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Preface

In recent years, technological progress created a great need for complex mathe-
matical models. Many practical problems can be formulated using optimization
theory and they hope to obtain an optimal solution. In most cases, such optimal
solution can not be found.

So, non-convex optimization problems (arising, e.g., in variational calculus,
optimal control, nonlinear evolutions equations) may not possess a classical min-
imizer because the minimizing sequences have typically rapid oscillations. This
behavior requires a relaxation of notion of solution for such problems; often we
can obtain a such relaxation by means of Young measures.

The Young measures generalize measurable functions. Thus, a Young mea-
sure is herself a measurable application that, to every point t of �, associates a
probability �t on a topological space X ; for all Borel set A � X , �t .A/ may be
interpreted as the probability that the value in t of the “function” �: belongs to A.
In the particular case, a measurable application u W � ! X is a Young measure,
where, for all t 2 �, �t D ıu.t/ (ıu.t/ indicates the mass of Dirac in u.t/).

Young measures’ theory has a long history; it begins with the work of L. C.
Young which, in 1937, introduces the so-called “generalized curves” in order to
provide extended solutions for some non-convex problems in variational calculus.
A milestone in this history is the appearance of the monograph of J. Warga, “Op-
timal Control of Differential and Functional Equations” (Academic Press, 1972);
here is systematically developed a theory of relaxed control in compact metric
spaces. The extension of theory on locally compact metric spaces was made by
H. Berliocchi and J. M. Lasry in 1973.

The study of Young measures was extended to Polish and Suslin spaces by the
works of E. J. Balder (since 1984) and M. Valadier (1990).

Lately, Young measures were the object of an intense research due to their ap-
plications in obtaining relaxed solutions; here are some of the areas in which these
relaxed solutions find applications: non-convex variational problems and dif-
ferential inclusions, non-linear homogenization problems, micro-magnetic phe-
nomena in ferro-magnetic materials, Nash equilibrium in games theory, Gamma-
convergence, different phenomena in continuum mechanics (as elasticity, micro-
structures’ theory), optimal design and shape optimization problems.
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On this subject, recent monographs appeared:

.i/ Roubic̆ek, T.—Relaxation in optimization theory and variational calculus,
Walter de Gruyter, Berlin. New York, 1997.

.ii/ Pedregal, P.—Parametrized Measures and Variational Principles, Birk-
häuser Verlag, Basel. Boston. Berlin, 1997.

.iii/ Castaing, Ch., Raynaud de Fitte, P. and Valadier, M.—Young measures on
topological spaces. With applications in control theory and probability the-
ory, Kluwer Academic Publ. Dordrecht. Boston. London, 2004.

The focus of the first two books is mainly on the applications; therefore, Young
measures are used as generalized solutions to non-convex problems of variational
calculus, optimization theory, or game theory.

The last monograph considers theoretical aspects of the theory of Young mea-
sures as well as the applications in control theory and probability theory. Many of
the results presented here make reference to a wide bibliography; thus, the work
is difficult to use for beginners.

The literature on the applications of Young measures in various areas (lower
semicontinuity, optimal relaxed control, Gamma-convergence and homogeniza-
tion, differential games, elasticity, hysteresis, etc.) is extremely rich and the exist-
ing monographs main focus on applications rather than on theoretical aspects. We
found difficult for a young researcher who wants to clarify the theoretical aspects,
to go through the extensive bibliography which is usually referred. Thus, our
goal was to write a book where to be gathered all the theoretical aspects related
to defining of Young measures (measurability, disintegration, stable convergence,
compactness), book which to be a useful tool for those interested in theoretical
foundations of the theory: the postgraduate students, the students in the doctoral
study, but also to all those interested in measure theory and relaxed control.

The developing of Young measures’ theory involves some compactness results
for measures on abstract spaces and topological spaces. Hence, to achieve our
goal, we considered useful to provide a complete set of classical and recent com-
pactness results in measure and function spaces.

The book is organized in three chapters (Weak compactness in measure spaces,
Bounded measures on topological spaces, Young measures). For a good compre-
hension of the subject, we developed in the first two chapters the results used in
the third (biting lemma in the abstract measure theory and Prohorov’s theorem in
the measure theory on topological spaces).

The first chapter covers background material on measure theory in abstract
frame. Therefore, we present some results of duality and weakly compactness
in ca.A/ and L1.�/. However, here we prove some extensions of Dunford–Pettis
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theorem like biting lemma of Brooks–Chacon or subsequence splitting lemma of
H. P. Rosenthal.

In Chapter two, we treat the measure theory on topological spaces. The frame-
work is offered by Suslin spaces; on the one hand, these spaces are Radon and on
the other hand, they cover the particular case of a separable Banach space provided
with his weak topology. We introduce the narrow topology and then we prove the
Prohorov’s compactness theorem. In the particular case of Polish spaces, the nar-
row topology is metrizable; we present the compatible metrics of Dudley and of
Lévy–Prohorov. As an application of Prohorov’s theorem, we prove in the last
paragraph the existence of Wiener’s measure on C Œ0; 1�.

With some exceptions, in Chapters 1 and 2 are presented classical compactness
results for measures on abstract spaces, or on topological spaces. The originality
consists in the selection and ordering of these results and the accompanying re-
marks and examples. However, we note some approaches and new results, such
as: the modulus of �-continuity (1.79) and theorems 1.80 and 1.81, a-convergence
of nets in L1 and the extension of Dunford–Pettis theorem (1.93), a new proof for
Rosenthal’s Subsequence Splitting Lemma using Biting Lemma, the modulus of
narrow compactness (2.65), a-convergence of nets in ca.B.T //, theorem 2.69
and obtaining, as corollary of this theorem, a new proof of Prohorov’s compact-
ness theorem. Finally, in the last section of 2 we give a simple and self-contained
presentation of Wiener measure (2.6).

Compactness results from the first two chapters are used to study Young mea-
sures in Chapter three. We prove the disintegration theorem for product measures
and we use it to present Young measures as parametrized measures; the frame
is that of a regular Suslin space. We remark that the space of Young measures
contains the space of measurable mappings as dense subspace and that the narrow
topology is an extension of the topology of convergence in measure. Prohorov’s
theorem in the case of Young measures highlights the role played by tightness in
compactness results. We present a vector version for biting lemma and an ex-
tension of this result to some special non-bounded sets of measurable mappings:
finite-tight sets. In the seventh paragraph, we will study the two types of products
for the Young measures and will give the fiber product lemma.

In the last three sections of the book are presented some applications; thus,
Prokhorov’s theorem for Young measures was used in the ninth paragraph in the
study of strong compactness in Lp.�;E/. We obtain, as corollaries, the theorems
of Visintin–Balder, Rossi–Savaré, Lions–Aubin and Gutman; in the scalar case,
the compactness criterion of Riesz–Fréchet–Kolmogorov is obtained.

In the tenth paragraph, we consider some applications of quasiconvexity to the
study of gradient Young measures and to the lower semicontinuity. Are studied
the Young measures generated by sequences and particularly the gradient Young
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measures. We pay special attention to quasiconvexity and its various equivalent
definitions. The quasiconvexity is essentially used in the Kinderlehrer–Pedregal’s
characterization of gradient Young measures, but also in the study of lower semi-
continuity of energy functional that appears in variational calculus. Finally, in
paragraph eleven, we present some results of existence of solutions in relaxed
variational calculus.

There are also, in this chapter, some new concepts and results among which:
new proofs for theorems 3.30, 3.32 and 3.33, the density result 3.49 and the proof
of theorem 3.50, theorems 3.51, 3.66, 3.67 and propositions 3.54 and 3.56, in-
troduction of finite-tight sets (3.75) and use them to obtain extensions of bit-
ing lemma (3.84) and Saadoune–Valadier’s theorem (3.85), Jordan finite-tight
sets (3.91) and their utility in obtain of a compactness result in Sobolev spaces
(3.102) and an alternative to Rellich–Kondrachov theorem (3.105).

All results are accompanied by full demonstrations; for many of these results,
are given different proofs from those referred in the literature.

The bibliography gives the main references relevant to the content of the book;
it is no exhaustive.

