Liviu C. Florescu • Christiane Godet-Thobie Young Measures and Compactness in Measure Spaces

Liviu C. Florescu
Christiane Godet-Thobie

Young Measures and
 Compactness in Measure

Spaces

De Gruyter

Mathematics Subject Classification 2010: Primary: 28-01, 28-02, 60-01; Secondary: 28A33, 28C15, 46E30, 46N10, 49J45, 60B05, 60B10.

ISBN 978-3-11-027640-4
e-ISBN 978-3-11-028051-7

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de.
© 2012 Walter de Gruyter GmbH \& Co. KG, Berlin/Boston
Typesetting: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de Printing and binding: Hubert \& Co. GmbH \& Co. KG, Göttingen
∞ Printed on acid-free paper
Printed in Germany
www.degruyter.com

This book is dedicated to our wonderful spouses,

Cristina and Roger

Preface

In recent years, technological progress created a great need for complex mathematical models. Many practical problems can be formulated using optimization theory and they hope to obtain an optimal solution. In most cases, such optimal solution can not be found.

So, non-convex optimization problems (arising, e.g., in variational calculus, optimal control, nonlinear evolutions equations) may not possess a classical minimizer because the minimizing sequences have typically rapid oscillations. This behavior requires a relaxation of notion of solution for such problems; often we can obtain a such relaxation by means of Young measures.

The Young measures generalize measurable functions. Thus, a Young measure is herself a measurable application that, to every point t of Ω, associates a probability τ_{t} on a topological space X; for all Borel set $A \subseteq X, \tau_{t}(A)$ may be interpreted as the probability that the value in t of the "function" τ. belongs to A. In the particular case, a measurable application $u: \Omega \rightarrow X$ is a Young measure, where, for all $t \in \Omega, \tau_{t}=\delta_{u(t)}\left(\delta_{u(t)}\right.$ indicates the mass of Dirac in $\left.u(t)\right)$.

Young measures' theory has a long history; it begins with the work of L. C. Young which, in 1937, introduces the so-called "generalized curves" in order to provide extended solutions for some non-convex problems in variational calculus. A milestone in this history is the appearance of the monograph of J. Warga, "Optimal Control of Differential and Functional Equations" (Academic Press, 1972); here is systematically developed a theory of relaxed control in compact metric spaces. The extension of theory on locally compact metric spaces was made by H. Berliocchi and J. M. Lasry in 1973.

The study of Young measures was extended to Polish and Suslin spaces by the works of E. J. Balder (since 1984) and M. Valadier (1990).

Lately, Young measures were the object of an intense research due to their applications in obtaining relaxed solutions; here are some of the areas in which these relaxed solutions find applications: non-convex variational problems and differential inclusions, non-linear homogenization problems, micro-magnetic phenomena in ferro-magnetic materials, Nash equilibrium in games theory, Gammaconvergence, different phenomena in continuum mechanics (as elasticity, microstructures' theory), optimal design and shape optimization problems.

On this subject, recent monographs appeared:
(i) Roubiček, T.-Relaxation in optimization theory and variational calculus, Walter de Gruyter, Berlin. New York, 1997.
(ii) Pedregal, P.-Parametrized Measures and Variational Principles, Birkhäuser Verlag, Basel. Boston. Berlin, 1997.
(iii) Castaing, Ch., Raynaud de Fitte, P. and Valadier, M.-Young measures on topological spaces. With applications in control theory and probability theory, Kluwer Academic Publ. Dordrecht. Boston. London, 2004.

The focus of the first two books is mainly on the applications; therefore, Young measures are used as generalized solutions to non-convex problems of variational calculus, optimization theory, or game theory.

The last monograph considers theoretical aspects of the theory of Young measures as well as the applications in control theory and probability theory. Many of the results presented here make reference to a wide bibliography; thus, the work is difficult to use for beginners.

The literature on the applications of Young measures in various areas (lower semicontinuity, optimal relaxed control, Gamma-convergence and homogenization, differential games, elasticity, hysteresis, etc.) is extremely rich and the existing monographs main focus on applications rather than on theoretical aspects. We found difficult for a young researcher who wants to clarify the theoretical aspects, to go through the extensive bibliography which is usually referred. Thus, our goal was to write a book where to be gathered all the theoretical aspects related to defining of Young measures (measurability, disintegration, stable convergence, compactness), book which to be a useful tool for those interested in theoretical foundations of the theory: the postgraduate students, the students in the doctoral study, but also to all those interested in measure theory and relaxed control.

The developing of Young measures' theory involves some compactness results for measures on abstract spaces and topological spaces. Hence, to achieve our goal, we considered useful to provide a complete set of classical and recent compactness results in measure and function spaces.

The book is organized in three chapters (Weak compactness in measure spaces, Bounded measures on topological spaces, Young measures). For a good comprehension of the subject, we developed in the first two chapters the results used in the third (biting lemma in the abstract measure theory and Prohorov's theorem in the measure theory on topological spaces).

The first chapter covers background material on measure theory in abstract frame. Therefore, we present some results of duality and weakly compactness in $c a(A)$ and $L^{1}(\lambda)$. However, here we prove some extensions of Dunford-Pettis
theorem like biting lemma of Brooks-Chacon or subsequence splitting lemma of H. P. Rosenthal.

In Chapter two, we treat the measure theory on topological spaces. The framework is offered by Suslin spaces; on the one hand, these spaces are Radon and on the other hand, they cover the particular case of a separable Banach space provided with his weak topology. We introduce the narrow topology and then we prove the Prohorov's compactness theorem. In the particular case of Polish spaces, the narrow topology is metrizable; we present the compatible metrics of Dudley and of Lévy-Prohorov. As an application of Prohorov's theorem, we prove in the last paragraph the existence of Wiener's measure on $C[0,1]$.

With some exceptions, in Chapters 1 and 2 are presented classical compactness results for measures on abstract spaces, or on topological spaces. The originality consists in the selection and ordering of these results and the accompanying remarks and examples. However, we note some approaches and new results, such as: the modulus of λ-continuity (1.79) and theorems 1.80 and $1.81, a$-convergence of nets in L^{1} and the extension of Dunford-Pettis theorem (1.93), a new proof for Rosenthal's Subsequence Splitting Lemma using Biting Lemma, the modulus of narrow compactness (2.65), a-convergence of nets in $c a(\mathscr{B}(T))$, theorem 2.69 and obtaining, as corollary of this theorem, a new proof of Prohorov's compactness theorem. Finally, in the last section of 2 we give a simple and self-contained presentation of Wiener measure (2.6).

Compactness results from the first two chapters are used to study Young measures in Chapter three. We prove the disintegration theorem for product measures and we use it to present Young measures as parametrized measures; the frame is that of a regular Suslin space. We remark that the space of Young measures contains the space of measurable mappings as dense subspace and that the narrow topology is an extension of the topology of convergence in measure. Prohorov's theorem in the case of Young measures highlights the role played by tightness in compactness results. We present a vector version for biting lemma and an extension of this result to some special non-bounded sets of measurable mappings: finite-tight sets. In the seventh paragraph, we will study the two types of products for the Young measures and will give the fiber product lemma.

In the last three sections of the book are presented some applications; thus, Prokhorov's theorem for Young measures was used in the ninth paragraph in the study of strong compactness in $L^{p}(\mu, E)$. We obtain, as corollaries, the theorems of Visintin-Balder, Rossi-Savaré, Lions-Aubin and Gutman; in the scalar case, the compactness criterion of Riesz-Fréchet-Kolmogorov is obtained.

In the tenth paragraph, we consider some applications of quasiconvexity to the study of gradient Young measures and to the lower semicontinuity. Are studied the Young measures generated by sequences and particularly the gradient Young
measures. We pay special attention to quasiconvexity and its various equivalent definitions. The quasiconvexity is essentially used in the Kinderlehrer-Pedregal's characterization of gradient Young measures, but also in the study of lower semicontinuity of energy functional that appears in variational calculus. Finally, in paragraph eleven, we present some results of existence of solutions in relaxed variational calculus.

There are also, in this chapter, some new concepts and results among which: new proofs for theorems $3.30,3.32$ and 3.33 , the density result 3.49 and the proof of theorem 3.50 , theorems $3.51,3.66,3.67$ and propositions 3.54 and 3.56 , introduction of finite-tight sets (3.75) and use them to obtain extensions of biting lemma (3.84) and Saadoune-Valadier's theorem (3.85), Jordan finite-tight sets (3.91) and their utility in obtain of a compactness result in Sobolev spaces (3.102) and an alternative to Rellich-Kondrachov theorem (3.105).

All results are accompanied by full demonstrations; for many of these results, are given different proofs from those referred in the literature.

The bibliography gives the main references relevant to the content of the book; it is no exhaustive.

Understanding the text requires basic knowledge of general topology, functional analysis and Lebesgue integration that may be found in any textbook on the subject. In rest, all the statements are fully justified and proved.

To conclude, this text is intended as a postgraduate textbook as well as a reference for more experienced researchers.

The book was written over several years of collaboration between authors, with the occasion of stages that the first author has made, as a visiting professor, at the University of Brest.

An important role in setting the ideas and in the organization of book's material was played by discussions with various mathematicians met under these occasions.

First, we mention the authors of monograph "Young measures on topological spaces", C. Castaing, M. Valadier and P. Raynaud de Fitte, that supported and inspired us in writing the last chapter. Also, we have had useful discussions with E. Balder and T. Roubiček at the international conference "Mesures de Young et Contrôle Stochastique" (Brest, 2002); in this way, we thank them all.

Iaşi/Brest,
December 2011

Liviu C. Florescu, Christiane Godet-Thobie

Contents

Preface vii
1 Weak Compactness in Measure Spaces 1
1.1 Measure Spaces 1
1.2 Radon-Nikodym Theorem. The Dual of L^{1} 28
1.3 Convergences in $L^{1}(\lambda)$ and $c a(\mathcal{A})$ 38
1.4 Weak Compactness in $c a(\mathcal{A})$ and $L^{1}(\lambda)$ 47
1.5 The Bidual of $L^{1}(\lambda)$ 53
1.6 Extensions of Dunford-Pettis' Theorem 64
2 Bounded Measures on Topological Spaces 90
2.1 Regular Measures 90
2.2 Polish Spaces. Suslin Spaces 95
2.3 Narrow Topology 105
2.4 Compactness Results 128
2.5 Metrics on the Space $\left(\operatorname{Rca}^{+}\left(\mathscr{D}_{T}\right), \mathcal{T}\right)$ 136
2.5.1 Dudley's Metric 136
2.5.2 Lévy-Prohorov's Metric 142
2.6 Wiener Measure 148
3 Young Measures 175
3.1 Preliminaries 176
3.1.1 Disintegration 177
3.1.2 Integrands 185
3.2 Definitions and Examples 187
3.2.1 Young Measure Associated to a Probability 189
3.2.2 Young Measure Associated to a Measurable Mapping 191
3.3 The Stable Topology 193
3.4 The Subspace $\mathcal{M}(S) \subseteq \mathscr{Y}(S)$ 208
3.5 Compactness 222
3.6 Biting Lemma 236
3.7 Product of Young Measures 253
3.7.1 Fiber Product 253
3.7.2 Tensor Product 257
3.8 Jordan Finite Tight Sets 261
3.9 Strong Compactness in $L^{p}(\mu, E)$ 271
3.9.1 Visintin-Balder's Theorem 271
3.9.2 Rossi-Savaré's Theorem 274
3.10 Gradient Young Measures 288
3.10.1 Young Measures Generated by Sequences 289
3.10.2 Quasiconvex Functions 296
3.10.3 Lower Semicontinuity 310
3.11 Relaxed Solutions in Variational Calculus 314
Bibliography 325
Index 336

Chapter 1

Weak Compactness in Measure Spaces

We will present in this first chapter the main properties of the measure spaces and of the space of integrable functions. We recall the classic results of weak compactness (like Vitali-Hahn-Saks, Radon-Nikodym and Dunford-Pettis theorems) but we will also mention more recent results such as Brooks-Chacon biting lemma or Rosenthal's lemma.

1.1 Measure Spaces

In this introductory section, we recall the definitions and classic properties of the additive and σ-additive measures. We finish this section by the Saks' theorem, the Vitali-Hahn-Saks and Nikodym theorems that we will use in the following sections for a study of weak compactness on $c a(A)$.

For beginning, we will specify the definitions and the notations to be employed henceforward. We consider as known the theory of integration relating to a positive, σ-additive and σ-finite measure.

We designate by X an arbitrary set and by \mathcal{A} a σ-algebra of subsets of X; an \mathcal{A}-partition of $A \in \mathcal{A}$ is a partition of A with the elements in \mathcal{A}.

According to the usual notations, if μ is a positive, σ-additive and σ-finite measure, we shall denote by $\mathscr{L}^{1}(\mu)=\mathscr{L}^{1}(X, \mathcal{A}, \mu)$ the set of all real mappings f defined on X with the property that f is \mathcal{A}-measurable and μ-integrable and by $L^{1}(\mu)=L^{1}(X, \mathscr{A}, \mu)$ the quotient space $\mathscr{L}^{1}(\mu) / \doteq$, where \doteq is equality $\mu-$ almost everywhere.

