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Preface

This book is focused on mathematical methods for dissipative system dynamics and
mathematical biology. We consider the problem of the emergence of complexity in dis­
sipative systems and chaos, stability and evolution for genetic networks.

We investigate important classes of dynamical systems generating complicated
patterns and strange (chaotic) attractors. This question is inspired by the famous pa­
per by D. Ruelle and F. Takens [235], where the notion of the strange, or chaotic, attrac­
tor is introduced.Weanalytically prove the existence of strange attractors ofarbitrarily
high dimension for many fundamental models, such as Hopfield neural networks, ge­
netic circuits, and basic systems of phase transition theory.

We also prove the existence of chaotic dynamics for large classes of reaction-diffu­
sion systems, coupled oscillator and population dynamics systems. A general method
is proposed that allows us to study the chaotic behavior of unbounded complexity, i. e.
dimension of corresponding attractors can go to infinity when we vary some system
parameters. This approach is constructive and yields attractor control algorithms.

The second problem is increasing complexity in biological evolution. Charles Dar­
win formulated the following question of critical importance for evolution theory:
How can a gradual evolution produce complex special organs functioning in a cor­
rect manner? ([57, Ch. VI]).

This question has provoked a great discussion between creationists and scientists
believing Darwin’s theory [26, 60, 91, 109, 175–177, 227, 231, 238]. Is Darwin evolution
sufficiently fast enough to create complex structures? Is evolution is really feasible?
Or, maybe, biological structures are actually not so complex?

In this book, we also develop a mathematical approach in order to explain in­
creasing complexity. Using the viability theory [13–16], ideas proposed by M. Gromov
and A. Carbone [97], the attractor theory, the Kolmogorov complexity and new meth­
ods for hard combinatorial problems (for example, [1, 184]), we consider some math­
ematically rigorous approaches for viability, pattern complexity, evolution rate and
feasibility. We find a connection between the attractor complexity problem and the
viability of biological systems.

Let us outline results on the attractor complexity in more detail. It is well known
that, under fairly general conditions, dissipative infinite dimensional dynamical sys­
tems can have finite dimensional attractors and finite dimensional invariant (or iner­
tial) manifolds. However, excluding some narrow classes of systems (monotone and
gradient systems, see [111–114, 256]), only upper estimates of attractor dimensions and
dimensions of the invariant (inertial)manifolds canbe obtained [18, 50, 61, 77, 78, 101,
108, 129, 155, 168, 170]. Many problems on complexity of attractors and large time be­
havior are left open. In particular, an analytical proof of the existence of the chaotic
dynamics for fundamental physical systems such as Navier–Stokes equations or re­
action-diffusion systems is unknown. Chapter I presents a brief review on dynamical
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system theory. In particular, we describe classes of systems having relatively simple
large time behavior (monotone and gradient semiflows). These systems can have im­
portant biological applications.

In Chapters 2 and 3, our goal is to investigate some important classes of systems
with complicatedbehavior. Chapter 2 considers coupledoscillator systems, neural and
genetic networks. In Chapter 3, we extend this approach to systems of partial differ­
ential equations. We describe a special method that allows us to find semiflows with
a complicated large time behavior. These semiflows can produce all possible finite di­
mensional structurally stable dynamicswhenwe vary some system parameters. Semi­
flows with this property are themaximally complicated family of semiflows, or, briefly,
MC semiflows. The corresponding parameters can be called control parameters. The
class of MC systems includes such fundamental models as Hopfield networks, genet­
ical circuits and some systems of phase transition theory connected with the scalar
Ginzburg–Landau equation.We also describe new classes of spatially localized chem­
ical waves. Although these waves move in an inhomogeneous medium, the propaga­
tion speed of these waves is a complicated time function and the front form can vary
in a periodical or even chaotical manner.

In many important reaction-diffusion systems, some reagents diffusemuch faster
than others. We can observe such situations in numerous biological systems, where
large molecules (for example, proteins) are much less mobile than small ones (sub­
strats, microRNA). In such systems, parameters are diffusion and degradation coeffi­
cients. Moreover, these systems involve some additive spatially inhomogeneous exter­
nal fluxes which do not depend on unknown reagent densities.

Beginningwith the seminal paper [272],where theTuring instabilitywas invented,
this class of systems has received great attention [103, 138, 178, 179, 193, 196]. In Chap­
ter 3, we consider such reaction-diffusion systems, where we take as attractor control
parameters, diffusionanddegradation coefficients andexternal fluxes. Then,we show
that there exists an alternative: either this reaction-diffusion system induces a strongly
monotone semiflow (therefore, we can observe no chaotic local attractors here), or this
system induces a family of maximally dynamically complex semiflows (and thus can
generate all structurally stable attractors which can be chaotic). A criterion that guar­
antees maximal dynamical complexity admits a transparent chemical interpretation:
there is a reagent, which is neither an activator nor an inhibitor. The complexity de­
pends on the parameter r = D/d, where D, d are diffusion rates. In order to obtain
attractors of larger dimensions, we must take larger r.

This result on reaction-diffusion systems has interesting biological and physical
interpretation. Biological systems convert a space information contained in DNA se­
quences to a complex behavior in time (and in space). This shows that a physico­
chemical basis of such a transformation is as follows: (i) coexistence of mobile and
slow reagents (components); (ii) a sufficient reagent interaction complexity: either we
have reagents, which are neither activators nor inhibitors, or we have a number of in­
hibitors and activators (this case of genetic networks is considered in Chapter 2). Such
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systems with complicate dynamics can transform a complicated spatial information
(contained in spatially inhomogeneous terms) into a complex time behavior.

From the physical point of view, this result can be interpreted as follows. Mono­
tone and gradient systems describe, in a sense, an “ordered” dynamics. For example,
for gradient systems, there exists a Lyapunov function decreasing along the trajec­
tories. Physically, it corresponds to the case of systems having an entropy that is au­
tomatically time monotone due to system functioning laws. Our result means that if
such an ordering is absent (no entropy or another thermodynamic function), then we
can create any prescribed hyperbolic chaos in this system by a variation of external
fluxes, diffusion and degradation coefficients.

Althoughour constructionsuse somesophisticatedmathematicalmethods (main-
ly, realization of vector fields proposed by P. Poláčik, see [212–214]), the basic idea
beyond this mathematics is simple and admits a transparent physical interpretation.
Weuse the so-called slavingprinciple [100]: if systemdynamics canbe decomposed in
fast and slow modes, then for large times, the whole system dynamics is captured by
the slow modes. To this well-known idea (that can be justified by the invariant man­
ifold theory), we add a new one: one can control the system dynamics by adjusting
parameters that define an interaction between slow and fast modes.

In Chapter 2, we show how these two ideas work for neural and genetical net­
works.We exploit a special topology of aweighted graph that defines node interaction
in the network (nodes are genes or neurons). This topology can be named “centralized
topology,” or “empire structure.” In the centralized networks, highly connected hubs
play the role of organizing centers. The hubs receive and dispatch interactions. Each
center interacts withmanyweakly connected nodes (satellites). We assume that satel­
lites donot interact, but only obtainorders fromcenter (ancient romanprincipledivide
et impera, an ideal for some empires).

