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Preface

Markov processes represent a universal model for a large variety of real life random
evolutions. The wide flow of new ideas, tools, methods and applications constantly
pours into the ever-growing stream of research on Markov processes that rapidly
spreads over new fields of natural and social sciences, creating new streamlined log-
ical paths to its turbulent boundary. Even if a given process is not Markov, it can be
often inserted into a larger Markov one (Markovianization procedure) by including
the key historic parameters into the state space.

Markov processes are described probabilistically by the distributions on their tra-
jectories (often specified by stochastic differential equations) and analytically by the
Markov semigroups that specify the evolution of averages and arise from the so-
Iutions to a certain class of integro-differential (or pseudo-differential) equations,
which is distinguished by the preservation of the positivity property (probabilities
are positive). Thus the whole development stands on two legs: stochastic analysis
(with tools such as the martingale problem, stochastic differential equations, conver-
gence of measures on Skorohod spaces), and functional analysis (weighted Sobolev
spaces, pseudo-differential operators, operator semigroups, methods of Hilbert and
Fock spaces, Fourier analysis).

The aim of the monograph is to give a concise (but systematic and self-contained)
exposition of the essentials of Markov processes (highly nontrivial, but conceptually
excitingly rich and beautiful), together with recent achievements in their construc-
tions and analysis, stressing specially the interplay between probabilistic and analytic
tools. The main point is in the construction and analysis of Markov processes from the
‘physical picture’ — a formal pre-generator that specifies the corresponding evolution-
ary equation (here the analysis really meets probability) paying particular attention to
the universal models (analytically — general positivity-preserving evolutions), which
go above standard cases (e.g. diffusions and jump-type processes).

The introductory Part I is an enlarged version of the one-semester course on Brown-
ian motion and its applications given by the author to the final year mathematics and
statistics students of Warwick University. In this course, Browninan motion was stud-
ied not only as the simplest continuous random evolution, but as a basic continuous
component of complex processes with jumps. Part I contains mostly well-known ma-
terial, though written and organized with a point of view that anticipates further de-
velopments. In some places it provides more general formulations than usual (as with
the duality theorem in Section 1.9 or with the Holtzmark distributions in Section 1.5)
and new examples (as in Section 2.11).

Part II is based mainly on the author’s research. To facilitate the exposition, each
chapter of Part II is composed in such a way that it can be read almost independently
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of others, and it ends with a section containing comments on bibliography and related
topics. The main results concern:

(i) various constructions and basic continuity properties of Markov processes, includ-
ing processes stopped or killed at the boundary (as well as related boundary points
classification and sensitivity analysis),

(i1) in particular, heat kernel estimates for stable-like processes,

(iii) limiting processes for position-dependent continuous time random walks (ob-
tained by a random time change from the Markov processes) and related fractional (in
time) dynamics,

(iv) the rigorous Feynman path-integral representation for the solutions of the basic
equations of quantum mechanics, via jump-type Markov processes.

We also touch upon the theory of stochastic monotonicity, stochastic scattering,
stochastic quasi-classical (also called small diffusion) asymptotics, and stochastic
control. An important development of the methods discussed here is given by the
theory of nonlinear Markov processes (including processes on manifolds) presented
in the author’s monograph [196]. They are briefly introduced at the end of Chapter 5.

It is worth pointing out the directions of research closely related to the main topic
of this book, but not touched here. These are Dirichlet forms, which can be used for
constructing Markov processes instead of generators, Mallivin calculus, which is a
powerful tool for proving various regularity properties for transition probabilities, log-
Sobolev inequalities, designed to systematically analyze the behavior of the processes
for large times, and processes on manifolds. There exists an extensive literature on
each of these subjects.

The book is meant to become a textbook and a monograph simultaneously, taking
more features of the latter as the exposition advances. I include some exercises, their
weight being much more sound at the beginning. The exercises are supplied with
detailed hints and are meant to be doable with the tools discussed in the book. The
exposition is reasonably self-contained, with pre-requisites being just the standard
math culture (basic analysis and linear algebra, metric spaces, Hilbert and Banach
spaces, Lebesgue integration, elementary probability). We shall start slowly from
the prerequisites in probability and stochastic processes, omitting proofs if they are
well presented in university text books and not very instructive for our purposes, but
stressing ideas and technique that are specially relevant. Streamlined logical paths
are followed to the main ideas and tools for the most important models, by-passing
wherever possible heavy technicalities (say, by working with Lévy processes instead
of general semi-martingales, or with left-continuous processes instead of predictable
ones).

A methodological aspect of the presentation consists in often showing various per-
spectives for key topics and giving several proofs of main results. For example, we
begin the analysis of random processes with several constructions of the Brownian
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motion: 1) via binary subdivisions anticipating the later given Itd approach to con-
structing Markov evolutions, 2) via tightness of random-walk approximations, antici-
pating the later given LLN for non-homogeneous random walks, 3) via Hilbert-space
methods leading to Wiener chaos that is crucial for various developments, for instance
for Malliavin calculus and Feynman path integration, 4) via the Kolmogorov continu-
ity theorem. Similarly, we give two constructions of the Poisson process, several
constructions of basic stochastic integrals, several approaches to proving functional
CLTs (via tightness of random walks, Skorohod embedding and the analysis of gener-
ators). Further on various probabilistic and analytic constructions of the main classes
of Markov semigroups are given. Every effort was made to introduce all basic no-
tions in the most clear and transparent way, supplying intuition, developing examples
and stressing details and pitfalls that are crucial to grasp its full meaning in the general
context of stochastic analysis. Whenever possible, we opt for results with the simplest
meaningful formulation and quick direct proof.

As teaching and learning material, the book can be used on various levels and with
different objectives. For example, short courses on an introduction to Brownian mo-
tion, Lévy and Markov processes, or on probabilistic methods for PDE, can be based
on Chapters 2, 3 and 4 respectively, with chosen topics from other parts. Let us stress
only that the celebrated Itd’s lemma is not included in the monograph (it actually be-
came a common place in the textbooks). More advanced courses with various flavors
can be built on part II, devoted, say, to continuous-time random walks, to probabilistic
methods for boundary value problems or for the Feynman path integral.

Finally, let me express my gratitude to Professor Niels Jacob from the University
of Wales, Swansea, an Editor of the De Gryuter Studies in Mathematics Series, who
encouraged me to write this book. I am also most grateful to Professor Nick Bingham
from Imperial College, London, for reading the manuscript carefully and making lots
of comments that helped me to improve the overall quality immensely.

Coventry, November 2010 V. N. Kolokoltsov






Notations

Numbers and sets
* aVvb=max(a,b),a ANb =min(a,b)
* N and Z are the sets of natural and integer numbers

« C? and R? are the complex and real d-dimensional spaces, |x| or ||x]|| for a
vector x € R? denotes its Euclidean norm, (x,y) or xy denotes the scalar
product of the vectors x, y € R4

* Rea and Ima are the real and imaginary part of a complex number a

* B, (x) (resp. By) is the ball of radius r centered at x (resp. at the origin)
« 59 is the d-dimensional unit sphere in R4 +1

« R (resp. R4 ) is the the set of positive (resp. non-negative) numbers

« Q and 9Q are the closure and the boundary respectively of the subset 2 in a
metric space

« Q5 is the set of all mappings S — Q

* [x] is the integer part of a real number x

Functions

* B(S) (resp. C(S) or Cp(S)) for a complete metric space (S, p) (usually S = R9,
p(x,y) = |lx — y|)) is the Banach space of bounded Borel measurable (resp.
bounded continuous) functions on S equipped with the sup-norm

£l = sup | f(x)]
xeS

* C.(S) C C(S) consists of functions with a compact support

* CLip(S) C C(S) consists of Lipschitz continuous functions f, ie. | f(x) —
S (¥)| < kp(x,y) with a constant «; Cpip(S) is a Banach space under the norm

I/ lILip = sup | f(x)[ + Sip Lf ) = FD)I/1x =yl
x x#y

* Co(S) C C(S) consists of f such that limy_+ f(x) = 0, i.e. Ve 3 a compact
set K @ supygg | f(x)| < € (it is a closed subspace of C(S) if S is locally
compact)
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Notations

CkR?) or le (R?) (sometimes shortly C¥) is the Banach space of k times

continuously differentiable functions with bounded derivatives on R? with the
norm being the sum of the sup-norms of the function itself and all its partial
derivative up to and including order k

CI’fiP(Rd ) is the subspace of C k(R?) with all derivative up to and including
order k being Lipschitz continuous; it is a Banach space equipped with the norm