In the following, we recall the definition of the signed measures.
Definition 1.1. A set function $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}=[-\infty,+\infty]$ is a finitely additive measure, or shortly an additive measure, if
(i) $\lambda(\emptyset)=0$,
(ii) $\lambda(A \cup B)=\lambda(A)+\lambda(B)$, for every $A, B \in \mathscr{A}$ with $A \cap B=\emptyset$,
(iii) λ assumes at most one of the values $+\infty$ and $-\infty$.

An additive measure λ on \mathcal{A} is a σ-additive measure or a countably additive measure if, for every sequence of pairwise disjoint sets $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ (i.e.
$A_{n} \cap A_{m}=\emptyset$, for every $\left.n \neq m\right)$,

$$
\lambda\left(\bigcup_{n=0}^{\infty} A_{n}\right)=\sum_{n=0}^{+\infty} \lambda\left(A_{n}\right)
$$

A σ-additive measure λ is finite or real valued if its range is contained in \mathbb{R}. λ is σ-finite if, for every $A \in \mathcal{A}$, there exists a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ such that $A=\bigcup_{n \in \mathbb{N}} A_{n}$ and $\lambda\left(A_{n}\right) \in \mathbb{R}$, for every $n \in \mathbb{N}$.

We will designate by $b a(\mathcal{A})$-the set of all real valued bounded additive measures on \mathcal{A}, $c a(\mathcal{A})$-the set of all real valued σ-additive measures on \mathcal{A}.
$b a(\mathcal{A})$ and $c a(\mathcal{A})$ are vector spaces under the usual addition and scalar multiplication operations.
$c a^{+}(\mathcal{A})\left(b a^{+}(\mathcal{A})\right)$-the subsets of all positive measures of $c a(\mathcal{A})(b a(\mathcal{A}))$.

The following properties are easy to demonstrate.
Proposition 1.2. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ be an additive measure and let $A, B \in \mathcal{A}$ with $B \subseteq A$.
(i) If $|\lambda(A)|<+\infty$, then $|\lambda(B)|<+\infty$.
(ii) If $|\lambda(B)|<+\infty$, then $\lambda(A \backslash B)=\lambda(A)-\lambda(B)$.

Proof. $A=B \cup(A \backslash B)$ and so $\lambda(A)=\lambda(B)+\lambda(A \backslash B)$.
(i) If $\lambda(B)=+\infty(-\infty)$, then $\lambda(A)=+\infty(-\infty)$, what contradicts hypothesis. Therefore, $\lambda(B)$ is finite.
(ii) If $|\lambda(B)|<+\infty$, then $\lambda(A)-\lambda(B)=\lambda(A \backslash B)$.

Proposition 1.3. Let λ be a σ-additive measure and let $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$.
(i) If $\left(A_{n}\right)_{n}$ is an increasing sequence, then $\lambda\left(\cup_{n=0}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)$.
(ii) If $\left(A_{n}\right)_{n}$ is a decreasing sequence and $\left|\lambda\left(A_{0}\right)\right|<+\infty$, then $\lambda\left(\cap_{n=0}^{\infty} A_{n}\right)=$ $\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)$.

Proof. (i) Let $A=\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$. Firstly, we suppose that there is $n_{0} \in \mathbb{N}$ such that $\left|\lambda\left(A_{n_{0}}\right)\right|=+\infty$. According to (i) of Proposition 1.2, $|\lambda(A)|=+\infty=$ $\left|\lambda\left(A_{n}\right)\right|$, for every $n \geq n_{0}$; since λ assumes at most one of the values $+\infty$ and $-\infty, \lambda(A)=\lim _{n} \lambda\left(A_{n}\right)$.

If, for every $n \in \mathbb{N},\left|\lambda\left(A_{n}\right)\right|<+\infty$, then we define the pairwise disjoint sequence $\left(B_{n}\right)_{n} \subseteq \mathcal{A}$ letting: $B_{0}=A_{0}, B_{n}=A_{n} \backslash A_{n-1}, \quad \forall n \geq 1$; then $A=$
$\cup_{n=0}^{\infty} B_{n}$ and, using (ii) of Proposition 1.2, we obtain $\lambda(A)=\sum_{n=0}^{\infty} \lambda\left(B_{n}\right)=$ $\lim _{n} \sum_{k=0}^{n} \lambda\left(B_{k}\right)=\lim _{n} \lambda\left(A_{n}\right)$.
(ii) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is decreasing and $\left|\lambda\left(A_{0}\right)\right|<+\infty$, then the sequence $\left(B_{n}\right)_{n}$, where $B_{n}=A_{0} \backslash A_{n}$, is increasing and the result follows from the first part of the proof.

Definition 1.4. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ be a σ-additive measure and let $A \in \mathcal{A}$;
A is called λ-positive if, for every $B \in \mathcal{A}, \quad \lambda(A \cap B) \geq 0$.
A is called λ-negative if, for every $B \in \mathcal{A}, \lambda(A \cap B) \leq 0$.
A is called λ-null if it is λ-positive and λ-negative. A is λ-null set if and only if, for every measurable set $B \subseteq A, \lambda(B)=0$.

For the following two results, see Theorem A, p. 121 in [93].
Proposition 1.5. Let $\lambda: \mathcal{A} \rightarrow(-\infty,+\infty]$ be a σ-additive measure and let $A \in \mathcal{A}$ with $\lambda(A)<0$. There exists a λ-negative set $B \subseteq A$ such that $\lambda(B)<0$.

Proof. If A is λ-negative, then $B=A$.
Otherwise, there exists $C \in \mathcal{A}$ such that $\lambda(C \cap A)>0$. Let n_{1} be the smallest positive integer for which there exists $A_{1} \in \mathcal{A}, A_{1} \subseteq A$ with $\lambda\left(A_{1}\right)>\frac{1}{n_{1}}$.

If $A \backslash A_{1}$ is λ-negative, then $B=A \backslash A_{1}$; since $\lambda(A)<0, \quad \lambda(A) \in \mathbb{R}$ and then, by Theorem 1.2, $\lambda\left(A_{1}\right) \in \mathbb{R}$ and $\lambda(B)=\lambda(A)-\lambda\left(A_{1}\right)<\lambda(A)<0$.

If $A \backslash A_{1}$ is not λ-negative, let n_{2} be the smallest positive integer for which there exists $A_{2} \in \mathcal{A}, A_{2} \subseteq A \backslash A_{1}$ with $\lambda\left(A_{2}\right)>\frac{1}{n_{2}}$; obviously, $n_{2}>n_{1}$.

If the above construct does not produce a solution of problem after a finite number of steps, then we obtain a sequence of pairwise disjoint sets $\left(A_{k}\right)_{k \geq 1} \subseteq$ A, $A_{k} \subseteq A \backslash \cup_{i=1}^{k-1} A_{i}$, with $\lambda\left(A_{k}\right)>\frac{1}{n_{k}}$, for every $k \geq 1$ and $n_{k} \uparrow+\infty$.

Let $B=A \backslash \bigcup_{k=1}^{\infty} A_{k}$; then $\lambda(B)=\lambda(A)-\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)<0$.
For every $C \in \mathcal{A}, C \subseteq B$ and for every $k \in \mathbb{N}^{*}, C \subseteq A \backslash \cup_{i=1}^{k-1} A_{i}$ so that $\lambda(C) \leq \frac{1}{n_{k}-1}\left(n_{k}\right.$ is the smallest positive integer for which there is $A_{k} \subseteq$ $A \backslash \cup_{i=1}^{k-1} A_{i}$ with $\left.\lambda\left(A_{k}\right)>\frac{1}{n_{k}}\right)$. Then $\lambda(C) \leq 0$ and therefore B is λ-negative.

Theorem 1.6 (Hahn decomposition theorem). Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ be a σ-additive measure; there exists a λ-positive set $H \in \mathcal{A}$ such that $H^{c}=X \backslash H$ is λ-negative.

For any other pair $\left\{H_{1}, H_{1}^{c}\right\} \subseteq A$ with $H_{1} \lambda$-positive and $H_{1}^{c} \lambda$-negative, $H \Delta H_{1}$ is a λ-null set.

Proof. First, let us suppose that $\lambda(\mathcal{A}) \subseteq(-\infty,+\infty]$.
Let $a=\inf \{\lambda(A): A \in \mathcal{A}, A=\lambda$-negative $\}$, let $\left(A_{n}\right)_{n}$ be a sequence of λ-negative sets such that $\lambda\left(A_{n}\right) \rightarrow a$ and let $H=X \backslash \bigcup_{n=1}^{\infty} A_{n}$; then $H^{c}=$ $\bigcup_{n=1}^{\infty} A_{n}$.

If we define $\left(B_{n}\right)_{n \in \mathbb{N}^{*}}$ letting $B_{1}=A_{1}$ and, for every $n \geq 2, B_{n}=A_{n} \backslash$ $\cup_{i=1}^{n-1} A_{i}$, then, for every $C \in \mathcal{A}, \lambda\left(C \cap H^{c}\right)=\lambda\left(C \cap \bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} \lambda(C \cap$ $\left.B_{n}\right) \leq 0$. Therefore H^{c} is λ-negative.

Moreover, for every $n \in \mathbb{N}^{*}$,

$$
\lambda\left(H^{c}\right)=\lambda\left(A_{n}\right)+\lambda\left(H^{c} \backslash A_{n}\right) \leq \lambda\left(A_{n}\right)
$$

so that $\lambda\left(H^{c}\right)=a$.
If we suppose that H is not λ-positive, then there exists $C \in \mathcal{A}, C \subseteq H$ such that $\lambda(C)<0$. The previous proposition assures us on the existence of a λ-negative set $B \subseteq C$ with $\lambda(B)<0$. Then $H^{c} \cup B$ is λ-negative and

$$
\lambda\left(H^{c} \cup B\right)=\lambda\left(H^{c}\right)+\lambda(B)=a+\lambda(B)<a
$$

and this contradicts the definition of a.
In the case where $\lambda(\mathcal{A}) \subseteq[-\infty,+\infty),-\lambda: \mathcal{A} \rightarrow(-\infty,+\infty]$ is a σ-additive measure. Let H be a $(-\lambda)$-positive set and H^{c} be a $(-\lambda)$-negative set; then H^{c} is λ-positive set and H is λ-negative set.

Let now $H_{1} \lambda$-positive and $H_{1}^{c} \lambda$-negative an other pair. For every $B \in \mathscr{A}$ with $B \subseteq H \backslash H_{1}=H \cap H_{1}^{c}, \lambda(B) \leq 0$ and $\lambda(B) \geq 0$, hence $\lambda(B)=0$. Then $H \backslash H_{1}$ is a λ-null set. Similarly, $H_{1} \backslash H$ is λ-null and then $H \Delta H_{1}=\left(H \backslash H_{1}\right) \cup\left(H_{1} \backslash H\right)$ is a λ-null set.

Definition 1.7. Every pair of sets $\left\{H, H^{c}\right\} \subseteq \mathcal{A}$, with the property that H is λ positive and H^{c} is λ-negative, is called a Hahn decomposition of X relatively to the measure λ.

Remark 1.8.

(i) Hahn's decomposition of X relatively to a measure λ is not unique (we can replace H by $H \cup N$ where N is a λ-null set).
(ii) The Hahn decomposition theorem says that, for every σ-additive measure λ, there exists a Hahn decomposition of X relatively to λ.

Proposition 1.9. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ be a σ-additive measure, let $\left\{H, H^{c}\right\}$ be a Hahn decomposition of X relatively to λ and let $\lambda^{+}, \lambda^{-}: \mathcal{A} \rightarrow \mathbb{R}_{+}$defined by $\lambda^{+}(A)=\lambda(A \cap H), \lambda^{-}(A)=-\lambda(A \backslash H)$, for every $A \in \mathcal{A}$.

Then λ^{+}, λ^{-}are two σ-additive positive measures (one of them finite), $\lambda=$ $\lambda^{+}-\lambda^{-}$and $\lambda^{+}\left(H^{c}\right)=\lambda^{-}(H)=0$.

If $\lambda_{1}^{+}, \lambda_{1}^{-}$are two other σ-additive positive measures (one of them finite) such that $\lambda=\lambda_{1}^{+}-\lambda_{1}^{-}$and if $\lambda_{1}^{+}\left(H_{1}^{c}\right)=\lambda_{1}^{-}\left(H_{1}\right)=0$ for a set $H_{1} \in \mathcal{A}$, then $\lambda^{+}=\lambda_{1}^{+}$and $\lambda^{-}=\lambda_{1}^{-}$.

Proof. The first part of the proposition is obvious. We shall prove only the uniqueness of decomposition of λ as difference of positive measures.

