










Preface

This book is a collection of the lectures I have given on algebraic graph theory. These
lectures were designed for mathematics students in a Master’s program, but they may
also be of interest to undergraduates in the final year of a Bachelor’s curriculum.

The lectures cover topics which can be used as starting points for a Master’s or
Bachelor’s thesis. Some questions raised in the text could even be suitable as sub-
jects of doctoral dissertations. The advantage afforded by the field of algebraic graph
theory is that it allows many questions to be understood from a general mathematical
background and tackled almost immediately.

In fact, my lectures have also been attended by graduate students in informatics with
a minor in mathematics. In computer science and informatics, many of the concepts
associated with graphs play an important role as structuring tools – they enable us to
model a wide variety of different systems, such as the structure of physical networks
(of roads, computers, telephones etc.) as well as abstract data structures (e.g. lists,
stacks, trees); functional and object oriented programming are also based on graphs
as a means of describing discrete entities. In addition, category theory is gaining more
and more importance in informatics; therefore, these lectures also include a basic and
concrete introduction to categories, with numerous examples and applications.

I gave the lectures first at the University of Bielefeld and then, in various incar-
nations, at the Carl von Ossietzky Universität Oldenburg. They were sometimes pre-
sented in English and in several other countries, including Thailand and New Zealand.

Selection of topics

The choice of topics is in part standard, but it also reflects my personal preferences.
Many students seem to have found the chosen topics engaging, as well as helpful and
useful in getting started on thesis research at various levels.

To mark the possibilities for further research, I have inserted many “Questions”, as
well as “Exercises” that lead to illuminating examples. Theorems for which I do not
give proofs are sometimes titled “Exerceorem”, to stress their role in the development
of the subject. I have also inserted some “Projects”, which are designed as exercises
to guide the reader in beginning their own research on the topic. I have not, however,
lost any sleep over whether to call each result a theorem, proposition, exerceorem,
or something else, so readers should neither deduce too much from the title given
to a result nor be unduly disturbed by any inconsistencies they may discover – this
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beautiful English sentence I have adopted from the introduction of John Howie’s An
Introduction to Semigroup Theory, published by Academic Press in 1976.

Homomorphisms, especially endomorphisms, form a common thread throughout
the book; you will meet this concept in almost all the chapters. Another focal point is
the standard part of algebraic graph theory dealing with matrices and eigenvalues. In
some parts of the book the presentation will be rather formal; my experience is that
this can be very helpful to students in a field where concepts are often presented in an
informal verbal manner and with varying terminology.

Content of the chapters

We begin, in Chapter 1, with basic definitions, concepts and results. This chapter is
very important, as standard terminology is far from being established in graph theory.
One reason for this is that graph models are so extremely useful in a great number of
applications in diverse fields. Many of the modelers are not mathematicians and have
developed their own terminology and results, without necessarily caring much about
existing theory. Chapter 1 contains some new variants of results on graph homomor-
phisms and the relations among them, connecting them, in turn, to the combinatorial
structure of the graph.

Chapter 2 makes connections to linear algebra by discussing the different matrices
associated to graphs. We then proceed to the characteristic polynomial and eigenval-
ues, topics that will be encountered again in Chapters 5 and 8. There is no intention
to be complete, and the content of this chapter is presented at a relatively elementary
level.

In Chapter 3 we introduce some basic concepts from category theory, focusing on
what will be helpful for a better understanding of graph concepts.

In Chapter 4 we look at graphs and their homomorphisms, in particular binary
operations such as unions, amalgams, products and tensor products; for the latter two
operations I use the illustrative names cross product and box product. It turns out
that, except for the lexicographic products and the corona, all of these operations
have a category-theoretical meaning. Moreover, adjointness leads to so-called Mor
constructions; some of the ones presented in this chapter are new, as far as I know,
and I call them diamond and power products.

In Chapter 5 we focus on unary operations such as the total graph, the tree graph
and, principally, line graphs. Line graphs are dealt with in some detail; in particular,
their spectra are discussed. Possible functorial properties are left for further investi-
gation.

In Chapter 6, the fruitful notion of duality, known from and used in linear algebra,
is illustrated with the so-called cycle and cocycle spaces. We then apply the concepts
to derive Kirchhoff’s laws and to “square the rectangle”. The chapter finishes with a
short survey of applications to transportation networks.



Preface vii

Chapter 7 discusses several connections between graphs and groups and, more gen-
erally, semigroups or monoids. We start with Cayley graphs and Frucht-type results,
which are also generalized to monoids. We give results relating the groups to combi-
natorial properties of the graph as well as to algebraic aspects of the graph.

In Chapter 8 we continue the investigation of eigenvalues and the characteristic
polynomial begun in Chapters 2 and 5. Here we present more of the standard results.
Many of the proofs in this chapter are omitted, and sometimes we mention only the
idea of the proof.

In Chapter 9 we present some results on endomorphism monoids of graphs. We
study von Neumann regularity of endomorphisms of bipartite graphs, locally strong
endomorphisms of paths, and strong monoids of arbitrary graphs. The chapter in-
cludes a fairly complete analysis of the strong monoid, with the help of lexicographic
products on the graph side and wreath products on the monoid side.

