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Preface

This book 17 0 is about elliptic Diophantine equations, the most standard instance
of such an equation being the equation y2 D x3 C Ax C B in integers x, y, where
A,B 2 Q and the right-hand side has no multiple roots. Many more Diophantine
equations are elliptic Diophantine equations; in Chapter 1 the term is explained in its
generality.

More specifically, the main theme of this book is the explicit resolution of such
equations and the resolution method that is exposed in detail is called elliptic log-
arithm method or, briefly, Ellog, in accordance with the terminology and notation
introduced in [55]. The method has two main characteristics which are, first, the ex-
ploitation of the group structure with which the points of a non-singular cubic curve
are endowed and, second, the use of linear forms in elliptic logarithms. The method
owes its name to its second characteristic, the most modern. Immediately below we
give more explanations.

The first main characteristic (or ingredient) of the Ellog, which makes possible the
transition from the elliptic Diophantine equation to linear forms in elliptic logarithms
– the second main characteristic – is the fact that, on the one hand, an elliptic Dio-
phantine equation can be transformed, by an appropriate “change of variables”, into a
non-singular cubic equation of a special shape1 and, on the other hand, that the set of
points2 of the curve defined by this cubic equation, is endowed with the structure of
a finitely generated abelian group. The operation of “addition” in this group is a con-
sequence of the simple observation that the third point of intersection with the curve
of a line joining two points of the curve with coordinates in a number field also has
coordinates in this same number field; if the two points coincide, as “the line joining
them” we understand the tangent at the point. Thus, if we know two distinct ratio-
nal, say, solutions (points), we can obtain a third one, also with rational coordinates,
which is the third intersection with the curve of the line joining the two known points;
and if we know only one solution (point), as a “line joining the two known points”
we consider the tangent at the known point. This is the chord and tangent method
for generating new solutions from known ones. At this point I refer the reader to the
beautiful booklet of I. G. Bashmakova [3]. Bashmakova seems to believe that, in the
two problems below, found in Arithmetica, Diophantus applied the chord and tangent
method consciously. I am very cautious about this view; nevertheless, one might ex-

1 The Weierstrass equation.
2 With coordinates rational or, more generally, in a number field.
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plain Diophantus’s solution to these problems as an application of this method, which
is what I do below, following Bashmakova’s exposition [3, Chapter 6].

Problem Δ-24 of Diophantus’s Arithmetica [61, pp. 242–244].3

To divide a given number into two numbers such that their product is a
cube minus its side.
Original text: Δοθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμούς, καὶ ποιεῖν τὸν
ὑπ’ αὐτῶν κύβον παρὰ πλευράν.

Sketch, in modern language, of Diophantus’s solution. As a “given number” he takes
6 and the two numbers in which 6 is “divided” are 6 and 6 � x. Let y be the “side of
the cube”, so that, by the problem, x.6 � x/ D y3 � y. Diophantus puts y D ax � 1
with a temporarily not specified.4 His first attempt, setting a D 2, is not successful
because the coefficients of x are not cancelled out. Therefore he takes a D 3 and
then his equation becomes 27x3 � 26x2 D 0, which gives the non-zero solution x D
26=27, y D 136=27.

A deeper explanation of the above solution. Consider x.6 � x/ D y3 � y as a curve
possessing the obvious point .x, y/ D .0,�1/. The tangent to the curve at this point
meets the curve at three points, two of them being .0,�1/ counted twice and the third
will be the new sought-for point. The equation of the tangent is y D 3x � 1 and we
are led to Diophantus’s choice a D 3.
In this solution, only one point, namely .0,�1/, was a priori known, so that the tangent
was used. An analogous use of tangent explains the duplication formula of Bachet
(1621), by which he was able to find rational solutions .x, y/ with xy ¤ 0 to the
equation y2 D x3Cc for any integer c ¤ 1,�432, once he knew one rational solution
.x1, y1/ with x1y1 ¤ 0; see [46, Introduction].

Problem Δ-26 of Diophantus’s Arithmetica [61, pp. 248–250].5

To find two numbers such that their product augmented by either gives a
cube.
Original text: Νὰ εὑρεθῶσι δύο ἀριθμοί, ὅπως τὸ γινόμενον αὐτῶν σὺν
ἑκάτερον σχηματίζει κύβον.