The pair $\left\{H_{1}, H_{1}^{c}\right\}$ is again a Hahn decomposition of X relatively to λ. Indeed, for every $A \in \mathcal{A}, \lambda\left(A \cap H_{1}\right)=\lambda_{1}^{+}\left(A \cap H_{1}\right)-\lambda_{1}^{-}\left(A \cap H_{1}\right)=\lambda_{1}^{+}\left(A \cap H_{1}\right) \geq 0$ and $\lambda\left(A \backslash H_{1}\right)=\lambda_{1}^{+}\left(A \backslash H_{1}\right)-\lambda_{1}^{-}\left(A \backslash H_{1}\right)=-\lambda_{1}^{-}\left(A \backslash H_{1}\right) \leq 0$. According to Hahn decomposition theorem, $H \Delta H_{1}$ is a λ-null set. Therefore, for every $A \in \mathcal{A}, \lambda^{+}(A)=\lambda(A \cap H)=\lambda\left(A \cap H_{1}\right)=\lambda_{1}^{+}(A)$ so that $\lambda^{+}=\lambda_{1}^{+}$. Similarly, $\lambda^{-}=\lambda_{1}^{-}$.

Definition 1.10. We say that the unique pair $\left\{\lambda^{+}, \lambda^{-}\right\}$of σ-additive positive measures (one of them finite) with $\lambda=\lambda^{+}-\lambda^{-}$and $\lambda^{+}\left(H^{c}\right)=\lambda^{-}(H)=0$ for a set $H \in \mathcal{A}$, is the Jordan decomposition of λ.

Definition 1.11. A positive measure λ on \mathcal{A} is concentrated on the set $D \in \mathscr{A}$ if $\lambda(D)=\lambda(X)$.

Remark 1.12. If λ is a σ-additive measure on \mathcal{A}, if $\left\{H, H^{c}\right\}$ is a Hahn decomposition of X relatively to λ and if $\left\{\lambda^{+}, \lambda^{-}\right\}$is the Jordan decomposition of λ, then λ^{+}is concentrated on the set H and λ^{-}is concentrated on H^{c}.

Theorem 1.13. Let λ be a σ-additive measure on \mathcal{A}; there exist $A_{m}, A_{M} \in \mathcal{A}$ such that

$$
\lambda\left(A_{m}\right)=\inf \{\lambda(A): A \in \mathcal{A}\} \leq 0 \leq \sup \{\lambda(A): A \in \mathcal{A}\}=\lambda\left(A_{M}\right)
$$

Every σ-additive measure is bounded either from below or from above.
Proof. Let $\left\{H, H^{c}\right\}$ a Hahn decomposition of X relatively to λ and let $\left\{\lambda^{+}, \lambda^{-}\right\}$ the Jordan decomposition of λ; for every $A \in \mathcal{A}, \lambda^{+}(A)=\lambda(A \cap H) \leq \lambda(H)$ and $\lambda^{-}(A)=-\lambda(A \backslash H) \leq \lambda^{-}\left(H^{c}\right)=\lambda\left(H^{c}\right)$. Then

$$
-\lambda\left(H^{c}\right) \leq-\lambda^{-}(A) \leq \lambda^{+}(A)-\lambda^{-}(A)=\lambda(A) \leq \lambda^{+}(A) \leq \lambda(H)
$$

Therefore we can take $A_{m}=H^{c}$ and $A_{M}=H$.
The following result is a corollary of Theorem 1.13.
Corollary 1.14. Every measure $\lambda \in c a(A)$ is bounded; therefore

$$
c a(\mathcal{A}) \subseteq b a(\mathcal{A})
$$

Remark 1.15. If $\lambda: \mathcal{A} \rightarrow \mathbb{R}$ is only an additive measure, it is not compulsory that λ should be bounded, as it is shown in the following example.

Example 1.16. Let $\sum_{n=0}^{\infty} a_{n}$ be a conditionally convergent series (a convergent series for which $\left.\sum_{n=0}^{\infty}\left|a_{n}\right|=+\infty\right)$, let \mathcal{A} be the algebra of all sets $A \subseteq \mathbb{N}$ such that A or $\mathbb{N} \backslash A$ is a finite and let $\mu: \mathcal{A} \rightarrow \mathbb{R}$ defined by

$$
\mu(A)=\left\{\begin{aligned}
\sum_{n \in A} a_{n}, & A \neq \emptyset \\
0, & A=\emptyset
\end{aligned}\right.
$$

Then μ is an additive measure, but it is not bounded on the algebra \mathcal{A}. We notice that \mathscr{A} is not a σ-algebra, but, since all additive function on an algebra can be extended to an additive function on the generated σ-algebra - in our case $\mathcal{P}(\mathbb{N})$ - (see [29], p. 185 and [175],1.8.), it is evident that the extension itself is not bounded.

The total variation defined below is introduced in order to define a complete norm on $b a(\mathcal{A})$ or on its subspace $c a(\mathcal{A})$ of σ-additive measures (see Definition III.1.4 and Lemma III.1.6 of [62]).

Theorem 1.17. For every additive measure λ, let $|\lambda|: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$ defined by

$$
|\lambda|(A)=\sup \left\{\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right|: n \in \mathbb{N}^{*}, \quad\left\{A_{1}, \ldots, A_{n}\right\}=\mathcal{A}-\text { partition of } A\right\}
$$

Then:
(i) $\sup _{B \in \mathcal{A}, B \subseteq A}|\lambda(B)| \leq|\lambda|(A) \leq 2 \sup _{B \in \mathcal{A}, B \subseteq A}|\lambda(B)|$.
(ii) $|\lambda|$ is additive.
(iii) If $\lambda \in b a(\mathcal{A})$, then $|\lambda| \in b a^{+}(\mathcal{A})$; moreover $|\lambda|$ is the smallest element of the set $\mathfrak{M}=\left\{v \in b a^{+}(\mathcal{A}):|\lambda(A)| \leq v(A), \quad \forall A \in \mathcal{A}\right\}$.
(iv) If λ is σ-additive, then $|\lambda|$ is σ-additive and $|\lambda|(H)=\lambda(H)$ and $|\lambda|\left(H^{c}\right)=$ $-\lambda\left(H^{c}\right)$, where $\left\{H, H^{c}\right\}$ is a Hahn decomposition of X.
If $\lambda \in c a(\mathcal{A})$, then $|\lambda| \in c a^{+}(\mathcal{A})$.
Proof. (i) For every $B \in \mathcal{A}$ with $B \subseteq A,\{B, A \backslash B\}$ is an \mathcal{A}-partition of A and so $|\lambda|(A) \geq|\lambda(B)|+|\lambda(A \backslash B)| \geq|\lambda(B)|$, from where

$$
\sup \{|\lambda(B)|: B \in \mathcal{A}, B \subseteq A\} \leq|\lambda|(A)
$$

Now, let $n \in \mathbb{N}^{*}$ and let $\left\{A_{1}, \ldots, A_{n}\right\}$ be an \mathscr{A}-partition of the set A. We can suppose that $\lambda\left(A_{1}\right), \ldots, \lambda\left(A_{p}\right) \geq 0$ and $\lambda\left(A_{p+1}\right), \ldots, \lambda\left(A_{n}\right)<0$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right| & =\sum_{i=1}^{p} \lambda\left(A_{i}\right)-\sum_{j=p+1}^{n} \lambda\left(A_{j}\right)=\lambda\left(\bigcup_{i=1}^{p} A_{i}\right)-\lambda\left(\bigcup_{j=p+1}^{n} A_{j}\right) \\
& =\left|\lambda\left(\bigcup_{i=1}^{p} A_{i}\right)\right|+\left|\lambda\left(\bigcup_{j=p+1}^{n} A_{j}\right)\right| \\
& \leq 2 \sup \{|\lambda(B)|: B \in \mathcal{A}, B \subseteq A\} .
\end{aligned}
$$

(ii) Let $A, B \in \mathcal{A}$ with $A \cap B=\emptyset$ and let $C=A \cup B$. If $|\lambda|(A)=+\infty$, then $+\infty=\sup \{|\lambda(D)|: D \in \mathcal{A}, D \subseteq A\} \leq \sup \{|\lambda(D)|: D \in \mathcal{A}, D \subseteq C\} \leq$ $|\lambda|(C)$ and so $|\lambda|(C)=+\infty=|\lambda|(A)+|\lambda|(B)$.

In the same way, if $|\lambda|(B)=+\infty$, we have $|\lambda|(C)=+\infty=|\lambda|(A)+|\lambda|(B)$.
Now suppose that $|\lambda|(A)<+\infty$ and $|\lambda|(B)<+\infty$. Then, for every $\varepsilon>0$, there exists an \mathcal{A}-partition $\left\{A_{1}, \ldots, A_{n}\right\}$ of A and an \mathcal{A}-partition of $B,\left\{B_{1}, \ldots\right.$, $\left.B_{m}\right\}$, such that

$$
|\lambda|(A)-\frac{\varepsilon}{2}<\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right| \quad \text { and } \quad|\lambda|(B)-\frac{\varepsilon}{2}<\sum_{j=1}^{m}\left|\lambda\left(B_{j}\right)\right| .
$$

Then $\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\}$ is an \mathscr{A}-partition of C and therefore

$$
|\lambda|(A)+|\lambda|(B)-\varepsilon<\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right|+\sum_{j=1}^{m}\left|\lambda\left(B_{j}\right)\right| \leq|\lambda|(C),
$$

from where, ε being arbitrary,

$$
\begin{equation*}
|\lambda|(A)+|\lambda|(B) \leq|\lambda|(C) \tag{1}
\end{equation*}
$$

For every \mathcal{A}-partition $\left\{C_{1}, \ldots, C_{p}\right\}$ of C, let's note $A_{i}=C_{i} \cap A$ and $B_{i}=$ $C_{i} \cap B$, for all $i=1, \ldots, p$. Then $A_{i}, B_{i} \in \mathcal{A}$ and $C_{i}=A_{i} \cup B_{i}$. Therefore $\left\{A_{1}, \ldots, A_{p}\right\}$ is an \mathcal{A}-partition of A and $\left\{B_{1}, \ldots, B_{p}\right\}$ is an \mathscr{A}-partition of B.

$$
\begin{aligned}
\sum_{i=1}^{p}\left|\lambda\left(C_{i}\right)\right| & =\sum_{i=1}^{p}\left|\lambda\left(A_{i}\right)+\lambda\left(B_{i}\right)\right| \\
& \leq \sum_{i=1}^{p}\left|\lambda\left(A_{i}\right)\right|+\sum_{i=1}^{p}\left|\lambda\left(B_{i}\right)\right| \leq|\lambda|(A)+|\lambda|(B)
\end{aligned}
$$

As $\left\{C_{1}, \ldots, C_{p}\right\}$ is an arbitrary partition of C, we have:

$$
\begin{equation*}
|\lambda|(C) \leq|\lambda|(A)+|\lambda|(B) . \tag{2}
\end{equation*}
$$

From (1) and (2) we have that $|\lambda|$ is additive.
(iii) If $\lambda \in b a(\mathcal{A})$, then λ is bounded; from (i), we obtain that,

$$
0 \leq|\lambda|(A) \leq 2 \sup \{|\lambda(B)|: B \in \mathcal{A}\}=M<+\infty, \quad \text { for every } \quad A \in \mathcal{A}
$$

and so $\sup \{|\lambda|(A): A \in \mathcal{A}\} \leq M<+\infty$.
Therefore $|\lambda|: \mathcal{A} \rightarrow \mathbb{R}_{+}$is a positive bounded additive measure on \mathcal{A}, which means that $|\lambda| \in b a^{+}(\mathcal{A})$.

Since $|\lambda(A)| \leq \sup \{|\lambda(B)|: B \in \mathcal{A}, B \subseteq A\} \leq|\lambda|(A)$, for all $A \in \mathcal{A}$, it is clear that $|\lambda| \in \mathfrak{M}=\left\{v \in b a^{+}(\mathcal{A}):|\lambda(A)| \leq v(A)\right.$, for all $\left.A \in \mathcal{A}\right\}$.