Understanding the text requires basic knowledge of general topology, func-
tional analysis and Lebesgue integration that may be found in any textbook on the
subject. In rest, all the statements are fully justified and proved.

To conclude, this text is intended as a postgraduate textbook as well as a refer-
ence for more experienced researchers.

The book was written over several years of collaboration between authors, with
the occasion of stages that the first author has made, as a visiting professor, at the
University of Brest.

An important role in setting the ideas and in the organization of book’s ma-
terial was played by discussions with various mathematicians met under these
occasions.

First, we mention the authors of monograph “Young measures on topological
spaces”, C. Castaing, M. Valadier and P. Raynaud de Fitte, that supported and
inspired us in writing the last chapter. Also, we have had useful discussions with
E. Balder and T. Roubic̆ek at the international conference “Mesures de Young et
Contrôle Stochastique” (Brest, 2002); in this way, we thank them all.

Iaşi/Brest, Liviu C. Florescu,
December 2011 Christiane Godet-Thobie
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Chapter 1

Weak Compactness in Measure Spaces

We will present in this first chapter the main properties of the measure spaces and
of the space of integrable functions. We recall the classic results of weak compact-
ness (like Vitali–Hahn–Saks, Radon–Nikodym and Dunford–Pettis theorems) but
we will also mention more recent results such as Brooks–Chacon biting lemma or
Rosenthal’s lemma.

1.1 Measure Spaces

In this introductory section, we recall the definitions and classic properties of the
additive and �-additive measures. We finish this section by the Saks’ theorem,
the Vitali–Hahn–Saks and Nikodym theorems that we will use in the following
sections for a study of weak compactness on ca.A/.

For beginning, we will specify the definitions and the notations to be employed
henceforward. We consider as known the theory of integration relating to a posi-
tive, �-additive and �-finite measure.

We designate by X an arbitrary set and by A a �–algebra of subsets of X ; an
A-partition of A 2 A is a partition of A with the elements in A.

According to the usual notations, if � is a positive, �-additive and �-finite
measure, we shall denote by L1.�/ D L1.X;A; �/ the set of all real mappings f
defined on X with the property that f is A-measurable and �-integrable and by
L1.�/ D L1.X;A; �/ the quotient space L1.�/= PD, where PD is equality � –
almost everywhere.

In the following, we recall the definition of the signed measures.

Definition 1.1. A set function � W A ! NR D Œ�1;C1� is a finitely additive
measure, or shortly an additive measure, if

.i/ �.;/ D 0;

.ii/ �.A [ B/ D �.A/C �.B/; for every A;B 2 A with A \ B D ;;
.iii/ � assumes at most one of the values C 1 and � 1:

An additive measure � on A is a �-additive measure or a countably additive
measure if, for every sequence of pairwise disjoint sets .An/n2N � A (i.e.
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An \ Am D ;, for every n ¤ m),

�

 1
[

nD0

An

!

D
C1
X

nD0

�.An/:

A �-additive measure � is finite or real valued if its range is contained in R.
� is �-finite if, for every A 2 A, there exists a sequence .An/n2N such that
A D S

n2N An and �.An/ 2 R, for every n 2 N.
We will designate by

ba.A/—the set of all real valued bounded additive measures on A,
ca.A/—the set of all real valued �-additive measures on A.
ba.A/ and ca.A/ are vector spaces under the usual addition and scalar multipli-
cation operations.
caC.A/ (baC.A/)—the subsets of all positive measures of ca.A/ (ba.A/).

The following properties are easy to demonstrate.

Proposition 1.2. Let � W A ! NR be an additive measure and let A;B 2 A with
B � A.

.i/ If j�.A/j < C1, then j�.B/j < C1.

.ii/ If j�.B/j < C1, then �.A n B/ D �.A/ � �.B/.
Proof. A D B [ .A n B/ and so �.A/ D �.B/C �.A n B/.

(i) If �.B/ D C1.�1/, then �.A/ D C1.�1/, what contradicts hypothe-
sis. Therefore, �.B/ is finite.

(ii) If j�.B/j < C1, then �.A/ � �.B/ D �.A n B/.

Proposition 1.3. Let � be a �-additive measure and let .An/n2N � A.

.i/ If .An/n is an increasing sequence, then �.[1
nD0An/ D limn!1 �.An/.

.ii/ If .An/n is a decreasing sequence and j�.A0/j < C1, then �.\1
nD0An/ D

limn!1 �.An/.

Proof. (i) Let A D S

n2N An 2 A. Firstly, we suppose that there is n0 2 N
such that j�.An0

/j D C1. According to (i) of Proposition 1.2, j�.A/j D C1 D
j�.An/j, for every n � n0; since � assumes at most one of the values C1 and
�1, �.A/ D limn �.An/.

If, for every n 2 N; j�.An/j < C1, then we define the pairwise disjoint
sequence .Bn/n � A letting: B0 D A0; Bn D An n An�1; 8n � 1; then A D
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[1
nD0Bn and, using (ii) of Proposition 1.2, we obtain �.A/ D P1

nD0 �.Bn/ D
limn

Pn
kD0 �.Bk/ D limn �.An/.

(ii) If .An/n2N is decreasing and j�.A0/j < C1, then the sequence .Bn/n,
where Bn D A0 nAn, is increasing and the result follows from the first part of the
proof.

Definition 1.4. Let � W A ! NR be a �-additive measure and let A 2 A;
A is called �-positive if, for every B 2 A; �.A \ B/ � 0.
A is called �-negative if, for every B 2 A; �.A \ B/ � 0.
A is called �-null if it is �-positive and �-negative. A is �-null set if and only

if, for every measurable set B � A, �.B/ D 0.

For the following two results, see Theorem A, p. 121 in [93].

Proposition 1.5. Let � W A ! .�1;C1� be a �-additive measure and let
A 2 A with �.A/ < 0. There exists a �-negative set B � A such that �.B/ < 0.

Proof. If A is �-negative, then B D A.
Otherwise, there exists C 2 A such that �.C \A/ > 0. Let n1 be the smallest

positive integer for which there exists A1 2 A; A1 � A with �.A1/ >
1

n1
.

If A n A1 is �-negative, then B D A n A1; since �.A/ < 0; �.A/ 2 R and
then, by Theorem 1.2, �.A1/ 2 R and �.B/ D �.A/ � �.A1/ < �.A/ < 0.

If A n A1 is not �-negative, let n2 be the smallest positive integer for which
there exists A2 2 A; A2 � A n A1 with �.A2/ >

1
n2

; obviously, n2 > n1.
If the above construct does not produce a solution of problem after a finite

number of steps, then we obtain a sequence of pairwise disjoint sets .Ak/k�1 �
A; Ak � A n [k�1

iD1Ai , with �.Ak/ >
1

nk
, for every k � 1 and nk " C1.

Let B D A nS1
kD1Ak; then �.B/ D �.A/ �P1

kD1 �.Ak/ < 0.
For every C 2 A; C � B and for every k 2 N�, C � A n [k�1

iD1Ai so
that �.C / � 1

nk�1
(nk is the smallest positive integer for which there is Ak �

An[k�1
iD1Ai with �.Ak/ >

1
nk

). Then �.C / � 0 and thereforeB is �-negative.

Theorem 1.6 (Hahn decomposition theorem). Let � W A ! NR be a �-additive
measure; there exists a �-positive setH 2 A such thatH c D XnH is �-negative.

For any other pair ¹H1;H
c
1 º � A with H1 �-positive and H c

1 �-negative,
H�H1 is a �-null set.

Proof. First, let us suppose that �.A/ � .�1;C1�.
Let a D inf¹�.A/ W A 2 A; A D �-negative º, let .An/n be a sequence of

�-negative sets such that �.An/ ! a and let H D X n S1
nD1An; then H c D

S1
nD1An.
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If we define .Bn/n2N� letting B1 D A1 and, for every n � 2, Bn D An n
[n�1

iD1Ai , then, for every C 2 A, �.C \H c/ D �.C \S1
nD1Bn/DP1

nD1 �.C \
Bn/ � 0. Therefore H c is �-negative.