Sketch, in modern language, of Diophantus’s solution. As the first number he takes a
multiple of a cube;6 specifically, 8x. He takes the second number equal to x2� 1. The
conditions of the problem require that both 8x.x2�1/C8x and 8x.x2�1/Cx2�1 be
cubes. The first condition is satisfied by every x, while the second gives 8x3Cx2�8x�
3 Also [51, p. 199].
4 “I form a cube by arbitrary times minus its side” is my rough translation from Greek of Diophantus’s

statement.
5 Also [51, p. 203].
6 “I form the first by an arbitrary cube” is my rough translation from Greek of Diophantus’s statement.
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1 D y3. Again, Diophantus sets y D 2x � 1, obtaining thus the solution x D 14=13;
hence the sought-for numbers are 8 � 14=13 D 112=13 and .14=13/2 � 1 D 27=169.
A deeper explanation of the above solution. Why the substitution y D ax � 1 with
a D 2? What is special about this value for a? In projective coordinates .X : Y : Z/
the above cubic equation becomes7 8X3CX2Z�8XZ2�Z3 D Y 3 and the equation of
the above line through the point .0,�1/ – which is the projective point .0 : �1 : 1/ – is
Y D aX�Z. On this line, the “point at infinity” is .1 : a : 0/, and the requirement that
this be also a point on the cubic curve forces a D 2. Thus, the solution of Diophantus
is the third point of intersection of the (projective) cubic curve with the (projective)
line joining the points .0 : �1 : 1/ and .1 : 2 : 0/.

The necessary theory and tools related to the above are discussed mainly in Chapter
1 and, also, in Chapter 2.

The second characteristic (or ingredient) relevant to the method from which this
book takes its name, consists in the fact that to each elliptic Diophantine equation one
or more linear forms in elliptic logarithms are attached, and the computation of upper
and lower bounds for them is a major part of the method. The necessary theory and
tools for this are developed in Chapter 3.

A first complete image of Ellog, in general, which results from the combination
of the two ingredients, is given in Chapter 4. Specialising the application of Ellog
to various classes of elliptic Diophantine problems results in Chapters 5, 6, 7, and
8. Each of these chapters leads up to a theorem furnishing an upper bound for the
absolute value of the linear form L, involved in the Diophantine problem, in terms of
a critical parameter M > 0.

In Chapter 9, a major step is achieved due to a Theorem of S. David [12], namely, a
lower bound for jLj (the sameL as above), again in terms ofM (the sameM as above)
is obtained. All quantities in both the upper and the lower bound of jLj, except forM ,
are explicit; moreover, as it will turn out, the lower bound runs faster to infinity with
M than the upper bound and this fact clearly implies an explicit upper bound for M .
Why is this important? At this point, it is not possible to explain in a few sentences, the
meaning of M . For the present, the reader should consider that an explicit bound for
M would reduce the resolution of the Diophantine problem to that of checking which
lattice points in a hyper-cube of side 2M satisfy a certain condition. This is what I call
in this book an effective resolution to the Diophantine problem. It is important to stress
the fact that this checking can be performed in practice only ifM is “very small”; this
issue is discussed later in this preface.

Four specific examples corresponding, respectively, to Chapters 5, 6, 7, and 8 are
discussed, resulting in explicit very large upper bounds forM ; in all cases this is larger
than 1040.

Unfortunately, this is a general fact: In all specific Diophantine problems, the effec-
tive upper bound for M is so large (something of the size of 1030, say, would be very

7 On setting x D X=Z and y D Y=Z.
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“friendly”) that, in practice, the checking of lattice points in the hyper-cube, mentioned
a few lines above, is impossible.

Is it possible to reduce the upper bound of M to a manageable size (say of a few
decades)? This would lead to an explicit resolution of the Diophantine problem. The
answer is, in principle, positive due to a reduction method developed by B. M. M. de
Weger [72], which is based on the LLL-basis reduction algorithm of Lenstra–Lenstra–
Lovász [27]. Chapter 10 presents everything related to the reduction of the upper
bound of M . The reduction method is then applied to the examples of Chapter 9,
leading to upper bounds for M at most 17. This small upper bound leads then, very
easily, to the complete explicit solution.

