in the framework of the conventional theory of differential equations it
is not possible to answer the question of whether or not the first moment EjX.t/j is
finite, i. e., when

R

� jX.t ,!/P.d!/ < 1. Nevertheless, many results in stochas-
tic differential equations of the type (1.26) were obtained (e. g., see [9, 37, 228]) via
an extension of the relevant results of the classical differential equation theory. For
example, for the existence of a sample solution to (1.26) on a finite interval, say,
I D Œ0, 1�, it is necessary to prove the existence of measurable random processes
�1.t ,!/, �2.t ,!/, .t ,!/ 2 I 	 !, such that P ¹�i .t/ dt < 1º D 1, i D 1, 2, and
almost all samples of the right-hand side f .x, t / D f .x, t ,!/ should satisfy the linear
growth condition

jf .x, t /j � �1.t/C �2.t/ jxj for all x 2 IRn.

This result follows from the classical theory of differential equations (e. g., see [75]).

1.3.8 Stochastic differential, Ito integrals

As already mentioned above, the motion of fluid elements and aerosol particles are
often described by Langevin stochastic differential equations, known in the theory of
stochastic processes as Ito stochastic differential equations. We have given the def-
inition of stochastic integrals with respect to general stochastic measure, and so we
could just refer to a particular case of Wiener measure to define the Ito integrals. Let
us however begin with considerations which are closer to physics.

1.3.9 Brownian motion

Let us again consider the ordinary differential equation (1.26), but now the randomness
is specifically entering this equation as an additive noise:

dX

dt
D b.t ,Xt /C �.t ,Xt / � “random noise”, (1.27)

where b and � are some given deterministic functions. So intuitively, the solution Xt
is a random process with some distribution and correlations caused by the input noise
Wt D “random noise”. Again from physical intuition, we might assume that Wt has
the following properties: (i) Wt1 and Wt2 are independent if t1 ¤ t2; (ii) Wt is a
stationary process, i. e., the joint distributions of ¹Wt1Ct , : : : ,WtkCtº do not depend
on t ; (iii) EWt D 0 for all t .

However, it turns out there does not exist any “reasonable” stochastic process satis-
fying (i) and (ii): such a process cannot have continuous trajectories (e. g., see [70]). If
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we assume EjW 2
t j D 1, then the function .t ,!/ ! Wt .!/ cannot even be measurable,

with respect to the � -algebra B 	 F where B is the Borel � -algebra on Œ0, 1/ (e. g.,
see [158]). So the functions Wt belong to other class we considered above, general-
ized stochastic functions, constructed as a probability measure in the space of tempered
distributions on Œ0, 1/, and not as a probability measure on the much smaller space
IR0,1, like an ordinary stochastic process.

We will avoid this construction and turn to a description of stochastic differential
equations which uses random processes with independent increments. Let us start with
the physical process of Brownian motion.

Let us consider a particle which is moving on a line: the particle starts from the
origin �.0/ D 0, and during a small time increment�t it makes a jump to the left with
probability 1=2, and to the right with probability 1=2. So during time t the particle
makes n D t=ıt jumps. We put

xi D
´

�x with probability 1/2,

��x with probability 1/2.

The total displacement of the particle reads as �.t/ D Pn
iD1 xi . Assuming that xi

are mutually independent and equally distributed, the variance (dispersion) can be
found as

D�.t/ D D

n
X

iD1

xi D nD xi D n.�x/2 D t

�t
.�x/2.

Let us consider two arbitrary times s and t , where s < t . Then, the first and second
summands in �.t/ D Œ�.t/ � �.s/� C �.s/ are independent, and in addition, the dis-
placement during the time interval .s, t / depends obviously on t � s, since physically
the character of the motion is not changing in the time, hence, �.t/� �.s/ and �.t � s/
are equally distributed. Therefore,

D�.t/ D DŒ�.t/ � �.s/�CD�.s/ D D�.t � s/CD�.s/,

which implies thatD�.t/ is a linear function of t :D�.t/ D t�2, where �2 is a constant
called a diffusion coefficient. Thus we have

D�.t/ D t�2 D t

�t
.�x/2 D nDxi ,

and due to the Gaussian distribution of xi

P

�

�.t/

�
p
t
< x

	

D P

�

1p
nDxi

n
X

iD1

< x

	

.

Taking a limit as n ! 1, we conclude by the central limit theorem that

P

�

1p
nDxi

n
X

iD1

< x

	

! 1p
2�

Z x

�1
e�z2=2 dz,
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and hence

P

�

�.t/

�
p
t
< x

	

D 1p
2�

Z x

�1
e�z2=2 dz,

which implies that �.t/ is a Gaussian random variable with zero mean and variance
�2 t .

Since the increment �.t � s/� �.s/ is distributed as �.s/ for all s � 0, we conclude
that �.t � s/ � �.s/ has a Gaussian distribution with zero mean and variance �2 t ,
s � 0. In this context, we call a stochastic processW.t/ Brownian motion ifW.0/ and
W.t � s/ � W.s/ are independent and have a Gaussian distribution with zero mean
and variance �2t for all s � 0.