Moreover, for every n 2 N�,

�.H c/ D �.An/C �.H c n An/ � �.An/

so that �.H c/ D a.
If we suppose that H is not �-positive, then there exists C 2 A; C � H

such that �.C / < 0. The previous proposition assures us on the existence of a
�-negative set B � C with �.B/ < 0. Then H c [ B is �-negative and

�.H c [ B/ D �.H c/C �.B/ D aC �.B/ < a

and this contradicts the definition of a.
In the case where �.A/ � Œ�1;C1/;�� W A ! .�1;C1� is a �-additive

measure. Let H be a .��/-positive set and H c be a .��/-negative set; then H c

is �-positive set and H is �-negative set.
Let nowH1 �-positive andH c

1 �-negative an other pair. For every B 2 A with
B � H nH1 D H\H c

1 , �.B/ � 0 and �.B/ � 0, hence �.B/ D 0. ThenH nH1

is a �-null set. Similarly,H1nH is �-null and thenH�H1 D .H nH1/[.H1nH/
is a �-null set.

Definition 1.7. Every pair of sets ¹H;H cº � A, with the property that H is �-
positive and H c is �-negative, is called a Hahn decomposition of X relatively to
the measure �.

Remark 1.8.

.i/ Hahn’s decomposition of X relatively to a measure � is not unique (we can
replace H by H [N where N is a �-null set).

.ii/ The Hahn decomposition theorem says that, for every �-additive measure �,
there exists a Hahn decomposition of X relatively to �.

Proposition 1.9. Let � W A ! NR be a �-additive measure, let ¹H;H cº be a
Hahn decomposition of X relatively to � and let �C, �� W A ! NRC defined by
�C.A/ D �.A \H/, ��.A/ D ��.A nH/, for every A 2 A.

Then �C; �� are two �-additive positive measures (one of them finite), � D
�C � �� and �C.H c/ D ��.H/ D 0.

If �C
1 , ��

1 are two other �-additive positive measures (one of them finite) such
that � D �C

1 � ��
1 and if �C

1 .H
c
1 / D ��

1 .H1/ D 0 for a set H1 2 A, then
�C D �C

1 and �� D ��
1 .
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Proof. The first part of the proposition is obvious. We shall prove only the unique-
ness of decomposition of � as difference of positive measures.

The pair ¹H1;H
c
1 º is again a Hahn decomposition of X relatively to �. Indeed,

for every A 2 A; �.A\H1/ D �C
1 .A\H1/���

1 .A\H1/ D �C
1 .A\H1/ � 0

and �.A nH1/ D �C
1 .A nH1/ � ��

1 .A nH1/ D ���
1 .A nH1/ � 0. According

to Hahn decomposition theorem, H�H1 is a �-null set. Therefore, for every
A 2 A, �C.A/ D �.A \ H/ D �.A \ H1/ D �C

1 .A/ so that �C D �C
1 .

Similarly, �� D ��
1 .

Definition 1.10. We say that the unique pair ¹�C; ��º of �-additive positive mea-
sures (one of them finite) with � D �C � �� and �C.H c/ D ��.H/ D 0 for a
set H 2 A, is the Jordan decomposition of �.

Definition 1.11. A positive measure � on A is concentrated on the set D 2 A if
�.D/ D �.X/.

Remark 1.12. If � is a �-additive measure on A, if ¹H;H cº is a Hahn decompo-
sition of X relatively to � and if ¹�C; ��º is the Jordan decomposition of �, then
�C is concentrated on the set H and �� is concentrated on H c .

Theorem 1.13. Let � be a �-additive measure on A; there exist Am; AM 2 A

such that

�.Am/ D inf ¹�.A/ W A 2 Aº � 0 � sup¹�.A/ W A 2 Aº D �.AM /:

Every �-additive measure is bounded either from below or from above.

Proof. Let ¹H;H cº a Hahn decomposition of X relatively to � and let ¹�C; ��º
the Jordan decomposition of �; for every A 2 A, �C.A/ D �.A \H/ � �.H/

and ��.A/ D ��.A nH/ � ��.H c/ D �.H c/. Then

��.H c/ � ���.A/ � �C.A/ � ��.A/ D �.A/ � �C.A/ � �.H/:

Therefore we can take Am D H c and AM D H .

The following result is a corollary of Theorem 1.13.

Corollary 1.14. Every measure � 2 ca.A/ is bounded; therefore

ca.A/ � ba.A/:



6 Chapter 1 Weak Compactness in Measure Spaces

Remark 1.15. If � W A ! R is only an additive measure, it is not compulsory
that � should be bounded, as it is shown in the following example.

Example 1.16. Let
P1

nD0 an be a conditionally convergent series (a convergent
series for which

P1
nD0 janj D C1), let A be the algebra of all sets A � N such

that A or N n A is a finite and let � W A ! R defined by

�.A/ D
8

<

:

X

n2A

an; A ¤ ;;
0; A D ;:

Then � is an additive measure, but it is not bounded on the algebra A. We
notice that A is not a �-algebra, but, since all additive function on an algebra
can be extended to an additive function on the generated �-algebra – in our case
P .N/ – (see [29], p.185 and [175],1.8.), it is evident that the extension itself is
not bounded.

The total variation defined below is introduced in order to define a complete
norm on ba.A/ or on its subspace ca.A/ of �-additive measures (see Defini-
tion III.1.4 and Lemma III.1.6 of [62]).

Theorem 1.17. For every additive measure �, let j�j W A ! RC
defined by

j�j.A/ D sup

´

n
X

iD1

j�.Ai /j W n 2 N�; ¹A1; : : : ; Anº D A � partition of A

μ

:

Then:

.i/ supB2A;B�A j�.B/j � j�j.A/ � 2 supB2A;B�A j�.B/j.
.ii/ j�j is additive.

.iii/ If � 2 ba.A/, then j�j 2 baC.A/; moreover j�j is the smallest element of
the set M D ¹	 2 baC.A/ W j�.A/j � 	.A/; 8A 2 Aº.

.iv/ If � is �-additive, then j�j is �-additive and j�j.H/ D �.H/ and j�j.H c/ D
��.H c/, where ¹H;H cº is a Hahn decomposition of X .

If � 2 ca.A/, then j�j 2 caC.A/.

Proof. (i) For every B 2 A with B � A; ¹B; A n Bº is an A-partition of A and
so j�j.A/ � j�.B/j C j�.A n B/j � j�.B/j, from where

sup¹j�.B/j W B 2 A; B � Aº � j�j.A/:
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Now, let n 2 N� and let ¹A1; : : : ; Anº be an A-partition of the set A. We can
suppose that �.A1/; : : : ; �.Ap/ � 0 and �.ApC1/; : : : ; �.An/ < 0: Then

n
X

iD1

j�.Ai /j D
p
X

iD1

�.Ai / �
n
X

j DpC1

�.Aj / D �

 

p
[

iD1

Ai

!

� �
0

@

n
[

j DpC1

Aj

1

A

D
ˇ

ˇ

ˇ

ˇ

ˇ

�

 

p
[

iD1

Ai

!

