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Introduction
When I was asked by my colleague and member of the Dahlem Conferences Scientific 
Advisory Board, Robert Bittl, in 2010 to organize a Dahlem conference about optoge-
netics, I was extremely reluctant and skeptical about the purpose of such a confer-
ence. There are already too many conferences, and we are presenting similar data 
about our research on many occasions and locations around the world. Moreover, 
the Dahlem conferences are unstructured in the sense that there is no fixed program 
or schedule, the number of attendants is limited to 40 and there is no big audience 
listening to what the participants have to say. Even worse, there are no talks and very 
little chance to present any of the latest research. What should encourage the best 
researchers in a certain field to come to such a conference or workshop and to be 
locked up for a few of days despite the extremely tight schedules they already have in 
most cases?

The idea of the Dahlem Conferences is to discuss challenges and potential risks 
of a novel technology, traditionally during five days in a closed venue, and not to 
present data. It is anticipated that the participants know the state of the art prior to the 
meeting. Why optogenetics? Optogenetics is a new technology that combines genetics 
with the latest optical technology to study neuronal networks on different scales of 
space and time. This technology developed very rapidly, from zero at the year 2002 
to a widely accepted research field 10 years later. It has now reached a level where it 
is even considered for clinical applications. This rapid development convinced the 
Scientific Advisory Board members of the Dahlem Conferences to bring researchers of 
the optogenetics field together to discuss future perspectives of the technology.

Prior to the conference, Karl Deisseroth, Stephan Sigrist, Uwe Heinemann, 
Thomas Oertner, Zhuohu Pan, and Sabine Schleiermacher identified candidate sub-
topics that were later used in the initial discussion groups, before the participants 
mixed and reassembled during the following days. A number of participants had sent 
discussion manuscripts with provocative questions and considerations, and all par-
ticipants were asked to send in “seed questions” that they wanted to be discussed 
during the workshop. The idea originally brought up by Stefan Sigrist was extremely 
useful, and we collected some 140 “seeds” as starting material for the conference. The 
topics that we selected during the pre-conference stage are the following:
1. Optogenetic tools, chaired by Karl Deisseroth (Stanford), Roger Tsien (San 

Diego), and myself. As optogenetics is a comparatively young discipline, many 
of its tools are currently under investigation and active development. Light-gated 
protein switches (i.e., photoreceptors), with improved or entirely new molecu-
lar function, enable enhanced light control over cellular processes, and expand 
the scope of optogenetics. Several lines of research are pursued to address the 
need for additional and streamlined optogenetic tools. Firstly, multiple research 
groups try to obtain a description at the molecular level of the structure, func-
tion, and signaling mechanism of photoreceptors. Insights into these properties 
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allow rational improvement of proteinaceous light switches. For example, several 
channelrhodopsin variants, with differing spectral sensitivities and photocurrent 
kinetics, have been produced. Secondly, genome databases are sifted for previ-
ously unknown light-regulated proteins and enzymes. These new light switches 
permit optogenetic control in ways complementary to existing approaches, if they 
possess molecular functions different from other optogenetic tools. For example, 
recently several light-activated adenyl cyclases have been discovered that perform 
their enzymatic activity in a light-regulated manner. Thirdly, the repertoire of 
natural photoreceptors has recently been expanded by the design of synthetic 
photoreceptors. Inspired by natural systems, custom-made light switches allow 
light control over yet other cellular processes. In the most striking demonstra-
tion to date of synthetic photoreceptors, the motility of fibroblasts has been con-
trolled by blue or red light, via a small light-activated GTPase, the Rac1 protein. 
In an ideal scenario, any arbitrary protein activity could be subjected under light 
control; if this can be accomplished, metabolism, signaling networks, and the 
behavior of cells and organisms could be manipulated in precise ways with only 
minimal perturbation of other processes.