In Chapter 10 we discuss unretractivities, i.e. under what conditions on the graph
do its different endomorphism sets coincide? We also investigate questions such as
how the monoids of composed graphs (e.g. product graphs) relate to algebraic com-
positions (e.g. products) of the monoids of the components. This type of question can
be interpreted as follows: when is the formation of the monoid product-preserving?

In Chapter 11 we come back to the formation of Cayley graphs of a group or semi-
group. This procedure can be considered as a functor. As a side line, we investigate
(in Section 11.2) preservation and reflection properties of the Cayley functor. This
is applied to Cayley graphs of right and left groups and is used to characterize Cay-
ley graphs of certain completely regular semigroups and strong semilattices of semi-
groups.

In Chapter 12 we resume the investigation of transitivity questions from Chapter 8
for Cayley graphs of strong semilattices of semigroups, which may be groups or right
or left groups. We start with Aut- and ColAut-vertex transitivities and finish with
endomorphism vertex transitivity. Detailed examples are used to illustrate the results
and open problems.

Chapter 13 considers a more topological question: what are planar semigroups?
This concerns extending the notion of planarity from groups to semigroups. We
choose semigroups that are close to groups, i.e. which are unions of groups with some
additional properties. So we investigate right groups and Clifford semigroups, which
were introduced in Chapter 9. We note that the more topological questions about
planarity, embeddings on surfaces of higher genus or colorings are touched on only
briefly in this book. We use some of the results in certain places where they relate
to algebraic analysis of graphs – the main instances are planarity in Section 6.4 and
Chapter 13, and the chromatic number in Chapter 7 and some other places.

Each chapter ends with a “Comments” section, which mentions open problems and
some ideas for further investigation at various levels of difficulty. I hope they will
stimulate the reader’s interest.
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How to use this book

The text is meant to provide a solid foundation for courses on algebraic graph theory.
It is highly self-contained, and includes a brief introduction to categories and functors
and even some aspects of semigroup theory.

Different courses can be taught based on this book. Some examples are listed be-
low. In each case, the prerequisites are some basic knowledge of linear algebra.

� Chapters 1 through 8 – a course covering mainly the matrix aspects of algebraic
graph theory.

� Chapters 1, 3, 4, 7 and 9 through 13 – a course focusing on the semigroup and
monoid aspects.

� A course skipping everything on categories, namely Chapter 3, the theorems in
Sections 4.1, 4.2, 4.3 and 4.6 (although the definitions and examples should be
retained) and Sections 11.1 through 11.2.

� Complementary to the preceding option, it is also possible to use this text as a
short and concrete introduction to categories and functors, with many (some-
what unusual) examples from graph theory, by selecting exactly those parts
skipped above.

About the literature

The literature on graphs is enormous. In the bibliography at the end of the book, I
give a list of reference books and monographs, almost all on graphs, ordered chrono-
logically starting from 1936; it is by no means complete. As can be seen from the
list, a growing number of books on graph theory are published each year. Works from
this list are cited in the text by author name(s) and publication year enclosed in square
brackets.

Here I list some books, not all on graphs, which are particularly relevant to this
text; some of them are quite similar in content and are cited frequently.

� N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge
1996.

� M. Behzad, G. Chartrand, L. Lesniak-Forster, Graphs and Digraphs, Prindle,
Weber & Schmidt, Boston 1979. New (fifth) edition: G. Chartrand, L. Lesniak,
P. Zhang, Graphs and Digraphs, Chapman and Hall, London 2010.

� D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New
York 1979.

� C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York 2001.

� G. Hahn, G. Sabidussi (eds.), Graph Symmetry, Kluwer, Dordrecht 1997.
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� P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Ox-
ford 2004.

� H. Herrlich, G. Strecker, Category Theory, Allyn and Bacon, Boston 1973.
� W. Imrich, S. Klavžar, Product Graphs, Wiley, New York 2000.
� R. Kaschek, U. Knauer (eds.), Graph Asymmetries, Discrete Mathematics 309

(special issue) (2009) 5349–5424.
� M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, De Gruyter,

Berlin 2000.
� M. Petrich, N. Reilly, Completely Regular Semigroups, Wiley, New York 1999.
� D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River,

NJ 2001.

Papers, theses, book chapters and other references are given in the text where they are
used.
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Chapter 1

Directed and undirected graphs

In this chapter we collect some important basic concepts. These concepts are essential
for all mathematical modeling based on graphs. The language and visual representa-
tions of graphs are such powerful tools that graph models can be encountered almost
everywhere in mathematics and informatics, as well as in many other fields.

The most obvious phenomena that can be modeled by graphs are binary relations.
Moreover, graphs and relations between objects in a formal sense can be considered
the same. The concepts of graph theory also play a key role in the language of category
theory, where we consider objects and morphisms.

It is not necessary to read this chapter first. A reader who is already familiar with
the basic notions may just refer back to this chapter as needed for a review of the
notation and concepts.