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

0

@

n
[

j DpC1

Aj

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� 2 sup¹j�.B/j W B 2 A; B � Aº:
(ii) Let A;B 2 A with A \ B D ; and let C D A [ B . If j�j.A/ D C1,

then C1 D sup¹j�.D/j W D 2 A;D � Aº � sup¹j�.D/j W D 2 A;D � C º �
j�j.C / and so j�j.C / D C1 D j�j.A/C j�j.B/:

In the same way, if j�j.B/ D C1, we have j�j.C / D C1 D j�j.A/Cj�j.B/:
Now suppose that j�j.A/ < C1 and j�j.B/ < C1. Then, for every " > 0,

there exists an A-partition ¹A1; : : : ; Anº of A and an A-partition of B , ¹B1; : : : ;

Bmº, such that

j�j.A/ � "

2
<

n
X

iD1

j�.Ai /j and j�j.B/ � "

2
<

m
X

j D1

j�.Bj /j:

Then ¹A1; : : : ; An; B1; : : : ; Bmº is an A-partition of C and therefore

j�j.A/C j�j.B/ � " <
n
X

iD1

j�.Ai /j C
m
X

j D1

j�.Bj /j � j�j.C /;

from where, " being arbitrary,

j�j.A/C j�j.B/ � j�j.C /: (1)

For every A-partition ¹C1; : : : ; Cpº of C , let’s note Ai D Ci \ A and Bi D
Ci \ B , for all i D 1; : : : ; p. Then Ai ; Bi 2 A and Ci D Ai [ Bi . Therefore
¹A1; : : : ; Apº is an A-partition of A and ¹B1; : : : ; Bpº is an A-partition of B .

p
X

iD1

j�.Ci /j D
p
X

iD1

j�.Ai /C �.Bi /j

�
p
X

iD1

j�.Ai /j C
p
X

iD1

j�.Bi /j � j�j.A/C j�j.B/:
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As ¹C1; : : : ; Cpº is an arbitrary partition of C , we have:

j�j.C / � j�j.A/C j�j.B/: (2)

From (1) and (2) we have that j�j is additive.
(iii) If � 2 ba.A/, then � is bounded; from (i), we obtain that,

0 � j�j.A/ � 2 sup¹j�.B/j W B 2 Aº D M < C1; for every A 2 A

and so sup¹j�j.A/ W A 2 Aº � M < C1:

Therefore j�j W A ! RC is a positive bounded additive measure on A, which
means that j�j 2 baC.A/.

Since j�.A/j � sup¹j�.B/j W B 2 A; B � Aº � j�j.A/, for all A 2 A, it is
clear that j�j 2 M D ¹	 2 baC.A/ W j�.A/j � 	.A/, for all A 2 Aº.

It remains to show that j�j is the smallest element of M.
Let 	 2 M; A 2 A and let ¹A1; : : : ; Anº be an A-partition of A; we have

n
X

iD1

j�.Ai /j �
n
X

iD1

	.Ai / D 	

 

n
[

iD1

Ai

!

D 	.A/;

from where, j�j.A/ � 	.A/, for every A 2 A and so j�j � 	.
(iv) According to (ii), j�j is finite additive. Let .En/n2N � A be a sequence of

pairwise disjoint sets and let E D S

n2N En. Then, for every m 2 N,

j�j.E/ � j�j.[n�mEn/ D
m
X

nD0

j�j.En/ and so j�j.E/ �
1
X

nD0

j�j.En/:

To demonstrate the inverse inequality, let .Fi /i�k be an A-partition ofE. Then,

k
X

iD1

j�.Fi /j D Pk
iD1 j�.Fi \ .[n2NEn/j D Pk

iD1

ˇ

ˇ

P1
nD0 �.Fi \En/

ˇ

ˇ

� P1
nD0

Pk
iD1 j�.Fi \En/j � P1

nD0 j�j.En/

from where j�j.E/ � P1
nD0 j�j.En/: Therefore j�j is �-additive.

Let now ¹H;H cº be a Hahn decomposition of X relatively to �. Then H is
�-positive and then, for every A - partition ofH , ¹A1; : : : ; Anº;Pn

iD1 j�.Ai /j D
Pn

iD1 �.Ai / D �.H/; so that j�j.H/ D �.H/. Similarly, j�j.H c/ D ��.H c/.
If � 2 ca.A/, then � is �-additive and bounded (see Corollary 1.14). Therefore

j�j is �-additive and by (i), j�j belongs to ca.A/:
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Remark 1.18. Let � be a �-additive measure, let ¹H;H cº be a Hahn decompo-
sition of X relatively to � and let ¹�C; ��º be the Jordan decomposition of �;
then

�C D 1

2
.j�j C �/; �� D 1

2
.j�j � �/ and j�j D �C C ��:

Indeed, if we note �C
1 D 1

2
.j�jC�/ and ��

1 D 1
2
.j�j��/, then �C

1 and ��
1 are �-

additive positive measures, � D �C
1 ���

1 and �C
1 .H

c/ D 1
2
.��.H c/C�.H c// D

0 D ��.H/. Therefore ¹�C
1 ; �

�
1 º is the Jordan decomposition of � and then

�C D �C
1 and �� D ��

1 .

Definition 1.19. Let � W A ! NR be an additive measure; j�j is called the total
variation of �.

Let � 2 ba.A/; according to previous remark, we say that �C.��/ are the
positive variation (negative variation) of �, where �C.��/ W A ! RC is defined
by

�C.A/ D 1

2
. j�j.A/C �.A// for every A 2 A

.��.A/ D 1

2
. j�j.A/ � �.A// for every A 2 A/:

Obviously, �C; �� 2 baC.A/, � D �C � �� and j�j D �C C ��.
If � 2 ca.A/, then �C; �� 2 caC.A/.

Remark 1.20. It results that every bounded additive measure is a difference be-
tween two bounded positive additive measures. This decomposition is not unique.
Indeed, if � 2 ba.A/, for all � 2 baC.A/, � D .�C C�/� .�� C�/ is another
decomposition of �.

In the following results, we will mention some direct consequences of Theo-
rem 1.13.

Corollary 1.21. If � 2 ca.A/, then the sets Am and AM , introduced in Theo-
rem 1.13, have the following properties:

.i/ �.A/ � 0; 8A 2 A; A � AM ,

�.A/ � 0; 8A 2 A; A � Am.

.ii/ �.A/ D 0; 8A 2 A; A � Am \ AM :
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.iii/ �.A n .Am [ AM // D 0; 8A 2 A:

.iv/ �.A/ D �.A \ AM /C �.A \ Am/; 8A 2 A:

Proof. (i) This point is demonstrated in the previous proposition.
(ii) is a consequence of (i).
(iii) Suppose that there exists a set A0 2 A such that �.A0 n .Am [AM // ¤ 0.

Let B0 D A0 n .Am [ AM /.
If �.B0/ > 0, let B1 D B0 [ AM ; then �.B1/ D �.B0/C �.AM / > �.AM /

which contradicts the maximality of AM .
If �.B0/ < 0, let B1 D B0 [ Am; then �.B1/ D �.B0/ C �.Am/ < �.Am/

which contradicts the minimality of Am. Therefore (iii) is satisfied.
(iv) For every A 2 A; �.A/ D �.A \ AM / C �.A n AM / D �.A \ AM / C

�..A nAM /\Am/C�..A nAM / nAm/ D �.A\AM /C�.A\Am/��.Am \
AM /C �ŒA n .Am [ AM /�.

According to (ii) and (iii), the last two terms are null.

Corollary 1.22. Let � 2 ca.A/ and Am; AM the already defined sets. Then, for
every A 2 A,

.i/ �.A \ AM / D sup¹�.E/ W E 2 A; E � Aº,

�.A \ Am/ D inf¹�.E/ W E 2 A; E � Aº.

.ii/ j�j.A/ D �.A \ AM / � �.A \ Am/.

.iii/ �C.A/ D �.A \ AM /; �
�.A/ D ��.A \ Am/.

Proof. (i) Obviously, �.A \ AM / � sup¹�.E/ W E 2 A; E � Aº.
We suppose that �.A\AM / < sup¹�.E/ W E 2 A; E � Aº. Then there exists

E0 2 A; E0 � A such that �.A \ AM / < �.E0/. �.AM / D �.A \ AM / C
�.AM nA/ < �.E0/C �.AM nA/ D �.E0 [ .AM nA//; which contradicts the
maximality of the set AM . The second equality is proved in a similar manner.