We study complex behavior and bifurcations in the networks where the node in­
teraction has the empire structure. We show that the corresponding dissipative semi­
flows aremaximally dynamically complex. Thismeans that depending on thenetwork
parameters (thresholds, synaptic weights and the neuron number), these semiflows
can realize all structurally stable dynamics. These semiflows are capable of gener­
ating (up to an orbital topological equivalency) all structurally stable dynamics in­
cluding chaotic, periodic etc., for example, all Anosov flows and Smale axiom A sys­
tems, Smale horseshoes and all hyperbolic dynamics. There is an explicit algorithm to
construct a network with a prescribed dynamics. The algorithm is based on the well-­
known theorem of neural network theory that multilayered perceptrons can serve as
universal approximators. The attractor control parameters are coefficients that define
interaction between satellites and centers.

For centralized genetical networks, we also present a mathematical realization of
the famousWolpert’s idea: positional information formmulticellular organisms [325].
We show that it is sufficient to have three morphogen gradients and a sufficient num­
ber of genes to create different complicated dynamics in different cells of an “organ­
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ism.” Then, there arises a natural question as to how such a complicated dynamics in
such a multicellular structure can be synchronized? We can answer this key question
by using a combination of our methods with Kuramoto’s ideas [152]. These results are
presented in Chapter 4.

In Chapter 2, we also show that the dynamics of large classes of coupled oscillator
systems with quadratic interactions is maximally complex. These classes, in particu­
lar, include the celebrated Lotka–Volterra model.

In Chapter 4, we consider viability of systems investigated in Chapters 2 and 3
under random fluctuations. This helps us to shed light on the problem of complexity
increasing in evolution. We can outline key ideas here as follows.

One of the main characteristics of biological systems is that these systems sup­
port their own life functions. In particular, a biological system tries to keep the values
of the main characteristics of each cell – such as temperature, pressure, pH (acidity
measure), concentrations of different reagents – within a certain range of values that
makes the biological processes possible. These domains of values are called viability
domains, and the process of supporting the life functions – by keeping the values in­
side viability domains – is called homeostasis. The concept of homeostasis was first
developed by a Frenchphysiologist ClaudeBernard; it is nowone of themain concepts
of biology; see, e. g. [42].

The homeostasis process is notoriously difficult to describe in precise mathemat­
ical terms. At first glance, homeostasis is similar to the well-known and well-studied
notion of stability: in both cases, once a system deviates from the desirable domain,
it is pushed back. However, a more detailed analysis shows that these notions are ac­
tually different:
– the usual mathematical descriptions of stability mean that a system will indefi­

nitely remain in the desired state, for time t →∞, while
– a biological cell (and the whole living being) eventually dies.

This difference has been emphasized by M. Gromov and A. Carbone: “Homeostasis of
an individual cell cannot be stable for a long time as it would be destroyed by random
fluctuations within and off cell ([97, p. 40]).”

One might argue that while individuals die, their children survive and thus,
species remain. However, it turns out that the biological species are unstable too. This
conclusion was confirmed, e. g. by L. Van Valen based on his analysis of empirical
data; see, e. g. [227, 301]. Moreover, he concluded that the species extinction rate is
approximately constant for all species.

Species extinction does not necessarily mean complete extinction, it usually
means that a species evolves and a new mutated better-fit species replaces the origi­
nal one. From this viewpoint, the evolution is “stable,” in the sense that it keeps life
on Earth effectively functioning. However, as M. Gromov and A. Carbone mention,
it is very difficult to describe this “stability” in precise terms: “There is no adequate
mathematical formalism to express the intuitively clear idea of replicative stability of
dynamical systems ([97], p. 40).”
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Specifically, we need to formalize two ideas:
– First, the biological systems are unstable (in particular, under random perturba­

tions).
– Second, that these systems can be stabilized by replication (evolution).

A progress in solving both aspects of the viability problem can be achieved if we use
the notion of Kolmogorov complexity. In our formalizations, wewill use the basic con­
cepts and ideas proposed by M. Gromov and A. Carbone [97], L. Van Valen [301], and
L. Valiant [303, 304].

We introduce classes of random dynamical systems modeling biological systems
under large fluctuations. For them, wemathematically formalize the homeostasis con­
cept using the viability theory mainly developed by P. Aubin with colleagues [13–
16]. For these systems, we prove the first part of the Gromov–Carbone hypothesis:
a “generic” system of our class is capable of supporting homeostasis only within a
bounded time interval. We obtain a result that, nonformally speaking, states that: re­
action-diffusion systems are unviable under two generic multiplicative noises.

Some explicit estimates of the viability times and probabilities can be found for
genetic networks. We can express the viability probability via the genetical network
parameters. These estimates show that this approach is consistent with key exper­
imental data [133, 134]. Namely, the interaction graph should contain strongly con­
nected nodes: centrality correlates with lethality. Moreover, this result is in a good ac­
cordance with the fact that species emerge in periods of ecological catastrophe [143]
and L. Van Valen’s law on species evolution [301].

The next step is connected with the Kolmogorov complexity theory starting with
seminal papers [145, 259] developed in many works [64, 71, 315], see [159, 187] for a
overview. This theory is important for such applications such as information compres­
sion and others [157, 333, 334].

We know that biological systems are coded by a discrete genetic code. Therefore,
we can introduce the Kolmogorov complexity K(C) of such codes C. To estimate the
DNA sequence, complexity is important for applications and evolution comprehen­
sion, and the problems on gene complexity, organism complexity and complexity in­
creasing in evolution have received a great deal of attention in many fundamental
works, for example, [3, 33, 34, 44, 58, 106, 147, 160, 180, 181, 185, 222, 230, 231, 238,
302, 318, 319]. Mathematically, a precise computation of the Kolmogorov complexity is
nondecidable problem, i. e. it is impossible to invent a universal algorithm that is ca­
pable of computing the complexity for all DNAs, however, we canfindupper estimates
of the DNA complexity.

Thenext result states that the survival time Tsurv(C)of a systemcodedby C and the
Kolmogorov complexity C are connected. Roughly speaking, we have the following as­
sertion: if K(C) is bounded by a constant K0, the survival time is bounded aswell. This
result shows (for a precise mathematical formulation, see Theorem 4.24 of Chapter 4)
that the code complexity is a time function which has a tendency to increase, i. e. this
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function cannot be a priori bounded. (We say that a function K(t), where t ∈ (0,+∞),
has a tendency to grow if for each number a, there is a time moment t(a) such that
K(t(a)) > a.) The proof of this fact is based on results from the Gromov–Carbone
problem and nonviability of “generic” systems under extremal fluctuations. To be vi­
able under extremal events (strong fluctuations of environment), the gene code of bi­
ological systems should have large Kolmogorov complexity, and this complexity has a
tendency to grow in evolution. Notice that a connection between complexity of gene
code and organism complexity is not direct. Under some conditions, one can show
that the attractor complexity also has a tendency to increase during evolution.