2. Application in cellular systems and lower model organisms, chaired by Stephan 
Sigrist (Berlin), Alexander Gottschalk (Frankfurt), and Erik Jorgensen (Utah). 
Two kinds of devices address complementary needs for the research with lower 
model organisms: light-driven actuators control electrochemical signals, while 
light-emitting sensors report them. When actuators are expressed in genetically 
defined neurons in the intact animal, previously unattainable insight into the 
organization of neural circuits, the regulation of their collective dynamics, and 
the causal relationships between cellular activity patterns and behavior can be 
achieved. Animal model systems, which combine high optical transparency with 
easy and efficient genetics, are particularly effective in further progressing these 
aspects of optogenetics. The nematode Caenorhabditis elegans, with a compara-
tively simple nervous system, is clearly suitable for optogenetics, e.g., neurotrans-
mission has been analyzed with high temporal precision in a neurotransmitter-
selective manner. The fruitfly Drosophila affords similar advantages, although it 
resembles a significantly higher level of complexity. Quite a few tools for remotely 
activating neural circuits by light in Drosophila have become available as well. As 
for vertebrate systems, the translucent brain of zebrafish (Danio rerio) offers supe-
rior experimental conditions for optogenetic approaches in vivo. Enhancer and 
gene-trapping approaches have generated many Gal4 driver lines in which the 
expression of UAS-linked effectors can be targeted to subpopulations of neurons. 
Local photoactivation of genetically targeted light-activated channels or pumps, 
such as channelrhodopsin and halorhodopsin, or channels chemically modified 
with photoswitchable agents, such as LiGluR, have uncovered novel functions 
for specific areas and cell types in zebrafish behavior. Despite widespread and 
growing use, very little work has been done to characterize exactly how optoge-
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netic tools affect activity in model system neurons. We discussed these aspects 
in addition to new exciting examples of optogenetic tools for circuit analysis of 
model systems.

3. Mapping neuronal networks, chaired by Thomas Oertner (Hamburg). Recent prog-
ress in optics, genetics, and chemistry has provided new tools for the morpho-
logical dissection and functional analysis of neuronal networks, both in vitro and 
in vivo. Not only can light-controlled actuators of neuronal activity, e.g., chan-
nelrhodopsin, be activated with millisecond precision, but this activation can 
also be performed in a targeted, cell-specific manner. Alternatively, the activity 
of distinct neurons can be blocked by ion pumps, e.g., halorhodopsins, or by the 
use of recently designed K-selective ionotropic glutamate receptors. The specific-
ity in the optical control of the activity of neuronal networks can be enhanced by 
various ways of targeting the light specifically to individual neurons by new scan-
ning devices. Of particular promise is two-photon microscopy for neuron-specific 
activation, which grants access to deeper tissue layers. With these approaches, 
the control of activity can be exerted at various levels of neuronal circuits, 
ranging from neuronal subcompartments, such as axons and dendritic spines, up 
to entire classes of neurons within a circuit; for example, all or specific GABAergic 
inhibitory interneurons. The range of conceivable applications is enormous and 
includes the identification of synapses within the networks that control synap-
tic plasticity, the study of how neurons are connected to each other to control 
defined behaviours in vivo, or the determination of basic mechanisms of default 
circuitries in the brain, such as those underlying the central pattern generators 
(CPGs) which generate periodic motor commands for rhythmic movements.