(ii) For every A 2 A; ¹A \ AM ; A n AM º is an A-partition of A; therefore
j�j.A/ � j�.A \ AM /j C j�.A n AM /j. According to (iv) of Corollary 1.21
�.A nAM / D �..A nAM /\AM /C�..A nAM /\Am/ D �.A\Am nAM /; by
(ii) of Theorem 1.21, �.A\Am nAM / D �.A\Am \AM /C�.A\Am nAM / D
�.A \ Am/. Finally, using (i) of Theorem 1.21,

j�j.A/ � �.A \ AM / � �.A \ Am/: (1)

If we note �1.A/ D �.A\AM /��.A\Am/, then �1 is a positive measure and,
according to (iv) and (i) of Theorem 1.21, for every A 2 A,

j�.A/j D j�.A \ AM /C �.A \ Am/j � �.A \ AM / � �.A \ Am/ D �1.A/:
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According to (iii) of Theorem 1.17,

j�j.A/ � �1.A/ D �.A \ AM / � �.A \ Am/: (2)

By (1) and (2), j�j.A/ D �.A \ AM / � �.A \ Am/.
(iii) According to (ii) and to (iv) of Corollary 1.21, �C.A/ D 1

2
.j�j.A/ C

�.A// D 1
2
.�.A\AM /��.A\Am/C�.A\AM /C�.A\Am// D �.A\AM /

and ��.A/ D 1
2
.j�j.A/� �.A// D 1

2
.�.A\AM /� �.A\Am/� �.A\AM /�

�.A \ Am// D ��.A \ Am/ .

Theorem 1.17 allows us to introduce a norm on ba.A/ equivalent to the norm
k � k1 of the uniform convergence.

Theorem 1.23. The applications k � k; k � k1 W ba.A/ ! RC defined as k�k D
j�j.X/ D �C.X/ C ��.X/ and k�k1 D supA2A.j�.A/j/ are two equivalent
norms on ba.A/.

The spaces .ba.A/; k � k/ and .ba.A/; k � k1/ are Banach spaces; ca.A/ is a
Banach subspace of ba.A/.

Proof. Firstly, we show that k�k; k�k1 are norms. According to Theorem 1.17(i),
for every � 2 ba.A/

k�k1 � k�k � 2k�k1:

Therefore we have k�k D 0 , k�k1 D 0 , supA2A j�.A/j D 0 what comes
back to � D 0. For every a 2 R; ka�k D ja�j.X/ D sup¹Pn

iD1 ja�.Ai /j W
¹A1; : : : ; AnºDA-partition of XºDjaj � k�k and ka�k1 D supA2A ja�.A/jD
jaj � k�k1.

Now we prove the triangular inequality; according to Theorem 1.17, for every
" > 0, there exists an A-partition of X , ¹A1; : : : ; Anº, such that

k�C �k � " D j�C �j.X/ � " <
n
X

iD1

j�.Ai /C �.Ai /j

�
n
X

iD1

j�.Ai /j C
n
X

iD1

j�.Ai /j � k�k C k�k;

from where k�C �k � k�k C k�k:
In the same way for k � k1, for every " > 0, there exists A" 2 A such that

k�C �k1 � " < j.�C �/.A"/j � j�.A"/j C j�.A"/j � k�k1 C k�k1

from where k�C �k1 � k�k1 C k�k1.
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Therefore, in the light of the inequalities mentioned at the beginning of the
demonstration, k � k and k � k1 are equivalent norms on ba.A/.

It is evident that

�n

k�k��! � , �n

k�k1���! � , �n
u�!
A
�:

Similarly, if .�n/ is a sequence k � k-Cauchy (and so k � k1-Cauchy), then
.�n.A//n2N is a Cauchy sequence, uniformly in A 2 A; then there exists � W
A ! R such that �n

u�!
A
�. Therefore � is additive and bounded on A; that is to

say � 2 ba.A/. .�n/ converges to � in .ba.A/; k � k/ and also in .ba.A/; k � k1/
so that .ba.A/; k � k/ and .ba.A/; k � k1/ are Banach spaces.

Finally, in order to establish that ca.A/ is a closed subspace of .ba.A/; k � k/,
let � 2 ba.A/ and .�n/ � ca.A/ such that �n

k�k��! �; we show that � 2 ca.A/.
Let ¹Ap W p 2 N�º � A be a pairwise disjoint family of sets and let A D

[1
pD1Ap 2 A. Since �n

u�!
A
�, for every " > 0, there exists n0 2 N such that

j�n.B/ � �.B/j < "; 8n � n0; 8B 2 A: (1)

Because �n0
2 ca.A/, there exists n1 > n0 such that, for every n � n1

ˇ

ˇ

ˇ

ˇ

ˇ

�n0
.A/ �

n
X

kD1

�n0
.Ak/

ˇ

ˇ

ˇ

ˇ

ˇ

< ": (2)

Then, for all n � n1;
ˇ

ˇ

ˇ

ˇ

ˇ

�.A/ �
n
X

kD1

�.Ak/

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

�

 

An
n
[

kD1

Ak

!

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

ˇ

�

 

An
n
[

kD1

Ak

!

��n0

 

An
n
[

kD1

Ak

!

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

�n0

 

An
n
[

kD1

Ak

!

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

�

 

An
n
[

kD1

Ak

!

�

�n0

 

An
n
[

kD1

Ak

!

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

�n0
.A/ �

n
X

kD1

�n0
.Ak/

ˇ

ˇ

ˇ

ˇ

ˇ

:

From (1) and (2), we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

�.A/ �
n
X

kD1

�.Ak/

ˇ

ˇ

ˇ

ˇ

ˇ

< 2"; 8n � n1; (3)

so that � 2 ca.A/.
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Before mentioning the definition of the integral in relation to a signed measure,
we need to clarify a number of notations and properties of the integral relatively
to a positive measure.

Let � be a positive �-additive measure on A and let f W X ! R be an A-
measurable mapping. We recall that f is �-integrable if f C D sup¹f; 0º and
f � D sup¹�f; 0º are �-integrable. Then,

R

X fd� D R

X f
Cd� � R

X f
�d�; let

L1.�/ be the set of all �-integrable mappings and let L1.�/ D L1.X;A; �/ be
the quotient space L1.�/= PD, where PD is equality �-almost everywhere.

If at least one of the two functions f C and f � is �-integrable, the difference
of the integrals is always defined and will be marked by

R

X fd�.

Definition 1.24. Let � 2 ca.A/ and let f W X ! R be an A-measurable map-
ping; we say that f is �-integrable if f 2 L1.�C/ \ L1.��/. Let us denote

L1.�/ D L1.�C/ \ L1.��/; L1.�/ D L1.�C/ \ L1.��/ and
Z

A

fd� D
Z

A

fd�C �
Z

A

fd��; for every A 2 A;

where f marks, according to the context, the function f or the equivalence class
of a function f . It is clear that L1.�/ is a vector space and that

R

A is a linear
operator on L1.�/.

Proposition 1.25. Let � 2 caC.A/ and f W X ! R be an A-measurable
mapping such that at least one of mappings f C and f � is �-integrable. Let
�.A/ D R

A f
Cd� � R

A f
�d�. Then, � is a �-additive measure on A and

�C.A/DR

A f
Cd�, ��.A/ D R

A f
�d�.

If f 2 L1.�/, then � 2 ca.A/ and k�k D j�j.X/ D R

X jf jd�.

Proof. Let H D ¹x 2 X W f .x/ � 0º; H 2 A, f C

H

D f C and f �

H

D 0.
R

A f
Cd� D R

A f
C


H
d� D R

A\H f Cd� and
R

A\H f �d� D R

A f
�


H
d� D

0.
Therefore �.A \ H/ D R

A f
Cd�. If B � A, then �.B/ � R

B f
Cd� �

R

A f
Cd�. Then, according to Corollary 1.22,

R

A f
Cd� D sup¹�.B/ W B 2

A; B � Aº D �C.A/ D �.A \ H/, which leads to
R

A f
�d� D ��.A/ D

��.A \H c/.
If f 2 L1.�/, then �.A/ D R

A fd�, for every A 2 A, hence � 2 ca.A/.
According to Definition 1.19, k�k D j�j.X/ D �C.X/C��.X/ D R

X f
Cd�C

R

X f
�d� D R

X jf jd�:
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Proposition 1.26.

.i/ L1.�/ D L1.j�j/ and j RA fd�j � R

A jf jd j�j; 8A 2 A; 8f 2 L1.�/.

.ii/ j�j.A/ D sup¹j RA fd�j W f 2 L1.�/; jf j � 1º.

.iii/ The mapping k � k1 W L1.�/ ! RC; kf k1 D R

X jf jd j�j is a norm on L1.�/

and .L1.�/; k � k1/ is a Banach space.