Notice that the relationbetweenorganismcomplexity and the corresponding code
complexity can be, in principle, arbitrary. Our assertion can be considered as a math­
ematical formulation of the arrow-of-complexity hypothesis [24]:

Thehypothesis of the arrow of complexity asserts that the complex functional organization of the
most complex products of open-ended evolutionary systems has a general tendency to increase
with time.

So, it is shown that organismshave tendency to a complexification, but thenext funda­
mental question is about the evolution rate. What does the “slow” evolution rate and
“fast” evolution rate mean? From a mathematical point of view, this question needs a
formalization. Let us consider an example: how we can distinguish a mountain and a
hill?

Fortunately, since we can consider the genetic code as a discrete one, for evolu­
tion, we can overcome this difficulty without fuzzy procedures. These ideas are in­
spired by a remarkable paper by L. Valiant [303].

Assumewe are looking for a code X of size |X|, which satisfies a numberM of con­
straints necessary for the organism viability. If the numbers N, M are both large, we
obtain a typical hard combinatorial problem. Important examples of such hard prob­
lems are given by the K − SAT (K-satisfiability) problem (it is considered to be one of
the most famous due to the seminal work [51]), integer and Boolean linear program­
ming, the problem regarding the search of a Hamiltonian cycle in a graph, and many
others [52]. A list of such problems contains thousands of examples andmany of them
are important for bioinformatics [83]. They have received great attention during the
last decades [2, 49, 52, 56, 63, 80, 183, 184, 245].

For such problems as Boolean and integer programming, and K − SAT, we in­
troduce a parameter β = M/N playing a crucial role: (relation between restriction
number and a free variable number, N is usually proportional to |X|). In general, to
resolve a hard combinatorial problem, we need exponentially large resources (if we
use a bounded memory, the algorithm running time is more than O(exp(bN)) with
b > 0, if the running time is bounded, then we should use an exponentially large
memory). In some cases, however, we are capable of resolving the problemby Poly(N)
elementary steps, where Poly denotes a polynomial of N.

Since exp(bN)/Poly(N) → ∞ as N → ∞, we can describe about two classes of
problems: easy ones where the running time is polynomial in the problem size, and
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hard, where this time is more than any polynomial (usually here, the time is expo­
nentially large). Using these ideas, we can say that an evolution algorithm is fast if
this algorithm finds a correct genetic code (that makes a viable organism) within a
running time polynomial in N, and slow if the algorithm works, say, during an expo­
nential running time.

Then, the key question can be reformulated as follows: is there a fast “evolu­
tion” algorithm capable of resolving complicated evolution problems? Regarding the
precise notion of the “evolution” algorithm, we can consider gradient or greedy al­
gorithms, random search etc., or combinations of gradient algorithms with random
search (simulated annealing).

To answer this question, we apply new ideas proposed recently for hard combina­
torial problems by mathematicians and physicians [1, 2, 49, 80, 183, 184]. Namely, in
many hard combinatorial problems, we observe a phase transition. If the parameter β
is less than some critical level, β < βc, there exists natural gradient algorithms that
resolve the problem within Poly(N) running time. For large β, we have no solutions.
Thus, we observe a phase transition in these hard combinatorial problems. This al­
lows us to demonstrate that an evolution of Darwin’s type can, in a gradual manner,
create a complicated multicellular organism.

Here, we have two parameters playing a decisive role. The first parameter β is,
roughly speaking, the number of ecological constraints divided by the number of
genes. The second one, K, can be interpreted as gene redundancy. If β < A(K)2K,
where A(K) is a slowly growing function, i. e. we have a sufficient genetic freedom
(“Freedom Principle,” proposed by Prof. A. Kondrashov), evolution goes, or other­
wise it stops. Numerical experiments confirm this assertion and thus “mutations plus
natural selection have led to the marvels found in Nature.”

InChapter 4,wealsodiscuss robustness of centralizednetworkswhosedynamical
properties have been investigated in Chapter 2. Here, we discuss connections between
viability, robustness and functioning rate. We show that centralized networks can be
robust (viable) and flexible, i. e. have a number of local attractors. They can thus sup­
port a great multistationarity. However, we show that there is a slow-down effect: if
a center controls a number of satellites, the network rate must be bounded and can
be estimated via network parameters. This effect restricts possibilities of centralized
networks controlled by the center. There are also other possible functioning regimes
when satellites control the center or satellites interact. These results are applied to es­
timate viability of an “empire structure.” We compare here, for a simple illustration,
the contemporary Russian Federation and the “Stalin” empire.

Furthermore, we consider the so-called Standard model introduced in ecology to
study the famous plankton paradox [124]. The plankton paradox is connected with
the known ecology principle that a number of species cannot share the single re­
source. Actually, however, we sometimes observe that numerous species use the same
resource. To resolve this paradox, the Standardmodel was introduced [124]. We study
this model in a more general case than in previous works and consider a number of
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species under random fluctuations. We find an asymptotic formula for the number
of coexisting species that connects the viability, the species number and some other
parameters. We also address that when random perturbations are absent, the Stan­
dard model can be reduced to the Lotka–Volterra model with n resources (studied in
Chapter 2) and, therefore, it also exhibits all kinds of dynamical chaos.

Finally, Chapter 4 can be summarized as follows. We connect concepts of struc­
tural stability and genericity with the Kolmogorov complexity theory in order to ex­
plain main properties of biological evolution. To describe mathematically biological
systems, we consider classical main models of mathematical biology (circuits, reac­
tion-diffusion equations). Recall that R. Thom [268] proposed the concept of structural
stability to describe complex structures observed in biology and other applications
(so-called “stability dogma,” as it wasnamedby J. Guckenheimer andP. Holmes, [99]).

These stability ideashavebeen successfully appliedbymanyauthors (catastrophe
theory). However, this fundamental concept also meets some serious difficulties (see
an interesting discussion in [254]).

Quite opposite ideaswere proposed in [301] and [97]. Based on some experimental
data, L. Van Valen concluded that biological species are unstable, but evolution can
stabilize them. This assertion (the so-called Red Queen hypothesis) drew upon the
apparent constant probability of extinction in families of related organisms.

In Chapter 4, we have proposed amathematical basis for the Van-Valen–Gromov–
Carbone instability ideas. Under large random perturbations, an organism with fixed
complicated structure is viable only within some bounded time intervals; there is a
relation between organism genetic code complexity and viability.

Although organisms of fixed structure are unviable, it is possible that populations
of evolving organisms are viable eternally with nonzero probability. This evolution
may be gradual and, nonetheless, in a sense, fast.

Briefly, organisms are fragile and they are not eternal, but organism evolutionmay
go eternally.

Many results of Chapter 4 are conjoint with D. Yu. Grigoriev. Results on the Lotka–
Volterra systems are conjoint with V.A. Kozlov, and results on centralized genetic net­
works have been obtained together with O. Radulescu.