The theoretical idea of the method8 goes back to Lang [25], who also explains it in
[26]; its brief explanation is found in [45, Chapter IX.5, “Linear forms in elliptic log-
arithm”]. The discussion so far and the contents of this book confirm that from theory
to practice a long way had to be covered; the method became practical only in 1994,
after the work of R. J. Stroeker and the author [54], and, independently, the work of
J. Gebel, A. Pethő and H. G. Zimmer [15]. These two 1994 papers would not have
appeared if the work of N. Hirata-Kohno [17] and S. David [12], on lower bounds of
linear forms in elliptic logarithms, had not been previously published. In a correspon-
dence9 during 1991–1992, I asked S. David if he could make explicit the constants
involved in the results of [17]; I am extremely grateful to him for his accepting my
far from non-trivial “challenge”, which turned out to be a really heavy work [12] of
more than 130 pages! For a clear and relatively short description of the practical “1994
method” I refer to [50, Chapter XIII].

Chapter 11 is special. In it, the resolution of the Weierstrass elliptic equation in S -
integers is discussed. What do we mean by S -integers? If S is a finite set of primes,
an S -integer is, by definition, a rational number, with the property that the prime de-
composition of its denominator allows only primes belonging to S ; in particular, every
usual (rational) integer is an S -integer.

One has to develop a theory of p-adic elliptic logarithms (with p a prime) for the
points of an elliptic curve, in analogy with the theory of elliptic logarithms developed
in Chapter 3; this is done in Section 11.1. In Section 11.2 linear forms in p-adic elliptic
logarithms are introduced and thep-adic version ofEllog, is developed. This section is
inspired by the papers of N. Smart [47] and Pethő–Zimmer–Gebel–Herrmann [36]; the
second paper completes the project set up in the first paper. When [36] was published,
no explicit lower bound for linear forms in p-adic elliptic logarithms – the analogue in
thep-adic case of S. David’s theorem – existed, except for that in [39] which, however,
is applicable only to elliptic curves of rank at most two.10 Therefore the authors of [36]

8 Without its “details” �: Lower bounds for linear forms in elliptic logarithms, reduction process and,
in general, all computational aspects.

9 Handwritten letters of the good old days!
10 This result is improved in [18], but still treats the case of two p-adic elliptic logarithms.
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turned to the recent, for those days, paper [16]. Very recently,11 N. H. Kohno released
a valuable paper [19], in which “the p-adic analogue of S. David’s theorem” is proved.
This is what is used in Chapter 11 instead of [16]. I am grateful to Noriko, who, meeting
my desire, worked hard in order to provide me with her theorem before the date that I
had to send my manuscript to the editors.

The chapter includes a specific example with the primes p D 2, 3, 5, 7 involved.

About the style of the book. To what extent should my exposition take for granted
standard (more or less) material found in the literature? I had this speculation mainly
concerning Section 1.2 of Chapter 1, Chapters 2, 3 and 9, Section 10.1 of Chapter 10,
and Section 11.1 of Chapter 11. My decisions are detailed below.

The basic theory of elliptic curves is so beautifully written in various text-books –
few of them (only) are included in my bibliography –, that my hypothetical contribu-
tion could be described by � C1! Therefore, Section 1.2 of Chapter 1 includes only
the very basic facts that will be needed and gives references.

For the theory of heights, in Chapter 2, only a moderate use of p-adic theory is
required. I found that standard texts either include so much material that reference to
them would disorientate (with respect to this book’s aim) my reader, or they adopt
a point of view not very appropriate for the present book, as they build the relevant
theory by considering extensions of Qp.12

Concerning Weierstrass equations over C and R and the Weierstrass }-function,
treated in Chapter 3, I do the following. Since the basic general theory is so neatly
written, for example, in [1, Chapter 1], I decided that I need not provide any expla-
nation. However, specialisation of the general theory to Weierstrass equations with
real coefficients is absolutely necessary in order to build a practical theory of ellip-
tic logarithms. I decided to discuss this issue, rather in detail, guided by my personal
taste. I adopted a very classical point of view, mainly based on the old (still in print)
nice book [73] and the personal notes of N. Kritikos from A. Hurwitz’s 1916–1917
E. T. H. lectures on elliptic functions.13

The hard core of Chapter 9 is a special – very important though – case of Sinnou
David’s Theorem. As I already mentioned, this is the result of his memoir [12] of
more than 130 pages. The theorem, in the form appropriate for the needs of this book
(Theorem 9.1.2), is stated only and aspects of its application in practice are discussed.