1.1 Formal description of graphs

We shall use the word “graph” to refer to both directed and undirected graphs. Only
when discussing concepts or results that are specific to one of the two types of graph
we will use the corresponding adjective explicitly. An edge of a graph will be denoted
by .x; y/; this notation will also be used for directed graphs, whereas an edge in the
particular case of undirected graphs will be written as ¹x; yº.
Definition 1.1.1. A directed graph or digraph is a tripleG D .V;E; p/ where V and
E are sets and

p W E ! V 2

is a mapping. We call V the set of vertices or points and E the set of edges or arcs of
the graph, and we will sometimes write these sets as V.G/ and E.G/. The mapping
p is called the incidence mapping.

The mapping p defines two more mappings o; t W E ! V by .o.e/; t.e// WD p.e/;
these are also called incidence mappings. We call o.e/ the origin or source and t .e/
the tail or end of e.

As p defines the mappings o and t , these in turn define p by p.e/ WD .o.e/; t.e//.
We will mostly be using the first of the two alternatives

G D .V;E; p/ or G D .V;E; o; t/:
We say that the vertex v and the edge e are incident if v is the source or the tail

of e. The edges e and e0 are said to be incident if they have a common vertex.
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An undirected graph is a triple G D .V;E; p/ such that

p W E ! ¹V � V j 1 � jV j � 2º:

An edge e with o.e/ D t .e/ is called a loop. A graph G is said to be loopless if it
has no loops.

Let G D .V;E; o; t/ be a directed graph, let e be an edge, and let u D o.e/ and
v D t .e/; then we also write e W u ! v. The vertices of graphs are drawn as points
or circles; directed edges are arrows from one point to another, and undirected edges
are lines, or sometimes two-sided arrows, joining two points. The name of the vertex
or edge may be written in the circle or close to the point or edge.

Definition 1.1.2. Let G D .V;E; p/ be a graph. If p is injective, we call G a sim-
ple graph (or a graph without multiple edges). If p is not injective, we call G a
multigraph or multiple graph; sometimes the term pseudograph is used.

If G D .V;E; p/ is a simple graph, we can consider E as a subset of V 2, identify-
ing p.E/ with E. We then write G D .V;E/ or G D .VG ; EG/, and for the edge e
with p.e/ D .x; y/ we write .x; y/.

Simple graphs can now be defined as follows: a simple directed graph is a pair
G D .V;E/ with E � V 2 D V � V . Then we again call V the set of vertices and E
the set of edges.

A simple undirected graph is a simple directed graph G D .V;E/ such that

.x; y/ 2 E , .y; x/ 2 E:

The edge .x; y/ may also be written as ¹x; yº or xy.
Mappings w W E ! W or w W V ! W are called weight functions. Here W is

any set, called the set of weights, and w.x/ is called the weight of the edge x or of the
vertex x.

Definition 1.1.3. A path a from x to y or an x; y path in a graph G is a sequence
a D .e1; e2; : : : ; en/ of edges with o.e1/ D x, t .en/ D y and t .ei�1/ D o.ei / for
i D 2; : : : ; n. We write a W x ! y and call x the start (origin, source) and y the
end (tail, sink) of the path a. The sequence x0; : : : ; xn is called the trace of the path
a. The set ¹x0; : : : ; xnº of all vertices of the trace is called the support of the path a,
denoted by supp a.

A path is said to be simple if every vertex appears at most once on the path. A
path is said to be closed, or is called a cycle, if the start and end of the path coincide.
A simple closed path, i.e. a simple cycle, is called a circuit. The words (simple)
semipath, semicycle or semicircuit will be used if, in the sequence of edges, the tail
or origin of each edge equals the origin or tail of the next edge. This means that at
least two consecutive edges have opposite directions. The notions of trace and support
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remain unchanged. In a simple graph, every (semi)path is uniquely determined by its
trace. We can describe a path also by its vertices x0; : : : ; xn where .x0; x1/, : : : ,
.xn�1; xn/ are edges of the path. For undirected graphs, the notions of path and
semipath are identical.

For the sake of completeness we also mention the following definition: the trivial
x; x path is the path consisting only of the vertex x. It is also called a lazy path.

The reader should be aware that, in the literature, the words “cycle” and “circuit”
are often used in different ways by different authors.

Lemma 1.1.4. For x; y 2 G, every x; y path contains a simple x; y path. Every
cycle in G is the union of circuits.

Proof. Take x; y 2 G. Start on an x; y path from x and proceed until one vertex z
is met for the second time. If this does not happen, we already have a simple path;
otherwise, we have also traversed a circuit. Remove this circuit, together with all its
vertices but z, from the path. Continuing this procedure yields a simple x; y path. If
we start with a cycle, we remove one edge e D .y; x/, and this gives an x; y path.
Now collect the circuits as before. At the end we have a simple x; y path, which
together with e gives the last circuit.

Definition 1.1.5. Let G D .V;E/, and let a D .e1; : : : ; er/ be a path with ei 2 E.
Then `.a/ WD r is called the length of a.

We denote by F.x; y/ the set of all x; y paths in G. Then d.x; y/ WD min¹`.a/ j
a 2 F.x; y/º is called the distance from x to y.

We call diam.G/ WD maxx;y2G d.x; y/ the diameter ofG. The length of a shortest
cycle of G is called the girth of G. In German the figurative word Taillenweite,
meaning circumference of the waist, is used.