I havegreatly benefited from the comments ofmanyofmycolleagues inparticular,
A. K. Abramian, E. L. Aero,D. Yu. Grigoriev, S. Genieys, P. Gordon,V.A. Kozlov, I. A.Mo-
lotkov, N. N. Petrov, O. Radulescu, J. Reinitz, V.M. Schelkovich, A.D. Vilesov, V. Volpert
and A. Weber. I am grateful to Vl. Kreinovich for all of the help.

I am grateful to the Department of Applied Mathematics at the Lyon University II
Claude Bernard, regarding their hospitality in 1998–2003, where the author obtained
a part of the results while working with V. Volpert, and to the Mathematical Institute
of University Rennes I, where the author had a fruitful collaboration with D. Grigoriev
and O. Radulescu in 2004–2010, to Bonn University (where the author worked with
A. Weber and D. Grigoriev in 2012–2013). I am thankful to the Department of Biology
of Montpellier University for various invitations (2009, 2011 and 2012).
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1 Introduction

This chapter contains prerequisite material, in particular, some basic concepts and
definitions of dynamical system theory that play a central role in the book. Details
can be found in [12, 101, 108, 129, 135, 204, 205, 207, 208, 211, 228, 232, 254] and other
monographs and reviews. In this chapter, we only consider the results and definitions
essential in what follows. We state here definitions of attractors, hyperbolic sets and
invariantmanifolds. We formulate some important results of theory of monotone and
gradient dynamical systems.

1.1 Flows and semiflows

The simplest class of finite dimensional dynamical systems with continuous time is
defined by systems of ordinary differential equations

xt = F(x) (1.1)

where F is a sufficiently smooth vector field on a smooth finite dimensional compact
manifoldM, x ∈M. Typical examples of suchmanifolds are the n-dimensional torus
Tn and the sphere Sn.

Let us consider the Cauchy problem for (1.1) with the initial condition x(0) =
y. Since F is a smooth field, this Cauchy problem has a unique solution for all t ∈
(−∞,+∞), and we obtain a trajectory t → x(t, y) such that x(0, y) = y. We can
then define a family of maps St : X → X, where X is a phase space by the relation
Sty = x(t, y).

In order to generalize this example, let us consider a family of maps St : X → X,
depending on t ∈ (−∞,+∞), andwhere X is a Banach space. Assume this family has
the following properties, that is,

(i) S0 = I, (1.2)
(ii) St+τ = StSτ , for all t, τ ∈ R, (1.3)
(iii) St ∈ C0(X, X) for each fixed t, (1.4)
(iv) the map (t, x) → Stx is continuous in (t, x) ∈ (−∞,∞) × X, (1.5)

where I : X → X is the identity operator.
A family St satisfying (i)–(iv) is said to be a flow in X. For (1.1), we take X =M. A

flow can be defined as well on a manifoldM with a boundary ∂M if the vector field
is tangent to the boundary.

Dynamical systems with discrete time t ∈ Z can be defined by diffeomorphisms
x → F(x) such that FM ⊂ M. In some cases, we can obtain such a system from a
flow St by the so-called Poincaré map [232]. The Poincaré maps are useful when we
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2 | 1 Introduction

are dealing with nonautonomous equations (1.1), where f = f(t, x) is a T periodical
function of t [208].

To investigate models defined by partial differential equations or systems of cou­
pled oscillators, we extend this approach, admitting that x lies in an infinite dimen­
sional Banach space B (which serves as a phase space). In this case, we consider dif­
ferential equations of the following form, namely,

ut = Au + F(u) (1.6)

where F is a sufficiently smooth (for example, Cr-smooth, r ≥ 1) map, F ∈ Cr(B, B),
A is a linear operator A : DomA → B. For bounded operators A, equations (1.6) were
investigated first by the pioneeringwork of Peter Bohl [32]. The theory of the evolution
equations (1.6) with bounded operators A can be found, for example, in [54].

To study systems of partial differential equations, we should investigate (1.6) with
unbounded linear operators A. Let us consider, for example, parabolic equations

ut = Δu + f(x, u,∇u) (1.7)

with initial and boundary conditions

u(x, 0) = ϕ(x), (1.8)
u(x, t) = 0, x ∈ ∂Ω (1.9)

where u(x, t) is an unknown function defined for x ∈ Ω, Ω is a connected domain
with a smooth boundary ∂Ω. Here, one can apply the following standard approach
[108, 167].

LetB = Lp(Ω), where p ∈ (1,∞), be theBanach spaces ofmeasurable functions u
such that

‖u‖p =
⎛⎜⎝∫
Ω

|u(x)|pdx
⎞⎟⎠
1/p

< ∞,

where ‖ ‖p the norm in these spaces. Then, the operator Au = Δu with a domain
DomA ⊂ Lp(Ω) is sectorial in C(R) [108, 167]. If p = 2, we deal with the Hilbert space
H = L2(Ω), and then our operator is self-adjoint and negatively defined in H. We
can then introduce the fractional spaces, associated with B, by Bα = DomAα1 . These
spaces are equipped by the norms

‖u‖p,α = ‖Aα1 u‖p,

where α ≥ 0, A1 = A − aI, a > 0 and I is the identity operator. The theory of the
fractional spaces is well-developed, see [108, 167, 260].

The operator A defines a semigroup exp(At) by the linear evolution equation

ut = Au, u(0) = v, (1.10)
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where exp(At)v = u(t). This allows us to rewrite (1.7) as an abstract evolution equa­
tion (1.6). Here, F is amap associatedwith the nonlinear term f in (1.7), i. e. F(u) : u →
f(x, u,∇u). The local in time existence of solutions of (1.6) can be obtained, for exam­
ple, if, for some α ∈ (0, 1), F is a C1-map from some bounded subdomain U ⊂ Bα to
B. To check this property, one applies the Sobolev embeddings [260]. Rewriting (1.6)
as an integral equation

u(t) = exp(At)u0 +
t∫
0

exp(A(t − s))F(u(s))ds, (1.11)

we can establish the existence of solutions on a bounded time interval by the stan­
dard contracting map principle in Bα [108]. In this case, (1.6) defines a local semiflow
St defined for t ∈ [0, T). To obtain existence of solutions to (1.6) for all t > 0, we
need an a priori estimate that guarantees that our solutions are bounded in a weak
norm. There are different methods that allow us to obtain such estimates (see, for ex­
ample, [167, 258, 311]). However, it is necessary to note, that, in general, f should sat­
isfy some conditions, otherwise the norms of solutions of (1.6) may increase to +∞
within a finite time interval (the blow-up effect). The blow-up effects are well-studied.
For most systems considered in this book, blow-up effects are forbidden by a priori
estimates that can be checked in a quite straightforward way.