1£0cg, = 1 llesmr + 17 @ lup

CER?) = C.(RY) N CK(RY)

a 9
V=t Vaf) = Gl i) f e CHRY
LP(Q2, %, 1), p > 1, is the usual Banach space of (the equivalence classes of)
measurable functions f on the measure space 2 such that

17l = ( / Ifl”(x)u(dx))l/p o

L°°(Q2, ¥,P) is the Banach space of (the equivalence classes of) measurable
functions f on the measure space 2 with a finite sup-norm

£ 1 = esssupyeq [f(x)]
S(RY) = {f € C®R?) : Vk,I € N, |x|*V! f € Co(R?)} is the Schwartz

space of rapidly deceasing functions

(f.g) = [ f(x)g(x) dx denotes the scalar product for functions f, g on R4 or
on a general measure space

1,4 is the indicator function of a set M (equals one or zero according to whether
its argument is in M or otherwise)

sgn is the sign function taking values 41, 0, —1 for positive, vanishing and neg-
ative values of the argument respectively

f = O(g) means | f| < Cg for some constant C

o [ =0(8nso0 <> limy00(f/g) =0

Measures

o M(S) (resp. P(S5)) is the set of finite (positive) Borel measures (resp. probability

measures) on a metric space S

o Mi2ed(S) defines the Banach space of finite signed Borel measures on a metric

space S

|v| for a signed measure v is its (positive) total variation measure

(fim) =[5 f()u(dx) for f € C(S), p € M(S)
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Matrices and linear operators

o AT is the transpose to a matrix A

Ker(A), Sp(A), tr(A) are the kernel, spectrum and trace of the operator A

| Al g is the norm of the operator A in a Banach space B

| AllB—c is the norm of the operator A as a mapping between Banach spaces B
and C

C([0, ], B) is the Banach space of continuous functions on [0, ] with values in
the Banach space B equipped with the sup-norm || /|| = supgefo,, |/ (5) |l

Probability

* E and P define the expectation and probability, E,, P, for x € S (respectively
E,.P, for p € $(S)) are the expectation and probability with respect to an
S-valued process started at x (respectively with the initial distribution )



Standard abbreviations

a.s. almost sure

i.i.d. independent identically distributed
Lh.s. left-hand side

r.h.s. right-hand side

r.v. random variable
BM Brownian motion
CLT central limit theorem

CTRW  continuous time random walk
LLN law of large numbers

ODE ordinary differential equation
(0]8) Ornstein—Uhlenbeck (process)
PDE partial differential equation
PDO partial differential operator
WDE pseudo differential equation
WDO  pseudo differential operator
SDE stochastic differential equation
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Introduction to stochastic analysis






Chapter 1
Tools from probability and analysis

This chapter is meant to supply the preliminary material needed for reading the book.
Though we do give most of the proofs (sometimes sketchy), some fundamental facts
are only formulated. The criterion used for the omission of the proofs was two-fold.
On the one hand, these proofs are not deeply connected with (nor very instructive
for the understanding of) the main body of this text, and are non-trivial, so that their
proper exposition would be time and space consuming; and on the other hand, they
are quite standard by now and are widely represented in university textbooks. To
set the ground for probability, we recall the notion of a measure space, but we do
assume readers to be acquainted with the definition and basic properties of integrals
with respect to an abstract measure including dominated and monotone convergence
theorems. In the next three sections we collect the basic facts from standard prob-
ability texts, see e.g. Applebaum [19], Jacod and Protter [146], Shiryaev [293] and
Kallenberg [154], so that references are not given to each formulated result sepa-
rately. Afterwards we introduce infinitely divisible and stable distributions. Then
we recall the basic topologies used routinely in stochastic analysis. And finally we
introduce the analytic tools (fractional derivatives, pseudo-differential operators and
semigroups) used in what follows. Readers with a sound background in probability
and/or analysis may wish to skip some or all sections of this introductory chapter.

1.1 Essentials of measure and probability

A collection ¥ of subsets of a given set S is called a o-algebra if
i Se¥F;
(i) Ae F=>S\AeF;
(iii) (o-additivity) Uff;l Ay, € ¥ whenever A, € ¥ foranyn € N.
The pair (S, ¥) is called a measurable space.
A measure on (S,¥) is a mapping u : ¥ > [0, 00] such that u(4) = 0 and
o-additivity holds:

M( G An) = i w(An)
n=1 n=1

for any sequence A, of mutually disjoint sets in . The triple (S, ¥, ) is called a
measure space. A measure u is called finite if its total mass (S) is finite, o-finite
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if there exists a sequence A,, n € N, of subsets of ¥ such that S = Uff’:l A, and
W(Ay) < oo for all n.