It remains to show that $|\lambda|$ is the smallest element of \mathfrak{M}.
Let $v \in \mathfrak{M}, A \in \mathscr{A}$ and let $\left\{A_{1}, \ldots, A_{n}\right\}$ be an \mathscr{A}-partition of A; we have

$$
\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right| \leq \sum_{i=1}^{n} v\left(A_{i}\right)=v\left(\bigcup_{i=1}^{n} A_{i}\right)=v(A)
$$

from where, $|\lambda|(A) \leq \nu(A)$, for every $A \in \mathcal{A}$ and so $|\lambda| \leq \nu$.
(iv) According to (ii), $|\lambda|$ is finite additive. Let $\left(E_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ be a sequence of pairwise disjoint sets and let $E=\bigcup_{n \in \mathbb{N}} E_{n}$. Then, for every $m \in \mathbb{N}$,

$$
|\lambda|(E) \geq|\lambda|\left(\cup_{n \leq m} E_{n}\right)=\sum_{n=0}^{m}|\lambda|\left(E_{n}\right) \quad \text { and so } \quad|\lambda|(E) \geq \sum_{n=0}^{\infty}|\lambda|\left(E_{n}\right)
$$

To demonstrate the inverse inequality, let $\left(F_{i}\right)_{i \leq k}$ be an \mathcal{A}-partition of E. Then,

$$
\begin{aligned}
\sum_{i=1}^{k}\left|\lambda\left(F_{i}\right)\right| & =\sum_{i=1}^{k} \mid \lambda\left(F_{i} \cap\left(\cup_{n \in \mathbb{N}} E_{n}\right)\left|=\sum_{i=1}^{k}\right| \sum_{n=0}^{\infty} \lambda\left(F_{i} \cap E_{n}\right) \mid\right. \\
& \leq \sum_{n=0}^{\infty} \sum_{i=1}^{k}\left|\lambda\left(F_{i} \cap E_{n}\right)\right| \leq \sum_{n=0}^{\infty}|\lambda|\left(E_{n}\right)
\end{aligned}
$$

from where $|\lambda|(E) \leq \sum_{n=0}^{\infty}|\lambda|\left(E_{n}\right)$. Therefore $|\lambda|$ is σ-additive.
Let now $\left\{H, H^{c}\right\}$ be a Hahn decomposition of X relatively to λ. Then H is λ-positive and then, for every \mathfrak{A} - partition of $H,\left\{A_{1}, \ldots, A_{n}\right\}, \sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right|=$ $\sum_{i=1}^{n} \lambda\left(A_{i}\right)=\lambda(H)$; so that $|\lambda|(H)=\lambda(H)$. Similarly, $|\lambda|\left(H^{c}\right)=-\lambda\left(H^{c}\right)$.

If $\lambda \in c a(\mathcal{A})$, then λ is σ-additive and bounded (see Corollary 1.14). Therefore $|\lambda|$ is σ-additive and by $(i),|\lambda|$ belongs to $c a(\mathcal{A})$.

Remark 1.18. Let λ be a σ-additive measure, let $\left\{H, H^{c}\right\}$ be a Hahn decomposition of X relatively to λ and let $\left\{\lambda^{+}, \lambda^{-}\right\}$be the Jordan decomposition of λ; then

$$
\lambda^{+}=\frac{1}{2}(|\lambda|+\lambda), \quad \lambda^{-}=\frac{1}{2}(|\lambda|-\lambda) \quad \text { and } \quad|\lambda|=\lambda^{+}+\lambda^{-} .
$$

Indeed, if we note $\lambda_{1}^{+}=\frac{1}{2}(|\lambda|+\lambda)$ and $\lambda_{1}^{-}=\frac{1}{2}(|\lambda|-\lambda)$, then λ_{1}^{+}and λ_{1}^{-}are $\sigma-$ additive positive measures, $\lambda=\lambda_{1}^{+}-\lambda_{1}^{-}$and $\lambda_{1}^{+}\left(H^{c}\right)=\frac{1}{2}\left(-\lambda\left(H^{c}\right)+\lambda\left(H^{c}\right)\right)=$ $0=\lambda^{-}(H)$. Therefore $\left\{\lambda_{1}^{+}, \lambda_{1}^{-}\right\}$is the Jordan decomposition of λ and then $\lambda^{+}=\lambda_{1}^{+}$and $\lambda^{-}=\lambda_{1}^{-}$.

Definition 1.19. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}$ be an additive measure; $|\lambda|$ is called the total variation of λ.

Let $\lambda \in b a(\mathcal{A})$; according to previous remark, we say that $\lambda^{+}\left(\lambda^{-}\right)$are the positive variation (negative variation) of λ, where $\lambda^{+}\left(\lambda^{-}\right): \mathcal{A} \rightarrow \mathbb{R}_{+}$is defined by

$$
\begin{array}{cl}
\lambda^{+}(A)=\frac{1}{2}(|\lambda|(A)+\lambda(A)) & \text { for every }
\end{array} \quad A \in \mathcal{A}, ~(\text { for every } \quad A \in \mathcal{A}) .
$$

Obviously, $\lambda^{+}, \lambda^{-} \in b a^{+}(\mathcal{A}), \lambda=\lambda^{+}-\lambda^{-}$and $|\lambda|=\lambda^{+}+\lambda^{-}$.
If $\lambda \in c a(\mathcal{A})$, then $\lambda^{+}, \lambda^{-} \in c a^{+}(\mathcal{A})$.

Remark 1.20. It results that every bounded additive measure is a difference between two bounded positive additive measures. This decomposition is not unique. Indeed, if $\lambda \in b a(\mathcal{A})$, for all $\mu \in b a^{+}(\mathcal{A}), \lambda=\left(\lambda^{+}+\mu\right)-\left(\lambda^{-}+\mu\right)$ is another decomposition of λ.

In the following results, we will mention some direct consequences of Theorem 1.13.

Corollary 1.21. If $\lambda \in c a(\mathcal{A})$, then the sets A_{m} and A_{M}, introduced in Theorem 1.13, have the following properties:
(i) $\lambda(A) \geq 0, \quad \forall A \in \mathcal{A}, A \subseteq A_{M}$,

$$
\lambda(A) \leq 0, \quad \forall A \in \mathcal{A}, A \subseteq A_{m}
$$

(ii) $\lambda(A)=0, \quad \forall A \in \mathcal{A}, A \subseteq A_{m} \cap A_{M}$.
(iii) $\lambda\left(A \backslash\left(A_{m} \cup A_{M}\right)\right)=0, \quad \forall A \in \mathcal{A}$.
(iv) $\lambda(A)=\lambda\left(A \cap A_{M}\right)+\lambda\left(A \cap A_{m}\right), \quad \forall A \in \mathcal{A}$.

Proof. (i) This point is demonstrated in the previous proposition.
(ii) is a consequence of (i).
(iii) Suppose that there exists a set $A_{0} \in \mathscr{A}$ such that $\lambda\left(A_{0} \backslash\left(A_{m} \cup A_{M}\right)\right) \neq 0$. Let $B_{0}=A_{0} \backslash\left(A_{m} \cup A_{M}\right)$.

If $\lambda\left(B_{0}\right)>0$, let $B_{1}=B_{0} \cup A_{M}$; then $\lambda\left(B_{1}\right)=\lambda\left(B_{0}\right)+\lambda\left(A_{M}\right)>\lambda\left(A_{M}\right)$ which contradicts the maximality of A_{M}.

If $\lambda\left(B_{0}\right)<0$, let $B_{1}=B_{0} \cup A_{m}$; then $\lambda\left(B_{1}\right)=\lambda\left(B_{0}\right)+\lambda\left(A_{m}\right)<\lambda\left(A_{m}\right)$ which contradicts the minimality of A_{m}. Therefore (iii) is satisfied.
(iv) For every $A \in \mathcal{A}, \lambda(A)=\lambda\left(A \cap A_{M}\right)+\lambda\left(A \backslash A_{M}\right)=\lambda\left(A \cap A_{M}\right)+$ $\lambda\left(\left(A \backslash A_{M}\right) \cap A_{m}\right)+\lambda\left(\left(A \backslash A_{M}\right) \backslash A_{m}\right)=\lambda\left(A \cap A_{M}\right)+\lambda\left(A \cap A_{m}\right)-\lambda\left(A_{m} \cap\right.$ $\left.A_{M}\right)+\lambda\left[A \backslash\left(A_{m} \cup A_{M}\right)\right]$.

According to (ii) and (iii), the last two terms are null.
Corollary 1.22. Let $\lambda \in c a(\mathcal{A})$ and A_{m}, A_{M} the already defined sets. Then, for every $A \in \mathcal{A}$,
(i) $\lambda\left(A \cap A_{M}\right)=\sup \{\lambda(E): E \in \mathcal{A}, E \subseteq A\}$,

$$
\lambda\left(A \cap A_{m}\right)=\inf \{\lambda(E): E \in \mathcal{A}, E \subseteq A\}
$$

(ii) $|\lambda|(A)=\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)$.
(iii) $\lambda^{+}(A)=\lambda\left(A \cap A_{M}\right), \lambda^{-}(A)=-\lambda\left(A \cap A_{m}\right)$.

Proof. (i) Obviously, $\lambda\left(A \cap A_{M}\right) \leq \sup \{\lambda(E): E \in \mathcal{A}, E \subseteq A\}$.
We suppose that $\lambda\left(A \cap A_{M}\right)<\sup \{\lambda(E): E \in \mathcal{A}, E \subseteq A\}$. Then there exists $E_{0} \in \mathcal{A}, E_{0} \subseteq A$ such that $\lambda\left(A \cap A_{M}\right)<\lambda\left(E_{0}\right) . \lambda\left(A_{M}\right)=\lambda\left(A \cap A_{M}\right)+$ $\lambda\left(A_{M} \backslash A\right)<\lambda\left(E_{0}\right)+\lambda\left(A_{M} \backslash A\right)=\lambda\left(E_{0} \cup\left(A_{M} \backslash A\right)\right)$, which contradicts the maximality of the set A_{M}. The second equality is proved in a similar manner.
(ii) For every $A \in \mathcal{A},\left\{A \cap A_{M}, A \backslash A_{M}\right\}$ is an \mathcal{A}-partition of A; therefore $|\lambda|(A) \geq\left|\lambda\left(A \cap A_{M}\right)\right|+\left|\lambda\left(A \backslash A_{M}\right)\right|$. According to (iv) of Corollary 1.21 $\lambda\left(A \backslash A_{M}\right)=\lambda\left(\left(A \backslash A_{M}\right) \cap A_{M}\right)+\lambda\left(\left(A \backslash A_{M}\right) \cap A_{m}\right)=\lambda\left(A \cap A_{m} \backslash A_{M}\right)$; by (ii) of Theorem 1.21, $\lambda\left(A \cap A_{m} \backslash A_{M}\right)=\lambda\left(A \cap A_{m} \cap A_{M}\right)+\lambda\left(A \cap A_{m} \backslash A_{M}\right)=$ $\lambda\left(A \cap A_{m}\right)$. Finally, using (i) of Theorem 1.21,

$$
\begin{equation*}
|\lambda|(A) \geq \lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right) \tag{1}
\end{equation*}
$$

If we note $\lambda_{1}(A)=\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)$, then λ_{1} is a positive measure and, according to (iv) and (i) of Theorem 1.21, for every $A \in \mathcal{A}$,

$$
|\lambda(A)|=\left|\lambda\left(A \cap A_{M}\right)+\lambda\left(A \cap A_{m}\right)\right| \leq \lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)=\lambda_{1}(A)
$$

According to (iii) of Theorem 1.17,

$$
\begin{equation*}
|\lambda|(A) \leq \lambda_{1}(A)=\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right) \tag{2}
\end{equation*}
$$

By (1) and (2), $|\lambda|(A)=\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)$.
(iii) According to (ii) and to (iv) of Corollary 1.21, $\lambda^{+}(A)=\frac{1}{2}(|\lambda|(A)+$ $\lambda(A))=\frac{1}{2}\left(\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)+\lambda\left(A \cap A_{M}\right)+\lambda\left(A \cap A_{m}\right)\right)=\lambda\left(A \cap A_{M}\right)$ and $\lambda^{-}(A)=\frac{1}{2}(|\lambda|(A)-\lambda(A))=\frac{1}{2}\left(\lambda\left(A \cap A_{M}\right)-\lambda\left(A \cap A_{m}\right)-\lambda\left(A \cap A_{M}\right)-\right.$ $\left.\lambda\left(A \cap A_{m}\right)\right)=-\lambda\left(A \cap A_{m}\right)$.

Theorem 1.17 allows us to introduce a norm on $b a(\mathcal{A})$ equivalent to the norm $\|\cdot\|_{\infty}$ of the uniform convergence.

Theorem 1.23. The applications $\|\cdot\|,\|\cdot\|_{\infty}: b a(\mathcal{A}) \rightarrow \mathbb{R}_{+}$defined as $\|\lambda\|=$ $|\lambda|(X)=\lambda^{+}(X)+\lambda^{-}(X)$ and $\|\lambda\|_{\infty}=\sup _{A \in \mathcal{A}}(|\lambda(A)|)$ are two equivalent norms on ba(A).

The spaces $(b a(\mathcal{A}),\|\cdot\|)$ and $\left(b a(\mathcal{A}),\|\cdot\|_{\infty}\right)$ are Banach spaces; ca(A) is a Banach subspace of ba(A).

Proof. Firstly, we show that $\|\cdot\|,\|\cdot\|_{\infty}$ are norms. According to Theorem 1.17(i), for every $\lambda \in b a(\mathcal{A})$

$$
\|\lambda\|_{\infty} \leq\|\lambda\| \leq 2\|\lambda\|_{\infty}
$$

Therefore we have $\|\lambda\|=0 \Leftrightarrow\|\lambda\|_{\infty}=0 \Leftrightarrow \sup _{A \in \mathcal{A}}|\lambda(A)|=0$ what comes back to $\lambda=0$. For every $a \in \mathbb{R},\|a \lambda\|=|a \lambda|(X)=\sup \left\{\sum_{i=1}^{n}\left|a \lambda\left(A_{i}\right)\right|\right.$: $\left\{A_{1}, \ldots, A_{n}\right\}=\mathscr{A}$-partition of $\left.\quad X\right\}=|a| \cdot\|\lambda\|$ and $\|a \lambda\|_{\infty}=\sup _{A \in \mathcal{A}}|a \lambda(A)|=$ $|a| \cdot\|\lambda\|_{\infty}$.