If we have found an a priori estimate, then solutions of (1.6) exist for all times t,
and then our evolution equation defines a global semiflow (semigroup) in an appropri­
ate Banach space B having the properties

(i) S0 = I (1.12)
(ii) St+τ = StSτ , for all t, τ ∈ R+, (1.13)
(iii) St ∈ C0(B, B) for each fixed t > 0 (1.14)

and

(iv) the map (t, x) → Stx is continuous in (t, x) ∈ (0,∞)× X. (1.15)

Ordinary differential equations (1.1) generate global semiflows under the follow­
ing assumptions. Let us consider an open connected domain D ⊂ Rn with a smooth
boundary ∂D (for example, a ball BnR in Rn of radius R centered at 0). Then, in order
to obtain a global semiflow, we can suppose that the vector field F is directed strictly
inward at the boundary ∂D:

n(x) · F(x) < 0, for each x ∈ ∂D, (1.16)

where n(x) is the outward normal vector to ∂D at the point x.
In the following sections, we review some basic notions of dynamical system the­

ory.
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1.2 Dissipative semiflows. Attractors

Many physical, chemical and biological effects, such as fluid viscosity, diffusion and
protein degradation, lead to an energy dissipation. The concept of a dissipative sys­
tem is a mathematical formalization of phenomena that we observe in systems with
dissipation.

In dissipative systems,we often observe a typical picture of global semiflow trajec­
tories in the phase space B, when a “small” set attracts all trajectories of the semiflow.
To formulate it in more precise mathematical words, we introduce different concepts
of “attraction.” Let us consider a global semiflow St on X. A trajectory x(t) of x is the
map t : [0,+∞) → X defined by x(t) = Stx, and a trajectory of a set B is the map
defined by StB, where St B denotes the image of B under action of the semiflow at the
time moment t. The positive orbit of the set B is the union of all StB with t > 0, and
the orbit of B is the union of StB over all t ∈ R.

A set I is positively invariant if St I = I [102] for all t ≥ 0. A set I is invariant if
StI = I for all t (of course, then St is a flow or I trajectories of St can be defined for all
t < 0).

Definition 1.1. A set A ⊂ X attracts a set B if

lim
t→+∞distX (S

tB, A) = 0, (1.17)

where the dist(B, A) denotes the distance between sets B, A in the norm of X:

dist
X
(B, A) = sup

x∈B
inf
y∈A

‖x − y‖X .

A set A attracts a point x if (1.17) holds with B = {x}.
Definition 1.2. We say that the global semiflow St is point dissipative if there is a
bounded set D that attracts each point of X.

Definition 1.3. We say that the global semiflow St is dissipative if there is a bounded
absorbing set A attracting each bounded subset of X.

The following fundamental concept is that of the attractor. There is a large variation in
attractor definitions. We shall use the following definition which is popular in mathe­
matical physics [102] (see also [18, 101, 155]).

Definition 1.4. We say that the setA is a compact global attractor of the semiflow St

if this set is compact, invariant under St and attracts each bounded subset of X.

Remark. Other main definition variants are as follows. We can require that an attrac­
tor attracts each point of X. Such an attractor is, in general, a subset of the global at­
tractor. For example, in the gradient systems, the global attractor contains not only all
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stable stationary solutions (equilibria), saddle solutions, but even repellers, and sta­
ble and unstable manifolds connecting different equilibria. Physically, the unstable
connecting manifolds can be interpreted as transient regimes. The attractor, which
attracts all points, does not contain unstable manifolds. An interesting definition is
given by J. Milnor [186]. Let us assume that the phase space X is enabled by a mea­
sure μ. Then, the Milnor attractor is a set A such that the basin of attraction B(A),
consisting of all points whose orbits converge towards A, has a strictly positive mea­
sure. Moreover, for any closed proper subset A′ ⊂ A, the set difference B(A)− B(A′)
also has a strictly positive measure.

The Milnor attractor does not contain saddle invariant sets, repellers and unstable
manifolds. The statistical attractor was suggested by Yu. Ilyashenko [130].

The existence of global attractors canbe established for large classes of dynamical
systems. The following result is essentially due to V. Pliss [208], see also [102]:

Theorem 1.5. If St is a point dissipative global semiflow on locally compact metric
space X, then St has a compact global attractorA.
During 1970–1980, it was understood that many parabolic partial differential equa­
tions (PDE), hyperbolic PDEs with dissipative terms and systems of PDEs generate
semiflowswith global attractors. Often, these attractors are not only compact, but also
have finite Hausdorff and fractal dimensions [101, 102, 129, 155, 265]. The main phys­
ical reason beyond attractor existence is that many dissipative semiflows, defined by
PDEs, are determined by a few main modes. The first work, where this fundamental
concept was realized by a rigorous mathematical method for the Navier–Stokes equa­
tions, is [77]. We state these ideas in the following section.

1.3 Invariant manifolds and slaving principle

The following principle plays a central role in the investigation of many dissipative
systems. Following H. Haken [100], we call it the slaving principle: under some natu­
ral conditions, dynamics of fast modes is captured completely by dynamics of slow
modes. The mathematical formalization of this nonrigorous assertion is connected
with concepts of the invariant manifold, center manifold and slow manifold [50, 72,
108, 135, 208, 228, 232, 265].

To illustrate these ideas, let us consider a system where all variables u can be
decomposed in a finite number of slowmodes q and fast modes w. The fast mode can
contain an infinite number of components, i. e. lies in a Banach or Hilbert space. The
following system can be considered as a simple example:

qt = ϵQ(q, w) (1.18)
wt = Aw + F(q), (1.19)
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where q ∈ Rn, Q and F are sufficiently smooth maps, A is a self-adjoint operator,
w ∈ B, where B is a Banach phase space and ϵ is a small positive parameter. Let us
assume that A is negatively defined, i. e. the spectrum of the operator A lies in the
negative half plane and is separated by a barrier away from the imaginary axe:

Re SpecA < −b0 . (1.20)

We suppose that this barrier b0 > 0 is independent of the small parameter ϵ. This
barrier property leads to the following estimate

‖ exp(At)w‖ ≤ C exp(−b0t)‖w‖, C > 0. (1.21)

We can then present solutions of (1.19) as follows:

w(t) = exp(At)w(0) +
t∫
0

exp(A(t − s))F(q(s))ds. (1.22)

To explain the main idea, let us assume, temporarily, that q(s) in F in the right-hand
side of (1.19) does not depend on s. Then, in (1.22), F(q(s)) = F(q) is a constant, the
integral in (1.22) can be computed and we obtain

w(t) = exp(−At)(w(0) + A−1F(q)) − A−1F(q). (1.23)

We see that for large times t >> b−10 and small ϵ, the fast component w is a function
of the slow mode q:

was(t) = W(q) = −A−1F(q(ϵt)). (1.24)

For small ϵ, this relation gives a good approximation for w that works for large
times. One can expect that the precision of this formula is O(ϵ). The function was
depends on t via q(ϵt) and it is a slow time function.