Remark 1.1.6. In connected, symmetric graphs the distance d W V � V ! RC
0 is

a metric, if we set d.x; x/ D 0 for all x 2 V . In this way, .V; d/ becomes a metric
space. If ¹`.a/ j a 2 F.x; y/º D ;, then d.x; y/ is not defined. Often one sets
d.x; y/ D1 in this case.

Definition 1.1.7. For a vertex x of a graph G, the outset of x is the set

out.x/ WD outG.x/ WD ¹e 2 E j o.e/ D xº:
The elements of

NC.x/ WD NC
G .x/ WD ¹t .e/ j e 2 outG.x/º

are called the successors of x in G. The outdegree of a vertex x is the number of
successors of x; that is,

 �
d .x/ D outdeg.x/ WD jout.x/j:
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Definition 1.1.8. The graph Gop WD .V;E; t; o/ is called the opposite graph to G.
The inset of a vertex x is the outset of x in the opposite graph Gop, so

in.x/ D inG.x/ WD outGop.x/ D ¹e 2 E j t .e/ D xº:

The elements of

N�.x/ WD N�
G .x/ WD NC

Gop.x/ WD ¹o.e/ j e 2 inG.x/º

are called predecessors of x in G. The indegree of a vertex x is the number of
predecessors of x; that is,

�!
d .x/ D indeg.x/ WD jin.x/j:

A vertex which is a successor or a predecessor of the vertex x is said to be adjacent
to x.

Definition 1.1.9. In an undirected graph G, a predecessor of a vertex x is at the
same time a successor of x. Therefore, in this case, in.x/ D out.x/ and N.x/ WD
NC.x/ D N�.x/. We call the elements of N.x/ the neighbors of x. Similarly,
indeg.x/ D outdeg.x/. The common value dG.x/ D d.x/ D deg.x/ is called the
degree of x in G.

An undirected graph is said to be regular or d -regular if all of its vertices have
degree d .

1.2 Connectedness and equivalence relations

Here we make precise some very natural concepts, in particular, how to reach certain
points from other points.

Definition 1.2.1. A directed graph G is said to be:

� weakly connected if for all x; y 2 V there exists a semipath from x to y;

� one-sided connected if for all x; y 2 V there exists a path from x to y or from
y to x;

� strongly connected if for all x; y 2 V there exists a path from x to y and from
y to x.

For undirected graphs, all of the above three concepts coincide. We then simply say
that the graph is connected; we shall also use this word as a common name for all
three concepts.

If G satisfies none of the above three conditions, it is said to be unconnected or
disconnected.
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Example 1.2.2. The following three graphs illustrate the three properties above, in
the order given.

�
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Definition 1.2.3. A connected graph is said to be n-vertex connected if at least n
vertices must be removed to obtain an unconnected graph. Analogously, one can
define n-edge connected graphs.

Remark 1.2.4. A binary relation on a set X is usually defined as a subset of the
Cartesian product X � X . This often bothers beginners, since it seems too simple a
definition to cover all the complicated relations in the real world that one might wish
to model. It is immediately clear, however, that every binary relation is a directed
graph and vice versa. This is one reason that much of the literature on binary relations
is actually about graphs. Arbitrary relations on a set can similarly be described by
multigraphs.

An equivalence relation on a setX , i.e. a reflexive, symmetric and transitive binary
relation in this setting, corresponds to a disjoint union of various graphs with loops
at every vertex (reflexivity) which are undirected (symmetry), and such that any two
vertices in each of the disjoint graphs are adjacent (transitivity). Note that the above-
mentioned disjoint union is due to the fact that an equivalence relation on a set X
provides a partition of the set X into disjoint subsets and vice versa.

1.3 Some special graphs

We now define some standard graphs. These come up everywhere, in virtually any
discussion about graphs, so will serve as useful examples and counterexamples.

Definition 1.3.1. In the complete graph K.l/
n with n vertices and l loops, where 0 �

l � n, any two vertices are adjacent and l of the vertices have a loop.

The totally disconnected or discrete graph K
.l/

n with n vertices and l loops has no
edges between distinct vertices and has loops at l vertices. If l D 0, we write Kn or
Kn.

A simple, undirected path with n edges is denoted by Pn.
An undirected circuit with n edges is denoted by Cn.
An r-partite graph admits a partition of the vertex set V into r disjoint subsets

V1; : : : ; Vr such that no two vertices in one subset are adjacent.
An r-partite graph is said to be complete r-partite if all pairs of vertices from

different subsets are adjacent. The complete bipartite graph with jV1j D m and jV2j D
n is denoted by Km;n; similarly for complete r-partite graphs.
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Example 1.3.2 (Some special graphs).

K1: K2: K3: K4:�
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K2;3:

� �

� �
�

�
�
�K

.2/
4 :

�
�
�	
	
	� �

� �

�

�

K4:

� �

� �
K

.2/

4 :

� �

� �

�

�

P2: � � � C3 D K3, C4 D K2;2:

� �

� �

Definition 1.3.3. A graph without (semi)circuits is called a forest. A connected forest
is called a tree of G. A connected graph G0 with the same vertex set as G is called a
spanning tree if it is a tree. If G is not connected, the union of spanning trees for the
components of G is called a spanning forest.