For the applications of Chapter 10 the main tool is the reduction technique of
B. M. M. de Weger [72], which is based on the LLL-algorithm [27]. The style of [72]
is very appropriate for this book,14 but discusses many more applications than those

11 Actually, when I was ready to send my manuscript to the editors!
12 For this book’s purposes, working with non-archimedean absolute values on (finite) extensions of Q

is much more appropriate.
13 These notes in Greek [23], prepared by the late Dr. I. Ferentinou-Nikolakopoulou, circulated around

1980 in the Department of Mathematics of the University of Crete.
14 Is it accidental that B. M. M. de Weger and I had a congenial collaboration for years?
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needed here. Therefore, in Chapter 10, among other issues, I expose the reduction
process focusing on the particular applications of the book.

In Section 11.1 of Chapter 11, p-adic elliptic logarithms and their linear forms play
the fundamental role. The theory on which the construction of such logarithms is based
is described in Chapter IV of J. Silverman’s valuable book [45], though from a point
of view somewhat more general than necessary for this book. What I decided to do
was state only the absolutely necessary facts from Silverman’s exposition “translated”
into a language appropriate for practical applications.
As in the case with S. David’s Theorem in Chapter 11, the very recent and extremely
important theorem of N. Hirata-Kohno, mentioned before, is only stated in the form
appropriate for the needs of this book (Theorem 11.2.5).

Although a main characteristic of the book is its use of computational methods, it
is not a book on Computational Number Theory; issues such as – to mention only a
few examples – the actual computation of Mordell–Weil bases, the search for rational
points on elliptic curves up to a certain bound, the computation of canonical heights,
various aspects of the implementation of the LLL-algorithm, and/or improvements of
existing methods and algorithms, are beyond the scope of the book. To this “rule” I
allowed three exceptions: In Chapter 3, first, I did not refrain from discussing in detail
the actual computation of a fundamental pair of periods for a Weierstrass equation
with real coefficients, an issue that fits very well in the framework of the chapter.15

Second, again in Chapter 3, I did not resist the temptation to describe the very clever
algorithm of D. Zagier [74] for the computation of elliptic logarithms. Third, in Chap-
ter 8, I present an algorithm of J. Coates related to the computation of the coefficients
of Puiseux series.

Suggestions for reading this book. The Diophantine problems treated in this book
are classified to five classes: Weierstrass, quartic elliptic, simultaneous Pell, general
elliptic, and Weierstrass in S -integers; let us use for these problems the symbols Pi ,
where i D 5, 6, 7, 8, 11, respectively, with this numbering justified by the chapter
where the corresponding problem is mainly (but not exclusively) discussed. Since
Ellog is applied in the most direct manner to P4, I would suggest that the reader starts
by understanding the resolution of this problem. In general, in order to understand the
complete and explicit resolution of problem Pi , I suggest the following scheme:

� Read carefully Chapter 1.
� Make a first superficial reading of Chapter 2 to become acquainted with heights,

so that you can read Section 2.6; if you already know about heights, go directly to
Section 2.6.

� Pay attention to the content of Section 3.5. An understanding of the previous sections
of Chapter 3 is necessary, with the exception of Section 3.4 which you will need only
if you are interested in the actual computation of periods.

15 Besides, a detailed treatment of this issue is not easily found in the literature.
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� Comprehend the content of the short Chapter 4.
� Read carefully Chapter i. If i = 11 do not proceed to Theorem 11.2.6; instead, pro-

ceed to the following step.
� From Chapter 9 read carefully Sections 9.1 and 9.2.

If i = 11 go back to Theorem 11.2.6 and complete your study of Chapter 11. END!
If i is not 11, read that Section among 9.3, 9.4, 9.5 and 9.6 which corresponds to the
chosen Pi .

� If i is different from 11, proceed to Chapter 10, read Section 10.1 and chose among
the subsections of Section 10.2 the one that corresponds to the chosen Pi . END!

Software packages. My frequent reference to the software packages PARI (free),
MAGMA and MAPLE is because I happen to have been acquainted with them for years.
Alternatively, for the applications of this book, one could turn to SAGE (free). As this
was developed very recently – comparatively to the previously mentioned packages –,
I had not the time to gain experience with it; this is the only reason why SAGE is not
mentioned in my applications.

Final acknowledgments. The materials of Chapters 4, 5, 8, 9 and 10 are mostly
based on joint-papers with Roel Stroeker published between 1994 and 2003. It was a
real pleasure to cooperate with Roel, noble friend and brave co-traveller in the long
and adventurous but beautiful trip in the field of elliptic Diophantine equations.

Around that same period, other people worked independently on various aspects of
elliptic Diophantine equations, from a similar point of view; I have in mind mainly (in
alphabetic order) J. Gebel, E. Herrmann, A. Pethő, N. P. Smart and H. G. Zimmer. We
always had fruitful, and friendly communication; also their work was an inspiration
source in writing Chapter 11.

All serious computations in the examples of this book, besides their obvious debt
to the software packages mentioned above, owe much, though indirectly, to people
on whose work the routines that I have used are, more or less, based; let me mention
(alphabetically) J. Cremona, M. van Hoeij, A. K. Lenstra, H. W. Lenstra, L. Lovász,
J. Silverman, M. Stoll, B. M. M. de Weger, D. Zagier and many anonymous (to me, at
least) heroes who are behind the algorithms’ implementation in various packages.

Generally speaking, this book owes something to every author whose name appears
in the bibliography; to some of them it owes much more, as becomes clear from the
frequent references to their work. I also thank Y. Thomaidis who, shared with me his
professional views about some issues of Diophantus’s Arithmetica.

Warm thanks to De Gruyter for its continued collaboration and to D. Poulakis for
inciting me to write this book and his warm encouragement.

I am grateful to P. Voutier for his careful reading of Chapters 2 and 3. Of course, I
am absolutely responsible for anything wrong that possibly escaped his attention.
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I am indebted to my wife Maro for her lifelong support, and for her warm encour-
agement and patience when I was writing this book; this has been a main factor for its
completion!

Heraklion, Crete, May 12, 2013 Nikos Tzanakis



Contents

Preface vii

1 Elliptic curves and equations 1

1.1 A general overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Elliptic curves and the Mordell–Weil Theorem . . . . . . . . . . . . . . . . . . 5

2 Heights 9

2.1 Notations and facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Absolute values in a number field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Heights: Absolute and logarithmic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 A formula for the absolute logarithmic height . . . . . . . . . . . . . . . . . . . 18

2.5 Heights of points on an elliptic curve . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 The canonical height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Weierstrass equations over C and R 29

3.1 The Weierstrass } function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Weierstrass equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3  : E.C/ 7�! C=ƒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Weierstrass equations with real coefficients . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 � > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 � < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Explicit expressions for the periods . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Computing !1 and !2 in practice . . . . . . . . . . . . . . . . . . . . . . . 44

3.5  : E.R/ 7�! C=ƒ and l : E.R/ �! R=Z!1 . . . . . . . . . . . . . . . . . . 47

4 The elliptic logarithm method 54

5 Linear form for the Weierstrass equation 57

6 Linear form for the quartic equation 60

7 Linear form for simultaneous Pell equations 69



xvi Contents

8 Linear form for the general elliptic equation 78

8.1 A short Weierstrass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2 Puiseux series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Large solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4 The elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.5 Computing in practice B1 of Proposition 8.3.2 . . . . . . . . . . . . . . . . . . . 89

8.6 Computing in practice B2 and c9 of Proposition 8.4.2 . . . . . . . . . . . . . 91

8.7 The linear form L.P / and its upper bound . . . . . . . . . . . . . . . . . . . . . . 94

9 Bound for the coefficients of the linear form 98

9.1 Lower bound for linear forms in elliptic logarithms . . . . . . . . . . . . . . . 98

9.2 Computational remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.3 Weierstrass equation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.4 Quartic equation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.5 Simultaneous Pell equations example . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.6 General elliptic equation: A quintic example . . . . . . . . . . . . . . . . . . . . 118