Let us give some formal definitions. We say that a global semiflow St in a Banach
space B has a finite dimensional positively invariant manifoldM ifM is a manifold
and it is a positively invariant set, i. e. StM = M for each t ≥ 0. This means that
the invariant manifold consists of semiorbits. We will consider invariant manifolds
embedded in B by maps, i. e. they are graphs of sufficiently smooth maps:

M= {u = (q, w) : w = W(q), q ∈ U ⊂ Rn},

where W ∈ Cr(U, B) is a Cr smooth map from U to B, and U is an open connected
domain inRn with a smooth boundary. Sometimes, it is difficult to obtain an invariant
manifold, however, we can construct a locally invariant one.

We say that a global semiflow St in a Banach space B has a finite dimensional
locally invariant manifoldM ifM is a finite dimensional manifold and if u0 ∈ M,
and then for some τ0 > 0, u(t, u0) = Stu0 ∈M for t ∈ [0, τ0), i. e. a part of the orbit
of u0 lies inM.
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The manifold is locally attractive if there is an open neighborhood U of this man­
ifold such that the manifold attracts all bounded sets B0 ⊂ U (Definition 1.1). Some­
times, one can prove the existence of so-called an inertial manifold which attracts all
bounded sets [50, 170, 265]. The existence of a smooth finite dimensional inertialman­
ifoldmeans that the global semiflow can be completely reduced to a semiflow defined
by a finite dimensional system of differential equations. If system (1.18), (1.19) has an
inertial manifoldMI with equation w = W(q), this means that for large times, dy­
namics of this system can be described by a finite dimensional system of differential
equations

qt = ϵQ(q, W(q)) = ϵQ̄(q). (1.25)

This reduction can be considered as a mathematical formalization of the intuitive
slaving principle. In this case, the global attractor exists, has a finite dimension d ≤
dim q = n), and all attractors of semiflow (1.18), (1.19) lie onMI . However, condi­
tions that guarantee an inertial manifold existence are restrictive [50, 170, 265]. We
can, however, find inertial manifolds with delay [61] that exist under essentially less
restrictive conditions. Here, the reduced dynamics is defined by differential equations
with a delay.

There are two main methods that allow us to prove invariant manifold existence:
the Hadamardgraph transformmethod and the Lyapunov–Perronmethod [108]. Both
methods are based on the contracting map principle. In Section 3.5, one can find ex­
amples of theorems on invariant manifold existence.

1.4 Relatively simple behavior: gradient systems

Let us consider the initial boundary value problem (IBVP) defined by (1.7), (1.8) and
(1.9). Our goal is to study the large time behavior of the trajectories. However, it is a
difficult problem, especially for a more general situation, where u is a vector valued
function andwe are dealingwith a system of quasilinear parabolic PDEs of the second
order.

In the next two sections, we consider some cases where one can obtain qualita­
tive information on the large time behavior of a semiflow. Consider reaction-diffusion
equations

ut = ϵ2Δu + f(x, u), (1.26)

initial and boundary conditions are (1.8), (1.9). These equations have a number of
applications, for example, in population dynamics, chemistry, liquid crystals, phase
transitions and others [100, 108, 193, 196]. Let us assume that f ∈ C1 satisfies a sign
condition, for example, f(x, u)u < 0 for sufficiently large |u|. Then, solutions of (1.26)
are a priori bounded due to the maximum principle [258] and we conclude that IBVP
(1.26),(1.8) and (1.9) define a global semiflow St on B = Lp(Ω)with p > d, d = dim Ω
[108].



�

�

Sergey Vakulenko: Complexity and Evolution of Dissipative Systems — 2013/9/23 — 12:08 — page 8
�

�

�

�

�

�

8 | 1 Introduction

This system belongs to the class of gradient systems. Indeed, let us define a func­
tional V[u]

V =
∫
Ω

(
ϵ2(∇u)2

2
+ Φ(x, u)

)
dx, (1.27)

where Φu = f(x, u) is an antiderivative of f with respect to u. Equation (1.26) implies

dV
dt

= − 1
2

∫
Ω

u2t dx ≤ 0 (1.28)

along the trajectories u(x, t) of the semiflow St. Therefore, the Lyapunov functional
V[u(t)] decreases along trajectories of St, which are not equilibria. Since V is con­
tinuous on Bα and the orbits are relatively compact sets, V is a constant function on
ω-limit sets. Theω-limit set is invariant, and therefore it can only contain equilibrium
solutions [211]. We denote by Ef the set of all equilibria. There are two main possible
cases when all trajectories are convergent to equilibria. Let us formulate the remark­
able theorem of Simon [252].

Theorem 1.6. Assume f : Ω̄ × R → R is continuous and real analytic in u. Then, any
bounded solution of IBVP (1.9),(1.26) converges to an equilibrium of (1.9),(1.26).

The proof uses the Lojasiewicz inequality for analytic functions (for an outline of this
proof, see [211]).

An important case is when all equilibria are hyperbolic. Thismeans the following.
Assume ueq(x) = U is an equilibrium, i. e. a stationary solution of (1.26), (1.9). Let us
introduce a linearized evolution equation

vt = ϵ2Δv + fu(x, U)v = LUv. (1.29)

Assume that the spectrum of LU has no intersections with the imaginary axis, i. e.
the exponential dichotomy property [54] holds. Then, we say that U is a hyperbolic
equilibrium (for more details about hyperbolic equilibria and sets, see Section 1.6.2
and [135, 197, 228]). Results on invariant manifolds show then that with each hyper­
bolic equilibrium,we can associate two smoothmanifolds, namely, the unstableman­
ifoldMu(U) and the stablemanifoldMs(U). Locally, they are close to the correspond­
ing linear subspacesLu andLu.

It is difficult to check this hyperbolicity property, in particular, for multidimen­
sional problems DimΩ > 1. However, if the nonlinear term f is not analytic, we
can obtain the important result (Brunovský–Polácik [41]), which shows that, in a
sense, almost all reaction-diffusion equations generate a “simple” behavior. Before
formulation, let us remember the notion of the Morse–Smale system. Finite dimen­
sional Morse–Smale systems play an important role in dynamical system theory as
an example of systems with a simple behavior [128, 135, 197, 228, 232, 254]. Systems
with a “complicated” behavior can be obtained as perturbations of Morse–Smale
systems [128]. This strategy will be used in this book.
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We say that a dynamical system isMorse–Smale if
(i) there are only a finite number of equilibria, each is hyperbolic with smooth stable

and unstable manifolds,
(ii) there are only a finite number of periodical orbits, each is hyperbolic with smooth

stable and unstable manifolds,
(iii) stable and unstable manifolds of equilibria and periodical orbits intersect trans­

versely;
(iv) the union of equilibria and periodical orbits coincides with the nonwandering set

NW(St).

Let us remember that the nonwandering set is defined as a set NW of points x ∈ B
such that for each neighborhood V of x, and for each t0, there exists a t > t0 such that
StV ∩ V is not empty.

The Brunovský–Polácik theorem can be formulated as follows.

