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Preface

This short book grew out of lectures the author gave at the University of Michigan
in the Fall of 1997. The purpose of the course was to introduce second year grad-
uate students to the theory of 3-dimensional manifolds and its role in the modern
4-dimensional topology and gauge theory. The course assumed only familiarity with
the basic concepts of topology including: the fundamental group, the (co)homology
theory of manifolds, and the Poincaré duality.

Progress in low-dimensional topology has been very fast over the last two decades,
leading to the solution of many difficult problems. One of the consequences of this
“acceleration of history” is that many results have only appeared in professional jour-
nals and monographs. Among these are Casson’s results on the Rohlin invariant of
homotopy 3-spheres, as well as his �-invariant. The monograph “Casson’s invari-
ant for oriented homology 3-spheres: an exposition” by S. Akbulut and J. McCarthy,
though beautifully written, is hardly accessible to students who have completed only
a basic course in algebraic topology. The purpose of this book is to provide a much-
needed bridge to these topics.

Casson’s construction of his �-invariant is rather elementary compared to further
developments related to gauge theory. This book is in no way intended to explore this
subject, as it requires an extensive knowledge of Riemannian geometry and partial
differential equations.

The book begins with topics that may be considered standard for a book in 3-
manifolds: existence of Heegaard splittings, Singer’s theorem about the uniqueness
of a Heegaard splitting up to stable equivalence, and the mapping class group of a
closed surface. Then we introduce Dehn surgery on framed links, give a detailed de-
scription of the Kirby calculus of framed links in S3, and use this calculus to prove
that any oriented closed 3-manifold bounds a smooth simply-connected parallelizable
4-manifold.

The second part of the book is devoted to Rohlin’s invariant and its properties.
We first review some facts about 4-manifolds and their intersection forms, then we
do some knot theory. The latter includes Seifert surfaces and matrices, the Alexan-
der polynomial and Conway’s formula, and the Arf-invariant and its relation to the
Alexander polynomial. Our approach differs from the common one in that we work
in a homology sphere rather than in S3, though the difference here is more technical
than conceptual. This part concludes with a geometric proof of the Rohlin Theo-
rem (after M. Freedman and R. Kirby), and with the surgery formula for the Rohlin
invariant.
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The last part of the book deals with Casson’s invariant and its applications, mostly
along the lines of Akbulut and McCarthy’s book. We employ a more intuitive ap-
proach here to emphasize the ideas behind the construction, and refer the reader to the
aforementioned book for technical details.

The book is full of examples. Seifert fibered manifolds appear consistently among
these examples. We discuss their Heegaard splittings, Dehn surgery description, clas-
sification, Rohlin invariant, SU.2/-representation spaces, twisted cohomology, Cas-
son invariant, etc.

Throughout the book, we mention the latest developments whenever it seems ap-
propriate. For example, in the section on 4-manifold topology, we give a review
of recent results relating 4-manifolds and unimodular forms, including the “10/8-
conjecture” and Donaldson polynomials. The Rohlin invariant gives restrictions on
the genus of surfaces embedded in a smooth 4-manifold. When describing this old
result, we also survey the results that follow from the Thom conjecture, proved a few
years ago by Kronheimer and Mrowka with the help of Seiberg–Witten theory.

The topology of 3-manifolds includes a variety of topics not discussed in this book,
among which are hyperbolic manifolds, Thurston’s geometrization conjecture, incom-
pressible surfaces, prime decompositions of 3-manifolds, and many others.

The book has brief notes on further developments, and a list of exercises at the end
of each lecture.

The book is closely related, in several instances, both in content and method, to the
books Akbulut–McCarthy [2] and Fomenko–Matveev [49], from which I have bor-
rowed quite shamelessly. However, it is hoped that the present treatment will serve its
purpose of providing an accessible introduction to certain topics in the topology of 3-
manifolds. Other major sources I relied upon while writing this book include Browder
[24], Fintushel–Stern [45], Freedman–Kirby [52], Guillou–Marin [64], Kirby [84],
Livingston [105], Matsumoto [107], McCullough [110], Neumann–Raymond [122],
Rolfsen [137] and Taubes [152].

Figures 1.3, 1.6, 1.10, 3.4, 3.9, 4.3 were reproduced, with kind permission, from
“Algorithmic and Computer Methods for Three-Manifolds” by A. T. Fomenko and
S. V. Matveev, ©1997 Kluwer Academic Publishers.

I am indebted to Boris Apanasov, Olivier Collin, John Dean, Max Forester, Sla-
womir Kwasik, Walter Neumann, Liviu Nicolaescu, Frank Raymond, Thang T. Q. Le,
and Vladimir Turaev for sharing their expertise and advice, and for their help and
support during my work on this book. I would also like to thank the graduate students
who took my course at the University of Michigan. I wish to express my gratitude
to John Dean who read the manuscript to polish the English usage. I was partially
supported by NSF Grant DMS-97-04204 and by Max-Planck-Institut für Mathematik
in Bonn, Germany, during my work on this book.



Preface vii

Comments on this edition

In the twelve years since the publication of this book, the face of low-dimensional
topology has been profoundly changed by the proof of the three-dimensional Poincaré
conjecture. The effect this had on the Casson invariant was that its original application
to proving that the Rohlin invariant of a homotopy 3-sphere must vanish was rendered
moot. Despite this, Casson’s contribution remains as relevant as ever: in fact, a lot
of the modern day low-dimensional topology, including a number of Floer homol-
ogy theories, can be traced back to his �-invariant. These Floer homology theories
have been also linked to contact topology and Khovanov homology, and together they
constitute a very active area of research.

I did not attempt to cover any of these new topics in the second edition. How-
ever, I added a couple of brief sections, where it seemed appropriate, to indicate how
the material in this book is relevant to Heegaard Floer homology and open book de-
compositions. Other than that, I added a few updates and exercises, and corrected a
number of typos.

I am thankful to everyone who has commented on the book, and especially to Ken
Baker, Ivan Dynnikov, Jochen Kroll, and Marina Prokhorova.

Miami, August 2011 Nikolai Saveliev
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Introduction

A topological space M is called a (topological) n-dimensional manifold, or n-mani-
fold, if each point of M has an open neighborhood homeomorphic to Rn. In other
words, a manifold is a locally Euclidean space. To avoid pathological examples, it
is standard to assume that all manifolds are Hausdorff and have a countable base of
topology, and we will follow this convention. Most manifolds we consider will also
be compact and connected.

Let U and V be two open sets in an n-manifold M each homeomorphic to Rn via
homeomorphisms �WU ! Rn and  WV ! Rn. Then

 ı ��1W�.U \ V /!  .U \ V / (1)

is a homeomorphism of open sets in Euclidean space Rn. A manifold M is smooth
if there is an open covering U of M such that for any open sets U; V 2 U the map
(1) is a diffeomorphism. A manifold M is called piecewise linear or simply PL if
there is an open covering U of M such that for any open sets U; V 2 U the map (1)
is a piecewise linear homeomorphism. Another way to describe PL manifolds is as
follows.

A triangulation of a polyhedron is called combinatorial if the link of each its ver-
tex is PL-homeomorphic to a PL-sphere. Every PL-manifold admits a combinatorial
triangulation. Any polyhedron which admits a combinatorial triangulation is a PL-
manifold.

A Hausdorff topological space M whose topology has a countable base is called
an n-manifold with boundary if each point of M has an open neighborhood homeo-
morphic to either Euclidean space Rn or closed upper half-space RnC. The union of
points of the second type is either empty or an .n � 1/-dimensional manifold, which
is denoted by @M and called the boundary of M . Note that the boundary of @M is
empty. A manifold M is called closed if it is compact and its boundary is empty.
Analogous definitions hold for smooth and PL manifolds.