Now we prove the triangular inequality; according to Theorem 1.17, for every $\varepsilon>0$, there exists an \mathcal{A}-partition of $X,\left\{A_{1}, \ldots, A_{n}\right\}$, such that

$$
\begin{aligned}
\|\lambda+\mu\|-\varepsilon & =|\lambda+\mu|(X)-\varepsilon<\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)+\mu\left(A_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right|+\sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right| \leq\|\lambda\|+\|\mu\|,
\end{aligned}
$$

from where $\|\lambda+\mu\| \leq\|\lambda\|+\|\mu\|$.
In the same way for $\|\cdot\|_{\infty}$, for every $\varepsilon>0$, there exists $A_{\varepsilon} \in \mathcal{A}$ such that

$$
\|\lambda+\mu\|_{\infty}-\varepsilon<\left|(\lambda+\mu)\left(A_{\varepsilon}\right)\right| \leq\left|\lambda\left(A_{\varepsilon}\right)\right|+\left|\mu\left(A_{\varepsilon}\right)\right| \leq\|\lambda\|_{\infty}+\|\mu\|_{\infty}
$$

from where $\|\lambda+\mu\|_{\infty} \leq\|\lambda\|_{\infty}+\|\mu\|_{\infty}$.

Therefore, in the light of the inequalities mentioned at the beginning of the demonstration, $\|\cdot\|$ and $\|\cdot\|_{\infty}$ are equivalent norms on $b a(\mathcal{A})$.

It is evident that

$$
\lambda_{n} \xrightarrow{\|\cdot\|} \lambda \Leftrightarrow \lambda_{n} \xrightarrow{\|\cdot\|_{\infty}} \lambda \Leftrightarrow \lambda_{n} \xrightarrow[A]{u} \lambda .
$$

Similarly, if $\left(\lambda_{n}\right)$ is a sequence $\|\cdot\|$-Cauchy (and so $\|\cdot\|_{\infty}$-Cauchy), then $\left(\lambda_{n}(A)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, uniformly in $A \in \mathcal{A}$; then there exists λ : $\mathcal{A} \rightarrow \mathbb{R}$ such that $\lambda_{n} \xrightarrow[\mathcal{A}]{u} \lambda$. Therefore λ is additive and bounded on \mathcal{A}; that is to say $\lambda \in b a(\mathcal{A}) .\left(\lambda_{n}\right)$ converges to λ in $(b a(\mathcal{A}),\|\cdot\|)$ and also in $\left(b a(\mathcal{A}),\|\cdot\|_{\infty}\right)$ so that $(b a(\mathcal{A}),\|\cdot\|)$ and $\left(b a(\mathcal{A}),\|\cdot\|_{\infty}\right)$ are Banach spaces.

Finally, in order to establish that $c a(\mathcal{A})$ is a closed subspace of $(b a(\mathcal{A}),\|\cdot\|)$, let $\lambda \in b a(\mathcal{A})$ and $\left(\lambda_{n}\right) \subseteq c a(\mathcal{A})$ such that $\lambda_{n} \xrightarrow{\|\cdot\|} \lambda$; we show that $\lambda \in c a(\mathcal{A})$.

Let $\left\{A_{p}: p \in \mathbb{N}^{*}\right\} \subseteq \mathscr{A}$ be a pairwise disjoint family of sets and let $A=$ $\cup_{p=1}^{\infty} A_{p} \in \mathcal{A}$. Since $\lambda_{n} \underset{\mathcal{A}}{u} \lambda$, for every $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\lambda_{n}(B)-\lambda(B)\right|<\varepsilon, \quad \forall n \geq n_{0}, \quad \forall B \in \mathcal{A} \tag{1}
\end{equation*}
$$

Because $\lambda_{n_{0}} \in \operatorname{ca}(\mathcal{A})$, there exists $n_{1}>n_{0}$ such that, for every $n \geq n_{1}$

$$
\begin{equation*}
\left|\lambda_{n_{0}}(A)-\sum_{k=1}^{n} \lambda_{n_{0}}\left(A_{k}\right)\right|<\varepsilon . \tag{2}
\end{equation*}
$$

Then, for all $n \geq n_{1}$,

$$
\begin{aligned}
\left|\lambda(A)-\sum_{k=1}^{n} \lambda\left(A_{k}\right)\right|= & \left|\lambda\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)\right| \leq\left|\lambda\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)-\lambda_{n_{0}}\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)\right| \\
& +\left|\lambda_{n_{0}}\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)\right|=\mid \lambda\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)- \\
& \lambda_{n_{0}}\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)\left|+\left|\lambda_{n_{0}}(A)-\sum_{k=1}^{n} \lambda_{n_{0}}\left(A_{k}\right)\right|\right.
\end{aligned}
$$

From (1) and (2), we obtain

$$
\begin{equation*}
\left|\lambda(A)-\sum_{k=1}^{n} \lambda\left(A_{k}\right)\right|<2 \varepsilon, \quad \forall n \geq n_{1} \tag{3}
\end{equation*}
$$

so that $\lambda \in c a(\mathcal{A})$.

Before mentioning the definition of the integral in relation to a signed measure, we need to clarify a number of notations and properties of the integral relatively to a positive measure.

Let λ be a positive σ-additive measure on \mathscr{A} and let $f: X \rightarrow \mathbb{R}$ be an \mathcal{A} measurable mapping. We recall that f is λ-integrable if $f^{+}=\sup \{f, 0\}$ and $f^{-}=\sup \{-f, 0\}$ are λ-integrable. Then, $\int_{X} f d \lambda=\int_{X} f^{+} d \lambda-\int_{X} f^{-} d \lambda$; let $\mathscr{L}^{1}(\lambda)$ be the set of all λ-integrable mappings and let $L^{1}(\lambda)=L^{1}(X, \mathcal{A}, \lambda)$ be the quotient space $\mathscr{L}^{1}(\lambda) / \doteq$, where \doteq is equality λ-almost everywhere.

If at least one of the two functions f^{+}and f^{-}is λ-integrable, the difference of the integrals is always defined and will be marked by $\int_{X} f d \lambda$.

Definition 1.24. Let $\lambda \in c a(\mathcal{A})$ and let $f: X \rightarrow \mathbb{R}$ be an \mathcal{A}-measurable mapping; we say that f is λ-integrable if $f \in \mathscr{L}^{1}\left(\lambda^{+}\right) \cap \mathscr{L}^{1}\left(\lambda^{-}\right)$. Let us denote

$$
\begin{aligned}
& \mathscr{L}^{1}(\lambda)=\mathscr{L}^{1}\left(\lambda^{+}\right) \cap \mathscr{L}^{1}\left(\lambda^{-}\right), L^{1}(\lambda)=L^{1}\left(\lambda^{+}\right) \cap L^{1}\left(\lambda^{-}\right) \quad \text { and } \\
& \int_{A} f d \lambda=\int_{A} f d \lambda^{+}-\int_{A} f d \lambda^{-}, \quad \text { for every } \quad A \in \mathcal{A}
\end{aligned}
$$

where f marks, according to the context, the function f or the equivalence class of a function f. It is clear that $L^{1}(\lambda)$ is a vector space and that \int_{A} is a linear operator on $L^{1}(\lambda)$.

Proposition 1.25. Let $\lambda \in c a^{+}(\mathcal{A})$ and $f: X \rightarrow \mathbb{R}$ be an A-measurable mapping such that at least one of mappings f^{+}and f^{-}is λ-integrable. Let $\mu(A)=\int_{A} f^{+} d \lambda-\int_{A} f^{-} d \lambda$. Then, μ is a σ-additive measure on A and $\mu^{+}(A)=\int_{A} f^{+} d \lambda, \mu^{-}(A)=\int_{A} f^{-} d \lambda$.

If $f \in \mathscr{L}^{1}(\lambda)$, then $\mu \in \operatorname{ca}(\mathcal{A})$ and $\|\mu\|=|\mu|(X)=\int_{X}|f| d \lambda$.
Proof. Let $H=\{x \in X: f(x) \geq 0\} ; H \in \mathcal{A}, f^{+} \chi_{H}=f^{+}$and $f^{-} \chi_{H}=0$. $\int_{A} f^{+} d \lambda=\int_{A} f^{+} \chi_{H} d \lambda=\int_{A \cap H} f^{+} d \lambda$ and $\int_{A \cap H} f^{-} d \lambda=\int_{A} f^{-} \chi_{H} d \lambda=$ 0 .

Therefore $\mu(A \cap H)=\int_{A} f^{+} d \lambda$. If $B \subset A$, then $\mu(B) \leq \int_{B} f^{+} d \lambda \leq$ $\int_{A} f^{+} d \lambda$. Then, according to Corollary 1.22, $\int_{A} f^{+} d \lambda=\sup \{\mu(B): B \in$ $\mathcal{A}, B \subset A\}=\mu^{+}(A)=\mu(A \cap H)$, which leads to $\int_{A} f^{-} d \lambda=\mu^{-}(A)=$ $-\mu\left(A \cap H^{c}\right)$.

If $f \in \mathscr{L}^{1}(\lambda)$, then $\mu(A)=\int_{A} f d \lambda$, for every $A \in \mathcal{A}$, hence $\mu \in c a(\mathcal{A})$. According to Definition 1.19, $\|\mu\|=|\mu|(X)=\mu^{+}(X)+\mu^{-}(X)=\int_{X} f^{+} d \lambda+$ $\int_{X} f^{-} d \lambda=\int_{X}|f| d \lambda$.

Proposition 1.26.

(i) $L^{1}(\lambda)=L^{1}(|\lambda|)$ and $\left|\int_{A} f d \lambda\right| \leq \int_{A}|f| d|\lambda|, \quad \forall A \in \mathcal{A}, \quad \forall f \in L^{1}(\lambda)$.
(ii) $|\lambda|(A)=\sup \left\{\left|\int_{A} f d \lambda\right|: f \in L^{1}(\lambda),|f| \leq 1\right\}$.
(iii) The mapping $\|\cdot\|_{1}: L^{1}(\lambda) \rightarrow \mathbb{R}_{+},\|f\|_{1}=\int_{X}|f| d|\lambda|$ is a norm on $L^{1}(\lambda)$ and $\left(L^{1}(\lambda),\|\cdot\|_{1}\right)$ is a Banach space.

Proof. (i) Let $f \in L^{1}(\lambda)$; then f is A-measurable and $f \in L^{1}\left(\lambda^{+}\right) \cap L^{1}\left(\lambda^{-}\right)$. $\int_{X}|f| d|\lambda|=\int_{X}|f| d \lambda^{+}+\int_{X}|f| d \lambda^{-}<+\infty$ and then $f \in L^{1}(|\lambda|)$.

Reciprocally, if $f \in L^{1}(|\lambda|), \int_{X}|f| d \lambda^{+} \leq \int_{X}|f| d|\lambda|<+\infty$ and so $f \in$ $L^{1}\left(\lambda^{+}\right)$; similarly, $f \in L^{1}\left(\lambda^{-}\right)$and, therefore, $f \in L^{1}(\lambda)$.

The inequality follows immediately:

$$
\begin{aligned}
\left|\int_{A} f d \lambda\right|= & \left|\int_{A} f d \lambda^{+}-\int_{A} f d \lambda^{-}\right| \\
& \leq\left|\int_{A} f d \lambda^{+}\right|+\left|\int_{A} f d \lambda^{-}\right| \leq \int_{A}|f| d \lambda^{+}+\int_{A}|f| d \lambda^{-} \\
& =\int_{A}|f| d|\lambda|
\end{aligned}
$$

(ii)

$$
|\lambda|(A)=\sup \left\{\sum_{i=1}^{n}\left|\lambda\left(A_{i}\right)\right|: n \in \mathbb{N}^{*}:\left\{A_{1}, \ldots, A_{n}\right\}=\mathcal{A}-\text { partition of } A\right\}
$$

Let $\left\{A_{1}, \ldots, A_{n}\right\}$ be an arbitrary partition of A. We can assume that $\lambda\left(A_{i}\right) \geq 0$, for every $i=1, \ldots, p$ and $\lambda\left(A_{j}\right)<0$, for every $j=p+1, \ldots, n$. Let $f=$ $\chi_{\cup_{1}^{p} A_{i}}-\chi_{\cup_{p+1}^{n} A_{j}}$; then $|f|=1, f$ is \mathcal{A}-measurable and

$$
\begin{aligned}
\sum_{1}^{n}\left|\lambda\left(A_{i}\right)\right| & =\lambda\left(\cup_{1}^{p} A_{i}\right)-\lambda\left(\cup_{p+1}^{n} A_{j}\right)=\int_{A} f d \lambda \\
& \leq \sup \left\{\left|\int_{A} f d \lambda\right|: f \in L^{1}(\lambda),|f| \leq 1\right\}
\end{aligned}
$$

We have therefore $|\lambda|(A) \leq \sup \left\{\left|\int_{A} f d \lambda\right|: f \in L^{1}(\lambda),|f| \leq 1\right\}$.
On the other hand, for every $f \in L^{1}(\lambda)$ with $|f| \leq 1$, by (i), we have

$$
\left|\int_{A} f d \lambda\right| \leq \int_{A}|f| d|\lambda| \leq \int_{A} 1 d|\lambda|=|\lambda|(A)
$$

from where $\sup \left\{\left|\int_{A} f d \lambda\right|: f \in L^{1}(\lambda),|f| \leq 1\right\} \leq|\lambda|(A)$.
(iii) Obviously, $\|\cdot\|_{1}$ is a norm on $L^{1}(\lambda)=L^{1}(|\lambda|)$. It is easy to see that $\left(L^{1}(|\lambda|),\|\cdot\|_{1}\right)$ is a Banach space.