Theorem 1.7. There is a residual setR ⊂ C∞(Ω ×U,R) of functions f such that, for
every f , system (1.26) is Morse–Smale, that is, each element of the equilibrium set Ef is
hyperbolic and the corresponding stable and unstablemanifolds intersect transversally.

Recall that the residual set in a topological space X is the complement of a set, which
is a countable union of nowhere dense sets.

In the one-dimensional case when x ∈ [0, π], we can apply arguments of Stur­
m–Liouville type that allows us to verify hyperbolicity.

As an example, let us consider the following Chaffee–Infante problem:

ut = uxx + af(u), x ∈ [0, π] (1.30)
u(0, t) = u(π, t) = 0, (1.31)

where a > 0 is a parameter, f ∈ C2 is a nonlinear function satisfying some conditions
(that hold for the important cases f = u − u3, f = sin u). Such a problem appears
inmany applications, in particular, in nematic liquid crystals, morphogenesis theory,
and Euler’s rod problem. In nematic liquid crystals, this problem describes the so-
called Frederiks transition. Under some natural conditions to f problem (1.30), (1.31)
defines an infinite dimensionalMorse–Smale system. The semiflow, defined by prob­
lem (1.30), (1.31), has no periodic orbits since this semiflow has a Lyapunov function.
The global attractor is a union of equilibria and some manifolds. Only a single equi­
librium U0 is stable. For a < ac, where ac is a critical value, this stationary solution
is trivial: U0 ≡ 0. For a > ac, it is a nontrivial solution without zero in (0, π) (this
bifurcation at a = ac corresponds to the Frederiks transition in nematic crystals).

Unstable equilibria u(n)(x) have zeroes inside (0, π) and describe oscillating in x
periodical patterns. Thenumber of zeroes gives us the dimension of the corresponding
unstable manifoldMu(u(n)) = Wn. The global attractor is defined by the formula
A= 
nWn, i. e. the attractor is a union of unstable manifolds of all the equilibria.
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In a similar way, we also investigate the Neumann case, where ux(x, t)|x=0,π = 0.
Here, stable equilibria are constants C such that f(C) = 0 and f ′(C) < 0, and these
solutions have no zeroes.

For (1.30), (1.31), the stationary solutions (patterns) can be described analytically
in two cases: a ≈ ac and a = ϵ−2 >> 1, where ϵ is a small parameter.

This example shows that the attractor complexity increases in a (or, that is, equiv­
alent, in ϵ−1). Indeed, the number of equilibria grows as a function of the parameter a
and the dimension N(ϵ) of the invariant manifolds also goes to∞ as ϵ → 0.

Let us consider an important system of coupled oscillators which can also gener­
ate a gradient semiflow with a Lyapunov function. This system has the form

dqi
dt

=
m∑
j=1
Kijσ(qj)− bqi + θi , i = 1, . . . m (1.32)

where q = (q1 , q2 , . . . , qm) ∈ Rm, m > 0 is the number of oscillators (neurons), K is
a matrix that determines neuron interaction (synaptic matrix), the terms−bqi with a
parameter b > 0 define a dissipative force, and θi ∈ C0 are constant external forces
(thresholds). Function σ(z) ∈ C1(R) satisfies limz→+∞ σ(z) = 1, limz→−∞ σ(z) = 0.
System (1.32) defines the famous Hopfield model [118], basic for the theory of attractor
neural networks. If b > 0, equations (1.32) generate a global dissipative semiflow.

If σ′(z) > 0 and K is symmetric, then dynamics (1.32) is gradient. In this case,
existence of an “energy” (Lyapunov function) can be applied for neural computa­
tions [118]. For nonsymmetric K, we can observe some nontrivial dynamical effects
(Chapter 1).

1.5 Monotone systems

For general quasilinear parabolic IBVP (1.7)–(1.9), the Lyapunov function does not
exist. However, the corresponding semiflows have a remarkable property: they are
monotone. This property restricts the trajectory behavior and gives us information
about the large time dynamics. An abstract theory of monotone flows started with
the seminal works of M. Hirsch [111, 112], and now it is the well-developed [113, 114,
256, 266]. Here, we outline this theory following [211]. Monotone systems exhibit, in a
sense, a relatively simple behavior.

Assume (1.7),(1.9) defines a semiflow in an appropriate Banach space B. The
monotonicity of this semiflow is a consequence of the well-known comparison princi-
ple [258].

Lemma 1.8 (Comparison principle). Assume for initial data ϕ, ϕ ∈ Bα the following
inequality is fulfilled:

ϕ(x) ≤ ϕ+(x) x ∈ Ω.
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Then, the corresponding solutions of (1.7), (1.9) satisfy the same inequality for all t > 0:

u(x, t, ϕ) ≤ u(x, t, ϕ+) x ∈ Ω, t > 0.

To formulate an analogue of this principle for abstract semiflows in a Banach
space Y, we use the notion of an ordered cone. A cone Y+ is an ordered cone if it is
a closed convex cone with nonempty interior int Y+ such that the intersection of Y+

and−Y+ is the singleton {0}. Then, we can introduce the following relations between
elements of Y:

x ≤ y if y − x ∈ Y+,
x < y if x ≤ y and y �= x,
x� y if y − x ∈ int Y+ .

A mapping F : D(F) ⊂ Y → Y, where Y is an ordered Banach space, is said to be
monotone if x, y ∈ D(F) and x ≤ y imply F(x) ≤ F(y). It is called strongly monotone
if x, y ∈ D(F) and x < y imply F(x) << F(y). A semiflow St is monotone if F = St is
a monotone mapping for each t > 0 (similarly, it is strongly monotone if St is strongly
monotone for each t > 0).

We say that a point x ∈ B is quasiconvergent relative to a semiflow if the corre­
sponding orbit is relatively compact and the ω -limit set of this orbit consists of equi­
libria. Let us formulate the fundamental theorem by M. W. Hirsch [112].

Theorem 1.9. Let S be a compact strongly monotone semiflow on Y. Let D be an open
set such that the corresponding orbit

O(SδD) = {StD : t ≥ δ}

is bounded. Then, the set of quasiconvergent points contains an open and dense subset
of D.

So, we can expect that, in a sense, almost all trajectories converge to equilibria.
For quasilinear problems (1.7)–(1.9) in the one-dimensional case x ∈ Ω =

[a, b] ⊂ R, we have the following theorem first established by T. Zelenyak [329]
(see an overview in [211]). Here, Y = B = Lp(Ω) with an appropriate p.
Theorem 1.10. Assume that f satisfies the following conditions:
(N1) For some integer m ≥ 0, f : (x, u,∇u)→ f(x, u,∇u) is continuous in x, u, ξ = ∇u

with all partial derivatives with respect to (u, ξ) up to order m;
(N2) If m = 0, f is locally Lipschitz continuous in (x, ξ);

Let u(t, ϕ(·)) be any solution of (1.7), (1.9) that is globally defined and bounded in Bα.
Then, there is an equilibrium solution v(x) of (1.7), (1.9) such that

‖u(t, ϕ(·))− v‖ → 0 as t →∞.
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This means that dynamics in one space dimension are always relatively simple: each
trajectory is convergent.