The following fact is very important for us: if n � 3 then the concepts of topo-
logical, smooth, and PL manifolds coincide, see Bing [15] and Moise [116]. More
precisely, any topological manifold M of dimension less than or equal to 3 admits a
smooth and a PL-structure. These are unique in that there is a diffeomorphism or a
PL-homeomorphism between any two smooth or PL-manifolds that are homeomor-
phic to M . Moreover, if a PL-manifold of dimension n � 3 is homeomorphic to a
smooth manifold then there is a homeomorphism between them whose restriction to
each simplex of a certain triangulation is a smooth embedding.
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In dimension 4, every PL-manifold has a unique smooth structure, and vice versa,
see Cairns [27] and Hirsch [75]. However, there exist topological manifolds in di-
mension 4 that admit no smooth structure, and there are topological 4-manifolds with
more than one smooth structure. These questions will be discussed in more detail
in Lecture 5. Furthermore, there exists a closed 4-dimensional topological manifold
which is not homeomorphic to any simplicial complex, much less a combinatorial
one. A key ingredient in the construction of such a manifold is the Casson invariant,
which is defined later in these lectures.

The relationships between topological, smooth, and PL-manifolds are more com-
plicated in dimensions 5 and higher. They will be briefly discussed in Lecture 18.



Glossary

We explain some standard geometric and topological background material used in
the book. Shown in italic are terms whose meaning is explained somewhere in the
glossary text.

CW-complexes. A topological space X is called a CW-complex if X can be repre-
sented as a union

X D

1[
qD0

X .q/

where the 0-skeleton X .0/ is a countable (possibly finite) discrete set of points, and
each .q C 1/-skeleton X .qC1/ is obtained from the q-skeleton X .q/ by attaching
.q C 1/-cells. More explicitly, for each q there is a collection ¹ej j j 2 JqC1º where

(1) each ej is a subset ofX .qC1/ such that if e0j D ej \X
.q/, then ej n e0j is disjoint

from ek n e
0
k

if j; k 2 JqC1 with j ¤ k,

(2) for each j 2 JqC1, there is a characteristic map gj W .DqC1; @DqC1/ !
.X .qC1/; X .q// such that gj is a quotient map from DqC1 to ej , which maps
DqC1 n @DqC1 homeomorphically onto ej n e0j ,

(3) a subset of X is closed if and only if its intersection with each skeleton X .q/ is
closed.

Each ej n e0j is called a .q C 1/-cell. When all characteristic maps are embeddings,
the CW-complex is called regular.

Cellular homology. Let X be a CW-complex, and R a commutative ring with an
identity element. For each q, let Cq.X;R/ be the free R-module with basis the q-
cells. We will define the boundary homomorphism @qC1WCqC1.X;R/! Cq.X;R/.
To define @qC1.c/, where c is a fixed .q C 1/-cell, fix an orientation for DqC1, thus
determining an orientation for the q-sphere @DqC1, and look at how the characteristic
map g of c carries @DqC1 toX .q/. For each ek inX .q/, fix a point zk in ck D ek ne

0
k

.
One can show that g is homotopic to a map such that for each k, the preimage of zk
is a finite set of points pk;1; : : : ; pk;nk . Moreover g takes a neighborhood of each
pk;j homeomorphically to a neighborhood of zk (by compactness, the preimage of
zk is empty for all but finitely many k). For each j with 1 � j � nk , let "k;j D ˙1
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according to whether g restricted to the neighborhood of pk;j preserves or reverses
orientation. Let

"k D

nkX
jD1

"k;j and @qC1.c/ D

1X
kD1

"kck

where all but finitely many "k are equal to zero.
The numbers "k can also be described as follows. The quotient spaceX .q/=X .q�1/

is homeomorphic to a one-point union of q-dimensional spheres, one for each q-cell
ck D ek n e

0
k

. Given a .q C 1/-cell c, its characteristic map g W .DqC1; @DqC1/ !
.X .qC1/; X .q// induces the map

'k W @D
qC1 ! X .q/ ! X .q/=X .q�1/ ! Sq;

where the last arrow maps the sphere Sq corresponding to the cell ck identically to
itself, while contracting all other spheres to a point. The degree of 'k is "k . This
description of "k ensures that @qC1.c/ is well-defined.

This defines the homomorphism @qC1 on the generators, and the definition extends
by linearity to the entire freeR-moduleCqC1.X;R/. One can prove that @q@qC1 D 0.
The reason is that algebraically, the q-sphere @DqC1 acts as though it were a regular
CW-complex with one q-cell corresponding to each preimage point of a zk . Since
@DqC1 is a manifold, the boundaries of these q-cells form a collection of .q�1/-cells,
each appearing as part of the boundary of two q-cells, but with opposite orientations.
Consequently, the algebraic sum of the boundaries of these q-cells is 0. Applying @q to
@qC1.c/ simply adds up the images of the boundaries of those q-cells in Cq�1.X;R/,
and the pairs with opposite signs cancel out, giving 0.

An element of Cq.X;R/ is a formal finite sum
P
rkck , where each ck is a q-cell;

such a sum is called a q-chain. Now form a sequence of R-modules and homomor-
phisms

� � � ! CqC1.X;R/
@qC1
���! Cq.X;R/

@q
�! Cq�1.X;R/! � � � ! C0.X;R/! 0: (2)

This is called a chain complex, since @q@qC1 D 0 for all q. This implies that the
image of @qC1 is contained in the kernel of @q for each q. If the image of @qC1
equals the kernel of @q for each q, the sequence is called exact. If not, we measure its
deviation from exactness by defining cellular homology groups

Hq.X IR/ D ker.@q/= im.@qC1/:

Elements of ker.@q/ are called cycles, and elements of im.@qC1/ are called bound-
aries. Explicitly, an element of Hq.X IR/ is a coset aq C @qC1.CqC1.X;R//, where
@qaq D 0, but it is usually written as Œaq�. Note that Œaq� D Œa0q� if and only if
aq D a

0
q C @qC1.bqC1/ for some .q C 1/-chain bqC1.
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To complete the definition of H� as a homology theory, we need to define f� for
all continuous maps f WX ! Y . We first define Cq.f /WCq.X;R/ ! Cq.Y;R/. By
the Cellular Approximation Theorem, f may be changed within its homotopy class
so that f .X .q// � Y .q/ for all q. Then, define Cq.f /.c/ similarly to the way that
@q.c/ was defined above. Then f�.Œc�/ D ŒCq.f /.c/�.

It is not easy to prove that this is well-defined and satisfies the Eilenberg–Steenrod
axioms, but it can be done. In particular, H�.X IR/ does not depend on the CW-
complex structure chosen forX since the identity map induces an isomorphism on the
homologies defined using two different CW-complex structures onX , and f� depends
only on the homotopy class of f .

When A is a subcomplex of X define the relative homology groups Hq.X;AIR/
by setting Cq.X;A;R/ D Cq.X;R/=Cq.A;R/ and noting that @q induces @q W
Cq.X;A;R/ ! Cq�1.X;A;R/. Then, Hq.X;AIR/ is defined as the homology of
the chain complex C�.X;A;R/. The long exact sequence of the second Eilenberg–
Steenrod axiom is then a purely algebraic consequence of the existence of short exact
sequences

0! Cq.A;R/! Cq.X;R/! Cq.X;A;R/! 0:

Note that every element of Hq.X;AIR/ can be represented by a q-chain whose
boundary lies in A.

Cohomology of spaces. Once cellular, simplicial, or singular homology is defined,
cohomology can be defined algebraically. This is based on the following fact. IfA and
B are R-modules, and 'WA! B is an R-module homomorphism, then there is anR-
module homomorphism '�WHom.B;R/ ! Hom.A;R/ defined by '�.˛/ D ˛ ı '.
Clearly .' ı  /� D  � ı '�, so if we define the coboundary homomorphism by
ıq D @�q , then ıqC1ıq D @�qC1@

�
q D .@q@qC1/

� D 0� D 0. Therefore, abbreviating
Hom.Cq.X/;R/ to C q.X;R/, we have a cochain complex

0! C 0.X;R/! � � � ! C q�1.X;R/
ıq
�! C q.X;R/

ıqC1
���! C qC1.X;R/! � � �

(3)
whose deviation from exactness is measured by the cohomology groups

H q.X;R/ D ker ıqC1= im ıq :

A continuous map f WX ! Y induces homomorphisms f �WH q.Y;R/! H q.X;R/

with .f ı g/� D g� ı f �, and there are corresponding versions of the Eilenberg–
Steenrod axioms and Mayer–Vietoris exact sequence for cohomology.

An important case is whenRDF is a field. Then it can be proved thatH q.X IF /Š

Hom.Hq.X IF /; F /, the dual vector space of Hq.X; F /. Hence H q.X IF / and
Hq.X IF / are vector spaces of the same rank, although there is no natural isomor-
phism between them.
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Connected sums. Let M1 and M2 be closed oriented manifolds of dimension n,
and Dn � Mk , k D 1; 2, a pair of n-discs embedded in M1 and M2. A connected
sum of M1 and M2 is defined as the manifold M1#M2 D .M1 n intDn/ [ .M2 n

intDn/ obtained by gluing the manifoldsMk n int.Dn/ along their common boundary
Sn�1 via an orientation reversing homeomorphism r WSn�1 ! Sn�1. The manifold
M1#M2 inherits an orientation from those on M1 and M2. The manifolds M1#M2

and M1#.�M2/, where �M2 stands for the manifold M2 with reversed orientation,
need not be homeomorphic. Note also that if the manifolds M1 and M2 are smooth,
a choice of smoothly embedded discs in M1 and M2 and a smooth identification map
provides us with a smooth manifold M1#M2.

If the manifolds M1 and M2 have non-empty boundaries, one can still form their
connected sum by choosing the n-discs in their interiors. One can also form their
boundary connected sum, M1 \M2, by identifying .n � 1/-discs Dn�1 � @Mk ,
k D 1; 2, via an orientation reversing homeomorphism. The boundary of M1 \M2 is
.@M1/#.@M2/.

Cutting open. This is an operation which is “inverse” to the gluing of spaces. Let Y
be a closed subspace of a connected space X such that the closure of X nY coincides
with X . Suppose that X n Y consists of a finite number of connected components,
X1; : : : ; Xn. Consider the space

X 0 D
[

Xi � ¹iº � X �R;

that is, move the components apart from each other. The closure of X 0 in the product
topology on X �R is the result of cutting X open along Y .

Degree of a map. Let f W .M; @M/ ! .N; @N / be a continuous map between ori-
ented connected compact manifolds of identical dimension n. The degree of f is an
integer degf satisfying f�ŒM; @M� D degf � ŒN; @N �, where ŒM; @M� and ŒN; @N �
are the fundamental classes of the manifolds M and N , and f�WHn.M; @M/ !

Hn.N; @N / the induced map. If f WM ! N is a smooth map between smooth closed
oriented manifolds, choose any point y 2 N such that f is transversal to y. Then the
degree of f coincides with the integer

degf D
X

x2f �1.y/

sign.det dxf /;

where dxf WTxM ! TyN is the derivative of f at a point x 2M , and is independent
of the choice of y.

Eilenberg–MacLane spaces. The Eilenberg–MacLane spaces K.�; n/ are the fun-
damental building blocks of homotopy theory. They are CW-complexes characterized
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uniquely up to homotopy equivalence as having a single non-trivial homotopy group:

�i .K.�; n// D

´
�; if i D n;

0; if i ¤ n:

Of course, the group � is required to be Abelian if n � 2. Standard examples of
Eilenberg–MacLane spaces include K.Z; 1/ D S1 and K.Z; 2/ D CP1, where
CP1 is defined as the limiting space of the tower of complex projective spaces
CP 1 � CP 2 � CP 3 � � � � with respect to the natural inclusions. Eilenberg–
MacLane spaces are classifying spaces for cohomology in that

Hn.X I�/ D ŒX;K.�; n/� (4)

for any space X and Abelian group � , where the brackets denote the set of all homo-
topy classes of continuous maps. The isomorphism (4) is obtained as follows. From
the Hurewicz theorem and the Universal Coefficient theorem, it is easy to see that
Hn.K.�; n/I�/ Š Hom.�; �/. Let �W� ! � be the identity map. Associate to
any f WX ! K.�; n/ the cohomology class f �� 2 Hn.X I�/; this is the correspon-
dence (4).

Gluing construction. Let X and Y be topological spaces, and f WZ ! Y a contin-
uous map where Z � X is a subspace of X . Consider the disjoint union X [ Y and
introduce the equivalence relation generated by z � f .z/whenever z 2 Z. The space
X [f Y D .X [ Y /= � with the quotient topology is said to be obtained by gluing
X and Y along f . In most cases we consider, the map f will be a homeomorphism
of Z onto its image f .Z/ � Y .

Handles. Let X be a smooth n-manifold with boundary, and 0 � k � n. An n-
dimensional k-handle is a copy of Dk �Dn�k , attached to the boundary of X along
.@Dk/ � Dn�k using an embedding f W .@Dk/ � Dn�k ! @X . The corners that
arise can be smoothed out, see for instance Chapter 1 of Conner–Floyd [31], hence
X [f .D

k �Dn�k/ is again a smooth manifold. For example, a 1-handle is a product
D1�Dn�1 attached along a pair of .n�1/-balls, S0�Dn�1. A 2-handle is a product
D2 �Dn�2 attached along S1 �Dn�2. For more details see Gompf–Stipsicz [61] or
Rourke–Sanderson [138].

Homology theory. Let R be a commutative ring with an identity element. Some-
times R will be required to be a principal ideal domain. By a homology theory we
mean a functor from the category of pairs of spaces and continuous maps to the cate-
gory of gradedR-modules and graded homomorphisms. That is, for each pair .X;A/,
where A is a subspace of X , there is an R-module

H�.X;AIR/ D

1M
qD0

Hq.X;AIR/;
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and for each continuous map of pairs f W .X;A/! .Y; B/ there are homomorphisms
f�WHq.X;AIR/ ! Hq.Y; BIR/ for every q, so that .f ı g/� D f� ı g�. We
abbreviate Hq.X;AIR/ to Hq.X;A/ and Hq.X;;/ to Hq.X/. It will be clear from
the context what the ring R is. The following Eilenberg–Steenrod axioms must hold:

(1) (homotopy invariance) If f; gW .X;A/! .Y; B/ are homotopic then f� D g�.

(2) (long exact sequence) For every pair .X;A/ and every q there are homomor-
phisms @WHq.X;A/! Hq�1.A/ fitting into a long exact sequence

� � � !Hq.A/
i�
�!Hq.X/

j�
�!Hq.X;A/

@
�!Hq�1.A/! � � � !H0.X;A/! 0;

where i WA! X and j W .X;;/! .X;A/ are inclusion maps.

(3) (excision axiom) If U is an open subspace of X whose closure is contained in
the interior of A, then the inclusion map j W .X n U;A n U/ ! .X;A/ induces
isomorphisms j�WHq.X n U;A n U/! Hq.X;A/ for all q.

(4) (coefficient module) If P is a one point space, then H0.P / D R and Hq.P / D
0 for q � 1.

The module in axiom (4) is called the coefficient ring for the homology theory. We
often refer to Hq.X;A/ as homology groups. Strictly speaking, one should say ho-
mology modules, but for the common cases R D Z and R D Z=n, the homology
modules are Abelian groups.

There are many ways to define homology groups. For a fixed ring R, all the stan-
dard ways produce the same results when X is a simplicial or a CW-complex and A
is a subcomplex. The most widely used theories are simplicial, singular, and cellular
homology. We will be working with the latter most of the time.

The Eilenberg–Steenrod axioms imply the Mayer–Vietoris exact sequence, which
is very powerful for computation of homology. It applies in quite general situations,
but we will only state it for CW-complexes. Suppose that A and B are subcomplexes
of a CW-complex X , with X D A[B . Then there are homomorphisms @WHq.X/!
Hq�1.A \ B/ fitting into a long exact sequence

� � � ! Hq.A\B/
.i�;�j�/
�����! Hq.A/˚Hq.B/

I�CJ�
����! Hq.X/

@
�! Hq�1.A\B/! � � �

where i WA\B ! A, j WA\B ! B , I WA! X , and J WB ! X are inclusion maps.
Here are some consequences of the axioms and the Mayer–Vietoris sequence. As-

sume that K is a CW-complex and L is a subcomplex, possibly empty. Then, if K is
n-dimensional, or more generally if every cell of K n L has dimension less than or
equal to n, then Hq.K;L/ D 0 for all q > n. Moreover, H0.K/ D ˚R with one
summand for each path component of K.

A cohomology theory is defined similarly, together with cohomological versions of
the Eilenberg–Steenrod axioms and the Mayer–Vietoris exact sequence.
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Homotopy lifting property. A map pWE ! B has the homotopy lifting property
with respect to a space X if, for every two maps f WX ! E and GWX � I ! B for
which pf D Gi (where I D Œ0; 1� and i WX ! X � I is the map x 7! .x; 0/), there
exists a continuous map QGWX � I ! E making the following diagram commute:

�

�
�

�

X E

X � I B
�

�
�

��i pQG

f

G

(5)

A map pWE ! B is called a fibration if it has the homotopy lifting property with
respect to every spaceX . If b 2 B , then p�1.b/ D F is called a fiber. Different fibers
of a fibration need not be homeomorphic, however, they all are homotopy equivalent.
A map pWE ! B is called a Serre fibration if it has the homotopy lifting property
with respect to all CW-complexes X . Locally trivial bundles are Serre fibrations, and
in fact fibrations if the base B is paracompact.

Let p W E ! B be a fibration, and QG0, QG1 two maps making the above diagram
commute. Then QG0 and QG1 are fiberwise homotopic rel X � ¹0º, see for instance
Spanier [150], Corollary 2.8.11.

Homotopy theory. We refer the reader to Hatcher [71] or Spanier [150] for the ba-
sics of the homotopy theory, including homotopy, homotopy equivalences, the funda-
mental group �1.X; x0/, van Kampen’s theorem, covering spaces, higher homotopy
groups �n.X; x0/ etc.

Hurewicz Theorem. Suppose � W .Sn; s0/ ! .X; x0/ is a map representing an ele-
ment of �n.X; x0/. Let �n be a fixed generator of Hn.SnIZ/ D Z. The Hurewicz
homomorphism 	W�n.X; x0/ ! Hn.X IZ/ is defined by 	.Œ��/ D ��.�n/. One can
show that this homomorphism is natural, that is, if f WX ! Y is a continuous map,
the diagram

�nX
�

����! HnX??yf� ??yf�
�nY

�
����! HnY

commutes. The basic relationship between homotopy groups and homology groups
is given by the Hurewicz theorem, which in its simplest form asserts the following.
Let X be a topological space such that �0X D �1X D : : : D �n�1X D 0 for some
n � 1.

(1) If n D 1 then 	W�1X ! H1X is given by Abelianization and is surjective.

(2) If n � 2 then QH0X D H1X D : : : D Hn�1X D 0 and 	W�nX ! HnX is an
isomorphism.