Theorem 1.3.4. Let G be a graph with n vertices. The following statements are
equivalent:

(i) G is a tree.

(ii) G contains no semicircuits and has n � 1 edges.

(iii) G is weakly connected and has n � 1 edges.

(iv) Any two vertices of G are connected by a semipath.

(v) Adding any one edge produces exactly one semicircuit.

Proof. We describe briefly the idea of the proof. Starting from some tree, i.e. state-
ment (i), we verify (ii); then show the converse, that if (ii) does not hold then we
cannot have a tree, and so on.

Theorem 1.3.5. A graph is bipartite if and only if it has no semicircuits with an odd
number of edges.
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Proof. For “)”, let V D V1

S

V2. Since edges exist only between V1 and V2, all
circuits must have an even number of edges.

For “(”, let G be connected and take x 2 V . Take V1 to be the set of all vertices
which can be reached from x along paths using an odd number of edges. Set V2 WD
V n V1. If G is not connected, proceed in the same way with its connected parts.
Isolated vertices can be assigned arbitrarily.

We recall the following definition: a pair .P;�/, where P is a set with a reflexive,
antisymmetric, transitive binary relation �, is called a partially ordered set or a poset.
We write x < y if x � y and x ¤ y. We say that y covers x, written x � y, if x < y
and if x � z < y implies x D z. See also Remark 1.2.4.

Proposition 1.3.6. Every finite partially ordered set .P;�/ defines a simple directed
graph HP without cycles with vertex set P and edge set ¹.x; y/ j x � yº, the so-
called Hasse diagram of .P;�/, and conversely. Defining the edge set by ¹.y; x/ j
x � yº gives a Hasse diagram where arcs are directed “down”.

Proof. A simple, directed graphH without cycles describes P completely, since x �
y if and only if either x D y or there exists an x; y path inH whose edges .xi ; xiC1/

are interpreted as xi � xiC1.
For the converse we use analogous arguments.

Definition 1.3.7. A rooted tree is a triple .T;�; r/ such that:

� .T;�/ is a partially ordered set;

� HT is a tree; and

� r 2 T is an element, the root of the tree, where x � r for all x 2 T .

A marked rooted tree is a quadruple .T;�; r; �/ such that .T;�; r/ is a rooted tree
and � W T ! M , with M being a set, is a mapping (weight function), which in this
context is called the marking function. We call �.x/ a marking of x.

1.4 Homomorphisms

In mathematics, as in the real world, mappings produce images. In such images,
certain aspects of the original may be suppressed, so that the image is in general
simpler than the original. But some of the structures of the original, those which
we want to study, should be preserved. Structure-preserving mappings are usually
called homomorphisms. For graphs it turns out that preservation of different levels of
structure or different intensities of preservation quite naturally lead to different types
of homomorphism.

First, we give a very general definition of homomorphisms. We will then intro-
duce the so-called covering, which has some importance in the field of informatics.
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The general definition will then be specialized in various ways, and later we will use
almost exclusively these variants. A reader who is not especially interested in the
general aspects of homomorphisms may wish to start with Definition 1.4.3.

Definition 1.4.1. Let G1 D .V1; E1; o1; t1/ and G2 D .V2; E2; o2; t2/ be two di-
rected graphs. A graph homomorphism � W G1 ! G2 is a pair � D .�V ; �E / of
mappings

�V W V1 ! V2

�E W E1 ! E2

such that o2.�E .e// D �V .o1.e// and t2.�E .e// D �V .t1.e// for all e 2 E1.

If � W G1 ! G2 is a graph homomorphism and v is a vertex of G1, then

�E .outG1
.v// � outG2

.�V .v// and �E .inG1
.v// � inG2

.�V .v//:

Definition 1.4.2. If �E joutG1
.v/ is bijective for all v 2 V , we call � a covering of G2.

If �E joutG1
.v/ is only injective for all v 2 V , then it is called a precovering.

For simple directed or undirected graphs, we will mostly be working with the fol-
lowing formulations and concepts rather than the preceding two definitions.

The main idea is that homomorphisms have to preserve edges. If, in the following,
we replace “homo” by “ega”, we have the possibility of identifying adjacent vertices
as well. This could also be be achieved with usual homomorphisms if we consider
graphs that have a loop at every vertex.

Definition 1.4.3. Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. A mapping
f W V ! V 0 is called a:

� graph homomorphism if .x; y/ 2 E ) .f .x/; f .y// 2 E 0;
� graph egamorphism (weak homomorphism) if .x; y/2E and f .x/¤f .y/)
.f .x/; f .y// 2 E 0;

� graph comorphism (continuous graph mapping) if .f .x/; f .y// 2 E 0 )
.x; y/ 2 E;

� strong graph homomorphism if .x; y/ 2 E , .f .x/; f .y// 2 E 0;
� strong graph egamorphism if .x; y/2E and f .x/¤f .y/,.f .x/; f .y//2E 0;
� graph isomorphism if f is a strong graph homomorphism and bijective or,

equivalently, if f and f �1 are graph homomorphisms.

