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Preface

Recent advances in the experimental and theoretical description of light 
and ultrasonic waves scattering in media with hard and soft nano non-
uniformities (objects with nanometer dimensions) are considered here. 
Described results are important for the perfection of the fast in-line 
control of the industrial processes, medical diagnostics, biological stud-
ies, construction of quantum information devices and environmental 
monitoring.

The development of the theory described in this book would be im-
possible without experimental results of graduate students B. Anderson, 
S. Smith, G. Mitchell, M. Hamad, and S. Ziegler under the supervision 
of Professor L. Burgess at the University of Washington Chemistry 
Department.

The central results in ultrasonic diffraction spectroscopy of  media 
with nanoparticles were received and described in articles by Professor 
M. Stautberg Greenwood at Pacific Northwest National Laboratory 
and her coauthors, including the author of  this book, who proposed the 
 described theory of  the corresponding effects.

For help in the difficult work of the preparation of the manuscript the 
author is obliged to J. Forster, S. Brodsky, and M. Oakley.

Seattle, August 2011 Anatol M. Brodsky
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1  Introduction

Coherence effects in the propagation of optical and other classical and 
quantum waves in nonuniform on molecular and mesascopic scales media 
have attracted a great deal of attention during the past 20 years. Because 
both constructive and destructive interference of multiple scattered 
waves can occur in such media, a variety of peculiar effects, including 
fluctuational waveguiding and wave localization, can take place. The con-
sequences of such effects in random systems and especially in media with 
randomly distributed nanononuniformities (nonuniformities with nano-
meter dimensions) are qualitatively different from those occurring in wave 
scattering in uniform media. The propagation of electromagnetic waves 
in random structures had traditionally been described using a photon dif-
fusion model. In typical diffusion models it is assumed that the phase 
information is partly or completely lost after a finite number of scatter-
ing events, as described by the transport mean free path, lmp, which is the 
distance electromagnetic waves travel in the medium before their phase 
characteristics are randomized and photon diffusion approximation can 
be applied. However, phase effects can in fact survive in random media 
after multiple light-scattering events at relatively long distances and can 
lead to nontrivial phenomena not predicted in the framework of diffusion 
theory. A possibility of manifestation of such phase-dependent interfer-
ence effects in multiscattering media was suggested in pioneering works 
by Watson [1] and remains a subject of great interest [2–17].

The realization of  such effects in optics was first experimentally con-
firmed in 1984 by Kuga and Ishimaru [4] and in 1985 in the works by 
Van Albada and Langedijk and Wolf  and Maret [5,6]. In these experi-
ments the characteristics of  the back-scattered light were measured using 
incoherent intensity detection methods. Our study of  the coherence 
loss in backscattered light in nanononuniformation media described in 
Chapters 2 and 3 can be considered as a further advancement of  the 
previously mentioned works using coherent signal detection. Coherence 
effects are especially important in the study of  media with both ran-
domly and regularly distributed nanoparticles.