Proof. (i) Let f 2 L1.�/; then f is A-measurable and f 2 L1.�C/ \ L1.��/.
R

X jf jd j�j D R

X jf jd�C C R

X jf jd�� < C1 and then f 2 L1.j�j/.
Reciprocally, if f 2 L1.j�j/; RX jf jd�C � R

X jf jd j�j < C1 and so f 2
L1.�C/; similarly, f 2 L1.��/ and, therefore, f 2 L1.�/.

The inequality follows immediately:
ˇ

ˇ

ˇ

ˇ

Z

A

fd�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

A

fd�C �
Z

A

fd��
ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

Z

A

fd�C
ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

Z

A

fd��
ˇ

ˇ

ˇ

ˇ

�
Z

A

jf jd�C C
Z

A

jf jd��

D
Z

A

jf jd j�j:

(ii)

j�j.A/ D sup

´

n
X

iD1

j�.Ai /j W n 2 N� W ¹A1; : : : ; Anº D A � partition of A

μ

:

Let ¹A1; : : : ; Anº be an arbitrary partition of A. We can assume that �.Ai / � 0,
for every i D 1; : : : ; p and �.Aj / < 0, for every j D p C 1; : : : ; n. Let f D

[p

1 Ai

� 
[n
pC1

Aj
; then jf j D 1; f is A-measurable and

n
X

1

j�.Ai /j D �.[p
1Ai / � �.[n

pC1Aj / D
Z

A

fd�

� sup
²

ˇ

ˇ

ˇ

ˇ

Z

A

fd�

ˇ

ˇ

ˇ

ˇ

W f 2 L1.�/; jf j � 1

³

:

We have therefore j�j.A/ � sup
®j RA fd�j W f 2 L1.�/; jf j � 1

¯

:

On the other hand, for every f 2 L1.�/ with jf j � 1, by (i), we have
ˇ

ˇ

ˇ

ˇ

Z

A

fd�

ˇ

ˇ

ˇ

ˇ

�
Z

A

jf jd j�j �
Z

A

1d j�j D j�j.A/;

from where sup¹j RA fd�j W f 2 L1.�/; jf j � 1º � j�j.A/:
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(iii) Obviously, k � k1 is a norm on L1.�/ D L1.j�j/. It is easy to see that
.L1.j�j/; k � k1/ is a Banach space.

In the following, we will present Saks’ theorem which will be useful in the
study of the weak compactness on .ca.A/; k � k/ (see [62], Lemma III.7.1 and
[57], Theorem 8, p. 86).

Theorem 1.27 (Saks). Let � W A ! RC be a positive and �-additive measure.
The mapping d� W A � A ! RC, defined by d�.A;B/ D arctan.�.A 4 B//,
for every .A;B/ 2 A � A, is a pseudo-metric on A. The pseudo-metric space
.A; d�/ is complete and the binary operations .A;B/ 7! A[B; .A;B/ 7! A\B
and .A;B/ 7! A n B are continuous maps on .A � A; d� � d�/.

Proof. Let’s recall that if �.A 4 B/ is finite, d�.A;B/ D arctan.�.A4 B// 2
Œ0; �

2
Œ and if �.A4 B/ D C1, then d�.A;B/ D �

2
.

We can put D�.A;B/ D �.A 4 B/; obviously d� D arctanD� is a pseudo-
metric on A. In the following we say that d� is the pseudo-metric associated
to �.

It remains to demonstrate that .A; d�/ is complete. Let .An/n2N be a Cauchy
sequence in .A; d�/; for every " > 0, there exists n0 2 N such that, for all
m; n � n0;D�.Am; An/ D �.Am 4 An/ < ".

Step by step, we define a strictly increasing sequence of integers .kn/n2N such
that, for every n 2 N; �.Akn

4 AknC1
/ < 1

2n .
Let N D lim supn.Akn

4 AknC1
/ D T1

nD0

S1
iDn.Aki

4 AkiC1
/ 2 A; for

every n 2 N, N � S1
iDn.Aki

4 AkiC1
/ and then �.N / � P1

iDn
1
2i D 1

2n�1 .
Therefore �.N / D 0.

Let A D lim infnAkn
D S1

nD0

T1
iDnAki

2 A; then

X nN � A [
h

lim inf
n

.X n Akn
/
i

: (1)

Indeed, for every x 2 X n N D S1
nD0

T1
iDnŒX n .Aki

4 AkiC1
/�, there exists

n0 2 N such that, for all i � n0, x … Aki
4 AkiC1

, or 

Aki

.x/ D 

AkiC1

.x/;

therefore 

Aki

.x/ D 1, for every i � n0, or 

Aki

.x/ D 0, for every i � n0, from

where x 2 .lim infnAkn
/ [ Œlim infn.X n Akn

/�.
From (1), we have

Akp
4 A � N [

h

lim inf
n

.Akp
4 Akn

/
i

; for every p 2 N: (2)

Indeed, from (1), one gets that, for every p 2 N,

.Akp
n A/ nN � Akp

\ �

lim infn.X n Akn
/
� D lim infn.Akp

n Akn
/ and

.A n Akp
/ nN �

�

lim inf
n

Akn

�

n Akp
D lim inf

n
.Akn

n Akp
/:
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From (2), we have,

�.Akp
4 A/ � �.lim inf

n
.Akp

4 Akn
// � lim inf

n
�.Akp

4 Akn
/

� lim inf
n

�

�.Akp
4 AkpC1

/C � � � C �.Akn�1
4 Akn

/
�

� lim inf
n

�

1

2p
C � � � C 1

2n�1

�

D 1

2p�1
; for every p 2 N

hence we obtain

d�.Akp
; A/ � arctan

�

1

2p�1

�

; for every p 2 N: (3)

From (3), it results that Akp

d���! A and consequently An
d���! A.

Therefore .A; d�/ is complete.

Suppose now that An
d���! A and Bn

d���! B .

From the following inclusions:

.An [ Bn/4 .A [ B/ � .An 4 A/ [ .Bn 4 B/;

.An \ Bn/4 .A \ B/ � .An 4 A/ [ .Bn 4 B/;

.An n Bn/4 .A n B/ � .An 4 A/ [ .Bn 4 B/;

we obtain

D�.An [ Bn; A [ B/ � D�.An; A/CD�.Bn; B/;

D�.An \ Bn; A \ B/ � D�.An; A/CD�.Bn; B/;

D�.An n Bn; A n B/ � D�.An; A/CD�.Bn; B/:

The inequality arctan.x C y/ � arctan x C arctany implies that

d�.An [ Bn; A [ B/ � d�.An; A/C d�.Bn; B/;

d�.An \ Bn; A \ B/ � d�.An; A/C d�.Bn; B/;

d�.An n Bn; A n B/ � d�.An; A/C d�.Bn; B/;

from where it results that

.An [ Bn/
d���! .A [ B/;

.An \ Bn/
d���! .A \ B/;

.An n Bn/
d���! .A n B/:

which demonstrates the continuity of the applications [, \ and n.
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Definition 1.28. Let � W A ! RC be an additive measure and let � 2 ba.A/;
we say that � est absolutely continuous with respect to � if, for every A 2 A,

�.A/ D 0 H) �.A/ D 0:

We note this by � 	 �.

Remark 1.29. Let � 2 baC.A/ and � 2 ba.A/; then

� 	 � , j�j 	 � , �C 	 � and �� 	 �:

Indeed, if � 	 �, then, for every A 2 A with �.A/ D 0 and for every
B 2 A, B � A, we have �.B/ D 0 and so �.B/ D 0. Then, by (i) of Theo-
rem 1.17, j�j.A/ D 0, from where j�j 	 �. The implication j�j 	 � ) �C 	
� and �� 	 � is obvious and, from �C 	 �;�� 	 � and � D �C � ��,
it results immediately that � 	 �.

The following proposition shows that, for the real �-additive measures, the
property of a measure to be absolutely continuous with respect to another one is a
property of continuity (see Definition III.4.12 and Lemma III.4.13 of [62]).