When G D G0, we use the prefixes “endo”, “auto” instead of “homo”, “iso” etc.
We note that the term “continuous graph mapping” is borrowed from topology; there
continuous mappings reflect open sets, whereas here they reflect edges.
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Remark 1.4.4. Note that, in contrast to algebraic structures, bijective graph homo-
morphisms are not necessarily graph isomorphisms. This can be seen from Exam-
ple 1.4.9; there the non-strong subgraph can be mapped bijectively onto the graph G
without being isomorphic to it.

Remark 1.4.5. Note that for f0 2 EHom.G;G0/, which identifies exactly two adja-
cent vertices, the graph f0.G/ is also called an elementary contraction of G. The re-
sult of a series of elementary contractions fn.fn�1.: : : .f0.G// : : : // is usually called
a contraction ofG. This terminology is used mainly for the characterization of planar
graphs (see Chapter 13).

Remark 1.4.6. Denote by Hom.G;G0/, Com.G;G0/, EHom.G;G0/, SHom.G;G0/,
SEHom.G;G0/ and Iso.G;G0/ the homomorphism sets.

Analogously, let End.G/, EEnd.G/, Cnd.G/, SEnd.G/, SEEnd.G/ and Aut.G/
denote the respective sets when G D G0. These form monoids.

Indeed, End.G/ and SEnd.G/, as well as EEnd.G/ and SEEnd.G/, are monoids,
i.e. sets with an associative multiplication (the composition of mappings) and an iden-
tity element (the identical mapping). Clearly, End.G/ is closed. Also, SEnd.G/ is
closed, since for f; g 2 SEnd.G/ we get

.fg.x/; fg.y// 2 E f strong(HHH) .g.x/; g.y// 2 E g strong(HH) .x; y/ 2 E:

The rest is clear.

Proposition 1.4.7. Let G and G0 be graphs and f W G ! G0 a graph isomorphism.
For x 2 G, we have indeg.x/ D indeg.f .x// and outdeg.x/ D outdeg.f .x//.

Proof. We prove the statement for undirected graphs.
As f is injective, we get jNG.x/j D jf .NG.x//j.
As f is a homomorphism, we get f .NG.x// � NG0.f .x//, i.e. jf .NG.x//j �
jNG0.f .x//j.

As f is surjective, we have NG0.f .x// � f .G/; and, since f is strong, we get
jNG0.f .x//j � jNG.x/j.

Putting the above together, using the statements consecutively, we obtain jNG.x/jD
jNG0.f .x//j.

Now we use deg.x/ D jNG.x/j and deg.f .x// D jNG0.f .x//j to get the result.

Subgraphs

The different sorts of homomorphisms lead to different sorts of subgraphs. First, let
us explicitly define subgraphs and strong subgraphs.
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Definition 1.4.8. Let G D .V;E/. A graph G0 D .V 0; E 0/ is called a subgraph (or
partial subgraph) ofG if there exists an injective graph homomorphism f W V 0 ! V .

A graph G0 is called a strong subgraph (or induced subgraph or vertex induced
subgraph) if there exists an injective strong graph homomorphism f W V 0 ! V .

Example 1.4.9 (Subgraphs).

�
�
�
	

	
	�� � �� �

�

is a not strong subgraph while

�
�
�



�� �

�

is a strong subgraph of G: �
�
�
	

	
	�� �� �

�

�



Remark 1.4.10. A strong subgraph in general has fewer vertices than the original
graph, but all edges of the original graph between these vertices are contained in the
strong subgraph.

A subgraph in general contains fewer vertices and fewer edges than the original
graph.

(Semi)paths, (semi)cycles and (semi)circuits are all subgraphs.

Definition 1.4.11. A strong, one-sided or weak component of a graph is, respec-
tively, a maximal strongly, one-sided or weakly connected subgraph.

A (strong) component is also called a clique of G. The number of vertices !.G/ of
the largest clique of G is called the clique number of G.

See Example 1.2.2 for comparison.
The “edge dual” concept to a clique is a maximal independent subset of V .

Definition 1.4.12. Two vertices x; y 2 V are called independent vertices if .x; y/ …
E and .y; x/ … E. The vertex independence number is defined as

ˇ0.G/ WD max¹jU j W U � V; independentº:

Analogously, two non-incident edges are called independent edges, and we can
define the edge independence number ˇ1.G/.

The elements of an independent edge set of G are also called 1-factors of G; a
maximal independent edge set of G is called a matching of G.
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1.5 Half-, locally, quasi-strong and metric homomorphisms

In addition to the usual homomorphisms, we introduce the following four sorts of
homomorphisms. As always, homomorphisms are used to investigate the structure of
objects. The large number of different homomorphisms of graphs shows how rich and
variable the structure of a graph can be. In Section 1.8 we summarize which of these
homomorphisms have appeared where and under which names; we also suggest how
they might be used in modeling.

The motivation for these other homomorphisms comes from the concept of strong
homomorphisms or, more precisely, the notion of comorphism, i.e. the continuous
mapping. A continuous mapping “reflects” edges of graphs. The following types
of homomorphism reduce the intensity of reflection. In other words, an ordinary
homomorphism f W G ! G0 does not reflect edges at all. This means it could happen
that .f .x/; f .y// is an edge in G0 even though .x; y/ is not an edge in G, and there
may not even exist any preimage of f .x/ which is adjacent to any preimage of f .y/
in G. The following three concepts “improve” this situation step by step.