A measure space (2, ¥, ) is called a probability space whenever u(2) = 1. In
this case yu is called a probability measure and the subsets from F are called events.

An extension of the notion of a measure that does not assume positivity is some-
times useful as well. Namely a signed measure (respectively a complex measure) of
finite variation can be defined as a set function ¢ on a measurable space (S, ) that
is given by the integral

Mm=ﬁfmmmx/my, (L)

where  is a (positive) finite measure on (S, ) and f is a real (respectively complex-
valued) function on S integrable with respect to . The total variation norm of ¢ is
defined as

nw=/ummmu

The set of signed (respectively complex) measures of finite variation on (S, ¥) is
easily seen to be a real (respectively complex) Banach space when equipped with this
norm. The fotal variation measure of ¢ is defined as the measure

p(dx) = | f(x)u(dx),

so that
¢(dx) = o(x)|$|(dx)

with o taking only three values 0, 1, —1. As for usual measures, the following exten-
sion is sometimes useful. A set function ¢ is called a o-finite signed (or complex)
measure if it has a representation (1.1) with a o-finite measure p and a bounded mea-
surable real (respectively complex) function f.

For a metric space S, e.g. a subset of R?, the smallest o-algebra B(S) containing
all its open subsets is called the Borel o-algebra of S. Its elements are called Borel
sets and any measure on (S, B(S)) is called a Borel measure. The simplest example
of a Borel measure is given by Lebesgue measure on R?. A Borel measure is called
a Radon measure if it is finite on any compact set. One can also define a signed or
complex Radon measure as a set function that becomes a signed or complex measure
of finite variation when reduced to any compact set.

Throughout this book our processes will live in Euclidean spaces R4. However, the
distribution of a R?-valued process is a distribution on a certain space of trajectories
of such a process, and the latter space is often specified as a rather nontrivial infinite-
dimensional metric space (Skorohod space). Hence the necessity to work with mea-
sures on general metric spaces, even when analyzing finite-dimensional processes.

! Alternatively signed measures can be defined axiomatically, in which case this representation fol-
lows from the so-called Hahn decomposition theorem.
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For a collection I' of the subsets of a set Q2 the o-algebra o (") generated by I is
the minimal o-algebra containing all sets from I".
An important method of constructing measures is via the products. Namely, for

a finite or a countable family of measure spaces (S;, ¥, i), i = 1,2,..., the prod-
uct measure space (S, ¥, u) is defined, where S = Sy x Sp) x -+, F = F1 ®
F> ® --- — the o-algebra generated by the sets A} x --- x Ay, A; € F;,n € N,

and u = 1 X pp X --- is the product measure uniquely specified by the prescription

WAy X+ x Ap) = p1(A1) -+ wn(An).

For a measure space (S, ¥, i) a subset of S is called negligible or a null set if it
is a subset of a N € ¥ with u(N) = 0. The o-algebra % of the subsets of S of the
form AU B, with A C ¥, B negligible and the measure /i on it defined on these sets
as fi(AU B) = u(A), are called respectively the completion of ¥ and p (with respect
to w). In particular, for S C R¥ the completion of B(S) with respect to Lebesgue
measure is called the o-algebra of Lebesgue measurable sets in S

For a probability space (€2, ¥, 1t) one says that some property depending on w € Q2
holds almost surely (briefly a.s.) or with probability 1 if there exists a negligible set
N € F such that this property holds forall € Q \ N.

A handy tool of probability theory is given by the following famous result called
the Borel-Cantelli lemma.

Theorem 1.1.1. If a sequence of events A,, n € N, on a probability space (2, ¥ ,P)
is such that ), P(A,) < oo, then a.s. only a finite number of Ap can occur.