Proposition 1.30. Let � W A ! RC be a �-additive measure and let � 2 ca.A/;
then the following properties are equivalent:

.i/ � is absolutely continuous with respect to � .� 	 �/,

.ii/ for every " > 0, there exists ı > 0 such that, for every A 2 A satisfying
�.A/ < ı, we have j�j.A/ < ",

.iii/ � W .A; d�/ ! R is a d�-continuous function.

Proof. (i) H) (ii). Let us suppose that (ii) is not satisfied. There exist " > 0 and
.An/n � A such that �.An/ <

1
2n and j�j.An/ � ", for every n 2 N. Let A D

lim supnAn D T1
nD1

S1
kDnAk 2 A. Then, for every n 2 N, j�j.S1

kDnAk/ �
" and �.

S1
kDnAk/ � P1

kDn �.Ak/ � P1
kDn

1
2n D 1

2n�1 . We have then �.A/ D
limn �.

S1
kDnAk/ D 0 and j�j.A/ D limn!1 j�j.S1

kDnAk/ � ". Therefore,
(i) is not satisfied.

(ii) H) (iii). According to (ii), for every " > 0, there exists ı > 0 such that, for
every B 2 A such that �.B/ < ı; j�j.B/ < " and, by continuity of the mapping
tan in 0, there exists � > 0 such that arctan�.B/ < � implies �.B/ < ı and so
j�j.B/ < ".
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Let now A 2 A and let B 2 A with d�.A;B/ < �; then �.A4 B/ < ı and so
j�j.A4 B/ < ". Therefore

j�.A/ � �.B/j D j�.A/ � �.A \ B/C �.A \ B/ � �.B/j
D j�.A n B/ � �.B n A/j � j�.A n B/j C j�.B n A/j
� j�j.A4 B/ < "

and so � is d�-continuous in A.
(iii) H) (i). Since � is continuous on A, it is continuous at ; 2 A. Then,

for every " > 0, there exists ı 2�0; 1Œ such that, for every A 2 A satisfying
d�.A;;/ D �.A/ < ı; j�.A/j < ". LetA 2 A with �.A/ D 0; then d�.A;;/ < ı
and hence j�.A/j < " and, as " is arbitrary, �.A/ D 0. Therefore � 	 �.

Proposition 1.31. Let � W A ! RC be a �-additive measure and let � W A ! R
be an additive measure. If � is d�-continuous, then � 2 ca.A/.
Proof. Let .An/n2N � A be a sequence of pairwise disjoint sets and let A D
S1

nD1An 2 A.
Since � is d�-continuous, for every " > 0, there exists ı > 0 such that, for

every B and C of A satisfying �.B 4 C/ < ı; j�.B/ � �.C/j < ". Since � is
�-additive, there exists n0 2 N such that, for every n � n0;

ˇ

ˇ

ˇ

ˇ

ˇ

�.A/ �
n
X

kD1

�.Ak/

ˇ

ˇ

ˇ

ˇ

ˇ

D �

 

A n
n
[

kD1

Ak

!

D �

 

A4
n
[

kD1

Ak

!

< ı:

Then j�.A/ �Pn
1 �.Ak/j D j�.A/ � �.[n

1Ak/j < " and so � 2 ca.A/.

Remark 1.32. The result of Proposition 1.30 asserts that, if � is �- additive, then
the absolute continuity of � with respect to � is equivalent to the d�-continuity of
�; this result is no longer valid if � is only additive.

In fact, let � be as in the example of Remark 1.16; � is additive, it is not
bounded and, according to Corollary 1.14, its extension to P .N/, still noted �, is
not � - additive.

Let � W P .N/ ! RC; �.A/ D P

n2A ın.A/, where ın is the Dirac measure
that gives to singleton set ¹nº the measure 1. Then � is a �-additive measure and,
as � is not �-additive, according to Proposition 1.31, � is not d�- continuous.
However � is absolutely continuous with respect to �. Indeed, let A 2 P .N/
with �.A/ D 0; then A D ; and therefore �.A/ D 0.

In the case where � 2 ba.A/ n ca.A/, we have the following implications
among the conditions of Proposition 1.30: (ii)”(iii) H)(i).
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In relation to Proposition 1.30, if � is �-additive, then in order to avoid the
use of the difficult formulation of “d�-continuity” or the longer one “absolutely
continuous with respect to �”, we will give the following definition:

Definition 1.33. A measure � 2 ca.A/, continuous on the space .A; d�/, is
called �-continuous.

We will note by ca�.A/ the subset of all �-continuous measure of ca.A/.

We can find the following theorem in [57] (see Theorem 9, p. 87).

Theorem 1.34. Let � W A ! RC be a �-additive measure, let d� be the pseudo-
metric associated and let K be a family of measures of ca.A/; then the following
properties are equivalent:

.i/ the family K is d�-equicontinuous at some E 2 A.

.ii/ the family K is d�-equicontinuous at the point ; 2 A.

.iii/ the family K is uniformly d�-equicontinuous on A.

Each of these conditions entails the following:

.iv/ the family K is uniformly �-additive.

Proof. (i)H)(ii). Let K be d�-equicontinuous at E 2 A; then, for every " > 0,
there exists ı > 0 such that, for every A 2 A with d�.A;E/ < ı and for every
� 2 K; j�.A/ � �.E/j < ". Let A 2 A such that d�.A;;/ < ı, that is �.A/ <
� D tan.ı/; then

D�.A [E;E/ D � Œ.A [E/4E� D �.A nE/ � �.A/ < � and

D�.E n A;E/ D � Œ.E n A/4E� D �.A \E/ � �.A/ < �:

Therefore, for every � 2 K , j�.A[E/��.E/j < " and j�.E/��.E nA/j < ".
We have then:

j�.A/j D j�.A [E/ � �.E n A/j
� j�.A [E/ � �.E/j C j�.E/ � �.E n A/j < 2":

K is therefore d�-equicontinuous at ;.
(ii) H)(iii). K being d�-equicontinuous at ;, for every " > 0, there exists

ı > 0 such that, for every E 2 A satisfying d�.E;;/ D arctan�.E/ < ı, we
have j�.E/j < ", for every � 2 K .

If d�.C;D/ D arctan�.C 4 D/ < ı then d�.C n D;;/ < ı and d�.D n
C;;/ < ı.
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Then, for every � 2 K ,

j�.C/ � �.D/j D j�.C nD/C �.C \D/ � �.C \D/ � �.D n C/j
� j�.C nD/j C j�.D n C/j < 2":

Therefore K is uniformly d�-equicontinuous on A.
Obviously, (iii) H)(i).
(ii) H)(iv). Let K � ca.A/ be a family satisfying (ii), let .An/n2N � A be

a sequence of pairwise disjoint sets and let A D [1
1 An. Then for every " > 0,

there exists ı > 0 such that, for all E 2 A with �.E/ < ı, we have j�.E/j < ",
for every � 2 K . � being �-additive and positive, there exists n0 2 N such that
j�.A/ �Pn

kD1 �.Ak/j D �.A n [n
kD1

Ak/ < ı, for every n � n0.
Then, for every � 2 K; j�.A/�Pn

kD1 �.Ak/j D j�.A n [n
kD1

Ak/j < " from
where it results that K is uniformly �-additive.

In a consistent manner with Theorem 1.33, we give the following definition:

Definition 1.35. A family of measures K � ca.A/; d�-equicontinuous at ; (and
therefore on A) is called �-equicontinuous.

We need to emphasize that the definitions of �-continuity and �-equicontinuity
refer only to the real �-additive measures, meaning that they do not refer to the
�-additive measures taking at most one of the values C1 or �1. However, the
previous results can be extended by replacing the �-additive and positive measure
� by a �-additive measure � of finite total variation j�j and the measure � 2
ca.A/ by a �-additive measure with values in a Banach space.

We will now give a very important result of equicontinuity (Vitali–Hahn–Saks
theorem) which allows us to establish the analogue of the uniform boundedness
principle from Functional Analysis for the Measure Theory (see Theorem III.7.2
and Corollary III.7.3 in [62] or Theorem 2.53 of [85]).

Theorem 1.36 (Vitali–Hahn–Saks). Let � W A ! RC be a �-additive measure
and let .�n/n2N � ca.A/ be a sequence of �-continuous measures.

