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Preface

Chance – or what appears to us as such – is ubiquitous. Not only in the games of
chance such as lottery or roulette where risk is played with, but also in substantial
parts of everyday life. Every time an insurance company uses the claim frequencies
to calculate the future premium, or a fund manager the most recent stock charts to
rearrange his portfolio, every time cars are jamming at a traffic node or data pack-
ages at an internet router, every time an infection spreads out or a bacterium turns
into a resistant mutant, every time pollutant concentrations are measured or political
decisions are based on opinion polls – in all such cases a considerable amount of
randomness comes into play, and there is a need to analyse the random situation and
to reach at rational conclusions in spite of the inherent uncertainty. Precisely this is
the objective of the field of stochastics, the ‘mathematics of chance’. Stochastics is
therefore a highly applied science, which tries to solve concrete demands of many
disciplines. At the same time, it is genuine mathematics – with sound systematics,
clear-cut concepts, deep theorems and sometimes surprising cross-connections. This
interplay between applicability on the one side and mathematical precision and ele-
gance on the other makes up the specific appeal of stochastics, and a variety of natural
questions determines its lively and broad development.

This book offers an introduction to the typical way of thinking, as well as the basic
methods and results of stochastics. It grew out of a two-semester course which I gave
repeatedly at the University of Munich. It is addressed to students of mathematics in
the second year, and also to scientists and computer scientists who intend not only
to apply stochastics, but also to understand its mathematical side. The two parts of
stochastics – probability theory and statistics – are presented in two separate parts of
the book because of their own scopes and methods, but are united under the same
cover on purpose. For, the statistics is built on the concepts and methods of proba-
bility theory, whereas the latter needs the former as a bridge to reality. In the choice
of the material I confined myself deliberately to the central subjects belonging to the
standard curriculum of the corresponding mathematical courses. (It is thus unavoid-
able that some readers will miss their favourite subjects, e.g., the resampling methods
of statistics.) The standard themes, however, are discussed with all necessary details.
Rather than starting with discrete models I preferred to present (and motivate) the
general measure theoretic framework right from the beginning, and some theoretical
issues are also treated later as the case arises. In general, however, the measure theo-
retic apparatus is confined to what is absolutely necessary, and the emphasis is on the
development of a stochastic intuition.



vi Preface

This text comprises a little more material than can be presented in a four-hour
course over two semesters. The reader may thus want to make a selection. Several
possibilities present themselves. For a first overview, the reader may concentrate on
concepts, theorems, and examples and skip all proofs. In particular, this is a prac-
ticable route for non-mathematicians. A deeper understanding, of course, requires
the study of a representative selection of proofs. On the other hand, a reader mainly
interested in the theory and familiar with some applications may skip a portion of ex-
amples. For a short route through Part I leading directly to statistics, one can restrict
oneself to the essentials of the first chapters up to Section 3.4, as well as Sections 4.1
and 4.3, and 5.1 and 5.2. The core of Part II consists of Sections 7.1 – 7.5, 8.1 – 8.2,
9.2, Chapter 10, as well as 11.2 and 12.1. Depending on the specific interests, it will
facilitate orientation to browse through some portions of the text and return to them
later when needed. A list of notational conventions can be found on page 395.

At the end of each chapter there is a collection of problems offering applications,
additions, or supplements to the text. Their difficulty varies, but is not indicated be-
cause the reader should follow only his or her interests. The main point is to try for
oneself. Nevertheless, this second English edition now provides draft solutions of
selected problems, marked with S. These should be used for self-testing, rather than
lulling the reader’s willingness to tackle the problems independently.

As every textbook, this one grew out of more sources than can possibly be identi-
fied. Much inspiration came from the classical German texts of Ulrich Krengel [38]
and Klaus Krickeberg and Herbert Ziezold [39], which had strong influence on the in-
troductory courses in stochastics all over Germany. I also got many impulses from my
Munich stochastics colleagues Peter Gänßler and Helmut Pruscha as well as all those
responsible for the problem classes of my lectures during more than two decades:
Peter Imkeller, Andreas Schief, Franz Strobl, Karin Münch-Berndl, Klaus Ziegler,
Bernhard Emmer, and Stefan Adams. I am very grateful to all of them.

The English translation of the German original would not have appeared without the
assistance of two further colleagues: Marcel Ortgiese accepted to lay the foundation
by preparing an initial English version, so that I could concentrate on details and
cosmetic changes. Ellen Baake took pleasure in giving a final polish to the English
and suggesting numerous clarifications. I gratefully acknowledge their help.

Munich, June 2012 Hans-Otto Georgii
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Mathematics and Chance

What is stochastics1? In dictionaries of classical Greek one finds

�� Ko�o& (stóchos) goal, aim, guess, conjecture
��o�˛���� Ko& (stochastikós) skilful in aiming at, able to hit
��o� K̨�o�˛� (stocházomai) I aim at, guess at, infer, explore

Its current usage is captured by the sentence

Stochastics is the science of the rules of chance.

At first sight, this statement seems to be a contradiction in itself, since, in everyday
life, one speaks of chance when no rules are apparent. A little thought, however,
reveals that chance does indeed follow some rules. For example, if you flip a coin very
often, you will have no doubt that heads will come up approximately half of the time.
Obviously, this is a law of chance, and is generally accepted as such. Nevertheless, it
is a widespread belief that such laws are too vague to be made precise, let alone to be
formalised mathematically. Intriguingly, the opposite is true: Mathematics offers an
exact language even for such seemingly disordered phenomena; a language that allows
to state, and prove, a variety of laws obeyed by chance. The experience mentioned
above, namely that heads shows up in about one half of a large number of coin flips,
thus turns into a mathematical theorem, the law of large numbers. Stochastics is
the part of mathematics that develops an appropriate formalism for describing the
principles of randomness, for detecting rules where they seem to be absent, and for
using them. This book presents the basic ideas and central results.

�
But what is chance? This is a philosophical question, and a satisfactory answer is
still missing. Whether ‘god plays dice with the universe’ or, in fact, he does not (as
was postulated by Albert Einstein in his famous dictum), whether randomness is only
fictitious and merely a consequence of our incomplete knowledge or, on the contrary,
is inherent to nature – these questions are still unresolved.

1 So far, the noun ‘stochastics’ is not a well-established English word, in contrast to the adjective
‘stochastic’. But since there is a need for a term comprising both probability theory and statistics,
its use is spreading, and is expected to become standard, as it did in other languages. So we use it in
this book.



2 Mathematics and Chance

As a matter of fact, however, we may refrain from trying to understand the nature
of ‘chance per se’, by good reasons. We will never be able to investigate the universe
as a whole. Rather, we will always have to focus on quite a special, restricted phe-
nomenon, and we will restrict attention to the nature of this small part of reality. Even
if the phenomenon considered could be explained in parts by its general circumstances
(as we could, for instance, anticipate the number shown by a dice if we only knew in
sufficient detail how it is thrown) – even then, it is much more practicable, and better
adapted to our human perspective, if we adopt the viewpoint that the phenomenon is
governed by chance. This kind of chance then comprises both, an indeterminacy pos-
sibly inherent to nature, and our (perhaps unavoidable) ignorance of the determining
factors.

�
How does mathematics then come into play? As soon as a definite part of the real
world is selected for investigation, one can try and collect all its relevant aspects into
a mathematical model. Typically, this is done

F by abstracting from ‘dirty’ details that might distract from the essentials of the
problem at hand, that is, by ‘smoothing away’ all features that seem irrelevant;
and, on the other hand,

F by mathematical idealisation, i.e., by widening the scope using mental or formal
limiting procedures that allow for a clear-cut description of the relevant phenom-
ena.

�

�

real world

part considered

abstraction,
idealisation

prediction,
comparison
and revision

model

The model thus obtained can then be investigated mathematically, and the resulting
predictions have to be checked against reality. If necessary, the model must be re-
vised. In general, finding an appropriate model is a delicate process. It requires much
flair and falls beyond mathematics. There are, however, some basic principles and
mathematical structures; these will be discussed in this text.

�
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Stochastics is composed of two equal parts: probability theory and statistics. The
objective of probability theory is the description and investigation of specific random
phenomena. Statistics seeks for methods of drawing rational conclusions from un-
certain random observations. This, of course, requires and builds on the models of
probability theory. The other way round, probability theory needs the validation ob-
tained by comparing model and reality, which is made possible by statistics. Part I
of this text offers an introduction to the basic concepts and results of probability the-
ory. Part II then presents an introduction into theory and methods of mathematical
statistics.