10 Reducing the bound obtained in Chapter 9 121

10.1 Reduction using the LLL-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.2.1 Weierstrass equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.2.2 Quartic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.2.3 System of simultaneous Pell equations . . . . . . . . . . . . . . . . . . . 131
10.2.4 General elliptic equation: A quintic example . . . . . . . . . . . . . . 134

11 S-integer solutions of Weierstrass equations 137

11.1 The formal group of C and p-adic elliptic logarithms . . . . . . . . . . . . . 137

11.2 Points with coordinates in ZS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.3 The p-adic reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

List of symbols 165

Bibliography 173

Index 177



Chapter 1

Elliptic curves and equations

1.1 A general overview

In this section we make an overview of general facts, terminology and conventions
that will be used in this book.

Let g.X ,Y / be a non-zero polynomial with coefficients in a subfield K of C (in
most cases, K D Q), irreducible over C, and let R be a subring of K (usually, but
not always, R D Z) which will be fixed throughout this chapter. We are interested in
solving the Diophantine equation

g.u, v/ D 0, .u, v/ 2 R �R. (1.1)

The characterisation of the above equation as “Diophantine” comes from the require-
ment that the unknowns u, v belong to the prescribed ringR and not to the whole C or
R. Solving the Diophantine equation is far different from solving the algebraic equa-
tion g.u, v/ D 0, in which the unknowns belong to C. The solutions of the algebraic
equation define a curve or, more precisely, a model C of a curve; we state this by
writing

C : g D 0; g.X ,Y / D a specific polynomial in X ,Y

and we say that C or, more precisely, the model C is defined by the polynomial
g.X ,Y /, or by the equation g D 0. Thus, we view C as the set C.C/ D ¹.u, v/ 2
C � C : g.u, v/ D 0º and the elements of C.C/ are called points of (the model)
C . Sometimes we wish to focus our interest to the “real part” of C , which is the set
C.R/ D ¹.u, v/ 2 R � R : g.u, v/ D 0º of real points of (the model) C . In gen-
eral, if A is a subring of C, we set C.A/ D ¹.u, v/ 2 A � A : g.u, v/ D 0º and if
.u, v/ 2 C.A/, we say that .u, v/ is an A-point of (on) C . The fact that the model C
is defined by means of the polynomial g, whose coefficients belong to R, is expressed
by saying that C is defined over R.

Sometimes (actually very rarely) we will need to refer to the projective equation or,
equivalently, to the projective model corresponding to equation (1.1). This results from
the so-called homogenisation of the variables u and v, which consists in considering
the equation

g.U : V : W /D 0, (1.2)

g.U : V : W /
defDW ng.U=W ,V=W /, n D max¹degug, degvgº.

Note that g.U ,V ,W / is homogeneous in U ,V ,W of degree n and g.u : v : 1/ D
g.u, v/.
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If g.U : V : W / D 0, then and only then g.kU : kV : kW / D 0 for every k 2 C�,
therefore it is more appropriate to view the solutions of the equation g.U : V : W / D
0 projectively, i.e. as points .U : V : W / 2 P 2.C/ rather than as solutions or affine
points .U ,V ,W / 2 C3. If g.U : V : W / D 0 for some .U : V : W / 2 P 2.C/ and
there exists a k 2 C� such that kU , kV , kW 2 R, then .U : V : W / is a projective
solution (point) over R.

The dehomogenisation process from g D 0 to g D 0 consists in dividing
g.U ,V ,W / D 0 through by W n and putting .U=W ,V=W / D .u, v/.

In the homogenisation process, from every solution .u, v/ of g D 0 we obtain a
projective solution .u : v : 1/ of g D 0. In the dehomogenisation process, a solution
.U : V : W / of g D 0 furnishes a solution .u, v/ of g D 0 if, and only if,W ¤ 0, the
solution in this case being .u, v/ D .U=W ,V=W /; but projective solutions of the form
.U : V : 0/ cannot be “dehomogenised” to solutions .u, v/ of (1.1). Such solutions
.U : V : 0/ are characterised as solutions (points) at infinity of the equation (1.1).