Assume that limn �n.A/ D �.A/ 2 R exists, for every A 2 A; then:

.i/ ¹�n W n 2 Nº is �-equicontinuous,

.ii/ � 2 ca.A/,
.iii/ � is �-continuous.

Proof. According to Proposition 1.30, �n W .A; d�/ ! R is a continuous func-
tion, for every n 2 N.
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For every " > 0 and for all couple .n;m/ 2 N � N, let’s note

An;m."/ D ¹A 2 A W j�n.A/ � �m.A/j � "º:
An;m."/ are closed sets in the complete space .A; d�/; then, for every p 2 N,

Ap."/ D
\

m;n�p

An;m."/

is a closed set in .A; d�/:

Since limn �n.A/ 2 R, for every A 2 A,

A D
1
[

pD1

Ap."/:

According to Baire theorem, there exists p0 2 N such that Ap0
."/ has nonempty

interior in .A; d�/. Therefore, there exists A0 2 A, there exists r > 0 such that
the ball S.A0; arctan r/ � Ap0

."/, i.e.,

j�n.A/ � �m.A/j < "; 8A 2 A with �.A4 A0/ < r; 8m; n � p0:

(1)

Since the set ¹�1; : : : ; �p0
º is �-equicontinuous, there exists ı 2�0; rŒ such that

j�n.B/j < "; for all B 2 A with �.B/ < ı; 8n D 1; : : : ; p0: (2)

Let A 2 A with �.A/ < ı; then

�..A [ A0/4 A0/ D �.A n A0/ � �.A/ < ı < r and

�..A0 n A/4 A0/ D �.A0 \ A/ � �.A/ < ı < r:

By (1), we have

j�n.A [ A0/ � �p0
.A [ A0/j < "; 8n � p0 (3)

and

j�n.A0 n A/ � �p0
.A0 n A/j < "; 8n � p0: (4)

By (2), (3) and (4), we deduct that, for every n � p0,

j�n.A/j D j�p0
.A/C Œ�n.A/ � �p0

.A/�j
� j�p0

.A/jCj�n.A [ A0/��p0
.A [ A0/C�p0

.A0 n A/��n.A0 n A/j
� j�p0

.A/jCj�n.A [ A0/��p0
.A [ A0/jCj�p0

.A0 n A/��n.A0 n A/j
< 3":
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Therefore, according to (2), j�n.A/j < 3", for every n 2 N. ¹�n W n 2 Nº is
therefore d�-equicontinuous at ; and so it is �-equicontinuous.

Since .�n/ converges punctually to �, � is additive on A.
We still need to show that � is �-continuous.
According to Theorem 1.34, since ¹�nº is �-equicontinuous, it is uniformly

d�-equicontinuous on A. Therefore, for every " > 0, there exists ı > 0 such that,
for all A and B of A with �.A4 B/ < ı, for any n 2 N; j�n.A/ � �n.B/j < ".
Now let n tend to 1; so we obtain j�.A/� �.B/j � ", from where it results that
� is uniformly - d�-continuous and so it is d�-continuous.

From Proposition 1.31, it results that � 2 ca.A/ and, according to Proposi-
tion 1.30, � is �-continuous.

The previous theorem accepts as corollary the following result (see Corol-
lary III.7.4 and Theorem IV.9.8 of [62] and [57], p. 90):

Theorem 1.37 (Nikodym). Let .�n/ � ca.A/ be a sequence of measures such
that, for every E 2 A, there exists limn �n.E/ D �.E/ 2 R. Then:

.i/ � 2 ca.A/,
.ii/ ¹�n W n 2 Nº is uniformly �-additive and

.iii/ ¹�n W n 2 Nº is bounded in the space (ca.A/; k � k).

Proof. (i) + (ii) Let � W A ! RC be defined by

�.A/ D
1
X

nD1

1

2n
� j�nj.A/
1C k�nk ; 8A 2 A:

It is clear that, for all A 2 A, �.A/ <
P1

nD1
1

2n D 1.
Let ¹Ep W p 2 Nº � A be a family of disjoint sets and let E D S1

pD1Ep. For

all " > 0 let n0 2 N such that 1

2n0�2 < ". Since �n 2 ca.A/, j�nj 2 ca.A/ and
then there exists k0 2 N such that, for every k � k0 and every n D 1; : : : ; n0,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�nj.E/ �
k
X

pD1

j�nj.Ep/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

<
"

2
.1C k�nk/:
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Then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�.E/ �
k
X

pD1

�.Ep/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
X

nD1

0

@

1

2n
� j�nj.E/
1C k�nk �

k
X

pD1

1

2n
� j�nj.Ep/

1C k�nk

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
n0
X

nD1

1

2n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�nj.E/
1C k�nk �

k
X

pD1

j�nj.Ep/

1C k�nk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C
1
X

nDn0C1

1

2n
� 2

<

n0
X

nD1

1

2n
� "
2

C 1

2n0�1
<
"

2
C "

2
D ":

Therefore � 2 caC.A/.
Moreover, it is evident that, for every n 2 N, �n 	 �. We are, therefore, in

the conditions to apply the Vitali–Hahn–Saks theorem. Therefore � 2 ca.A/,
¹�n W n 2 Nº is �-equicontinuous and, according to (iv) of Theorem 1.34, ¹�n W
n 2 Nº is uniformly �-additive.

(iii) As, for every A 2 A, �n.A/ ! �.A/ 2 R, we have:

sup
n

j�n.A/j < C1 for every A 2 A: (1)

Suppose that the family ¹�n W n 2 Nº is not bounded in the space .ca.A/; k � k/.
Then supn2N k�nk D C1.

According to Theorem 1.23, for every n 2 N, k�nk � 2k�nk1.
We have therefore

sup
n

k�nk1 D sup
n2N

.sup
A2A

j�n.A/j/ D C1: (2)

By (1), supk j�k.X/j < C1. Let †1 D supk j�k.X/j C 1; according to (2),
there exists n1 2 N such that

sup
A2A

j�n1
.A/j > †1

and therefore there exists A1 2 A such that j�n1
.A1/j > †1.

j�n1
.X n A1/j D j�n1

.X/ � �n1
.A1/j

� j�n1
.A1/j � j�n1

.X/j � j�n1
.A1/j � sup

k

j�k.X/j > 1:

Let’s note B1 D X n A1. We have obtained an A- partition .A1; B1/ of X such
that

j�n1
.A1/j � 1; j�n1

.B1/j � 1: (3)



24 Chapter 1 Weak Compactness in Measure Spaces

By (2), we have that

sup
n2N

.sup
A2A

j�n.A \ A1/j/ D C1: (4)

or

sup
n2N

.sup
A2A

j�n.A \ B1/j/ D C1: (5)

If (4) is satisfied, then we note C1 D B1 (otherwise C1 D A1). Because all finite
subset of ca.A/ is uniformly bounded on A (this is an immediate consequence of
Corollary 1.14), we have

sup
n>n1

.sup
A2A

j�n.A \ A1/j/ D C1:

Can one restart this procedure by applying (1) to A1.
Let†2 D supk j�k.A1/jC2; there exist n2 > n1 and an A - partition .A2; B2/

of A1 such that

j�n2
.A2/j � 2; j�n2

.B2/j � 2

and

sup
n>n2

.sup
A2A

j�n.A \ A2/j/ D C1: (6)

or

sup
n>n2

.sup
A2A

j�n.A \ B2/j/ D C1: (7)

If (6) is satisfied, we note C2 D B2 (otherwise C2 D A2). C2 D B2 � X n C1.
Continuing in this fashion, we define a strictly increasing sequence of integers

.np/p2N tending to infinity and a sequence of pairwise disjoint sets .Cp/p2N � A

such that,

j�np
.Cp/j � p; for every p 2 N: (8)

Let C D S1
1 Cp 2 A; by (ii), .�n/ are uniformly �-additive. Therefore, for

" D 1, there exists k0 2 N such that

j�n.C / �
k
X

iD1

�n.Ci /j < 1; for every k � k0 and for all n 2 N:


