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Preface

Eigenvalues and eigenvectors of matrices and linear operators play an important role
when solving problems from structural mechanics, and electrodynamics, e.g., by de-
scribing the resonance frequencies of systems, when investigating the long-term be-
haviour of stochastic processes, e.g., by describing invariant probability measures,
and as a tool for solving more general mathematical problems, e.g., by diagonalizing
ordinary differential equations or systems from control theory.

This book presents a number of the most important numerical methods for finding
eigenvalues and eigenvectors of matrices. It is based on lecture notes of a short course
for third-year students in mathematics, but it should also be accessible to students of
physics or engineering sciences.

We discuss the central ideas underlying the different algorithms and introduce the
theoretical concepts required to analyze their behaviour. Our goal is to present an
easily accessible introduction to the field, including rigorous proofs of all important
results, but not a complete overview of the vast body of research.

For an in-depth coverage of the theory of eigenvalue problems, we can recommend
the following monographs:

� J. H. Wilkinson, “The Algebraic Eigenvalue Problem” [52]

� B. N. Parlett, “The Symmetric Eigenvalue Problem” [33]

� G. H. Golub and C. F. Van Loan, “Matrix Computations” [18]

� G. W. Stewart, “Matrix Algorithms” [43, 44]

� D. S. Watkins, “The matrix eigenvalue problem” [49]

We owe a great debt of gratitude to their authors, since this book would not exist
without their work.

The book is intended as the basis for a short course (one semester or trimester) for
third- or fourth-year undergraduate students. We have organized the material mostly
in short sections that should each fit one session of a course. Some chapters and sec-
tions are marked by an asterisk �. These contain additional results that we consider
optional, e.g., rather technical proofs of general results or algorithms for special prob-
lems. With one exception, the results of these optional sections are not required for
the remainder of the book. The one exception is the optional Section 2.7 on non-
unitary transformations, which lays the groundwork for the optional Section 4.8 on
the convergence of the power iteration for general matrices.
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In order to keep the presentation self-contained, a number of important results are
proven only for special cases, e.g., for self-adjoint matrices or a spectrum consisting
only of simple eigenvalues. For the general case, we would like to refer the reader to
the monographs mentioned above.

Deviating from the practice of collecting fundamental results in a separate chapter,
we introduce some of these results when they are required. An example is the Bauer–
Fike theorem given as Proposition 3.11 in Section 3.4 on error estimates for the Jacobi
iteration instead of in a separate chapter on perturbation theory. While this approach is
certainly not adequate for a reference work, we hope that it improves the accessibility
of lecture notes like this book that are intended to be taught in sequence.

We would like to thank Daniel Kressner for his valuable contributions to this book.

Kiel, December 2011
Steffen Börm

Berlin, December 2011
Christian Mehl
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Chapter 1

Introduction

Eigenvalue problems play an important role in a number of fields of numerical math-
ematics: in structural mechanics and electrodynamics, eigenvalues correspond to res-
onance frequencies of systems, i.e., to frequencies to which these systems respond
particularly well (or badly, depending on the context). When studying stochastic pro-
cesses, invariant probability measures correspond to eigenvectors for the eigenvalue 1,
and finding them yields a description of the long-term behaviour of the corresponding
process.

This book gives an introduction to the basic theory of eigenvalue problems and
focuses on important algorithms for finding eigenvalues and eigenvectors.

1.1 Example: Structural mechanics

Before we consider abstract eigenvalue problems, we turn our attention to some ap-
plications that lead naturally to eigenvalue problems.

The first application is the investigation of resonance frequencies. As an example,
we consider the oscillations of a string of unit length. We represent the string as a
function

u W R � Œ0; 1�! R; .t; x/ 7! u.t; x/;

where u.t; x/ denotes the deflection of the string at time t and position x (cf. Fig-
ure 1.1).

The oscillations are then described by the wave equation

@2u

@t2
.t; x/ D c

@2u

@x2
.t; x/ for all t 2 R; x 2 .0; 1/;

where c > 0 is a parameter describing the string’s properties (e.g., its thickness). We
assume that the string is fixed at both ends, i.e., that

u.t; 0/ D u.t; 1/ D 0 holds for all t 2 R:

Since the differential equation is linear, we can separate the variables: we write u in
the form

u.t; x/ D u0.x/ cos.!t/ for all t 2 R; x 2 Œ0; 1�



2 Chapter 1 Introduction

u(t,x)

x

∂ 2u
∂t 2 (t,x) = c ∂2u

∂x2 (t,x)

Figure 1.1. Mathematical model of a string.

with a frequency parameter ! 2 R�0 and a function

u0 W Œ0; 1�! R; x 7! u0.x/;

depending only on the location, but not on the time. The differential equation takes
the form

�!2u0.x/ cos.!t/ D @2u

@t2
.t; x/ D c

@2u

@x2
.t; x/

D cu00
0.x/ cos.!t/ for all t 2 R; x 2 .0; 1/;

and eliminating the time-dependent factor yields

�cu00
0.x/ D !2u0.x/ for all x 2 .0; 1/: (1.1)

We introduce � WD !2 2 R�0 and define the differential operator L by

LŒu0�.x/ WD �cu00
0.x/ for all u0 2 C 2.0; 1/; x 2 .0; 1/

in order to obtain
LŒu0� D �u0:

This is an eigenvalue problem in the infinite-dimensional space C 2.0; 1/.
In order to be able to treat it by a numerical method, we have to discretize the

problem. A simple approach is the finite difference method: Taylor expansion yields

u0.x C h/ Du0.x/C hu0
0.x/C h2

2
u00

0.x/C h3

6
u

.3/
0 .x/C h4

24
u

.4/
0 .�C/;

u0.x � h/ Du0.x/ � hu0
0.x/C h2

2
u00

0.x/ � h3

6
u

.3/
0 .x/C h4

24
u

.4/
0 .��/
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for h 2 R>0 with 0 � x�h � xCh � 1, where �C 2 Œx; xCh� and �� 2 Œx�h; x�.
Adding both equations and using the intermediate value theorem yields

u0.x � h/ � 2u0.x/C u0.x C h/ D h2u00
0.x/C h4

12
u

.4/
0 .�/

with � 2 Œx�h; xCh�. Dividing by h2 gives us an equation for the second derivative:

u0.x � h/ � 2u0.x/C u0.x C h/

h2
D u00

0.x/C h2

12
u

.4/
0 .�/:

We obtain a useful approximation by dropping the right-most term: fixing n 2 N and
setting

xk WD hk; h WD 1

nC 1
for all k 2 ¹0; : : : ; nC 1º;

we find

u0.xk�1/ � 2u0.xk/C u0.xkC1/

h2
� u00

0.xk/ for all k 2 ¹1; : : : ; nº;

and the term on the left-hand side requires only values of u0 in the discrete points
x0; : : : ; xnC1. We collect these values in a vector

e WD

0B@u0.x1/
:::

u0.xn/

1CA ; e0 D enC1 D 0;

and replace u00
0.x/ in (1.1) by the approximation to get

c
2ek � ek�1 � ekC1

h2
� �ek for all k 2 ¹1; : : : ; nº:

This system can be written as the algebraic eigenvalue problem

c

h2

0BBBBB@
2 �1

�1
: : :

: : :

: : :
: : : �1

�1 2

1CCCCCA
0BBBB@

e1
:::
:::

en

1CCCCA � �

0BBBB@
e1
:::
:::

en

1CCCCA ; (1.2)

and solving the system yields approximations u0.xk/ � ek of the values of u0 in the
points x1; : : : ; xn.

In order to reach a high accuracy, we have to ensure that h is small, so we have to
be able to handle large values of n. We are typically only interested in computing a
small number of the smallest eigenvalues, and this problem can be solved efficiently
by specialized algorithms (e.g., the inverse iteration discussed in Chapter 4).
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1.2 Example: Stochastic processes

The next example is not motivated by physics, but by computer science: we are inter-
ested in determining the “most important” pages of the world wide web. Let n 2 N be
the number of web pages, and let L 2 Rn�n represent the hyperlinks between these
pages in the following way:

`ij D
´

1 if page j contains a link to page i;

0 otherwise
for all i; j 2 ¹1; : : : ; nº:

We follow the PageRank [31] approach: we consider a “random web user” that moves
from page to page and compute the probability p

.m/
j 2 Œ0; 1� of him visiting a certain

page j in his m-th step. We denote the number of links on page j by

j̀ WD
nX

iD1

`ij for all j 2 ¹1; : : : ; nº

and assume that the random user chooses each of the links with equal probability
1= j̀ . In order to make this approach feasible, we have to assume j̀ ¤ 0 for all
j 2 ¹1; : : : ; nº, i.e., we have to assume that each page contains at least one link.

This means that the probability of switching from page j to page i is given by

sij WD `ij

j̀
D
´

1= j̀ if `ij D 1;

0 otherwise
for all i; j 2 ¹1; : : : ; nº:

The probability of visiting page i in step mC 1 is given by

p
.mC1/
i D

nX
j D1

sij p
.m/
j for all i 2 ¹1; : : : ; nº; m 2 N0:

Since this equation corresponds to a matrix-vector multiplication by S D .sij /n
i;j D1,

we can write it in the compact form

p.mC1/ D Sp.m/ for all m 2 N0: (1.3)

In order to ensure that the result does not depend on the arbitrarily chosen starting
vector p.0/, the PageRank algorithm uses the limit

p� WD lim
m!1 p.m/ (1.4)

to determine the “importance” of a web page: if p�
j is large, the probability of a user

visiting the j -th web page is high, therefore it is assumed to be important. Due to

p� D lim
m!1 p.m/ D lim

m!1 p.mC1/ D lim
m!1 Sp.m/ D S lim

m!1 p.m/ D Sp�;

the vector p� 2 Rn is an eigenvector of the matrix S for the eigenvalue one.
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In this example, we not only reduce a problem related to stochastic processes (the
“random walk” of the web user) to an algebraic eigenvalue problem, but we also find
a simple algorithm for computing at least the eigenvector: due to (1.4), we can hope
to approximate p� by computing p.m/ for a sufficiently large value of m. Due to
(1.3), this requires only m matrix-vector multiplications, and since we can assume
that each web page contains only a small number of links, these multiplications can
be performed very efficiently.

In order to ensure convergence, the PageRank algorithm replaces the matrix S by
the matrix bS D .Osij /n

i;j D1 given by

Osij D .1 � ˛/sij C ˛ui for all i; j 2 ¹1; : : : ; nº;

where ˛ 2 .0; 1� (a typical value is 0.15) is a parameter controlling how close bS
is to the original matrix S , while u 2 Rn is a vector (the “teleportation vector”)
describing the event that a user switches to a different page without following a link:
when visiting page j , the user either follows one of the links with a total probability
of 1 � ˛ or switches to another page with a total probability of ˛. In the latter case,
ui is the relative probability of switching to page i . For a suitable choice of u (e.g.,
a vector with strictly positive entries and u1 C : : :C un D 1), the Perron–Frobenius
theorem [34] ensures convergence of the sequence .p.m//1

mD0 to p�.

1.3 Example: Systems of linear differential equations

Another, more general example for eigenvalue problems are systems of linear dif-
ferential equations that appear frequently in natural and engineering sciences. If
F 2 ¹R; Cº and A 2 Fn�n then

y0 D Ay (1.5)

is a (homogeneous) system of linear differential equations and a solution is defined to
be a continuously differentiable function y W R ! Fn satisfying y0.t/ D Ay.t/ for
all t 2 R. For some vector y0 2 Fn n ¹0º the ansatz y.t/ D e�ty0 yields the identity

�e�ty0 D y0.t/ D Ay.t/ D Ae�ty0

which, after division on both sides by e�t , reduces to the characteristic equation

�y0 D Ay0:

Thus, if � 2 F is an eigenvalue of A and y0 2 Fn n ¹0º is an associated eigenvector,
then y.t/ D e�ty0 is a solution of the corresponding system of differential equations.
It is well known from the theory of differential equations that if A is diagonalizable
and if v1; : : : ; vn is a basis of Fn consisting of eigenvectors of A associated with
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the eigenvalues �1; : : : ; �n, then any solution y of the system of differential equa-
tions (1.5) has the form

y.t/ D
nX

iD1

cie
�i tvi

for some coefficients c1; : : : ; cn 2 F . In the non-diagonalizable case, the general
solution can be constructed from the so called Jordan normal form.

Instead of systems of linear differential equations of first order as in the form (1.5),
one may also consider systems of linear differential equations of higher order having
the general form

X̀
kD0

Aky.k/ D A`y.`/ C A`�1y.`�1/ C � � � C A2y00 C A1y0 C A0y D 0;

where A0; : : : ; A` 2 Fn�n. In this case the ansatz y.t/ D e�ty0 for some nonzero
vector y0 2 Fn yields the identity

X̀
kD0

Ak�ke�ty0 D 0;

or equivalently, after division by e�t ,0@X̀
kD0

�kAk

1Ay0 D 0: (1.6)

The problem of solving (1.6) is called a polynomial eigenvalue problem.
A particular example in applications can be found in the theory of mechanical vi-

bration. The equations of motion for a viscously damped linear system with n degrees
of freedom are given by

My00.t/C Cy0.t/CKy.t/ D 0;

where M , C , K are n� n matrices called mass matrix, damping matrix, and stiffness
matrix, respectively. The corresponding quadratic eigenvalue problem has the form

.�2M C �C CK/x D 0:

A simple example for the case n D 1 is the spring-mass system with damping by
friction, see Figure 1.2.

By Hooke’s law, the equation of motion for this system without friction is

my00.t/C ky.t/ D 0;
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m y(t)

Figure 1.2. Mass-spring system.

where m is the mass attached to the spring and k is the spring constant. If friction
is considered, it is usually modeled in such a way that the friction is assumed to be
proportional to the velocity y0.t/ thus yielding the equation of motion

my00.t/C cy0.t/C ky.t/ D 0;

for some constant c.



Chapter 2

Existence and properties of eigenvalues and
eigenvectors

Summary

This chapter investigates existence and uniqueness of eigenvalues and eigenvectors
for a given matrix. The key result is the Schur decomposition introduced in Theo-
rem 2.46, a very useful tool for the investigation of eigenvalue problems. One of its
most important consequences is the fact that a matrix can be diagonalized unitarily
if and only if it is normal. The optional Section 2.7 presents a block-diagonalization
result for general square matrices

Learning targets

� Recall the definition and some of the most important properties of eigenvalues,
eigenvectors, similarity transformations and the characteristic polynomial corre-
sponding to a matrix.

� Introduce a number of basic concepts of Hilbert space theory, e.g., the Cauchy–
Schwarz inequality, self-adjoint, normal, isometric and unitary matrices.

� Prove the existence of the Schur decomposition.

� Use it to establish the existence of eigenvector bases for normal and self-adjoint
matrices and of invariant subspaces in the general case.

2.1 Eigenvalues and eigenvectors

Let n; m 2 N, and let F 2 ¹R; Cº be the field of real or complex numbers.
We denote the space of matrices with n rows and m columns by Fn�m. The coeffi-

cients of a matrix A 2 Fn�m are given by

A D

0B@a11 : : : a1m
:::

: : :
:::

an1 : : : anm

1CA :
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Zero coefficients in a matrix are frequently omitted in our notation, e.g., the n-di-
mensional identity matrix is usually represented by

In D

0B@1
: : :

1

1CA :

If the dimension is clear from the context, we denote the identity matrix by I .
The product of a matrix by a vector x 2 Fm is given by

Ax D

0B@a11 : : : a1m
:::

: : :
:::

an1 : : : anm

1CA
0B@x1

:::

xm

1CA D
0B@a11x1 C � � � C a1mxm

:::

an1x1 C � � � C anmxm

1CA
or, more precisely, by

.Ax/i D
mX

j D1

aij xj for all i 2 ¹1; : : : ; nº: (2.1)

The mapping

Fm ! Fn; x 7! Ax

is a linear operator mapping Fm to Fn, and we use the corresponding notations:

Definition 2.1 (Null space and range). Let A 2 Fn�m. The space

N .A/ WD ¹x 2 Fm W Ax D 0º
is called the null space of A, and its dimension is called the nullity of A. The space

R.A/ WD ¹y 2 Fn W there exists a vector x 2 Fm with Ax D yº
is called the range of A, and its dimension is called the rank of A.

The matrix A is called injective if N .A/ D ¹0º holds, and it is called surjective if
R.A/ D Fn holds.

We recall the rank-nullity theorem: let .yi /
k
iD1 be a basis of R.A/. By definition,

we can find .bxi /
k
iD1 in Fm such that

Abxi D yi for all i 2 ¹1; : : : ; kº:

Since the family .yi /
k
iD1 is linearly independent, the same holds for .bxi /

k
iD1.

This means that we can expand the family to a basis .bxi /
m
iD1 of Fm. For each
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j 2 ¹k C 1; : : : ; mº, we obviously have Abxj 2 R.A/ and can therefore find zj 2
span¹bx1; : : : ;bxkº such that Abxj D Azj holds, i.e.,bxj � zj 2 N .A/. We define

xi WD
´bxi if i � k;bxi � zi otherwise

for all i 2 ¹1; : : : ; mº

and see that .xi /
m
iD1 is a basis of Fm such that span¹xkC1; : : : ; xmº � N .A/ holds.

This yields dim N .A/ D m � k, i.e.,

dim R.A/C dim N .A/ D m for all A 2 Fn�m: (2.2)

Definition 2.2 (Eigenvalue and Eigenvector). Let A 2 Fn�n, and let � 2 F . � is
called an eigenvalue of A, if there is a vector x 2 Fn n ¹0º such that

Ax D �x (2.3)

holds. Any such vector is called an eigenvector of A for the eigenvalue �. A pair
.�; x/ consisting of an eigenvalue and a corresponding eigenvector is called an eigen-
pair.

The set
�.A/ WD ¹� 2 F W � is an eigenvalue of Aº

is called the spectrum of A.

Let k 2 N. The product AB of two matrices A 2 Fn�k and B 2 Fk�m is given by

.AB/ij D
kX

`D1

ai`b j̀ for all i 2 ¹1; : : : ; nº; j 2 ¹1; : : : ; mº: (2.4)

The definition ensures

ABx D A.Bx/ for all x 2 Fm;

i.e., it is compatible with the matrix-vector multiplication.

Exercise 2.3 (Polynomials). Let A 2 Fn�n. We define the `-th power of the
matrix by

A` WD
´

I if ` D 0;

AA`�1 otherwise
for all ` 2 N0:

This definition allows us to apply polynomials to matrices: for each polynomial

p.t/ D a0 C a1t C � � � C amtm;

we define
p.A/ WD a0A0 C a1A1 C � � � C amAm:

Prove p.�.A// � �.p.A//. Can you find A and p with �.p.A// ¤ p.�.A//?
Hint: consider Exercise 2.6.
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Exercise 2.4 (Projection). Let P 2 Fn�n be a projection, i.e., let it satisfy P 2 D
P . Prove �.P / � ¹0; 1º.

Is any matrix A 2 Fn�n satisfying �.A/ � ¹0; 1º a projection?
Hint: consider A 2 F2�2 with a21 D 0.

Exercise 2.5 (Nil-potent matrix). Let N 2 Fn�n be a nil-potent matrix, i.e., let
there be a k 2 N with N k D 0. Prove �.N / � ¹0º.