4. Clinical application, chaired by Uwe Heinemann (Berlin), and Luis de Lecea 
(Stanford). Optogenetic methods have already been applied to study circuits and 
symptoms relevant to narcolepsy, blindness, depression, fear, anxiety, addiction, 
schizophrenia, autism, Parkinson’s disease, and epilepsy. Moreover, the poten-
tial of the technology to fundamentally advance our understanding of neural 
circuit dysfunction is enormous. This session covered clinical applications of 
optogenetics, including efforts dedicated to understanding disease circuitry in 
animal models, and efforts focused on direct clinical translation. Topics in the 
latter category included applications to deep brain stimulation, peripheral nerve 
stimulation, and motor prosthetics. Topics in the former category were motivated 
by the fact that a most fundamental impact of optogenetics need not arise from 
direct introduction of opsins into human tissue, but rather from use as a research 
tool to obtain insights into complex tissue function, as has already been the case 
for Parkinson’s disease. Many opportunities exist in both categories. Due to tech-
nological limitations in probing intact neural circuits with cellular precision, our 
current understanding of brain disorders does not do full justice to the brain as 
a high-speed cellular circuit. Rather than conceptualizing the brain as a mix of 
neurotransmitters, ideally we would be able to move toward a circuit-engineering 
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approach, in which devastating symptoms of disease are understood to causally 
result from specific spatiotemporal patterns of aberrant circuit activity relating 
to specific neuronal populations. But technology has been lacking for the req-
uisite high-speed, targeted, causal control of intact neural circuit function, and 
this challenge extends to basic neuroscience and other biological systems as well. 
Optogenetics now provides a means to address this challenge.

5. Restoration of vision and hearing, chaired by Zhuohua Pan (Detroit) and Botond 
Roska (Basel). Retinitis pigmentosa (RP) refers to a diverse group of progressive, 
hereditary diseases, leading to incurable blindness, and affecting two million 
people worldwide. There is no general cure for RP, but several approaches that 
offer some degree of treatment in some forms of RP are in clinical trials and 
others are on the horizon. Gene replacement shows great promise if the disease 
is caused by the lack of function of the mutated gene, which mostly occurs in 
recessive forms of RP. Progress in replacing mutated RPE65 in the retinal pigment 
epithelium in Leber congenital amaurosis not only offers hope for patients of this 
disease, but also shows promise for other gene-replacement strategies by demon-
strating the safety and efficacy of adeno-associated viral vectors for gene therapy 
in the human eye. Gene replacement can only be envisioned if the cell type 
expressing the gene is still alive and therefore, in the case of the most common 
rod-specific genes, early diagnosis and gene therapy in childhood might be nec-
essary. When the mutation creates a “toxic” protein or the gene is too large to fit 
the viral vectors authorized in clinical trials, this approach is limited. Neverthe-
less, in the cases when it is feasible and unlike other approaches documented 
below, gene replacement may provide a real cure for a group of patients. Secondly, 
approaches to decrease the speed of degeneration of photoreceptors attempt to 
slow down the progression of the disease. This approach is feasible until visual 
function is preserved. Thirdly, a number of approaches attempt to restore photo-
sensitivity without interfering with the intrinsic progress of the disease by cre-
ating new photosensors and couple them into the remaining retinal circuitry. 
Patients who are legally blind are the key target population of these approaches. 
Three different approaches in this group are the implantation of differentiated 
or undifferentiated photoreceptors, electronic retinal implants, and optogenetic 
approaches. The symposium introduced, contrasted, and debated the different 
approaches to restore photosensitivity to animal models of Retinitis pigmentosa 
and to human patients. Current clinical and preclinical trials were discussed in 
terms of safety, efficacy, and impact on society.

Conclusions and final considerations: the key issue of the optogenetic technology is 
its cell specificity, but at the same time, this is also its major limitation. Neurosci-
entists might apply optogenetic approaches to cure, or at least alleviate, diseases 
in the near future, and the first trials will probably be carried out within the next 
two years for retinal prosthesis or Parkinson’s disease. But optogenetics is limited 
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to those brain diseases that localize to a clearly defined area of the brain. These dis-
eases are extremely rare, whereas most brain disorders are of a much higher level of 
complexity, involving many cells distributed over a large area of the brain. Not only 
is the causality of these malfunctions unknown, but they are also out of reach for any 
optogenetic applications. Optogenetics is certainly an innovative technology and of 
great analytical value in the context of many diseases, but at present we should be 
humble about the potential as a therapeutic technology to cure brain malfunction 
by any means. This will only become true for a very small number of diseases, based 
on defects of single genes with very local activity of the gene products. Last, but not 
least, ethical questions should be constantly discussed – from early experiments on 
mammals, to non-human primates, and to eventual applications in humans.