Stochastics

Probability Theory

description of
random phenomena,

investigation of models

Statistics

handling of uncertainty,
rational inference

from random observations

�
��

�
��





Part I

Probability Theory





Chapter 1

Principles of Modelling Chance

This chapter develops the fundamentals of modelling chance. The primary questions
read: How can one describe a specific random phenomenon mathematically? What
are the general properties of the stochastic model so obtained? How can one extract
a particular aspect from a given model? In answering these questions, we will be led
to the fundamental notions of ‘probability space’ and ‘random variable’. We will also
be faced with a few technical questions, which might be somewhat unpleasant to deal
with at the beginning, but will enable us to concentrate on the principal ideas later on.

1.1 Probability Spaces

To build a mathematical model for a specific scenario of chance, one proceeds in three
stages as follows.

1.1.1 Determining the Sample Space

If one aims at describing the effects of chance, the first question is: What can happen
in the given situation? And which part of this is relevant? The possibilities that seem
natural to distinguish are then collected into a set 	. This is best understood by
examples.

(1.1) Example. Rolling a dice once. If we roll a dice on a table, it can stop in infinitely
many positions. We are not interested in its exact final position, and even less in
the precise hand movement when throwing the dice, but only in the number that is
showing. The interesting outcomes are thus captured by the set	 D ¹1; : : : ; 6º. With
the restriction to this 	, we fade out the irrelevant part of reality.

(1.2) Example. Rolling a dice several times. If the dice is thrown n times and we are
interested in the sequence of numbers shown, then the relevant outcomes are those in
the product space 	 D ¹1; : : : ; 6ºn; for ! D .!1; : : : ; !n/ 2 	 and 1 � i � n, !i
represents the number showing at the i th throw.

On the other hand, if we are not interested in the exact sequence of numbers, but
only in how often each number appears, it is more natural to choose

b	 D
°

.k1; : : : ; k6/ 2 Z6C W
6
P

aD1
ka D n

±
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as the set of all possible outcomes. Here ZC D ¹0; 1; 2; : : : º is the set of all non-
negative integers, and ka stands for the number of throws the dice shows a.

(1.3) Example. Tossing a coin infinitely often. When we toss a coin n times, the
appropriate set of outcomes is 	 D ¹0; 1ºn, in analogy with the previous example
(provided we are interested in the sequence of outcomes). If we decide to flip the
coin once more, do we have to consider a new 	 ? This would not be very practical;
thus our model should not be limited to a fixed number of tosses. Moreover, we are
especially interested in patterns that only appear for large n, that is in the limit as
n!1. Therefore it is often convenient to choose an idealised model, which admits
an infinite number of tosses. (As an analogy, think of the mathematically natural
transition from finite to infinite decimal fractions.) The set of all possible outcomes is
then

	 D ¹0; 1ºN D ®! D .!i /i2N W !i 2 ¹0; 1º
¯

;

the set of all infinite sequences of zeros and ones.

As the examples demonstrate, the first step in the process of setting up a model for
a random phenomenon is to decide which possibilities we would like to distinguish
and observe, and which idealising assumptions might be useful. Considering this, one
determines a set 	 of relevant outcomes. This 	 is called the set of outcomes or the
sample space.

1.1.2 Determining a �-Algebra of Events

In general we are not interested in the detailed outcome of a random experiment, but
only in the occurrence of an event that consists of a certain selection of outcomes.
Such events correspond to subsets of 	.

(1.4) Example. Events as sets of outcomes. The event ‘In n coin flips, heads shows
at least k times’ corresponds to the subset

A D
°

! D .!1; : : : ; !n/ 2 	 W
n
P

iD1
!i � k

±

of the sample space 	 D ¹0; 1ºn.

Our aim is to set up a system F of events, such that we can consistently assign to
each event A 2 F a probability P.A/ for A to occur.

Why so cautious? Why not assign a probability to every subset of	, in other words,
why not simply take F to be the power set P.	/ (i.e., the set of all subsets of 	)?
Indeed, this is perfectly possible as long as 	 is countable. However, it is impossible
in general, as the following ‘no-go theorem’ shows.
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(1.5) Theorem. The power set is too large, Vitali 1905. Let 	 D ¹0; 1ºN be the
sample space for infinite coin tossing. Then there is no mapping P WP.	/! Œ0; 1


with the properties

(N) Normalisation. P.	/ D 1.

(A) �-Additivity. If A1; A2; : : : � 	 are pairwise disjoint, then

P
�

[

i�1
Ai

�

D
X

i�1
P.Ai / :

(The probabilities of countably many incompatible events can be added up.)

(I) Flip invariance. For all A � 	 and n � 1 one has P.TnA/ D P.A/; here

Tn W ! D .!1; !2; : : : /! .!1; : : : ; !n�1; 1�!n; !nC1; : : : /

is the mapping from 	 onto itself that inverts the result of the nth toss, and
TnA D ¹Tn.!/ W ! 2 Aº is the image of A under Tn. (This expresses the
fairness of the coin and the independence of the tosses.)

At first reading, only the result is important, and its proof may be skipped.

Proof. We define an equivalence relation � on 	 as follows. Say ! � !0 if and only if
!n D !0

n for all sufficiently large n. By the axiom of choice, there is a set A � 	 that
contains exactly one element from each equivalence class.

Let S D ¹S � N W jS j < 1º be the set of all finite subsets of N. As S is the union
of the countably many finite sets ¹S � N W maxS D mº for m 2 N, it is countable. For
S D ¹n1; : : : ; nkº 2 S let TS WD Q

n2S Tn D Tn1
ı � � � ı Tnk

be the flip at all times
contained in S . Then we have:

F 	 D S

S2 S TSA, since for every ! 2 	 there exists an !0 2 A such that ! � !0,
and thus an S 2 S with ! D TS!0 2 TSA.

F The sets .TSA/S2 S are pairwise disjoint. For, suppose that TSA \ TS 0A ¤ ¿ for
some S; S 0 2 S . Then there exist !;!0 2 A such that TS! D TS 0!0 and so ! �
TS! D TS 0!0 � !0. By the choice of A, this means that ! D !0 and thus S D S 0.

Applying successively the properties (N), (A) and (I) of P we thus find

1 D P.	/ D
X

S2S

P.TSA/ D
X

S2S

P.A/ :

This is impossible, since the infinite sum of the same number is either 0 or1. Þ

How to proceed after this negative result? We have to insist on the properties (N),
(A) and (I), since (N) and (A) are indispensable and elementary (just finite additivity
is not sufficient, as we will see shortly), and (I) is characteristic of the coin tossing
model. But the above proof has shown that the problems only arise for rather unusual,
‘abnormal’ sets A � 	. A natural way out is therefore to restrict the definition of



10 Chapter 1 Principles of Modelling Chance

probabilities to an appropriate subsystem F �P.	/, which excludes the ‘abnormal’
sets. Fortunately, it turns out that this suffices both in theory and in practice. In
particular, we will see in Example (3.29) that a function P satisfying (N), (A) and (I)
can indeed be defined on a suitable F that is large enough for all practical purposes.

What are sensible properties we should ask of the system F ? The minimal re-
quirements are apparently those in the following

Definition. Suppose 	 ¤ ¿. A system F �P.	/ satisfying

(a) 	 2 F (F contains the ‘certain event’)

(b) A 2 F ) Ac WD 	 n A 2 F (F allows the logical negation)

(c) A1; A2; : : : 2 F ) S

i�1Ai 2 F (F allows the countable logical ‘or’)

is called a �-algebra (or �-field) on 	. The pair .	;F / is then called an event space
or a measurable space.

These three properties can be combined to obtain some further properties of a �-
algebra F . By (a) and (b), the ‘impossible event’ ¿ belongs to F . Together with (c)
this gives, for A;B 2 F , that A[B D A[B[¿[� � � 2 F , A\B D .Ac[Bc/c 2
F , and A nB D A\Bc 2 F . Similarly, the countable intersection of sets in F also
belongs to F .