Exercise 2.6 (Empty spectrum). Let F D R. Consider the matrix

A WD
�

0 �1

1 0

�
2 R2�2:

Prove �.A/ D ;, i.e., show that A has no eigenvalues. Does the situation change
if we let F D C?

If x is an eigenvector of a matrix A 2 Fn�n, multiplying x by any non-zero number
will again yield an eigenvector. Instead of dealing with non-unique eigenvectors, it is
preferable to use an alternative characterization of eigenvalues:

Proposition 2.7 (Null space). Let A 2 Fn�n, and let � 2 F . � is an eigenvalue of A

if and only if
N .�I � A/ ¤ ¹0º

holds, i.e., if �I � A is not injective.

Proof. We first observe that for all x 2 Fn and all � 2 F , the following statements
are equivalent:

�x D Ax;

�x � Ax D 0;

.�I � A/x D 0;

x 2 N .�I � A/:

If � 2 F is an eigenvalue, we can find a corresponding eigenvector x 2 Fn n ¹0º,
i.e., we have Ax D �x, and therefore x 2 N .�I�A/ and N .�I�A/ 	 ¹0; xº ¤ ¹0º.

If, on the other hand, N .�I � A/ ¤ ¹0º holds, we can find x 2 N .�I � A/ n ¹0º,
and this vector x is an eigenvector.

Since the null space of �I �A is uniquely determined by A and �, working with it
instead of individual eigenvectors offers significant advantages both for practical and
theoretical investigations.
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Definition 2.8 (Eigenspace). Let A 2 Fn�n, and let � 2 �.A/. Then

E.A; �/ WD N .�I � A/

is called the eigenspace of A for the eigenvalue �.

Definition 2.9 (Geometric multiplicity). Let A 2 Fn�n, and let � 2 �.A/. The
dimension of the eigenspace E.A; �/ is called the geometric multiplicity of � and
denoted by �g.A; �/.

Instead of looking for individual eigenvectors, we look for a basis of an eigenspace.
This offers the advantage that we can change the basis during the course of our algo-
rithms in order to preserve desirable properties like isometry or non-degeneracy.

Exercise 2.10 (Eigenspaces). Let A 2 Fn�n, and let �; � 2 �.A/ with � ¤ �.
Prove

E.A; �/ \ E.A; �/ D ¹0º:

Exercise 2.11 (Geometric multiplicity). Let A 2 Fn�n. ProveX
�2�.A/

�g.A; �/ � n:

2.2 Characteristic polynomials

By the rank-nullity theorem (2.2), � is an eigenvalue of a matrix A if and only if
�I � A is not invertible. Using this property, we can characterize the eigenvalues
without explicitly constructing eigenvectors.

Let n; m 2 N, and let j 2 ¹1; : : : ; mº. The j -th canonical unit vector ıj 2 Fm is
given by

.ıj /i WD
´

1 if i D j;

0 otherwise
for all i 2 ¹1; : : : ; mº; (2.5)

and for a matrix A 2 Fn�m, we denote the j -th column vector by

aj WD Aıj D

0B@a1j
:::

anj

1CA :

The matrix A is injective if and only if its columns a1; : : : ; am are linearly indepen-
dent.
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We can use the determinant to characterize tuples of linearly independent vectors.
The determinant is a mapping

det W .Fn/n ! F

of n-tuples of n-dimensional vectors to scalar values that is multilinear, i.e., we have

det.x1; : : : ; xj �1; xj C ˛z; xj C1; : : : ; xn/

D det.x1; : : : ; xj �1; xj ; xj C1; : : : ; xn/

C ˛ det.x1; : : : ; xj �1; z; xj C1; : : : ; xn/

for all x1; : : : ; xn; z 2 Fn; ˛ 2 F ; j 2 ¹1; : : : ; nº:
The determinant is also alternating, i.e., we have