I personally was extremely amazed about how the discussion developed during 
the progress of the conference, about the precision with which key issues crystallized 
during these days, the cross-border discussions that developed between tool makers 
and appliers, and the careful consideration of potential application, including ethical 
perspectives. Finally, I was enlightened that most of the organization and bureau-
cracy that we experience in our usual conferences is not necessarily needed; thus, 
fruitful discussions were not unduly hampered and went into the depth required to 
address questions that really matter for the promotion of a new field.

Finally, I thank my colleagues who worked with me on the planning of the con-
ference, especially Karl Deisseroth, Uwe Heinemann, Andreas Möglich, Zuohuo Pan, 
Sabine Schleiermacher, Stephan Sigrist, and several others that sent in suggestions 
and discussion manuscripts. I am also indebted to the three graduate students, Elena 
Knoche, Franziska Schneider, and Stephanie Wegener, who meticulously recorded 
the main ideas and outcomes of the sessions and provided these to the authors that 
you, as the reader, will find in this book. Last, but not least, I thank Michael Brück-
ner, a person quite invisible during the conference, but who ran the organization 
smoothly, did all the logistics, the financing, and everything that made the confer-
ence enjoyable.

I hope that this conference helped to develop the field of optogenetics in a direc-
tion where it brings insight into the organization of neuronal networks, where it 
uncovers origins of brain diseases, and where it might even help to develop curative 
strategies which make the life of patients more enjoyable.

Berlin, April 2013 Peter Hegemann





Keith Moffat, Feng Zhang, Klaus Hahn, Andreas Möglich 
1   The biophysics and engineering of signaling 

photoreceptors

1.1   Photoreceptors

Image formation, vision, and certain developmental and behavioral processes in 
diverse organisms are naturally sensitive to light. The primary event is absorption of 
a photon by a  photoreceptor protein comprised of at least two units: a  photosensor 
which absorbs light and an  effector whose light-dependent activity ultimately elicits 
a physiological response. (Other units may be present, e.g., those that confer specific 
intermolecular interactions, but these two units are essential). Since the common 
constituents of organisms (amino acids and proteins, ribonucleic acids, lipids, carbo-
hydrates, small metabolites) do not absorb the wavelengths significantly present in 
sunlight, absorption by the photosensor typically occurs in a covalently or non-cova-
lently bound, small organic moiety known as a  chromophore.  Retinal, flavin  nucleo-
tides, and  bilin are common examples of chromophores (Figure 1.1). A quite different 
example is offered by UV-sensitive photoreceptors exemplified by  UVR8 [1] where the 
“chromophore” is believed to be a cluster of tryptophan side chains which naturally 
absorb in the near-UV region of the spectrum .