In the following, we will present Saks' theorem which will be useful in the study of the weak compactness on $(c a(\mathcal{A}),\|\cdot\|$) (see [62], Lemma III.7.1 and [57], Theorem 8, p. 86).

Theorem 1.27 (Saks). Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be a positive and σ-additive measure. The mapping $d_{\lambda}: \mathcal{A} \times \mathscr{A} \rightarrow \mathbb{R}_{+}$, defined by $d_{\lambda}(A, B)=\arctan (\lambda(A \triangle B))$, for every $(A, B) \in \mathcal{A} \times \mathcal{A}$, is a pseudo-metric on \mathcal{A}. The pseudo-metric space $\left(\mathcal{A}, d_{\lambda}\right)$ is complete and the binary operations $(A, B) \mapsto A \cup B,(A, B) \mapsto A \cap B$ and $(A, B) \mapsto A \backslash B$ are continuous maps on $\left(\mathcal{A} \times \mathcal{A}, d_{\lambda} \times d_{\lambda}\right)$.

Proof. Let's recall that if $\lambda(A \triangle B)$ is finite, $d_{\lambda}(A, B)=\arctan (\lambda(A \triangle B)) \in$ $\left[0, \frac{\pi}{2}\right.$ [and if $\lambda(A \triangle B)=+\infty$, then $d_{\lambda}(A, B)=\frac{\pi}{2}$.

We can put $D_{\lambda}(A, B)=\lambda(A \triangle B)$; obviously $d_{\lambda}=\arctan D_{\lambda}$ is a pseudometric on \mathcal{A}. In the following we say that d_{λ} is the pseudo-metric associated to λ.

It remains to demonstrate that $\left(\mathcal{A}, d_{\lambda}\right)$ is complete. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\left(\mathcal{A}, d_{\lambda}\right)$; for every $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that, for all $m, n \geq n_{0}, D_{\lambda}\left(A_{m}, A_{n}\right)=\lambda\left(A_{m} \triangle A_{n}\right)<\varepsilon$.

Step by step, we define a strictly increasing sequence of integers $\left(k_{n}\right)_{n \in \mathbb{N}}$ such that, for every $n \in \mathbb{N}, \lambda\left(A_{k_{n}} \Delta A_{k_{n+1}}\right)<\frac{1}{2^{n}}$.
Let $N=\lim \sup _{n}\left(A_{k_{n}} \triangle A_{k_{n+1}}\right)=\bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty}\left(A_{k_{i}} \triangle A_{k_{i+1}}\right) \in \mathcal{A}$; for every $n \in \mathbb{N}, N \subseteq \bigcup_{i=n}^{\infty}\left(A_{k_{i}} \Delta A_{k_{i+1}}\right)$ and then $\lambda(N) \leq \sum_{i=n}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{n-1}}$. Therefore $\lambda(N)=0$.

Let $A=\liminf { }_{n} A_{k_{n}}=\bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_{k_{i}} \in \mathcal{A}$; then

$$
\begin{equation*}
X \backslash N \subseteq A \cup\left[\liminf _{n}\left(X \backslash A_{k_{n}}\right)\right] \tag{1}
\end{equation*}
$$

Indeed, for every $x \in X \backslash N=\bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty}\left[X \backslash\left(A_{k_{i}} \Delta A_{k_{i+1}}\right)\right]$, there exists $n_{0} \in \mathbb{N}$ such that, for all $i \geq n_{0}, x \notin A_{k_{i}} \Delta A_{k_{i+1}}$, or $\chi_{A_{k_{i}}}(x)=\chi_{A_{k_{i+1}}}(x)$; therefore $\chi_{A_{k_{i}}}(x)=1$, for every $i \geq n_{0}$, or $\chi_{A_{k_{i}}}(x)=0$, for every $i \geq n_{0}$, from where $x \in\left(\liminf _{n} A_{k_{n}}\right) \cup\left[\liminf _{n}\left(X \backslash A_{k_{n}}\right)\right]$.

From (1), we have

$$
\begin{equation*}
A_{k_{p}} \Delta A \subseteq N \cup\left[\liminf _{n}\left(A_{k_{p}} \Delta A_{k_{n}}\right)\right], \quad \text { for every } \quad p \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Indeed, from (1), one gets that, for every $p \in \mathbb{N}$,
$\left(A_{k_{p}} \backslash A\right) \backslash N \subseteq A_{k_{p}} \cap\left[\liminf _{n}\left(X \backslash A_{k_{n}}\right)\right]=\liminf _{n}\left(A_{k_{p}} \backslash A_{k_{n}}\right) \quad$ and $\left(A \backslash A_{k_{p}}\right) \backslash N \subseteq\left(\liminf _{n} A_{k_{n}}\right) \backslash A_{k_{p}}=\liminf _{n}\left(A_{k_{n}} \backslash A_{k_{p}}\right)$.

From (2), we have,

$$
\begin{aligned}
\lambda\left(A_{k_{p}} \Delta A\right) & \leq \lambda\left(\liminf _{n}\left(A_{k_{p}} \Delta A_{k_{n}}\right)\right) \leq \liminf _{n} \lambda\left(A_{k_{p}} \Delta A_{k_{n}}\right) \\
& \leq \liminf _{n}\left[\lambda\left(A_{k_{p}} \Delta A_{k_{p+1}}\right)+\cdots+\lambda\left(A_{k_{n-1}} \triangle A_{k_{n}}\right)\right] \\
& \leq \liminf _{n}\left(\frac{1}{2^{p}}+\cdots+\frac{1}{2^{n-1}}\right)=\frac{1}{2^{p-1}}, \text { for every } p \in \mathbb{N}
\end{aligned}
$$

hence we obtain

$$
\begin{equation*}
d_{\lambda}\left(A_{k_{p}}, A\right) \leq \arctan \left(\frac{1}{2^{p-1}}\right), \quad \text { for every } \quad p \in \mathbb{N} . \tag{3}
\end{equation*}
$$

From (3), it results that $A_{k_{p}} \xrightarrow{d_{\lambda}} A$ and consequently $A_{n} \xrightarrow{d_{\lambda}} A$.
Therefore (\mathcal{A}, d_{λ}) is complete.
Suppose now that $A_{n} \xrightarrow{d_{\lambda}} A$ and $B_{n} \xrightarrow{d_{\lambda}} B$.
From the following inclusions:

$$
\begin{aligned}
&\left(A_{n} \cup B_{n}\right) \Delta(A \cup B) \subseteq\left(A_{n} \Delta A\right) \cup\left(B_{n} \Delta B\right), \\
&\left(A_{n} \cap B_{n}\right) \Delta(A \cap B) \subseteq\left(A_{n} \Delta A\right) \cup\left(B_{n} \Delta B\right), \\
&\left(A_{n} \backslash B_{n}\right) \Delta(A \backslash B) \subseteq\left(A_{n} \Delta A\right) \cup\left(B_{n} \Delta B\right),
\end{aligned}
$$

we obtain

$$
\begin{aligned}
D_{\lambda}\left(A_{n} \cup B_{n}, A \cup B\right) & \leq D_{\lambda}\left(A_{n}, A\right)+D_{\lambda}\left(B_{n}, B\right), \\
D_{\lambda}\left(A_{n} \cap B_{n}, A \cap B\right) & \leq D_{\lambda}\left(A_{n}, A\right)+D_{\lambda}\left(B_{n}, B\right), \\
D_{\lambda}\left(A_{n} \backslash B_{n}, A \backslash B\right) & \leq D_{\lambda}\left(A_{n}, A\right)+D_{\lambda}\left(B_{n}, B\right) .
\end{aligned}
$$

The inequality $\arctan (x+y) \leq \arctan x+\arctan y$ implies that

$$
\begin{aligned}
d_{\lambda}\left(A_{n} \cup B_{n}, A \cup B\right) & \leq d_{\lambda}\left(A_{n}, A\right)+d_{\lambda}\left(B_{n}, B\right), \\
d_{\lambda}\left(A_{n} \cap B_{n}, A \cap B\right) & \leq d_{\lambda}\left(A_{n}, A\right)+d_{\lambda}\left(B_{n}, B\right), \\
d_{\lambda}\left(A_{n} \backslash B_{n}, A \backslash B\right) & \leq d_{\lambda}\left(A_{n}, A\right)+d_{\lambda}\left(B_{n}, B\right),
\end{aligned}
$$

from where it results that

$$
\begin{aligned}
& \left(A_{n} \cup B_{n}\right) \xrightarrow{d_{\lambda}}(A \cup B), \\
& \left(A_{n} \cap B_{n}\right) \xrightarrow{d_{\lambda}}(A \cap B), \\
& \left(A_{n} \backslash B_{n}\right) \xrightarrow{d_{\lambda}}(A \backslash B) .
\end{aligned}
$$

which demonstrates the continuity of the applications \cup, \cap and \backslash.

Definition 1.28. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be an additive measure and let $\mu \in b a(\mathcal{A})$; we say that μ est absolutely continuous with respect to λ if, for every $A \in \mathcal{A}$,

$$
\lambda(A)=0 \Longrightarrow \mu(A)=0 .
$$

We note this by $\mu \ll \lambda$.

Remark 1.29. Let $\lambda \in b a^{+}(\mathcal{A})$ and $\mu \in b a(\mathcal{A})$; then

$$
\mu \ll \lambda \Leftrightarrow|\mu| \ll \lambda \Leftrightarrow \mu^{+} \ll \lambda \quad \text { and } \quad \mu^{-} \ll \lambda .
$$

Indeed, if $\mu \ll \lambda$, then, for every $A \in \mathcal{A}$ with $\lambda(A)=0$ and for every $B \in \mathcal{A}, B \subseteq A$, we have $\lambda(B)=0$ and so $\mu(B)=0$. Then, by (i) of Theorem 1.17, $|\mu|(A)=0$, from where $|\mu| \ll \lambda$. The implication $|\mu| \ll \lambda \Rightarrow \mu^{+} \ll$ λ and $\mu^{-} \ll \lambda$ is obvious and, from $\mu^{+} \ll \lambda, \mu^{-} \ll \lambda$ and $\mu=\mu^{+}-\mu^{-}$, it results immediately that $\mu \ll \lambda$.

The following proposition shows that, for the real σ-additive measures, the property of a measure to be absolutely continuous with respect to another one is a property of continuity (see Definition III.4.12 and Lemma III.4.13 of [62]).

Proposition 1.30. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be a σ-additive measure and let $\mu \in c a(\mathcal{A})$; then the following properties are equivalent:
(i) μ is absolutely continuous with respect to $\lambda(\mu \ll \lambda)$,
(ii) for every $\varepsilon>0$, there exists $\delta>0$ such that, for every $A \in \mathcal{A}$ satisfying $\lambda(A)<\delta$, we have $|\mu|(A)<\varepsilon$,
(iii) $\mu:\left(\mathscr{A}, d_{\lambda}\right) \rightarrow \mathbb{R}$ is a d_{λ}-continuous function.