Now we proceed to discussing the important fact that different equations may de-
fine the same curve. In order to make this more precise, we need first the following
definition:

Definition 1.1.1. For i D 1, 2, let gi .X ,Y / be non-zero polynomials in CŒX ,Y �,
irreducible over C and consider the models Ci : gi D 0.

We say that a birational transformation exists between C1 and C2 or, equivalently,
that the models C1 and C2 are birationally equivalent if, for .i , j / D .1, 2/, .2, 1/,
rational functions Uij ,Vij 2 C.X ,Y / exist such that: for .i , j / as above, if .ui , vi / 2
Ci .C/ and we define .uj , vj / D .Uij .ui , vi /,Vij .ui , vi //, then .uj , vj / 2 Cj .C/ and
.Uj i .uj , vj /,Vj i .uj , vj // D .ui , vi /.

Actually, the above definition of birational equivalence, though satisfactory for the
needs of this book, is not very precise: What about points .ui , vi / 2 Ci .C/ for which
Uij .ui , vi / or Vij .ui , vi / is not defined (i.e. .ui , vi / is a zero of the denominator)? We
overcome these difficulties if, for any model C : g D 0, we consider its function field
C.C / (see a few lines below) and we define the notion of birational equivalence of two
models C1 and C2 by means of their function fields C.C1/ and C.C2/. The function
field of the modelC : g D 0 is, by definition, the field C.� , �/, where � is transcenden-
tal over C and � is algebraic over C.�/, satisfying g.� , �/ D 0. Equivalently, C.C /
can be defined as the quotient field of the integral domain CŒX ,Y �=I , where I is the
ideal g.X ,Y /CŒX ,Y � of CŒX ,Y �. If two models C1 and C2 are birationally equiv-
alent, then there exists an isomorphism of their function fields which fixes C. For a
treatment of these issues, very appropriate for the theoretical background of this book,
we refer the reader to §§3,4 of the classical book [66]. For an alternative, or comple-
mentary, exposition the interested reader can refer to [45, Chapters I, II.1, II.2].
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Let us come back to Definition 1.1.1 and impose the further conditions that gi 2
RŒX ,Y � for i D 1, 2 and the four rational functions Uij , Vij have coefficients in
K. Then we say that C1 and C2 are birationally equivalent over K. If K D Q.R/,
the quotient field of R, then, obviously, any R-point .ui , vi / of Ci is mapped by the
birational transformation of Definition 1.1.1 to a Q.R/-point .uj , vj / of Cj .

Clearly, birational equivalence of models of curves is an equivalence relation. The
equivalence class of a model C will be called a curve, denoted by C. Thus, for this
book, a curve is an equivalence class of a model and will be denoted by a capital calli-
graphic letter. IfC1,C2 are models of the same curve C, thenC1 andC2 share a number
of important properties, a very important one being that they have the same genus and
we thus speak about the genus of the curve C rather than the genus of this or that model.
The notion of genus is not easy to define but, fortunately, an in-depth knowledge of
this notion is not absolutely necessary for the main purpose of this book, which is the
practical resolution of elliptic Diophantine equations. Anyway, the interested reader
can refer, for example, to [45, Chapter II.5], especially Theorem 5.4. A more classical
approach is found in [66, Chapter VI, §5.3]. Another classical analytic point of view
for genus, very much in the spirit of the present book, is found in [4, Chapter III, §21];
see especially Corollary 2. A “picturesque” geometrical notion of genus, easy for ev-
erybody, is presented in [38, Appendix to Chapter 1]. Although this approach to genus
is not practical for the purposes of this book, we recommend the reader unaccustomed
with this notion to have a look at it.

In this book, we will deal with Elliptic Diophantine Equations. These are equa-
tions (1.1) defining a model C : g D 0 of an elliptic curve over K, which means
that the curve has genus one and the corresponding projective equation (equivalently
stated, the corresponding projective model) (1.2) has a solution (has a point) in P 2.K/.