det.x1; : : : ; xi�1; xi ; xiC1; : : : ; xj �1; xj ; xj C1; : : : ; xn/

D � det.x1; : : : ; xi�1; xj ; xiC1; : : : ; xj �1; xi ; xj C1; : : : ; xn/

for all x1; : : : ; xn 2 Fn; i; j 2 ¹1; : : : ; nº with i < j

and satisfies det.ı1; : : : ; ın/ D 1.
Let x1; : : : ; xn 2 Fn. If there are i; j 2 ¹1; : : : ; nº with i < j and xi D xj , the

fact that the determinant is alternating implies

det.x1; : : : ; xi�1; xi ; xiC1; : : : ; xj �1; xj ; xj C1; : : : ; xn/

D � det.x1; : : : ; xi�1; xj ; xiC1; : : : ; xj �1; xi ; xj C1; : : : ; xn/

D � det.x1; : : : ; xi�1; xi ; xiC1; : : : ; xj �1; xj ; xj C1; : : : ; xn/;

and therefore det.x1; : : : ; xn/ D 0. Since the determinant is also multilinear, we can
add any multiple of any argument to any other argument without changing the value
of the determinant. In particular, it is possible to prove that the determinant is equal
to zero if and only if its arguments are linearly dependent.

This means that a matrix A 2 Fn�n is invertible if and only if det.a1; : : : ; an/ ¤ 0,
i.e., if the determinant of its column vectors vanishes. We extend the definition of the
determinant to quadratic matrices by setting

det W Fn�n ! F ; A 7! det.a1; : : : ; an/;

and have det.A/ ¤ 0 if and only if A is invertible. Combining this property with
Proposition 2.7, we obtain a characterization of eigenvalues that does not require
eigenvectors:

Definition 2.12 (Characteristic polynomial). Let A 2 Fn�n.

pA W F ! F ; t 7! det.tI � A/;

is a polynomial of degree n. We call it the characteristic polynomial of A.
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Proposition 2.13 (Zeros of pA). Let A 2 Fn�n. � 2 F is an eigenvalue of A if and
only if pA.�/ D 0 holds.

Proof. Let � 2 F . If � is an eigenvalue of A, Proposition 2.7 implies that �I � A

is not injective, therefore this matrix has to be non-invertible, and we have pA.�/ D
det.�I � A/ D 0.

If, on the other hand, we have 0 D pA.�/ D det.�I�A/, the matrix �I�A is non-
invertible. Since it is a quadratic matrix, the rank-nullity theorem (2.2) implies that it
cannot be injective, and Proposition 2.7 yields that � has to be an eigenvalue.

This result allows us to characterize the spectrum of a matrix A 2 Fn�n as the set
of zeros of its characteristic polynomial:

�.A/ D ¹� 2 F W pA.�/ D 0º:
Given a polynomial p and a � with p.�/ D 0, we can find a polynomial q such that

p.t/ D .� � t /q.t/ for all t 2 F :

If � is a zero of q, we can apply this construction repeatedly to find the maximal
power k 2 N such that .� � t /k is a divisor of p: the multiplicity of � is the number
k 2 N uniquely defined by the property that there is a polynomial q satisfying

p.t/ D .� � t /kq.t/ for all t 2 F ;

q.�/ ¤ 0:

Definition 2.14 (Algebraic multiplicity). Let A 2 Fn�n and � 2 �.A/. By Proposi-
tion 2.13, � is a zero of pA. We call its multiplicity the algebraic multiplicity of the
eigenvalue � and denote it by �a.A; �/.

If �a.A; �/ D 1, � is called a simple eigenvalue.

Exercise 2.15 (Algebraic multiplicity). Let n 2 N and A 2 Cn�n. ProveX
�2�.A/

�a.A; �/ D n: (2.6)

Hint: the fundamental theorem of algebra states that every non-constant complex-
valued polynomial has at least one root.

Exercise 2.16 (Companion matrix). Let n 2 N�2 and c0; c1; : : : ; cn�1 2 F . Let

C WD

0BBBBBB@
0 1

0 0
: : :

:::
:::

: : :
: : :

0 0 : : : 0 1

�c0 �c1 : : : �cn�2 �cn�1

1CCCCCCA :