Proof. (i) \Longrightarrow (ii). Let us suppose that (ii) is not satisfied. There exist $\varepsilon>0$ and $\left(A_{n}\right)_{n} \subseteq \mathcal{A}$ such that $\lambda\left(A_{n}\right)<\frac{1}{2^{n}}$ and $|\mu|\left(A_{n}\right) \geq \varepsilon$, for every $n \in \mathbb{N}$. Let $A=$ $\limsup _{n} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} \in \mathcal{A}$. Then, for every $n \in \mathbb{N},|\mu|\left(\bigcup_{k=n}^{\infty} A_{k}\right) \geq$ ε and $\lambda\left(\bigcup_{k=n}^{\infty} A_{k}\right) \leq \sum_{k=n}^{\infty} \lambda\left(A_{k}\right) \leq \sum_{k=n}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{n-1}}$. We have then $\lambda(A)=$ $\lim _{n} \lambda\left(\bigcup_{k=n}^{\infty} A_{k}\right)=0$ and $|\mu|(A)=\lim _{n \rightarrow \infty}|\mu|\left(\bigcup_{k=n}^{\infty} A_{k}\right) \geq \varepsilon$. Therefore, (i) is not satisfied.
(ii) \Longrightarrow (iii). According to (ii), for every $\varepsilon>0$, there exists $\delta>0$ such that, for every $B \in \mathcal{A}$ such that $\lambda(B)<\delta,|\mu|(B)<\varepsilon$ and, by continuity of the mapping tan in 0 , there exists $\eta>0$ such that $\arctan \lambda(B)<\eta$ implies $\lambda(B)<\delta$ and so $|\mu|(B)<\varepsilon$.

Let now $A \in \mathcal{A}$ and let $B \in \mathcal{A}$ with $d_{\lambda}(A, B)<\eta$; then $\lambda(A \triangle B)<\delta$ and so $|\mu|(A \Delta B)<\varepsilon$. Therefore

$$
\begin{aligned}
|\mu(A)-\mu(B)| & =|\mu(A)-\mu(A \cap B)+\mu(A \cap B)-\mu(B)| \\
& =|\mu(A \backslash B)-\mu(B \backslash A)| \leq|\mu(A \backslash B)|+|\mu(B \backslash A)| \\
& \leq|\mu|(A \triangle B)<\varepsilon
\end{aligned}
$$

and so μ is d_{λ}-continuous in A.
(iii) \Longrightarrow (i). Since μ is continuous on \mathcal{A}, it is continuous at $\emptyset \in \mathcal{A}$. Then, for every $\varepsilon>0$, there exists $\delta \in] 0,1[$ such that, for every $A \in \mathcal{A}$ satisfying $d_{\lambda}(A, \emptyset)=\lambda(A)<\delta,|\mu(A)|<\varepsilon$. Let $A \in \mathcal{A}$ with $\lambda(A)=0$; then $d_{\lambda}(A, \emptyset)<\delta$ and hence $|\mu(A)|<\varepsilon$ and, as ε is arbitrary, $\mu(A)=0$. Therefore $\mu \ll \lambda$.

Proposition 1.31. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be a σ-additive measure and let $\mu: \mathcal{A} \rightarrow \mathbb{R}$ be an additive measure. If μ is d_{λ}-continuous, then $\mu \in c a(\mathcal{A})$.

Proof. Let $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ be a sequence of pairwise disjoint sets and let $A=$ $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$.

Since μ is d_{λ}-continuous, for every $\varepsilon>0$, there exists $\delta>0$ such that, for every B and C of A satisfying $\lambda(B \triangle C)<\delta,|\mu(B)-\mu(C)|<\varepsilon$. Since λ is σ-additive, there exists $n_{0} \in \mathbb{N}$ such that, for every $n \geq n_{0}$,

$$
\left|\lambda(A)-\sum_{k=1}^{n} \lambda\left(A_{k}\right)\right|=\lambda\left(A \backslash \bigcup_{k=1}^{n} A_{k}\right)=\lambda\left(A \Delta \bigcup_{k=1}^{n} A_{k}\right)<\delta .
$$

Then $\left|\mu(A)-\sum_{1}^{n} \mu\left(A_{k}\right)\right|=\left|\mu(A)-\mu\left(\cup_{1}^{n} A_{k}\right)\right|<\varepsilon$ and so $\mu \in c a(\mathcal{A})$.
Remark 1.32. The result of Proposition 1.30 asserts that, if μ is σ-additive, then the absolute continuity of μ with respect to λ is equivalent to the d_{λ}-continuity of μ; this result is no longer valid if μ is only additive.
In fact, let μ be as in the example of Remark 1.16; μ is additive, it is not bounded and, according to Corollary 1.14, its extension to $\mathcal{P}(\mathbb{N})$, still noted μ, is not σ - additive.
Let $\lambda: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{R}_{+}, \lambda(A)=\sum_{n \in A} \delta_{n}(A)$, where δ_{n} is the Dirac measure that gives to singleton set $\{n\}$ the measure 1 . Then λ is a σ-additive measure and, as μ is not σ-additive, according to Proposition 1.31, μ is not d_{λ} - continuous. However μ is absolutely continuous with respect to λ. Indeed, let $A \in \mathcal{P}(\mathbb{N})$ with $\lambda(A)=0$; then $A=\emptyset$ and therefore $\mu(A)=0$.

In the case where $\mu \in b a(\mathcal{A}) \backslash c a(\mathcal{A})$, we have the following implications among the conditions of Proposition 1.30: (ii) \Longleftrightarrow (iii) \Longrightarrow (i).

In relation to Proposition 1.30 , if λ is σ-additive, then in order to avoid the use of the difficult formulation of " d_{λ}-continuity" or the longer one "absolutely continuous with respect to λ ", we will give the following definition:

Definition 1.33. A measure $\mu \in c a(\mathcal{A})$, continuous on the space $\left(\mathcal{A}, d_{\lambda}\right)$, is called λ-continuous.

We will note by $c a_{\lambda}(\mathcal{A})$ the subset of all λ-continuous measure of $c a(\mathcal{A})$.
We can find the following theorem in [57] (see Theorem 9, p. 87).
Theorem 1.34. Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be a σ-additive measure, let d_{λ} be the pseudometric associated and let \mathcal{K} be a family of measures of ca(A); then the following properties are equivalent:
(i) the family \mathcal{K} is d_{λ}-equicontinuous at some $E \in \mathcal{A}$.
(ii) the family \mathcal{K} is d_{λ}-equicontinuous at the point $\emptyset \in \mathcal{A}$.
(iii) the family \mathcal{K} is uniformly d_{λ}-equicontinuous on \mathcal{A}.

Each of these conditions entails the following:
(iv) the family \mathcal{K} is uniformly σ-additive.

Proof. (i) \Longrightarrow (ii). Let \mathcal{K} be d_{λ}-equicontinuous at $E \in \mathcal{A}$; then, for every $\varepsilon>0$, there exists $\delta>0$ such that, for every $A \in \mathscr{A}$ with $d_{\lambda}(A, E)<\delta$ and for every $\mu \in \mathcal{K},|\mu(A)-\mu(E)|<\varepsilon$. Let $A \in \mathcal{A}$ such that $d_{\lambda}(A, \emptyset)<\delta$, that is $\lambda(A)<$ $\eta=\tan (\delta)$; then

$$
\begin{aligned}
D_{\lambda}(A \cup E, E) & =\lambda[(A \cup E) \Delta E]=\lambda(A \backslash E) \leq \lambda(A)<\eta \quad \text { and } \\
D_{\lambda}(E \backslash A, E) & =\lambda[(E \backslash A) \Delta E]=\lambda(A \cap E) \leq \lambda(A)<\eta
\end{aligned}
$$

Therefore, for every $\mu \in \mathcal{K},|\mu(A \cup E)-\mu(E)|<\varepsilon$ and $|\mu(E)-\mu(E \backslash A)|<\varepsilon$. We have then:

$$
\begin{aligned}
|\mu(A)| & =|\mu(A \cup E)-\mu(E \backslash A)| \\
& \leq|\mu(A \cup E)-\mu(E)|+|\mu(E)-\mu(E \backslash A)|<2 \varepsilon
\end{aligned}
$$

\mathcal{K} is therefore d_{λ}-equicontinuous at \emptyset.
(ii) \Longrightarrow (iii). \mathcal{K} being d_{λ}-equicontinuous at \emptyset, for every $\varepsilon>0$, there exists $\delta>0$ such that, for every $E \in \mathcal{A}$ satisfying $d_{\lambda}(E, \emptyset)=\arctan \lambda(E)<\delta$, we have $|\mu(E)|<\varepsilon$, for every $\mu \in \mathcal{K}$.

If $d_{\lambda}(C, D)=\arctan \lambda(C \triangle D)<\delta$ then $d_{\lambda}(C \backslash D, \emptyset)<\delta$ and $d_{\lambda}(D \backslash$ $C, \emptyset)<\delta$.

Then, for every $\mu \in \mathcal{K}$,

$$
\begin{aligned}
|\mu(C)-\mu(D)| & =|\mu(C \backslash D)+\mu(C \cap D)-\mu(C \cap D)-\mu(D \backslash C)| \\
& \leq|\mu(C \backslash D)|+|\mu(D \backslash C)|<2 \varepsilon
\end{aligned}
$$

Therefore \mathcal{K} is uniformly d_{λ}-equicontinuous on \mathcal{A}.
Obviously, (iii) \Longrightarrow (i).
(ii) \Longrightarrow (iv). Let $\mathcal{K} \subseteq c a(\mathcal{A})$ be a family satisfying (ii), let $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ be a sequence of pairwise disjoint sets and let $A=\cup_{1}^{\infty} A_{n}$. Then for every $\varepsilon>0$, there exists $\delta>0$ such that, for all $E \in \mathscr{A}$ with $\lambda(E)<\delta$, we have $|\mu(E)|<\varepsilon$, for every $\mu \in \mathcal{K}$. λ being σ-additive and positive, there exists $n_{0} \in \mathbb{N}$ such that $\left|\lambda(A)-\sum_{k=1}^{n} \lambda\left(A_{k}\right)\right|=\lambda\left(A \backslash \cup_{k=1}^{n} A_{k}\right)<\delta$, for every $n \geq n_{0}$.

Then, for every $\mu \in \mathcal{K},\left|\mu(A)-\sum_{k=1}^{n} \mu\left(A_{k}\right)\right|=\left|\mu\left(A \backslash \cup_{k=1}^{n} A_{k}\right)\right|<\varepsilon$ from where it results that \mathcal{K} is uniformly σ-additive.

In a consistent manner with Theorem 1.33, we give the following definition:
Definition 1.35. A family of measures $\mathcal{K} \subseteq c a(\mathcal{A}), d_{\lambda}$-equicontinuous at \emptyset (and therefore on \mathcal{A}) is called λ-equicontinuous.

We need to emphasize that the definitions of λ-continuity and λ-equicontinuity refer only to the real σ-additive measures, meaning that they do not refer to the σ-additive measures taking at most one of the values $+\infty$ or $-\infty$. However, the previous results can be extended by replacing the σ-additive and positive measure λ by a σ-additive measure λ of finite total variation $|\lambda|$ and the measure $\mu \in$ $c a(A)$ by a σ-additive measure with values in a Banach space.

We will now give a very important result of equicontinuity (Vitali-Hahn-Saks theorem) which allows us to establish the analogue of the uniform boundedness principle from Functional Analysis for the Measure Theory (see Theorem III.7.2 and Corollary III.7.3 in [62] or Theorem 2.53 of [85]).

Theorem 1.36 (Vitali-Hahn-Saks). Let $\lambda: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+}$be a σ-additive measure and let $\left(\mu_{n}\right)_{n \in \mathbb{N}} \subseteq c a(\mathcal{A})$ be a sequence of λ-continuous measures.

Assume that $\lim _{n} \mu_{n}(A)=\mu(A) \in \mathbb{R}$ exists, for every $A \in \mathcal{A}$; then:
(i) $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is λ-equicontinuous,
(ii) $\mu \in c a(\mathcal{A})$,
(iii) μ is λ-continuous.

Proof. According to Proposition 1.30, $\mu_{n}:\left(\mathscr{A}, d_{\lambda}\right) \rightarrow \mathbb{R}$ is a continuous function, for every $n \in \mathbb{N}$.