When photoreceptors are classified by the chemical nature of their chromophore 
and the  photochemistry that follows photon absorption, they fall into seven distinct 
classes [2]: UV  receptors; photoactive yellow  protein and relatives [ PYP]; light-oxygen-
 voltage [ LOV]; sensors of blue light utilizing FAD [ BLUF];  cryptochromes;  rhodopsins; 
and  phytochromes (Figure 1.2). To these may be added  cyanobacteriochromes [3, 4]. 
The term “distinct classes” is loosely defined. Quite different chromophores and  pho-
tochemistry are found in LOV domains (flavins) and PYP-like molecules (p-coumaric 
acid), yet the photosensor proteins that contain these two distinct chromophores 
are structurally related. Each forms a subclass of Per-ARNT- Sim domains, which are 
widely distributed in signaling proteins more generally [5, 6].
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Figure 1.1: Chromophores of photoreceptors. Each photoreceptor harbors an aromatic chromophore 
molecule that absorbs electromagnetic radiation in the near-UV, visible or near-infrared ranges. As 
chromophores, plant UV photoreceptors use tryptophan side chains (a); photoactive yellow protein 
uses p-coumaric acid (b); LOV photoreceptors use flavin mononucleotide (c) or dinucleotide (d); 
cryptochromes and BLUF domains use flavin adenine dinucleotide (d); rhodopsins use retinal (f); 
and phytochromes use linear tetrapyrroles such as biliverdin (g). In jellyfish fluorescent proteins, 
the heterocyclic chromophore is formed autocatalytically from three amino acid side chains (e).
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Figure 1.2: Architecture of photoreceptors. Three-dimensional folds of representative members of 
the different photoreceptor families where the color is meant to indicate which colors of light can be 
absorbed by a given photoreceptor. (a) Arabidopsis thaliana UVR8 (PDB code 4D9S; [7]). (b) Halor-
hodospira halophila photoactive yellow protein (1MWZ; [8]). (c) Avena sativa phototropin 1 LOV2 
domain (2V0U; [9]). (d) Rhodobacter sphaeroides AppA BLUF (2BYC; [10]). (e) Drosophila melanogas-
ter cryptochrome (4GU5;  [11]). (f) Echinophyllia sp. Dronpa (2IE2; [12]). (g) Halobacterium salinarum 
bacteriorhodopsin (1M0L; [13]). (h) Pseudomonas aeruginosa bacteriophytochrome (3C2W; [14]).
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1.1.1  Novel photoreceptors

It is likely that other classes of photoreceptors remain to be discovered in addition 
to those noted above. The process for photoreceptor discovery typically originates in 
identifying a novel, light-dependent process in one, often little studied, organism. 
Its photochemical action  spectrum is obtained, the cell type housing the putative 
 photoreceptor is located, the candidate photoreceptor is purified (often challenging, 
since its abundance may be very low) and chemically characterized, and its  photo-
chemistry in vitro matched with that of the biological process in vivo. From its protein 
and gene  sequences, related examples in other organisms are quickly found. A recent 
example is the discovery and characterization of a light-modulated adenylyl  cyclase 
in a marine bacterium [15, 16]. To qualify as an authentic signaling photoreceptor, 
direct evidence that a particular biological process in that organism is modulated by 
light absorbed by the candidate photoreceptor must be sought. Sequence similarity 
is powerful in initial identification but does not substitute for direct demonstration!

Since photons readily traverse membranes, most photoreceptors such as  LOV 
proteins or  phytochromes are cytoplasmic, soluble proteins, which allows light to 
directly regulate an intracellular process. In contrast,  rhodopsin-based photorecep-
tors, e.g., visual rhodopsins,  channelrhodopsins or sensory  rhodopsins, are integral 
membrane proteins in which light alters an activity of the protein intrinsic to its loca-
tion in the membrane, such as its ability to act as a channel or ion pump. Many of 
the more widely studied  chemoreceptors are also integral membrane proteins that 
respond to extracellular chemical signals which cannot traverse the cell membrane. 
An interesting question is the extent to which there are parallels in general mecha-
nisms of signal  transduction between chemoreceptors and photoreceptors [6].

The key feature of signaling photoreceptors is that  absorption of a photon pro-
duces a change in a specific biological activity, either directly in the photoreceptor 
molecule itself, or more usually, in a spatially distant downstream component such 
as a metabolic enzyme, kinase or transcription factor; light serves as a specific source 
of information. In contrast, light-driven electron transfer processes in photosynthesis 
generate a change in membrane potential that ultimately drives many biological pro-
cesses; light serves as a general source of energy.  Optogenetics is based on genetically 
encoded, light-dependent control of a biological activity [17]. Thus, we concentrate 
here on the features of those natural and engineered signaling photoreceptors that 
exhibit this control. 

1.1.2  Biophysics of photoreceptors and signal transduction

Absorption of a photon excites the  chromophore to higher electronic and vibrational 
energy levels; internal conversion on the picosecond time scale rapidly dissipates 
energy and thus returns the chromophore to the lowest vibrational level of the first 