We are now in a position to give an interpretation of the stochastic differential
equation of the Ito type we started with in (1.27). So let us take the time subdivision
0 D t0 < t1 < � � � < tm D t and write a discrete version of (1.27):

XkC1 �Xk D b.tk ,Xk/�tk C �.tk ,Xk/Wk�k , (1.28)

where Xj D X.tj /, Wk D Wtk , �k D tkC1 � tk . Now we look at the value Wk�tk
as an increment of a random process ¹Vtºt�0, �Vk D VkC1 � Vk , and assume, in
accordance with the assumptions (i)–(iii) made above for Wt , that Vt have stationary
independent increments with zero mean. It can be shown that the only such process
with continuous samples is the Brownian motion Bt . Thus we put Vt D Bt and obtain
from (1.28)

Xk D X0 C
k�1
X

jD0

b.tj ,Xj /�tj C
k�1
X

jD0

�.tj ,Xj /�Bj . (1.29)

Now we can take a limit, as �tj ! 0, in the mean squared sense we introduced
above in the general considerations, and we arrive at

X.t/ D X.0/C
Z t

0
b.s,Xs/ ds C

Z t

0
�.s,Xs/ dBs . (1.30)

Thus the solution is expressed through the stochastic integral
R t

0 �.s,Xs/ dBs where
the stochastic measure dBs is generated by the Brownian motion. The construction of
this integral can be carried out following the general construction of stochastic inte-
grals given above. Alternatively, it can be done following a direct scheme using the
Wiener process begun at the origin. So suppose 0 � S < T and f .t ,!/ are given. As
in the general approach presented above, first the stochastic integral for a simple class
of functions f is defined, and then it is extended using some approximating procedure.
So first assume that the function f has the form

'.t ,!/ D
X

j�0

ej .!/ �Œj �2�n,.jC1/2�n�.t/, (1.31)
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where �I is the indicator of the interval I , and n is a natural number, and ej are some
functions to be defined properly. For functions ' the stochastic integral is defined by

Z T

S

'.t ,!/ dBt .!/ D
X

j�0

ej .!/
�

Btj C1 � Btj
�

.!/, (1.32)

where

tk D t
.n/

k
D
8

<

:

k � 2�n if S � k � 2�n � T ,
S if k � 2�n < S ,
T if k � 2�n > T .

Then the standard extension procedure is carried out similarly to what we presented
above (for more on this see [158]).

1.3.10 Multidimensional diffusion and Fokker–Planck equation

In this book, we will often work with multidimensional diffusions governed by systems
of stochastic differential equations. The relevant probability density function satisfies
the multidimensional Fokker–Planck equation. So let us consider first a 1-dimensional
stochastic differential equation

dX.t/ D b.Xt , t /dt C �.Xt , t / dBt (1.33)

for a random trajectory starting at X.0/ D x0, with drift b.Xt , t / and diffusion co-
efficient �2.Xt , t /. The probability density f .x, t / D hı.x � X.t , x0/i satisfies the
Fokker–Planck equation

@f .x, t /

@t
D � @

@x

�

b.x, t /f .x, t /
�C 1

2

@2

@x2

�

�2.Xt , t / f .x, t /
�

. (1.34)

In many dimensions, we deal with Xt , an n-dimensional random vector, and Wt , an
n-dimensional standard Wiener process. The multidimensional stochastic differential
equation reads

dXt D b.Xt , t / dt C �.Xt / dWt Xt .0/ D x0, (1.35)

where b.Xt , t / D .b1, : : : , bn/ is the drift vector, and �.x, t / is a positive-definite
matrix.

The probability density function f .x, t / for the random vector Xt satisfies the Fok-
ker–Planck equation which is the following parabolic equation

@f .x, t /

@t
D �

n
X

jD1

@

@xj

�

bj .x, t /f .x, t /
�C 1

2

n
X

iD1

n
X

jD1

@2

@x2
i @x

2
j

�

�2.x, t /f .x, t /
�

,

(1.36)
where �2.x, t / is the diffusion tensor, a matrix with the entries

�2
ij .x, t / D 1

2

n
X

kD1

�ij .x, t /�jk.x, t /.
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1.3.11 Central limit theorem and convergence of a Poisson process to a
Gaussian process

Let us start with the central limit theorem (CLT).
Assume that we have a sequence of zero mean, i.i.d. (arbitrarily distributed!) ran-

dom variables Xi , i D 1, : : :, PX .x/ being the probability distribution of Xi , and �2,
the variance of Xi . Let

Z D X1 C � � �Xnp
n

.

The CLT says that if �2 < 1, then Z converges (in distribution) to the Gaussian
distribution N.0, �2/.

The proof is extremely simple. We show that the characteristic function 'Z.t/ D
heitZi converges to the characteristic function of the Gaussian variable N.0, �2/, i. e.,
to exp Œ��2t2=2�.

Indeed, for any distribution PX .x/ we have for its characteristic function

'X .t/ D
Z

eitx dPX .x/ D 1 � 1

2
�2t2 C � � � . (1.37)

But, since Xi are all mutually independent, we can write, using the well-known prop-
erty of characteristics functions 'X .t�/ D '�X .t/, that

'Z.t/ D
h

'X1

� tp
n

�in �
�

1 � 1

2

�2t2

n

�n ! exp Œ��2t2=2�. (1.38)

Notice that the omitted terms in (1.37) give a n�3=2 contribution to (1.38), hence it
vanishes, as n ! 1.

Remark 1.1. The assumption that the means of Xi are equal to zero is by no means
necessary. Just notice that 'XCm.t/ D eimt'X .t/ where m D hXi.

Now let us prove that a Poisson distribution with a mean m (for simplicity we as-
sume that m is an integer number), having the discrete probability distribution Pi D
mi

iŠ
e�m, and the characteristic function

'.t/ D exp Œm.eit � 1/�, (1.39)

converges to a Gaussian distribution N.m,m/ if m is sufficiently large.
Clearly, from CLT we could immediately conclude this result if we could represent

the Poissonian random variable as a sum of i.i.d variables. But this can indeed be
done, since the random variable having a Poisson distribution with the mean m can
be represented as a sum of m i.i.d. random numbers whose means are equal to 1. This
follows immediately from the structure of the characteristic function (1.39). So, by the
CLT this sum converges toN.m,m/; however,m should be large enough. In practice,