For every $\varepsilon>0$ and for all couple $(n, m) \in \mathbb{N} \times \mathbb{N}$, let's note

$$
\mathcal{A}_{n, m}(\varepsilon)=\left\{A \in \mathcal{A}:\left|\mu_{n}(A)-\mu_{m}(A)\right| \leq \varepsilon\right\} .
$$

$\mathcal{A}_{n, m}(\varepsilon)$ are closed sets in the complete space $\left(\mathcal{A}, d_{\lambda}\right)$; then, for every $p \in \mathbb{N}$,

$$
\mathcal{A}_{p}(\varepsilon)=\bigcap_{m, n \geq p} \mathcal{A}_{n, m}(\varepsilon)
$$

is a closed set in $\left(\mathcal{A}, d_{\lambda}\right)$.
Since $\lim _{n} \mu_{n}(A) \in \mathbb{R}$, for every $A \in \mathcal{A}$,

$$
\mathcal{A}=\bigcup_{p=1}^{\infty} \mathcal{A}_{p}(\varepsilon)
$$

According to Baire theorem, there exists $p_{0} \in \mathbb{N}$ such that $\mathcal{A}_{p_{0}}(\varepsilon)$ has nonempty interior in $\left(\mathcal{A}, d_{\lambda}\right)$. Therefore, there exists $A_{0} \in \mathcal{A}$, there exists $r>0$ such that the $\operatorname{ball} S\left(A_{0}, \arctan r\right) \subseteq \mathcal{A}_{p_{0}}(\varepsilon)$, i.e.,

$$
\begin{equation*}
\left|\mu_{n}(A)-\mu_{m}(A)\right|<\varepsilon, \quad \forall A \in \mathcal{A} \quad \text { with } \quad \lambda\left(A \triangle A_{0}\right)<r, \quad \forall m, n \geq p_{0} \tag{1}
\end{equation*}
$$

Since the set $\left\{\mu_{1}, \ldots, \mu_{p_{0}}\right\}$ is λ-equicontinuous, there exists $\left.\delta \in\right] 0, r[$ such that

$$
\begin{equation*}
\left|\mu_{n}(B)\right|<\varepsilon, \quad \text { for all } \quad B \in \mathcal{A} \quad \text { with } \quad \lambda(B)<\delta, \quad \forall n=1, \ldots, p_{0} \tag{2}
\end{equation*}
$$

Let $A \in \mathcal{A}$ with $\lambda(A)<\delta$; then

$$
\begin{aligned}
\lambda\left(\left(A \cup A_{0}\right) \Delta A_{0}\right) & =\lambda\left(A \backslash A_{0}\right) \leq \lambda(A)<\delta<r \quad \text { and } \\
\lambda\left(\left(A_{0} \backslash A\right) \Delta A_{0}\right) & =\lambda\left(A_{0} \cap A\right) \leq \lambda(A)<\delta<r .
\end{aligned}
$$

By (1), we have

$$
\begin{equation*}
\left|\mu_{n}\left(A \cup A_{0}\right)-\mu_{p_{0}}\left(A \cup A_{0}\right)\right|<\varepsilon, \quad \forall n \geq p_{0} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu_{n}\left(A_{0} \backslash A\right)-\mu_{p_{0}}\left(A_{0} \backslash A\right)\right|<\varepsilon, \quad \forall n \geq p_{0} \tag{4}
\end{equation*}
$$

By (2), (3) and (4), we deduct that, for every $n \geq p_{0}$,

$$
\begin{aligned}
\left|\mu_{n}(A)\right| & =\left|\mu_{p_{0}}(A)+\left[\mu_{n}(A)-\mu_{p_{0}}(A)\right]\right| \\
& \leq\left|\mu_{p_{0}}(A)\right|+\left|\mu_{n}\left(A \cup A_{0}\right)-\mu_{p_{0}}\left(A \cup A_{0}\right)+\mu_{p_{0}}\left(A_{0} \backslash A\right)-\mu_{n}\left(A_{0} \backslash A\right)\right| \\
& \leq\left|\mu_{p_{0}}(A)\right|+\left|\mu_{n}\left(A \cup A_{0}\right)-\mu_{p_{0}}\left(A \cup A_{0}\right)\right|+\left|\mu_{p_{0}}\left(A_{0} \backslash A\right)-\mu_{n}\left(A_{0} \backslash A\right)\right| \\
& <3 \varepsilon .
\end{aligned}
$$

Therefore, according to (2), $\left|\mu_{n}(A)\right|<3 \varepsilon$, for every $n \in \mathbb{N}$. $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is therefore d_{λ}-equicontinuous at \emptyset and so it is λ-equicontinuous.

Since $\left(\mu_{n}\right)$ converges punctually to μ, μ is additive on \mathcal{A}.
We still need to show that μ is λ-continuous.
According to Theorem 1.34 , since $\left\{\mu_{n}\right\}$ is λ-equicontinuous, it is uniformly d_{λ}-equicontinuous on \mathcal{A}. Therefore, for every $\varepsilon>0$, there exists $\delta>0$ such that, for all A and B of \mathcal{A} with $\lambda(A \triangle B)<\delta$, for any $n \in \mathbb{N},\left|\mu_{n}(A)-\mu_{n}(B)\right|<\varepsilon$. Now let n tend to ∞; so we obtain $|\mu(A)-\mu(B)| \leq \varepsilon$, from where it results that μ is uniformly $-d_{\lambda}$-continuous and so it is d_{λ}-continuous.

From Proposition 1.31, it results that $\mu \in c a(\mathcal{A})$ and, according to Proposition 1.30, μ is λ-continuous.

The previous theorem accepts as corollary the following result (see Corollary III.7.4 and Theorem IV.9.8 of [62] and [57], p. 90):

Theorem 1.37 (Nikodym). Let $\left(\mu_{n}\right) \subseteq c a(\mathcal{A})$ be a sequence of measures such that, for every $E \in \mathcal{A}$, there exists $\lim _{n} \mu_{n}(E)=\mu(E) \in \mathbb{R}$. Then:
(i) $\mu \in c a(\mathcal{A})$,
(ii) $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is uniformly σ-additive and
(iii) $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is bounded in the space $(c a(\mathcal{A}),\|\cdot\|)$.

Proof. (i) + (ii) Let $\lambda: \mathcal{A} \rightarrow \mathbb{R}_{+}$be defined by

$$
\lambda(A)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\left|\mu_{n}\right|(A)}{1+\left\|\mu_{n}\right\|}, \quad \forall A \in \mathcal{A}
$$

It is clear that, for all $A \in \mathcal{A}, \lambda(A)<\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$.
Let $\left\{E_{p}: p \in \mathbb{N}\right\} \subseteq \mathcal{A}$ be a family of disjoint sets and let $E=\bigcup_{p=1}^{\infty} E_{p}$. For all $\varepsilon>0$ let $n_{0} \in \mathbb{N}$ such that $\frac{1}{2^{n_{0}-2}}<\varepsilon$. Since $\mu_{n} \in c a(\mathcal{A}),\left|\mu_{n}\right| \in c a(\mathcal{A})$ and then there exists $k_{0} \in \mathbb{N}$ such that, for every $k \geq k_{0}$ and every $n=1, \ldots, n_{0}$,

$$
\left|\left|\mu_{n}\right|(E)-\sum_{p=1}^{k}\right| \mu_{n}\left|\left(E_{p}\right)\right|<\frac{\varepsilon}{2}\left(1+\left\|\mu_{n}\right\|\right)
$$

Then

$$
\begin{aligned}
\left|\lambda(E)-\sum_{p=1}^{k} \lambda\left(E_{p}\right)\right| & =\left|\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}} \cdot \frac{\left|\mu_{n}\right|(E)}{1+\left\|\mu_{n}\right\|}-\sum_{p=1}^{k} \frac{1}{2^{n}} \cdot \frac{\left|\mu_{n}\right|\left(E_{p}\right)}{1+\left\|\mu_{n}\right\|}\right)\right| \\
& \leq \sum_{n=1}^{n_{0}} \frac{1}{2^{n}}\left|\frac{\left|\mu_{n}\right|(E)}{1+\left\|\mu_{n}\right\|}-\sum_{p=1}^{k} \frac{\left|\mu_{n}\right|\left(E_{p}\right)}{1+\left\|\mu_{n}\right\|}\right|+\sum_{n=n_{0}+1}^{\infty} \frac{1}{2^{n}} \cdot 2 \\
& <\sum_{n=1}^{n_{0}} \frac{1}{2^{n}} \cdot \frac{\varepsilon}{2}+\frac{1}{2^{n_{0}-1}}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Therefore $\lambda \in c a^{+}(\mathcal{A})$.
Moreover, it is evident that, for every $n \in \mathbb{N}, \mu_{n} \ll \lambda$. We are, therefore, in the conditions to apply the Vitali-Hahn-Saks theorem. Therefore $\mu \in c a(\mathcal{A})$, $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is λ-equicontinuous and, according to (iv) of Theorem 1.34, $\left\{\mu_{n}\right.$: $n \in \mathbb{N}\}$ is uniformly σ-additive.
(iii) As, for every $A \in \mathcal{A}, \mu_{n}(A) \rightarrow \mu(A) \in \mathbb{R}$, we have:

$$
\begin{equation*}
\sup _{n}\left|\mu_{n}(A)\right|<+\infty \quad \text { for every } \quad A \in \mathcal{A} \tag{1}
\end{equation*}
$$

Suppose that the family $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is not bounded in the space $(c a(\mathcal{A}),\|\cdot\|)$. Then $\sup _{n \in \mathbb{N}}\left\|\mu_{n}\right\|=+\infty$.

According to Theorem 1.23, for every $n \in \mathbb{N},\left\|\mu_{n}\right\| \leq 2\left\|\mu_{n}\right\|_{\infty}$.
We have therefore

$$
\begin{equation*}
\sup _{n}\left\|\mu_{n}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left(\sup _{A \in \mathscr{A}}\left|\mu_{n}(A)\right|\right)=+\infty \tag{2}
\end{equation*}
$$

By (1), $\sup _{k}\left|\mu_{k}(X)\right|<+\infty$. Let $\Sigma_{1}=\sup _{k}\left|\mu_{k}(X)\right|+1$; according to (2), there exists $n_{1} \in \mathbb{N}$ such that

$$
\sup _{A \in \mathscr{A}}\left|\mu_{n_{1}}(A)\right|>\Sigma_{1}
$$

and therefore there exists $A_{1} \in \mathcal{A}$ such that $\left|\mu_{n_{1}}\left(A_{1}\right)\right|>\Sigma_{1}$.

$$
\begin{aligned}
\left|\mu_{n_{1}}\left(X \backslash A_{1}\right)\right| & =\left|\mu_{n_{1}}(X)-\mu_{n_{1}}\left(A_{1}\right)\right| \\
& \geq\left|\mu_{n_{1}}\left(A_{1}\right)\right|-\left|\mu_{n_{1}}(X)\right| \geq\left|\mu_{n_{1}}\left(A_{1}\right)\right|-\sup _{k}\left|\mu_{k}(X)\right|>1
\end{aligned}
$$

Let's note $B_{1}=X \backslash A_{1}$. We have obtained an \mathcal{A} - partition $\left(A_{1}, B_{1}\right)$ of X such that

$$
\begin{equation*}
\left|\mu_{n_{1}}\left(A_{1}\right)\right| \geq 1, \quad\left|\mu_{n_{1}}\left(B_{1}\right)\right| \geq 1 \tag{3}
\end{equation*}
$$

By (2), we have that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(\sup _{A \in \mathcal{A}}\left|\mu_{n}\left(A \cap A_{1}\right)\right|\right)=+\infty \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(\sup _{A \in \mathcal{A}}\left|\mu_{n}\left(A \cap B_{1}\right)\right|\right)=+\infty \tag{5}
\end{equation*}
$$

If (4) is satisfied, then we note $C_{1}=B_{1}$ (otherwise $C_{1}=A_{1}$). Because all finite subset of $c a(\mathcal{A})$ is uniformly bounded on \mathcal{A} (this is an immediate consequence of Corollary 1.14), we have

$$
\sup _{n>n_{1}}\left(\sup _{A \in \mathcal{A}}\left|\mu_{n}\left(A \cap A_{1}\right)\right|\right)=+\infty
$$

Can one restart this procedure by applying (1) to A_{1}.
Let $\Sigma_{2}=\sup _{k}\left|\mu_{k}\left(A_{1}\right)\right|+2$; there exist $n_{2}>n_{1}$ and an \mathcal{A} - partition $\left(A_{2}, B_{2}\right)$ of A_{1} such that

$$
\left|\mu_{n_{2}}\left(A_{2}\right)\right| \geq 2, \quad\left|\mu_{n_{2}}\left(B_{2}\right)\right| \geq 2
$$

and

$$
\begin{equation*}
\sup _{n>n_{2}}\left(\sup _{A \in \mathscr{A}}\left|\mu_{n}\left(A \cap A_{2}\right)\right|\right)=+\infty \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\sup _{n>n_{2}}\left(\sup _{A \in \mathcal{A}}\left|\mu_{n}\left(A \cap B_{2}\right)\right|\right)=+\infty \tag{7}
\end{equation*}
$$

If (6) is satisfied, we note $C_{2}=B_{2}$ (otherwise $C_{2}=A_{2}$). $C_{2}=B_{2} \subseteq X \backslash C_{1}$.
Continuing in this fashion, we define a strictly increasing sequence of integers $\left(n_{p}\right)_{p \in \mathbb{N}}$ tending to infinity and a sequence of pairwise disjoint sets $\left(C_{p}\right)_{p \in \mathbb{N}} \subseteq \mathcal{A}$ such that,

$$
\begin{equation*}
\left|\mu_{n_{p}}\left(C_{p}\right)\right| \geq p, \quad \text { for every } \quad p \in \mathbb{N} \tag{8}
\end{equation*}
$$

Let $C=\bigcup_{1}^{\infty} C_{p} \in \mathcal{A}$; by (ii), $\left(\mu_{n}\right)$ are uniformly σ-additive. Therefore, for $\varepsilon=1$, there exists $k_{0} \in \mathbb{N}$ such that

$$
\left|\mu_{n}(C)-\sum_{i=1}^{k} \mu_{n}\left(C_{i}\right)\right|<1, \quad \text { for every } \quad k \geq k_{0} \quad \text { and for all } \quad n \in \mathbb{N}
$$