The � in the name �-algebra has become convention as a reminder of the fact that,
in (c), we consider countably infinite (instead of only finite) unions (� like ‘sums’).
Finite unions are not sufficient, because we also need to consider so-called tail events,
such as ‘coin falls heads for infinitely many tosses’ or ‘the relative frequency of heads
tends to 1=2, if the number of tosses tends to1’. Such events can not be captured by
finite unions, but require countably infinite unions (and intersections).

At this point, let us pause for a moment to distinguish between the three set-theoretic levels
we are moving on; see Figure 1.1. The base level consists of the set 	 containing all
outcomes !. Above this there is the event level P.	/; its elements are subsets of the base
level 	. This structure repeats itself once more: �-algebras are subsets of P.	/, so they
are elements of the top level P.P.	//.

	
!

A

F

P.	/

P.P.	// systems of events

events

outcomes
„ ƒ‚ …

A

„ ƒ‚ …

F

Figure 1.1. The three conceptual levels of stochastics.
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How can one determine a �-algebra in 	 ? One starts from a system G of ‘good’,
that is, especially simple or natural sets, whose probability one can easily guess or
determine. Then this system is enlarged just as much as necessary to obtain a �-
algebra. More precisely, the following construction principle can be used.

(1.6) Remark and Definition. Generating �-algebras. If 	 ¤ ¿ and G � P.	/

is arbitrary, then there is a unique smallest �-algebra F D �.G / on 	 such that
F 	 G . This F is called the �-algebra generated by G , and G is called a generator
of F .

Proof. Let ˙ be the system of all �-algebras A in 	 satisfying A 	 G . (So ˙ is
a subset of the top level in Figure 1.1.) ˙ is non-empty, since P.	/ 2 ˙ . Hence,
we can set F WD T

A 2˙ A . As each A 2 ˙ is a �-algebra, so is F , as is easily
checked by spelling out the defining properties (a) to (c). F thus belongs to ˙ , and
is obviously its unique smallest element. This proves the claim. Þ

Here are three standard examples of this construction.

(1.7) Example. The power set. Suppose 	 is countable and G D ®¹!º W ! 2 	¯ the
system containing the singleton sets of	. Then, �.G / DP.	/. Indeed, since every
A 2P.	/ is countable, it follows from axiom (c) that A DS!2A¹!º 2 �.G /.

(1.8) Example and Definition. The Borel �-algebra. Let 	 D Rn and

G D
° n
Q

iD1
Œai ; bi 
 W ai < bi ; ai ; bi 2 Q

±

be the system consisting of all compact rectangular boxes in Rn with rational vertices
and edges parallel to the axes. In honour of Émile Borel (1871–1956), the system
Bn WD �.G / is called the Borel �-algebra on Rn, and every A 2 Bn a Borel set;
in the case n D 1, we simply write B instead of B1. The Borel �-algebra is much
larger than one might expect at first sight. Namely, we have:

(a) Every open set A � Rn is Borel. To see this, it is sufficient to note that every
! 2 A has a neighbourhood Q 2 G with Q � A, so that A D S

Q2G ;Q�AQ,
a union of countably many sets. Our claim thus follows from property (c) of a
�-algebra.

(b) Every closed A � Rn is Borel, since Ac is open and hence by (a) Borel.

(c) It is impossible to describe Bn constructively. It does not only consist of count-
able unions of boxes and their complements; rather, the procedure of taking
complements and countable unions has to be repeated as many times as there
are countable ordinal numbers, hence uncountably often; see [31, p. 139] or [6,
pp. 24, 29]. But this does not cause problems. It suffices to know that Bn is
large enough to contain all sets in Rn that may occur in practice, but still smaller



12 Chapter 1 Principles of Modelling Chance

than P.R/. In fact, the existence of non-Borel sets follows from Theorem (1.5)
and the proof of Theorem (3.12).

We will also need the following facts:

(d) Besides the system G of compact intervals, the Borel �-algebra B D B 1 on R
also admits the generator

G 0 D ®
�1; c
 W c 2 R
¯

;

the system of all left-infinite closed half-lines. For, assertion (b) shows that
G 0 � B and thus, by the minimality of �.G 0/, �.G 0/ � B. Conversely, �.G 0/
contains all half-open intervals 
a; b
 D 
�1; b
 n 
�1; a
, and so all com-
pact intervals Œa; b
 DTn�1
a� 1

n
; b
, hence also the �-algebra B generated by

them.

Likewise, B can also be generated by the left-infinite open half-lines, and also
by the open or closed right-infinite half-lines.

(e) For ¿ ¤ 	 � Rn, the system B n
� D ¹A\	 W A 2 Bnº is a �-algebra on 	; it

is called the Borel �-algebra on 	.

(1.9) Example and Definition. Product �-algebra. Let 	 be the Cartesian product
of arbitrary sets Ei , i.e., 	 DQi2I Ei for an index set I ¤ ¿. Let Ei be a �-algebra
on Ei , Xi W 	 ! Ei the projection mapping onto the i th coordinate, and G D
¹X�1
i Ai W i 2 I; Ai 2 Eiº the system of all sets in	 which are specified by an event

in a single coordinate. Then,
N

i2I Ei WD �.G / is called the product �-algebra of the
Ei on 	. If Ei D E and Ei D E for all i , we write E ˝I instead of

N

i2I Ei . For
example, the Borel �-algebra Bn on Rn is exactly the n-fold product �-algebra of the
Borel �-algebra B D B1 on R, meaning that Bn D B˝n; cf. Problem 1.3.

The second step in the process of building a model can now be summarised as fol-
lows. Theorem (1.5) forces us to introduce a �-algebra F of events in	. Fortunately,
in most cases the choice of F is canonical. In this book, only the following three
standard cases will appear.

F Discrete case: If 	 is at most countable, one can set F DP.	/.

F Real case: For 	 � Rn, the natural choice is F D B n
�.

F Product case: If 	 D Q

i2I Ei and every Ei is equipped with a �-algebra Ei ,
one takes F DNi2I Ei .

Once a �-algebra F is fixed, every A 2 F is called an event or a measurable set.

1.1.3 Assigning Probabilities to Events

The decisive point in the process of building a stochastic model is the next step: For
each A 2 F we need to define a value P.A/ 2 Œ0; 1
 that indicates the probability
of A. Sensibly, this should be done so that the following holds.
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(N) Normalisation: P.	/ D 1.

(A) �-Additivity: For pairwise disjoint events A1; A2; : : : 2 F one has

P
�

S

i�1
Ai
� D

X

i�1
P.Ai / :

(Pairwise disjoint means that Ai \ Aj D ¿ for i ¤ j .)

Definition. Let .	;F / be an event space. A function P W F ! Œ0; 1
 satisfying the
properties (N) and (A) is called a probability measure or a probability distribution, in
short a distribution (or, a little old-fashioned, a probability law) on .	;F /. Then, the
triple .	;F ; P / is called a probability space.

Properties (N) and (A), together with the non-negativity of the probability measure, are
also known as Kolmogorov’s axioms, since it was Andrej N. Kolmogorov (1903–1987)
who in 1933 emphasised the significance of measures for the mathematical foundation of
probability theory, and thus gave a decisive input for the development of modern probability
theory.

Let us summarise: To describe a particular scenario of chance mathematically, one
has to choose an appropriate probability space. Typically, the most delicate point is the
choice of the probability measure P , since this contains all the relevant information
about the kind of randomness. In Chapter 2, as well as in many examples later on,
we will show how this can be done. At this point let us only mention the elementary,
but degenerate, example of a probability measure that describes a situation without
randomness.

(1.10) Example and Definition. Deterministic case. If .	;F / is an arbitrary event
space and � 2 	, then

ı�.A/ D
´

1 if � 2 A ;
0 otherwise

defines a probability measure ı� on .	;F /. It describes an experiment with the
certain outcome � and is called the Dirac distribution or the unit mass at the point �.

We close this section with some remarks on the

Interpretation of probability measures. The concept of a probability space does
not give an answer to the philosophical question what probability really is. The fol-
lowing are common answers:

(a) The naive interpretation. ‘Nature’ is uncertain about what it is doing, and P.A/
represents the degree of certainty of its decision to let A happen.
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(b) The frequency interpretation. P.A/ is the relative frequency with whichA occurs
under some specified conditions.

(c) The subjective interpretation. P.A/ is the degree of certainty with which I would
be willing to bet on the occurrence of A according to my personal evaluation of
the situation.

(The interpretations (a) and (c) are dual concepts, the uncertainty moves from nature
to the observer.)