In our applications, K D Q but, as a tool, we will sometimes need to consider
elliptic curves defined over a number fieldK as well. Also, in our applicationsR D Z,
except for Chapter 11, in which R D ZS , the ring of S -integers, where S is a finite
set of primes; see the beginning of that chapter.

When we solve an elliptic Diophantine equation, defined by an equation (1.1), we
employ properties of the elliptic curve C, a model of which is C : g D 0. Let us put
g D g1 and C D C1; the method of solution that we will apply requires working with
one or two further models Ci : gi D 0 (i D 2, 3) of C, also defined over R, with any
two ofC1,C2,C3 birationally equivalent by means of transformationsUij ,Vij (cf. Def-
inition 1.1.1) having coefficients inR (in other words, the said models are birationally
equivalent over Q.R/). These birational transformations will be fixed during the pro-
cess of the resolution of the Diophantine equation g1 D 0. We will exclude all the
finitely many (and easily computed) exceptional points of C1.C/ at which at least one
of the rational functions U1j ,V1j is not defined, focusing on non-exceptional points of
C1.C/, i.e. on points which map to points on Cj for j ¤ 1 by means of the birational
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map

.u1, v1/ �! .uj , vj / D .U1j .u1, v1/,V1j .u1, v1//

.u1, v1/ D .Uj 1.u1, v1/,Vj 1.u1, v1//  � .uj , vj /

For the convenience of our notation we will avoid the use of subscripts in curve no-
tation and denote the various (two or three) birationally equivalent models that will
be used during the resolution of an elliptic Diophantine equation by, for example,
C : g.u, v/ D 0, E : f .x, y/ D 0, D : f1.x1, y1/ D 0 instead of Ci : gi D 0
(i D 1, 2, 3); note the use of different letters for the variables of different models. In
accordance with the chosen letters, the birational transformation e.g. from C toE will
then be denoted by .U ,V/ and its inverse from E to C by .X ,Y/, so that

.u, v/�! .x, y/ D .X .u, v/,Y.u, v// (1.3)

.u, v/ D .U.x, y/,V.x, y// � .x, y/. (1.4)

If we denote by C the curve, models of which are C and E, then, in accordance with
what was previously said, a point P of (on) C is “visualised” by both a pair .u0, y0/

satisfying g.u0, y0/ D 0 and a pair .x0, y0/ satisfying f .x0, y0/ D 0 (and analogously
if a third model of C is used), where .u0, y0/ and .x0, y0/ are related by (1.3) and (1.4),
with .u0, v0/ in place of .u, v/ and .x0, y0/ in place of .x, y/. It will be convenient to
express this by writing PC D .u.P /, v.P // D .u0, v0/ and PE D .x.P /, y.P // D
.x0, y0/.

To sum up: In general, if we have to solve a certain elliptic Diophantine equation
g.u, v/ D 0, we consider the model C : g.u, v/ D 0 and the elliptic curve C cor-
responding to the model C , along with one or two further models E : f .x, y/ D 0,
D : f1.x1, y1/ D 0 which will remain fixed in the process of the resolution of the Dio-
phantine equation. We will consider fixed birational transformations between any pair
of models C ,E,D as in (1.3) and (1.4). We will say that “P is a point of (on) C” and
will state this by writing P 2 C, if there exist points PC D .u.P /, v.P // 2 C.C/,
PE D .x.P /, y.P // 2 E.C/ such that the rational functions U.u, v/ and V.u, v/
are defined at .u.P /, v.P // (in other words, the point .u.P /, v.P // of the model C is
non-exceptional) and the pairs .u.P /, v.P // and .x.P /, y.P // are related by means
of (1.3) and (1.4), with .u.P /, v.P // in place of .u, v/ and .x.P /, y.P // in place of
.x, y/.1

Consequently, in accordance with these conventions/notations, we have

P 2 E , PE D .x.P /, y.P // 2 E.C/, PC D .u.P /, v.P // 2 C.C/

PC D .U.PE /,V.PE //D .U.x.P /, y.P //,V.x.P /, y.P //
(1.5)

PE D .X .PC /,Y.PC //D .X .u.P /, v.P //,Y.u.P /, v.P //
1 And analogously if it is necessary to make use of a third model D of C.