In the multidimensional case dimΩ > 1, this theorem is invalid. For the plane
case dimΩ = 2, one can construct an example of chaotic dynamics, but the dynamics
can be realized on unstable invariant manifolds [55, 212–214]. However, this chaos is
unstable and numerically nonrealizable.

Examples of monotone dynamics can be given by so-called competitive and coop­
erative systemswhichare important for biological andecological applications. System

dXi
dt

= Fi(X)

is said to be cooperative [112, 114] if

∂Fi
∂xj

≥ 0 for all j �= i. (1.33)

For more information regarding competitive systems, see Subsection 3.4.4. Under
some mild restrictions, almost all trajectories of cooperative systems are convergent
(if they are bounded) [112, 114]. For example, the dynamics of the Hopfield system is
cooperative if Kij > 0 for i �= j. Many results for reaction-diffusion equations can be
extended to monotone systems of reaction-diffusion equations [310, 311, 313].

1.6 Complicated large time behavior

1.6.1 General facts and ideas

Naturally, we would like to have a description of large time behavior for semiflows
generated by fundamental PDEs and systems of PDEs. Theorems 1.7 and 1.10 show
that the large time behavior of semiflows induced by reaction-diffusionequations and
quasilinear parabolic equationsof the secondorder are relatively simple.Wehavehere
an analogue of the Poincaré–Bendixon theory, which shows that for flows defined by
systems of two ordinary differential equations on a compact smooth manifold, the
ω-limit sets consist of equilibria and limit cycles.

In many applications for physics, biology, ecology and chemistry, we are dealing
with a system of reaction-diffusion equations of the form

∂ui
∂t

= diΔui + fi(x, u), (1.34)

under the following boundary and initial conditions

∇ui(x, t) · n = 0, (x ∈ ∂Ω), (1.35)
ui(x, 0) = u0i (x), (1.36)
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where u = (u1, . . . , um), x ∈ Ω and fi ∈ C1(Ω×R), n(x) is an outward normal vector
to the boundary ∂Ω at x. Semiflows, defined by IBVP (1.34), (1.35), (1.36), in general,
are not monotone or gradient. For such systems, we can use a general theory of at­
tractors of infinite dimensional dissipative systems developed by many works [18, 50,
101, 108, 128, 155, 265]. Under some conditions, initial boundary value problems (1.34),
(1.35) and (1.36) generate a global semiflow possessing a compact global attractor of
finite Hausdorff dimension. However, for applications, it would be interesting to un­
derstand theattractor structure. Thesegeneral results only show that ifwefix thenorm
of f (|f |C1 < C), then upper estimates of the attractor dimension dimHA < g(d̄) are
defined by functions increasing in d̄ = mini di. Therefore, to obtain a complicated at­
tractor, we should investigate systems where some diffusion coefficients di are small,
thus presenting a hard problem. In order to explain the strategy of this investigation,
we shall review some fundamental concepts of the finite dimensional dynamical sys­
tem theory.

Let us consider a system of ordinary differential equations

dui
dt = gi(u), f ∈ C1(M) (1.37)

where u lies in the n-dimensional smooth compactmanifoldM (say, a torusM= Tn)
or in a ball Bn ⊂ Rn (in the second case, the field g should be directed inward on the
boundary). These equations define a dynamical system (a global flow) for the case of
the manifold and a global semiflow for the case Bn (or a compact smooth manifold
with a smooth boundary).

The fundamental concept of structural stability was introduced by A. Andronov
and L. Pontryagin in 1937. Roughly speaking, this stability means that small perturba­
tions of a structurally stable (robust) dynamical system does not change the topolog­
ical structure of the system trajectories.

Definition 1.11. We say that a dynamical system St on X is equivalent to a dynamical
system Tt on Y if there is a homeomorphism h: X → Y which preserves orbits and the
sense of direction in time.

Remark. Onecanuse less restrictivedefinitionswhen h is a homeomorphismconnect­
ing the corresponding attractors or the corresponding nonwandering sets, or neigh­
borhoods of the attractors. We also can restrict h to some invariant sets (definitions
and an interesting discussion can be found in [197]).

Definition 1.12. We say that a dynamical system St on a compact smooth manifoldM
defined by (1.37) is structurally stable if each perturbed field g + g̃ such that

|̃g|C1M < ϵ

generates a dynamics that is equivalent to St if ϵ > 0 is small enough.
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For two-dimensional fields, we have two fundamental theorems of Peixoto [128].

Theorem 1.13. A vector field on a two-dimensional smooth compact manifold (a sur­
face) is structurally stable if and only if this field is Morse–Smale.

Theorem 1.14. For any integer r ≥ 1, the set of the Morse–Smale fields of class Cr is
open and dense in the set of all Cr vector fields.

So, the case n = 2 is relatively simple, however, for n > 2, formidable difficul­
ties appear. It is impossible to find a classification, up to homeomorphisms, of fi­
nite dimensional dynamical systems. This fact follows from the next theorems due
to S. Smale.

Theorem 1.15. There is a structurally stable system that is not Morse–Smale.

Theorem 1.16. The set of structurally stable fields of class Cr is not open and dense in
the set of all Cr vector fields if dimM > 3.

Therefore, it is impossible to construct a general theory even for the finite dimen­
sional case. In this case, one can use the following strategies. We can study some sys­
tems where dynamics are well-understood, for example, systems with hyperbolic dy­
namics (for a definition and examples of hyperbolic sets, see above, and [135, 197,
228]). Some particular cases such as the Lorenz and Rössler systems, the Smale horse­
shoe and others are well-studied. We can also investigate small perturbations of the
Morse–Smale systems and bifurcations in such systems [128].

For neural, genetical networks and reaction-diffusion systems, we apply the fol­
lowing strategy. The main technical tools are the slaving principle and a special
method (realization of vector fields, or, briefly, RVF, see Section 2.1) [55, 211–214]. We
find that, under a special choice of these system parameters, the corresponding dy­
namics can be decomposed in slow and fast variables, and it can be reduced to a finite
low dimensional dynamics by the slaving principle. For some fundamental systems,
we can show that this reduced low dimensional dynamics take practically any form
when we vary some system parameters.

Let us outline here two examples of this strategy. The first example [217] shows
that dynamics of some exceptional parabolic equations (1.7) is complicated:

Theorem 1.17. Let us consider systems (1.7), (1.9) in the Sobolev space W1,q for an ap­
propriate q > dimΩ, where f is a C1-function. For any given n dimensional ODE (1.37)
with g ∈ C1(Rn), there is a parabolic equation with a center manifold on which the flow
contains the flow of the ODE (1.37).

Such systems have specific forms since, according to Theorem 1.7, a generic qua-
silinear parabolic equation (1.7) has “simple” dynamics. Moreover, this realization of
(1.37) uses a unstable center manifold, and, therefore, this realization is also unstable:
if our initial data lie outside this manifold, the corresponding trajectory is convergent