From the definitions it will become clear that there exist intermediate steps that
would refine the degree of reflection.

Definition 1.5.1. Let G D .V;E/ and G0 D .V 0; E 0/ be graphs, and let f 2
Hom.G;G0/. For x; y 2 V , set

X WD f �1.f .x//;

Y WD f �1.f .y//:

Let .f .x/; f .y// 2 E 0. Then f is said to be:

� half-strong if there exists Qx 2 X and Qy 2 Y such that . Qx; Qy/ 2 E;

� locally strong if

² 8 x 2 X; 9yx 2 Y such that .x; yx/ 2 E and
8y 2 Y; 9 xy 2 X such that .xy ; y/ 2 EI

� quasi-strong if

² 9 Qx0 2 X such that 8 Qy 2 Y; . Qx0; Qy/ 2 E and
9 Qy0 2 Y such that 8 Qx 2 X; . Qx; Qy0/ 2 E:

We call Qx0 and Qy0 central vertices or, in the directed case, the central source
and central sink in X and in Y with respect to .f .x/; f .y//.

Remark 1.5.2. With the obvious notation, one has

Hom.G;G0/ � HHom.G;G0/ � LHom.G;G0/ � QHom.G;G0/
� SHom.G;G0/ � Iso.G;G0/;

End.G/ � HEnd.G/ � LEnd.G/ � QEnd.G/

� SEnd.G/ � Aut.G/ � ¹idGº:
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Note that apart from SEnd.G/, Aut.G/ and ¹idGº, the other subsets of End.G/ are,
in general, not submonoids of End.G/. We will talk about the group and the strong
monoid of a graph, and about the quasi-strong monoid, locally strong monoid and
half-strong monoid of a graph if these really are monoids.

Example 1.5.3 (Different homomorphisms). We give three of the four examples for
undirected graphs. The example for the half-strong homomorphism in the directed
case shows that the other concepts can also be transferred to directed graphs.

f

f

f .y/

f .x/

Qy

Qx

Y

X

G half-strong

f

f

f .y/

f .x/

Y

X

G locally strong

Qx0

Qy0

f

f

f .y/

f .x/

Y

X

G quasi-strong

f

f

f .y/

f .x/

Y

X

Gstrong

From the definitions we immediately obtain the following theorem. To get an idea
of the proof, one can refer to the graphs in Example 1.5.3.

Theorem 1.5.4. Let G ¤ K1 be a bipartite graph with V D V1

S

V2. Let .x1; x2/

be an edge with x1 2 V1 and x2 2 V2. We define an endomorphism r of G by
r.V1/ D ¹x1º and r.V2/ D ¹x2º. Obviously, r 2 HEnd.G/. Moreover, the following
hold:

� r 2 LEnd.G/ if and only if G has no isolated vertices;

� r 2 QEnd.G/ if and only if V1 has a central vertex ex0 with N.ex0/ D V2 and
correspondingly for V2;

� r 2 SEnd.G/ if and only if G is complete bipartite.
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Proposition 1.5.5. A non-injective endomorphism f of G is strong if and only if for
all x 2 V with f .x/ D f .x0/ one has NG.x/ D NG.x

0/.

Note that for adjacent vertices x and x0, this is possible only if both have loops.

Proof. Necessity is clear from the definition. Now suppose that NG.x/ D NG.x
0/

for x; x0 2 V.G/. Construct f by setting f .x/ D x0 and f .y/ D y for all y ¤ x; x0.
It is clear that f 2 SEnd.G/.

Corollary 1.5.6. If Aut.G/ ¤ SEnd.G/, then jSEnd.G/ n Aut.G/j contains at least
two idempotents.

Definition 1.5.7. A homomorphism f from G to G0 is said to be metric if for any
vertices x; y 2 V.G/ there exist x0 2 f �1f .x/ and y0 2 f �1f .y/ such that
d.f .x/; f .y// D d.x0; y0/. Denote by MEnd.G/ the set of metric endomorphisms
of G and by Idpt.G/ the set of idempotent endomorphisms, i.e. f 2 End.G/ with
f 2 D f , of G.

As usual we make the following definition.

Definition 1.5.8. A homomorphism f from G to f .G/ � H is called a retraction if
there exists an injective homomorphism g from f .G/f to G such that fg D idf .G/.
In this case f .G/ is called a retract of G, and then G is called a coretract of f .G/
while g is called a coretraction.

IfH is an unretractive retract ofG, i.e. if End.H/ D Aut.H/, thenH is also called
a core of G.

Remark 1.5.9. One has

Idpt.G/;LEnd.G/ � MEnd.G/ � HEnd.G/:

Example 1.5.10 (HEnd, LEnd, QEnd are not monoids). The sets HEnd, LEnd, QEnd
are not closed with respect to composition of mappings. To see this, consider the
following graph G

together with the mappings f D �

1 2 3 4 5
3 4 5 4 5

�

and g D �

1 2 3 4 5
1 2 3 2 5

�

. Now f 2
QEnd.G/ and g 2 HEnd.G/ but f 2 2 HEnd.G/ n LEnd.G/ and g ı f 2 End.G/ n
HEnd.G/. These properties are not changed if we add another vertex 0 to the graph
which we make adjacent to every other vertex. The graph is then connected but no
longer bipartite.