In general, we cannot say which interpretation is to be preferred, since this depends
on the nature of the problem at hand. If a random experiment can be repeated inde-
pendently, the interpretations (a) and (b) may seem most natural. The probabilities of
rain specified by weather forecasts are obviously based on (b), and so are the prob-
abilities used in the insurance industry. The question that was asked before March
23 in 2001, namely ‘What is the probability that humans will be injured by the crash
of the space station Mir?’, used the subjective interpretation (c), since it dealt with
a singular event. A comprehensive and very stimulating historical and philosophical
discussion of the notion of probability can be found in Gigerenzer et al. [23].

Fortunately, the validity of the mathematical statements about a probability model
does not depend on its interpretation. The value of mathematics is not limited by
the narrowness of human thought. This, however, should not to be misunderstood to
mean that mathematics can take place in an ‘ivory tower’. Stochastics thrives on the
interaction with the real world.

1.2 Properties and Construction of Probability Measures

What are the implications of the assumption (A) of �-additivity? We start with some
elementary consequences.

(1.11) Theorem. Probability rules. Every probability measure P on an event space
.	;F / has the following properties, for arbitrary events A;B;A1; A2; : : : 2 F .

(a) P.¿/ D 0.

(b) Finite additivity. P.A[B/CP.A\B/ D P.A/CP.B/, and so in particular
P.A/C P.Ac/ D 1.

(c) Monotonicity. If A � B then P.A/ � P.B/.
(d) �-Subadditivity. P

�

S

i�1Ai
� �Pi�1 P.Ai /.

(e) �-Continuity. If either An " A or An # A (i.e., the An are either increasing
with union A, or decreasing with intersection A), then P.An/ �!

n!1 P.A/.



Section 1.2 Properties and Construction of Probability Measures 15

Proof. (a) Since the empty set is disjoint from itself, the sequence ¿;¿; : : : consists
of pairwise disjoint events. In this extreme case, �-additivity (A) thus gives

P.¿/ D P.¿ [¿ [ � � � / D
1
X

iD1
P.¿/ :

But this is only possible when P.¿/ D 0.
(b) Suppose first that A and B are disjoint. Since property (A) requires an infinite

sequence, we append the empty set infinitely often to the sets A and B . Hence we
obtain from (A) and statement (a)

P.A [ B/ D P.A [ B [¿ [¿ [ � � � / D P.A/C P.B/C 0C 0C � � � :
So the probability is additive when an event is split into finitely many disjoint parts.
In the general case, it thus follows that

P.A [ B/C P.A \ B/ D P.A n B/C P.B n A/C 2P.A \ B/
D P.A/C P.B/ :

The second assertion follows from the normalisation axiom (N) by taking B D Ac .
(c) For B 	 A we conclude from (b) that P.B/ D P.A/ C P.B n A/ � P.A/

because probabilities are non-negative.
(d) Any union

S

i�1Ai can actually be represented as a union of disjoint sets, by
removing from Ai the part of Ai that is already contained in a ‘previous’ Aj . This
procedure is known as the ‘first entrance trick’. So we can write, using assumption
(A) and statement (c),

P
�

[

i�1
Ai

�

D P
�

[

i�1

�

Ai n S
j<i

Aj
�

�

D
X

i�1
P
�

Ai n S
j<i

Aj
� �

X

i�1
P.Ai / :

(e) If An"A, the �-additivity (A) and the finite additivity (b) give, with A0 WD ¿,

P.A/ D P
�

[

i�1
.Ai n Ai�1/

�

D
X

i�1
P.Ai n Ai�1/

D lim
n!1

n
X

iD1
P.Ai n Ai�1/ D lim

n!1P.An/ :

The case An # A follows by taking complements and using (b). Þ

A less obvious, but equally important consequence of �-additivity is the fact that
each probability measure is already determined by its restriction to a suitable genera-
tor of the �-algebra.
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(1.12) Theorem. Uniqueness theorem. Let .	;F ; P / be a probability space, and
suppose that F D �.G / for a generator G � P.	/. If G is intersection-stable, in
the sense that A;B 2 G implies A \ B 2 G , then P is uniquely determined by its
restriction P jG to G .

Although we will apply the uniqueness theorem repeatedly, its proof should be skipped at
first reading, since this kind of reasoning will not be used later on.

Proof. Let Q be an arbitrary probability measure on .	;F / such that P jG D QjG . The
system D D ¹A 2 F W P.A/ D Q.A/º then exhibits the following properties.

(a) 	 2 D .
(b) If A;B 2 D and A � B , then B n A 2 D .
(c) If A1; A2; : : : 2 D are pairwise disjoint, then

S

i�1Ai 2 D .

Indeed, (a) follows from (N), (c) from (A), and (b) is immediate because P.B n A/ D
P.B/�P.A/ for A � B . A system D satisfying (a) to (c) is called a Dynkin system (after
the Russian mathematician Eugene B. Dynkin, *1924). By assumption we have D 	 G .
Thus D also contains the Dynkin system d.G / generated by G . As in Remark (1.6), d.G /
is defined to be the smallest Dynkin system containing G ; the existence of such a smallest
Dynkin system is proved in exactly the same way as indicated there. The following lemma
will show that d.G / D �.G / D F . As a consequence, we have that D D F and hence
P D Q. Þ

To complete the proof, we need the following lemma.

(1.13) Lemma. Generated Dynkin system. For an intersection-stable system G , the iden-
tity d.G / D �.G / holds.

Proof. Since �.G / is a �-algebra, it is also a Dynkin system, and since d.G / is minimal,
we have �.G / 	 d.G /. Conversely, we will show that d.G / is a �-algebra. For, this
implies that �.G / � d.G / by the minimality of �.G /.

Step 1. d.G / is intersection-stable. Indeed, D1 WD ¹A � 	 W A \ B 2 d.G / for all
B 2 G º is obviously a Dynkin system, and since G is intersection-stable, we have D1 	 G .
By the minimality of d.G /, it then follows that D1 	 d.G /, i.e., we have A \ B 2 d.G /
for all A 2 d.G / and B 2 G .

Similarly, D2 WD ¹A � 	 W A \ B 2 d.G / for all B 2 d.G /º is also a Dynkin system,
and, by the above, D2 	 G . Hence, we also have D2 	 d.G /, i.e., A \ B 2 d.G / for all
A;B 2 d.G /.

Step 2. d.G / is a �-algebra. For, let A1; A2; : : : 2 d.G /. By Step 1, the sets

Bi WD Ai n
[

j<i

Aj D Ai \
\

j<i

	 n Aj

then also belong to d.G / and are pairwise disjoint. Hence
S

i�1Ai D
S

i�1 Bi 2 d.G /. Þ
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Our next question is: How can one construct a probability measure on a �-algebra?
In view of the uniqueness theorem, we can reformulate this question as follows: Under
which conditions can we extend a function P defined on a suitable system G to a
probability measure defined on the generated �-algebra �.G /?

A satisfactory answer is given by a theorem from measure theory, namely
Carathéodory’s extension theorem, see for example [4, 6, 12, 15, 16]; here we will
not discuss this further. However, to guarantee the existence of non-trivial probability
measures on non-discrete sample spaces, we will have to take the existence of the
Lebesgue integral for granted. We will make use of the following

(1.14) Fact. Lebesgue integral. For every function f W Rn ! Œ0;1
 that satisfies the
measurability criterion

(1.15) ¹x 2 Rn W f .x/ � cº 2 Bn for all c > 0

(which will be discussed further in Example (1.26)), one can define the Lebesgue
integral

R

f .x/ dx 2 Œ0;1
 in such a way that the following holds.

(a) For every Riemann-integrable function f ,
R

f .x/ dx coincides with the Rie-
mann integral of f .

(b) For every sequence f1; f2; : : : of non-negative measurable functions as above,
we have

Z

X

n�1
fn.x/ dx D

X

n�1

Z

fn.x/ dx :

A proof of these statements can be found in numerous textbooks on analysis, such as [56,
57]. As property (a) shows, in concrete computations it often suffices to know the Riemann
integral. However, the Riemann integral does not satisfy the �-additivity property (b),
which is essential for our purposes; it is equivalent to the monotone convergence theorem,
see also Theorem (4.11c) later on.

In particular, the Lebesgue integral yields a sensible notion of volume for Borel sets
in Rn. Namely, let

(1.16) 1A.x/ D
´

1 if x 2 A ;
0 otherwise

denote the indicator function of a set A. The integral over A 2 Bn is then defined as
Z

A

f .x/ dx WD
Z

1A.x/f .x/ dx :

In the special case f 
 1, property (1.14b) then gives us the following result.
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(1.17) Remark and Definition. Lebesgue measure. The mapping �n WBn! Œ0;1

that assigns to each A 2 Bn its n-dimensional volume

�n.A/ WD
Z

1A.x/ dx

satisfies the �-additivity property (A), and we have �n.¿/ D 0. Consequently, �n is
a ‘measure’ on .Rn;Bn/. It is called the (n-dimensional) Lebesgue measure on Rn.
For 	 2 Bn, the restriction �n� of �n to Bn

� is called the Lebesgue measure on 	.

We will see repeatedly that the existence of many interesting probability measures
can be deduced from the existence of the Lebesgue measure. Here, we will use the
Lebesgue measure for constructing probability measures on Rn (or subsets thereof)
by means of density functions, a procedure which is obvious for discrete spaces. See
the illustration in Figure 1.2.

Discrete case Continuous case

!1 !2 !3 � � �

%.!/

P.A/

A
	

Figure 1.2. On the left: bar chart of a discrete density. On the right: Lebesgue density; its
integral over an event A yields the probability P.A/.

(1.18) Theorem. Construction of probability measures via densities.

(a) Discrete case: For countable 	, the relations

P.A/ D
X

!2A
.!/ for A 2P.	/ ; .!/ D P.¹!º/ for ! 2 	

establish a one-to-one correspondence between the set of all probability mea-
sures P on .	;P.	// and the set of all sequences  D ..!//!2� in Œ0; 1

such that

P

!2� .!/ D 1.

(b) Continuous case: If 	 � Rn is Borel, then every function  W 	 ! Œ0;1Œ
satisfying the properties

(i) ¹x 2 	 W .x/ � cº 2 B n
� for all c > 0 (cf. (1.15)),

(ii)
R

� .x/ dx D 1
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determines a unique probability measure P on .	;B n
�/ via

P.A/ D
Z

A

.x/ dx for A 2 B n
�

(but not every probability measure on .	;B n
�/ is of this form).

Proof. The discrete case is obvious. In the continuous case, the claim follows im-
mediately from Fact (1.14b), since 1S

i�1Ai
D P

i�1 1Ai
when the Ai are pairwise

disjoint. Þ

Definition. A sequence or function  as in Theorem (1.18) above is called a density
(of P ) or, more explicitly (to emphasise normalisation), a probability density (func-
tion), often abbreviated as pdf. If a distinction between the discrete and continuous
case is required, a sequence  D ..!//!2� as in case (a) is called a discrete density,
and a function  W 	! Œ0;1Œ as in case (b) a Lebesgue density.

A basic class of probability measures defined by densities is given by the uniform
distributions, which are defined as follows and will be discussed in more detail in
Section 2.1.

(1.19) Example and Definition. The uniform distributions. If 	 is finite, the proba-
bility measure having the constant discrete density .!/ D 1=j	j (so that all ! 2 	
occur with the same probability) is called the (discrete) uniform distribution on	 and
is denoted by U�.

Likewise, if 	 � Rn is a Borel set with volume 0 < �n.	/ < 1, the probability
measure on .	;B�/ with the constant Lebesgue density .x/ D 1=�n.	/ is called
the (continuous) uniform distribution on 	; it is also denoted by U�.

Let us conclude this section with some comments. In contrast to the discrete case,
there is no one-to-one correspondence between probability measures and their densi-
ties in the continuous case. On the one hand, most probability measures on Rn fail
to have a Lebesgue density, but many of the most common probability measures do.
On the other hand, any two probability densities that differ only on a set of vanishing
Lebesgue measure determine the same probability measure. For example, we have
U �0;1Œ D UŒ0;1�.

Next we note that probability measures on Borel subsets of Rn can also be viewed
as probability measures on all of Rn. Specifically, let 	 � Rn be a Borel set and
P a probability measure on .	;B n

�/ with Lebesgue density . The measure P can
then be identified with the probability measure NP on .Rn;Bn/ with density N, where
N.x/ D .x/ for x 2 	 and N.x/ D 0 otherwise. Indeed, we have NP .Rn n	/ D 0,
and NP and P coincide on B n

�. We will often carry out this identification without
mentioning it explicitly. There is also an analogue in the discrete case: If 	 � Rn

is countable and P a probability measure on .	;P.	// with discrete density ,
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we can identify P with the probability measure
P

!2� .!/ ı! , which is defined on
.Rn;Bn/, or in fact even on .Rn;P.Rn//; here ı! is the Dirac measure introduced
in (1.10).

Finally, it is possible to combine discrete and continuous probability measures. For
example,

(1.20) P.A/ D 1
3
ı�1=2.A/C 2

3
U �0;1=2Œ.A/ ; A 2 B;

defines a probability measure on .R;B/, which for two thirds is ‘blurred uniformly’
over the interval 
0; 1=2Œ and assigns the extra probability 1=3 to the point �1=2.

1.3 Random Variables

Let us return for a moment to the first step of setting up a model, as described in
Section 1.1.1. The choice of the sample space 	 is not unique, but depends on how
many details of the random phenomenon should be included into the model, and is
therefore a matter of the appropriate observation depth.

(1.21) Example. Tossing a coin n times. On the one hand, one can record the result
of every single toss; then 	 D ¹0; 1ºn is the appropriate sample space. Alternatively,
one may restrict attention to the number of tosses when heads is showing. Then, the
natural sample space is 	0 D ¹0; 1; : : : ; nº. The second case corresponds to a lower
observation depth. The process of reducing the observation depth can be described
by the mapping X W 	 ! 	0 that assigns to each ! D .!1; : : : ; !n/ 2 	 the sum
Pn
iD1 !i 2 	0, which indicates the ‘number of successes’.

The example shows: The transition from a given event space .	;F / to a coarser
model .	0;F 0/ providing less information is captured by a mapping from the detailed
to the coarser sample space, i.e., from 	 to 	0. In the general case, such a mapping
should satisfy the requirement

(1.22) A0 2 F 0 ) X�1A0 2 F ;

that is, all events on the coarse level can be traced back to events on the detailed level
via the preimage mapping X�1. The situation is visualised in Figure 1.3.

X�1A0

	

X A0

	0

Figure 1.3. For a random variable, the preimage of an event in 	0 is an event in 	.
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Definition. Let .	;F / and .	0;F 0/ be two event spaces. Then every mapping
X W 	 ! 	0 satisfying property (1.22) is called a random variable from .	;F /

to .	0;F 0/, or a random element of 	0. Alternatively (in the terminology of measure
theory), X is said to be measurable relative to F and F 0.

Due to (1.22), preimages will occur frequently in the following. In stochastics, it is
common to use the suggestive notation

(1.23) ¹X 2 A0º WD ¹! 2 	 W X.!/ 2 A0º D X�1A0 :

Let us note first that condition (1.22) holds automatically in the discrete case.

(1.24) Example. Random variables on discrete spaces. If F D P.	/, then every
mapping X W 	! 	0 is a random variable.

In the general case, the following criterion is crucial.

(1.25) Remark. Measurability criterion. In the set-up of the previous definition, sup-
pose that F 0 is generated by a system G 0, in that F 0 D �.G 0/. Then X W 	! 	0 is
already a random variable when X�1A0 2 F for all A0 2 G 0 only.

Proof. The system A 0 WD ¹A0 � 	0 W X�1A0 2 F º is a �-algebra, which by
assumption contains G 0. Since F 0 is by definition the smallest such �-algebra, we
also have A 0 	 F 0, which means that X satisfies condition (1.22). Þ

(1.26) Example. Real random variables. Let .	0;F 0/ D .R;B/. For a real function
X W 	! R to be a random variable, it is sufficient that all sets of the form

¹X � cº WD X�1 
�1; c 

belong to F . (Alternatively, one can replace ‘�’ by ‘<’, ‘�’ or ‘>’.) This follows
immediately from Remark (1.25) and Fact (1.8d).

It is often convenient to consider so-called extended real functions taking values in
NR D Œ�1;1
. NR is equipped with the �-algebra generated by the intervals Œ�1; c
,
c 2 R. (Think about how this relates to the Borel �-algebra on R.) Consequently, an
extended real function X W 	! NR is a random variable if and only if ¹X � cº 2 F
for all c 2 R.

(1.27) Example. Continuous functions. Let 	 � Rn and F D B n
�. Then every

continuous function X W 	 ! R is a random variable. Indeed, for every c 2 R,
¹X � cº is closed in 	, so by Example (1.8be) it belongs to B n

�. Thus the claim
follows from Example (1.26).

The next theorem describes an important principle for constructing new probability
measures, which will be used repeatedly.
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(1.28) Theorem. Distribution of a random variable. If X is a random variable from
a probability space .	;F ; P / to an event space .	0;F 0/, then the prescription

P 0.A0/ WD P.X�1A0/ D P.¹X 2 A0º/ for A0 2 F 0

defines a probability measure P 0 on .	0;F 0/.

To simplify the notation, we will omit the braces in expressions like P.¹X 2 A0º/, and
simply write P.X 2 A0/ in the future.

Proof. By (1.22) the definition of P 0 makes sense. Furthermore, P 0 satisfies the con-
ditions (N) and (A). Indeed, on the one hand, P 0.	0/ D P.X 2 	0/ D P.	/ D 1.
On the other hand, if A0

1; A
0
2; : : : 2 F 0 are pairwise disjoint, so are their preimages

X�1A0
1, X�1A0

2; : : :, whence

P 0� S
i�1

A0
i

� D P �X�1 S
i�1

A0
i

� D P � S
i�1

X�1A0
i

�

D
X

i�1
P.X�1A0

i / D
X

i�1
P 0.A0

i / :

Hence P 0 is a probability measure. Þ

Definition. (a) The probability measure P 0 in Theorem (1.28) is called the distri-
bution of X under P , or the image of P under X , and is denoted by P ıX�1. (In the
literature, one also finds the notations PX or L .X IP /. The letter L stands for the
more traditional term law, or loi in French.)

(b) Two random variables are said to be identically distributed if they have the
same distribution.

At this point, we need to emphasise that the term ‘distribution’ is used in an infla-
tionary way in stochastics. Apart from the meaning that we have just introduced, it is
also generally used as a synonym for probability measure. (In fact, every probability
measure is the distribution of a random variable, namely the identity function of the
underlying 	.) This has to be distinguished from two further notions, namely ‘distri-
bution function’ and ‘distribution density’, which refer to the real event space .R;B/

and will be introduced now.
Each probability measure P on .R;B/ is already uniquely determined by the func-

tion FP .c/ WD P.
�1; c
/ for c 2 R. Likewise, the distribution of a real-valued
random variable X on a probability space .	;F ; P / is uniquely determined by the
function FX W c ! P.X � c/ on R. This is because any two probability measures
on .R;B/ coincide if and only if they agree on all intervals of the form 
�1; c
,
by statement (1.8d) and the uniqueness theorem (1.12). This motivates the following
concepts.
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Definition. For a probability measure P on the real line .R;B/, the function FP W
c ! P.
�1; c
/ from R to Œ0; 1
 is called the (cumulative) distribution function
of P . Likewise, for a real random variable X on a probability space .	;F ; P /, the
distribution function FX .c/ WD FPıX�1.c/ D P.X � c/ of its distribution is called
the (cumulative) distribution function of X .

Every distribution function F D FX is increasing and right-continuous and has the
asymptotic behaviour

(1.29) lim
c!�1F.c/ D 0 and lim

c!C1F.c/ D 1 :

This follows immediately from Theorem (1.11); see Problem 1.16. Figure 1.4 shows
an example. Remarkably, every function with these properties is the distribution func-
tion of a random variable on the unit interval (equipped with the uniform distribution
from Example (1.19)). The term ‘quantile’ occurring in the name of these random
variables will play an important role in statistics, i.e., in Part II; see the definition on
p. 231.

-1/2

-1/2

1/2

1/2

1

1 F

X

Figure 1.4. Distribution function F (bold) and quantile transformation X (dashed) of the
probability measure 1

3
ı�1=2 C 2

3
U �0;1=2Œ from (1.20). The dotted lines illustrate that X is

obtained from F by reflection at the diagonal. The values at the discontinuities are marked by
bullets.

(1.30) Proposition. Quantile transformation. For every increasing right-continuous
function F on R with limit behaviour (1.29), there exists a real random variable X
on the probability space .
0; 1Œ;B�0;1Œ;U �0;1Œ/ such that FX D F . This X is given
explicitly by X.u/ D inf¹c 2 R W F.c/ � uº, u 2 
0; 1Œ , and is called the ‘quantile
transformation’.

Proof. By (1.29) we have �1 < X.u/ < 1 for all 0 < u < 1. In fact, X is a left-
continuous inverse of F ; compare Figure 1.4. Indeed, X.u/ � c holds if and only if
u � F.c/; this is because, by the right-continuity of F , the infimum in the definition
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of X is in fact a minimum. In particular, ¹X � cº D 
0; F.c/
 \ 
0; 1Œ 2 B�0;1Œ.
Together with Example (1.26) this shows that X is a random variable. Furthermore,
the set ¹X � cº has Lebesgue measure F.c/. Hence F is the distribution function
of X . Þ

Since every probability measure P on .R;B/ is uniquely determined by its distri-
bution function, we can rephrase the proposition as follows: Every P on .R;B/ is
the distribution of a random variable on the probability space .
0; 1Œ;B�0;1Œ;U �0;1Œ/.
This fact will repeatedly be useful.

The connection between distribution functions and probability densities is made by
the notion of a distribution density.

(1.31) Remark and Definition. Existence of a distribution density. Let X be a real
random variable on a probability space .	;F ; P /. Its distribution P ıX�1 admits a
Lebesgue density  if and only if

FX .c/ D
Z c

�1
.x/ dx for all c 2 R:

Such a  is called the distribution density of X . In particular, P ı X�1 admits a
continuous density  if and only if FX is continuously differentiable, and then  D
F 0
X . This follows directly from (1.8d) and the uniqueness theorem (1.12).

Problems

1.1 Let .	;F / be an event space, A1; A2; : : : 2 F and

A D ¹! 2 	 W ! 2 An for infinitely many nº:
Show that (a) A DTN�1

S

n�N An, (b) 1A D lim supn!1 1An
.

1.2 Let 	 be uncountable and G D ¹¹!º W ! 2 	º the system of the singleton subsets of 	.
Show that �.G / D ¹A � 	 W A or Ac is countableº:
1.3 S Show that the Borel �-algebra B n on Rn coincides with B ˝n, the n-fold product of the
Borel �-algebra B on R.

1.4 Let 	 � Rn be at most countable. Show that B n
� DP.	/.

1.5 Let Ei , i 2 N, be countable sets and 	 D Q

i�1Ei their Cartesian product. Denote by
Xi W 	! Ei the projection onto the i th coordinate. Show that the system

G D ®¹X1 D x1; : : : ; Xk D xkº W k � 1; xi 2 Ei
¯ [ ®¿¯

is an intersection-stable generator of the product �-algebra
N

i�1P.Ei /.

1.6 S Let .	i ;Fi /, i D 1; 2, be two event spaces and !1 2 	1. Show the following. For
every A 2 F1˝F2, the ‘!1-section’ A!1

WD ¹!2 2 	2 W .!1; !2/ 2 Aº of A belongs to F2,
and if f is a random variable on .	1 �	2;F1˝F2/ then the function f .!1; �/ is a random
variable on .	2;F2/.
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1.7 S Inclusion–exclusion principle. Let .	;F ; P / be a probability space and Ai 2F , i 2
I D ¹1; : : : ; nº. For J � I let

BJ D
\

j2J
Aj \

\

j2InJ
Acj I

by convention, an intersection over an empty index set is equal to 	. Show the following:

(a) For all K � I ,
P
�

T

k2K
Ak
� D

X

K�J�I
P.BJ /:

(b) For all J � I ,
P.BJ / D

X

J�K�I
.�1/jKnJ jP

�

T

k2K
Ak
�

:

What does this imply for J D ¿?

1.8 Bonferroni inequality. Let A1; : : : ; An be any events in a probability space .	;F ; P /.
Show that

P
�

n
S

iD1
Ai
� �

n
X

iD1
P.Ai / �

X

1�i<j�n
P.Ai \ Aj / :

1.9 A certain Chevalier de Méré, who has become famous in the history of probability theory
for his gambling problems and their solutions by Pascal, once mentioned to Pascal how sur-
prised he was that when throwing three dice he observed the total sum of 11 more often than
the sum of 12, although 11 could be obtained by the combinations 6-4-1, 6-3-2, 5-5-1, 5-4-2,
5-3-3, 4-4-3, and the sum of 12 by as many combinations (which ones?). Can we consider his
observation as caused by ‘chance’ or is there an error in his argument? To solve the problem,
introduce a suitable probability space.

1.10 In a pack of six chocolate drinks every carton is supposed to have a straw, but it is missing
with probability 1=3, with probability 1=3 it is broken and only with probability 1=3 it is in
perfect condition. LetA be the event ‘at least one straw is missing and at least one is in perfect
condition’. Exhibit a suitable probability space, formulate the event A set-theoretically, and
determine its probability.

1.11 S Alice and Bob agree to play a fair game over 7 rounds. Each of them pays e 5 as an
initial stake, and the winner gets the total of e 10. At the score of 2 : 3 they have to stop the
game. Alice suggests to split the winnings in this ratio. Should Bob accept the offer? Set up
an appropriate model and calculate the probability of winning for Bob.

1.12 The birthday paradox. Let pn be the probability that in a class of n children at least
two have their birthday on the same day. For simplicity, we assume here that no birthday
is on February 29th, and all other birthdays are equally likely. Show (using the inequality
1�x � e�x) that

pn � 1 � exp
��n.n�1/=730�;

and determine the smallest n such that pn � 1=2.
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1.13 S The rencontre problem. Alice and Bob agree to play the following game: From two
completely new, identical sets of playing cards, one is well shuffled. Both piles are put next to
each other face down, and then revealed card by card simultaneously. Bob bets (for a stake of
e 10) that in this procedure at least two identical cards will be revealed at the same time. Alice,
however, is convinced that this is ‘completely unlikely’ and so bets the opposite way. Who do
you think is more likely to win? Set up an appropriate model and calculate the probability of
winning for Alice. Hint: Use Problem 1.7b; the sum that appears can be approximated by the
corresponding infinite series.

1.14 Let X; Y;X1; X2; : : : be real random variables on an event space .	;F /. Prove the
following statements.

(a) .X; Y / W 	! R2 is a random variable.
(b) X C Y and XY are random variables.
(c) supn2N Xn and lim supn!1Xn are random variables (taking values in NR).
(d) ¹X D Y º 2 F , ¹limn!1Xn existsº 2 F , ¹X D limn!1Xnº 2 F .

1.15 S Let .	;F / D .R;B/ and X W 	 ! R be an arbitrary real function. Verify the
following:

(a) If X is piecewise monotone (i.e., R may be decomposed into at most countably many
intervals, on each of which X is either increasing or decreasing), then X is a random
variable.

(b) IfX is differentiable with (not necessarily continuous) derivativeX 0, thenX 0 is a random
variable.

1.16 Properties of distribution functions. Let P be a probability measure on .R;B/ and
F.c/ D P.
�1; c
/, for c 2 R, its distribution function. Show that F is increasing and
right-continuous, and (1.29) holds.

1.17 Consider the two cases

(a) 	 D Œ0;1Œ , .!/ D e�! , X.!/ D .!=˛/1=ˇ for ! 2 	 and ˛; ˇ > 0,
(b) 	 D 
��=2; �=2Œ , .!/ D 1=� , X.!/ D sin2 ! for ! 2 	.

In each case, show that  is a probability density and X a random variable on .	;B�/,
and calculate the distribution density of X with respect to the probability measure P with
density . (The distribution of X in case (a) is called the Weibull distribution with parameters
˛; ˇ, in case (b) the arcsine distribution.)

1.18 S Transformation to uniformity. Prove the following converse to Proposition (1.30): If X
is a real random variable with a continuous distribution function FX D F , then the random
variable F.X/ is uniformly distributed on Œ0; 1
. Show further that the continuity of F is
necessary for this to hold.
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Stochastic Standard Models

Having described the general structure of stochastic models, we will now discuss how
to find suitable models for concrete random phenomena. In general, this can be quite
delicate, and requires the right balance between being close to reality yet mathemati-
cally tractable. At this stage, however, we confine ourselves to several classical exam-
ples, for which the appropriate model is quite obvious. This gives us the opportunity
to introduce some fundamental probability distributions along with typical applica-
tions. These distributions can be used as building blocks of more complex models, as
we will see later on.

2.1 The Uniform Distributions

There are two different types of uniform distributions: the discrete ones on finite sets,
and the continuous uniform distributions on Borel subsets of Rn.

2.1.1 Discrete Uniform Distributions

Let us start with the simplest case of a random experiment with only finitely many
possible outcomes, i.e., an experiment with a finite sample space 	. For example, we
can think of tossing a coin or rolling a dice several times. In these and many other
examples, symmetry suggests the assumption that all single outcomes ! 2 	 are
equally likely. By Theorem (1.18a) this means that the probability measure P should
have the constant density .!/ D 1=j	j (for ! 2 	). This leads to the approach
P D U�, where

(2.1) U�.A/ D jAjj	j D
number of ‘favourable’ outcomes

number of possible outcomes
for all A � 	 :

Definition. For a finite set 	, the probability measure U� on .	;P.	// defined by
(2.1) is called the (discrete) uniform distribution on 	. Sometimes .	;P.	/;U�/
is also called a Laplace space (in honour of Pierre-Simon Laplace, 1749–1827).

Classical examples in which the uniform distribution shows up are tossing a coin
or rolling a dice (once or several times), the lottery, playing cards, and many more.
Several of these examples will be discussed soon, in particular in Sections 2.2 and 2.3.
A less obvious example is the following.
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(2.2) Example. The Bose–Einstein distribution (1924). Consider a system of n in-
distinguishable particles that are distributed over N different ‘cells’; the cells are of
the same type, but distinguishable. For example, one can imagine the seeds in the
pits of the Syrian game Kalah, or – and this was Bose’s and Einstein’s motivation –
physical particles, whose phase space is partitioned into finitely many cells. A (macro)
state of the system is determined by specifying how many particles populate each cell.
Hence,

	 D
°

.k1; : : : ; kN / 2 ZNC W
N
P

jD1
kj D n

±

:

This sample space has cardinality j	j D �

nCN�1
n

�

, since each .k1; : : : ; kN / 2 	 is
uniquely characterised by a sequence of the form

� � � � �
„ƒ‚…

k1

j� � � � �
„ƒ‚…

k2

j � � � j � � � � �
„ƒ‚…

kN

;

where the blocks of k1; : : : ; kN balls are separated from each other by a total ofN �1
vertical bars. To determine a state, we only have to place the n balls (resp. the N �1
vertical bars) into the nCN �1 available positions. Hence, the uniform distribution
U� on 	 is given by U�.¹!º/D 1=

�

nCN�1
n

�

, ! 2 	. The assumption of a uniform
distribution agrees with the experimental results in the case of so-called bosons (i.e.,
particles with integer spin, such as photons and mesons).

Physicists often speak of Bose–Einstein ‘statistics’. In this traditional terminology, statis-
tics means the same as ‘probability distribution’ and has nothing in common with statistics
in today’s mathematical sense.

2.1.2 Continuous Uniform Distributions

Let us begin with a motivating example.

(2.3) Example. Random choice of a direction. Imagine we spin a roulette wheel.
After the wheel has stopped, into which direction is the zero facing? The angle it
forms relative to a fixed direction is a number in the interval 	 D Œ0; 2�Œ , which
is equipped with the Borel �-algebra F WD B�. Which probability measure P
describes the situation? For every n � 1, 	 can be partitioned in the n disjoint
intervals Œk

n
2�; kC1

n
2�Œ with 0 � k < n. By symmetry, each of these should receive

the same probability, which is then necessarily equal to 1=n. That is, we should have

P
� hk

n
2�;

kC1
n

2�
h �

D 1

n
D
Z

kC1
n
2�

k
n
2�

1

2�
dx

for 0 � k < n and, by additivity,

P
� hk

n
2�;

l

n
2�
h �

D
Z

l
n
2�

k
n
2�

1

2�
dx
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for 0 � k < l � n. By Theorems (1.12) and (1.18), there exists only one probability
measure P with this property, namely the one with the constant Lebesgue density
1=2� on Œ0; 2�Œ . This P reflects the idea that all possible directions are equally
likely.

Definition. Let 	 � Rn be a Borel set with n-dimensional volume 0<�n.	/<1;
cf. (1.17). The probability measure U� on .	;B n

�/ with constant Lebesgue density
.x/ D 1=�n.	/, which is given by

U�.A/ D
Z

A

1

�n.	/
dx D �n.A/

�n.	/
; A 2 B n

� ;

is called the (continuous) uniform distribution on 	.

Note that, depending on the context, U� can either stand for a discrete or a con-
tinuous distribution. But both cases are completely analogous. The favourable resp.
possible outcomes are simply counted in the discrete case (2.1), whereas in the con-
tinuous case they are measured with Lebesgue measure. The following application of
continuous uniform distributions is an example of historical interest, and also a little
taster from so-called stochastic geometry.

(2.4) Example. Bertrand’s paradox. Given a circle with radius r > 0, a chord is
chosen ‘at random’. What is the probability that it is longer than the sides of an
inscribed equilateral triangle? (This problem appeared in 1889 in a textbook of the
French mathematician J. L. F. Bertrand, 1822–1900.)

Figure 2.1. The geometry of Bertrand’s paradox. The incircle of the inscribed equilateral
triangle has half the radius.

The answer depends on what one considers a ‘random choice’ or, in other words, it
depends on the method the chord is chosen.

First approach. The chord is uniquely determined by its midpoint (as long as it
is not the centre of the circle; this case can be neglected). Hence, a possible sample
space is 	1 D ¹x 2 R2 W jxj < rº, and it seems reasonable to interpret ‘choosing
at random’ by taking the uniform distribution U�1

as the underlying probability mea-
sure. The event ‘the chord is longer than the sides of the inscribed equilateral triangle’
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is then described by the setA1 D ¹x 2 	1 W jxj < r=2º, cf. Figure 2.1. Consequently,

U�1
.A1/ D �.r=2/2

�r2
D 1

4
:

Second approach. The chord is uniquely determined by the angle under which it
is seen from the centre of the circle, and the direction of its perpendicular bisector;
the latter is irrelevant by the rotational symmetry of the problem. The angle falls into
	2 D 
0; �
. The relevant event is A2 D 
2�=3; �
. If we again use the uniform
distribution, it follows that

U�2
.A2/ D �=3

�
D 1

3
:

Third approach. The chord is also uniquely determined by its distance and direc-
tion from the centre; the latter can again be ignored. Hence, we can also take the
sample space 	3 D Œ0; rŒ . Then A3 D Œ0; r=2Œ is the event we are interested in, and
we obtain U�3

.A3/ D 1=2.

In Bertrand’s times, this apparent paradox cast doubt on the legitimacy of non-
discrete probability spaces. Today it is clear that the three versions describe different
methods of choosing the chord ‘at random’, and it is all but surprising that the proba-
bility we are looking for depends on the choice of the method.

Some readers may consider this way of resolving the paradox as a cheap way out, because
they think that there must be a unique ‘natural’ interpretation of ‘choosing at random’. In
fact the latter is true, but only if we reformulate the problem by requiring that the object
chosen ‘at random’ is not a chord, but a straight line that intersects the circle. Such a
random straight line is best described by the third approach, since one can show that this
is the only case in which the probability that a random straight line hits a set A is invariant
under rotations and translations of A.

This example demonstrates that the choice of a suitable model can be non-trivial,
even in a simple case like this, which only involves uniform distributions. This is a
main problem in all applications.

2.2 Urn Models with Replacement

The so-called urn models form a simple class of stochastic models with finite sample
space. Their significance comes from the observation that many random experiments
can be thought of as picking balls of different colours at random from a container,
which is traditionally called an ‘urn’. In this section we consider the case that the
balls are replaced after being drawn. The case without replacement follows in the
next section.
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2.2.1 Ordered Samples

We begin with two examples.

(2.5) Example. Investigation of a fish pond. Consider a fish pond inhabited by several
species of fish, and let E be the set of species. Suppose the pond contains Na fish
of species a 2 E, so the total population size is

P

a2E Na D N . We repeat the
following procedure n times. A fish is caught, examined for parasites, say, and then
thrown back into the pond. What is the probability that a random sample exhibits a
specific sequence of species?

(2.6) Example. A survey. A local radio station interviews passers-by on the high
street concerning a question of local interest, for instance the construction of a new
football stadium. Let E be the set of viewpoints expressed (possible location, rejec-
tion on principle, etc.). The station interviews n people. What is the probability that a
given sequence of views is observed?

Such problems, where samples are picked randomly from a given pool, are often
formulated in an abstract way as urn models. An urn contains a certain number of
coloured but otherwise identical balls. LetE be the set of colours, where 2� jEj<1.
A sample of size n is taken from the urn with replacement, meaning that n times a ball
is drawn at random and returned immediately. We are interested in the colour of each
ball we take out. Thus, the sample space is 	 D En, equipped with the �-algebra
F DP.	/. Which probability measure P describes the situation adequately?

To find out, we proceed as follows. We imagine that the balls are labelled with
the numbers 1; : : : ; N ; the labels of the balls with colour a 2 E are collected in a
class Ca � ¹1; : : : ; N º. Thus jCaj D Na. If we could observe the labels, we would
describe our experiment by the sample space 	 D ¹1; : : : ; N ºn (with the �-algebra
F D P.	/), and since all balls are identical (up to their colour), we would choose
our probability measure to be the uniform distribution NP D U�. So, using the trick
of increasing the observation depth artificially by labelling the balls, we arrive at a
plausible stochastic model.

We now return to the true sample space 	 D En. As we have seen in Sec-
tion 1.3, this transition can be described by constructing a suitable random variable
X W 	! 	. The colour of the i th draw is specified by the random variable

Xi W 	! E; N! D . N!1; : : : ; N!n/! a if N!i 2 Ca :
The sequence of colours in our sample is then given by the n-step random variable
X D .X1; : : : ; Xn/ W 	! 	.

What is the distribution of X? For every ! D .!1; : : : ; !n/ 2 En we have

¹X D !º D C!1
� � � � � C!n
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and thus

NP ıX�1.¹!º/ D NP .X D !/ D jC!1
j : : : jC!n

j
j	j D

n
Y

iD1
.!i / ;

where .a/ D jCaj=N D Na=N is the proportion of balls of colour a.

Definition. For every density  on E, the (discrete) density

˝n.!/ D
n
Y

iD1
.!i /

on En is called the n-fold product density of , and the corresponding probability
measure P on En is the n-fold product measure of . (We will not introduce an extra
notation for P , but instead we will use the notation ˝n for P as well.)

In the special case when E D ¹0; 1º and .1/ D p 2 Œ0; 1
, one obtains the product
density

˝n.!/ D p
Pn

iD1 !i .1�p/
Pn

iD1.1�!i /

on ¹0; 1ºn, and P is called the Bernoulli measure or the Bernoulli distribution for n
trials with ‘success probability’ p. (The name refers to Jakob Bernoulli, 1654–1705.)

2.2.2 Unordered Samples

In the urn model, one is usually not interested in the (temporal) order in which the
colours were selected, but only in how many balls of each colour were drawn. (In
particular, this applies to the situations of Examples (2.5) and (2.6).) This corresponds
to a lower observation depth and leads to the sample space

b	 D
° Ek D .ka/a2E 2 ZEC;

P

a2E
ka D n

±

;

which consists of the integral grid points in the simplex spanned by the jEj vertices
.nıa;b/b2E , a 2 E; cf. Figure 2.3 on p. 37. The transition to b	 is described by the
random variable

(2.7) S W 	! b	; ! D .!1; : : : ; !n/!
�

Sa.!/
�

a2E I
where Sa.!/ D Pn

iD1 1¹aº.!i / is the number of occurrences of colour a in sample
point ! 2 En. S.!/ is called the histogram of !. It can be visualised by plotting a
rectangle of width 1 and height Sa.!/ for every a 2 E. Notice that the total area of
all rectangles is n.

Now, for P D ˝n and Ek D .ka/a2E 2 b	, we find

P.S D Ek/ D
X

!2�W S.!/D Ek

n
Y

iD1
.!i / D

�

n
Ek
�

Y

a2E
.a/ka :