Question. Do Idpt and MEnd always form monoids? Can you describe graphs where
this is the case?



14 Chapter 1 Directed and undirected graphs

1.6 The factor graph, congruences, and the
Homomorphism Theorem

The study of factor graphs by graph congruences turns out to be fundamental for
the general investigation of homomorphisms. The connection to arbitrary homomor-
phisms is established through the canonical epimorphisms, and this leads to the Ho-
momorphism Theorem for graphs. We formulate the theorem only for ordinary graph
homomorphisms.

Factor graphs

Definition 1.6.1. Let % � V � V be an equivalence relation on the vertex set V of
a graph G D .V;E/, and denote by x% the equivalence class of x 2 E with respect
to %. Then G% D .V%; E%/ is called the factor graph of G with respect to %, where
V% D V

ı

% and .x%; y%/ 2 E% if there exist x0 2 x% and y0 2 y% with .x0; y0/ 2 E,
where % is called a graph congruence.

Example 1.6.2 (Congruence classes, factor graphs). We exhibit some graphs together
with congruence classes (encircled vertices) and the corresponding factor graphs:

G G%



Section 1.6 The factor graph, congruences, and the Homomorphism Theorem 15

Remark 1.6.3. By the definition of G%, the canonical epimorphism

�% W G ! G%

x 7! x%

(which is always surjective) is a half-strong graph homomorphism.
Note that, in general, a graph congruence % is just an equivalence relation. If we

have a graph G D .V;E/ and a congruence % � V �V such that there exist x; y 2 V
with .x; y/ 2 E and x % y, then .x%; x%/ 2 E%, i.e. G% has loops.

If we want to use only loopless graphs, then �% W G ! G% is a graph homomor-
phism only if

x % y ) .x; y/ … E:
Therefore we make the following definition.

Definition 1.6.4. A (loop-free) graph congruence % is an equivalence relation with
the additional property that x % y ) .x; y/ … E.

Definition 1.6.5. Let G% be the factor graph of G with respect to %. If the canonical
mapping �% W G ! G% is a strong (respectively quasi-strong, locally strong or metric)
graph homomorphism, then the graph congruence % is called a strong (respectively
quasi-strong, locally strong or metric) graph congruence.

Example 1.6.6 (Connectedness relations). On G D .V;E/, with x; y 2 V , consider
the following relations:

x %1 y , there exists an x; y path and a y; x path or x D y;

x %2 y , there exists an x; y semipath or x D y.

x %3 y , there exists an x; y path or a y; x path.

The relation %1 is an equivalence relation; the factor graph G%1
is called a conden-

sation of G.
The relation %2 is an equivalence relation; the factor graph G%2

consists only of
isolated vertices with loops.

The relation %3 is not transitive and therefore not an equivalence relation.

The Homomorphism Theorem

For convenience we start with the so-called Mapping Theorem, i.e. the Homomor-
phism Theorem for sets, preceded by the usual result on mapping-induced congruence
relations. Then, as for sets, we formulate the Homomorphism Theorem for graphs.
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Proposition 1.6.7. Let G and H be sets, and let f W G ! H be a mapping. Using
f we obtain an equivalence relation on G, the so-called induced congruence, if we
define, for x; y 2 G,

x %f y , f .x/ D f .y/:
Moreover, by setting �%f

.x/ D x%f
for x 2 G, we get a surjective mapping onto the

factor set G%f
D G=%f . Here x%f

denotes the equivalence class of x with respect to
%f and G=%f the set of all these equivalence classes.

Proof. It is straightforward to check that %f is reflexive, symmetric and transitive, i.e.
it is an equivalence relation on G. Surjectivity of �%f

follows from the definition of
the factor set.

Proposition 1.6.8. Let G and H be graphs, and let f W G ! H be a graph homo-
morphism. Using f we obtain a graph congruence by defining, for x; y 2 V.G/,

x %f y , f .x/ D f .y/:

Moreover, by setting �%f
.x/ D x%f

for x 2 G, we get a surjective graph homomor-
phism onto the factor graph G%f

D G=%f . Here x%f
denotes the congruence class of

x with respect to %f and G%f
the factor graph formed by these congruence classes.

Proof. As for sets we know that %f is an equivalence relation and �%f
is a surjective

mapping by Proposition 1.6.7. Now use Remark 1.6.3.

Proposition 1.6.9 (The Homomorphism Theorem for sets). For every mapping f W
G ! H from a set G to a set H , there exists exactly one injective mapping f W
G%f

! H , with f .x%f
/ D f .x/ for x 2 G, such that the following diagram is

commutative, i.e. f D f ı �%f
:

G%f

G H

�
�
�
�
�
�


�

�

�%f

f

f

Moreover, the following statements hold:

(a) If f is surjective, then f is surjective.

(b) If we replace %f by an equivalence relation % � %f , then f W G% ! H is
defined in the same way, but is injective only if % D %f .