Proof. Let B = {w € Q : infinite number A, occur}. Then

B=ﬂ(UAk)

n k>n
and
P(B) = P( | 4¢) = 3" P(4p) — 0,
k>n k>n
as n — oo. Hence P(B) = 0. O

If (S;, %), i = 1,2, are measurable spaces, a mapping f : S; — S is called
(F1., F2)-measurable if f~1(A) € F1 whenever A € F,. Two measurable spaces are
called Borel isomorphic, or just isomorphic, if there exists a bijection f : § — T
such that both f and f~! are measurable. A measurable space S is called a Borel
space if it is isomorphic to a Borel subset of [0, 1]. A deep result of measure theory
states that a complete metric space is a Borel space. This result is very convenient, as
it allows one to establish certain general facts by proving them only for the real line
(see below the randomization lemma). In our book we shall use only Borel spaces
and measures.
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If S1, S are metric spaces equipped with their Borel o-algebras, such a mapping
is said to be Borel measurable or briefly Borel. Speaking about measurable mapping
with values in R4 one usually means that R is equipped with its Borel o-algebra.

For a probability space (2, %,P) the measurable mappings X : @ — R are
called random variables (briefly r.v.), or sometimes random vectors in case d > 1.
More generally, for a metric space S the Borel measurable mappings 2 — S are
called S-valued random variables or random elements on S. The o-algebra o (X)
generated by a r.v. X is the smallest o-algebra containing the sets {X C B} for all
Borel sets B.

The law (or the distribution) of a random variable is the Borel probability measure
px on S defined as py = P o X!, In other words,

px(A) = P(X"1(4)) = P(w € Q : X(w) € A) = P(X € A).

For example, if X takes only finite number of values, then the law py is a sum of
Dirac §-measures.

Clearly, if 41 is a probability measure on R¢, then the identical mapping in R?
defines a R?-valued random vector with the law /i defined on the probability space
(R?, B, ). It turns out that for a family of laws depending measurably on a pa-
rameter one can specify a family of random variables defined on a single probability
space and depending measurably on this parameter. This is shown in the following
randomization lemma:

Lemma 1.1.1. Let u(x, dz) be a family of probability measures on a Borel space Z
depending measurably on a parameter x from another measurable space X (such a
Sfamily is called a probability kernel from X to Z). Then there exists a measurable
Sunction f : X x[0,1] — Z such that if 0 is uniformly distributed on [0, 1], then
f(X, 0) has distribution p(x,.) for every x € X.

Proof. Since Z is a Borel space, it is sufficient to prove the statement for Z = [0, 1].
In this case f can be defined by the explicit formula, the probability integral trans-
Sformation, that represents a standard method (widely used in practical simulations),
for obtaining a random variable from a given one-dimensional distribution:

f(s,t) =sup{x € [0,1] : u(s, [0, x]) <t}

Clearly this mapping depends measurably on s. Moreover, the events { f(s,?) < y}
and {r < u(s, [0, y])} coincide. Hence, for a uniform 6

P(f(s.0) = x) = P(r < pu(s.[0, y])) = (s, [0, x]). O

Twor.v. X and Y are called identically distributed if they have the same probability
law. For a real (i.e. one-dimensional) r.v. X its distribution function is defined by
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Fx (x) = px((—o0, x]). Areal r.v. X has a continuous distribution with a probability
density function f if px(A) = [, f(x)dx for all Borel sets A.

For an R¥-valued r.v. X on a probability space (2, ¥, it) and a Borel measurable
function f : R? > R™ the expectation E of f(X) is defined as

Bf(0) =BG = [ f@puo) = [ f@p@n. a2
X is called integrable it E(| X |) < oo.

Exercise 1.1.1. Convince yourself that the two integral expressions in (1.2) really
coincide. Hint: first choose f to be an indicator, then use linearity and approximation.

For two R%-valuedr.v. X = (X1,...,Xg)and Y = (Y1,...,Y ) the d x d-matrix
with the entries E[(X; —E(X;))(Y; —E(Y;))] is called the covariance of X and Y and
is denoted Cov(X, Y ). Incase d = 1 and X = Y the number Cov(X, Y) is called the
variance of X and is denoted by Var(X') and sometimes also by 0)%. Expectation and
variance supply two basic numeric characteristics of a random variable.

The random variables X and Y are called uncorrelated whenever Cov(X,Y) = 0.
Random variables X1, ..., X, are called independent whenever

P(X1 < A],Xz S Az,...,Xn < An) = P(X1 S A])P(Xz € Az)---P(Xn S An)

for all Borel A;. Clearly in this case Cov(X;, Xj) = Oforalli # j (i.e. independent
variables are uncorrelated) and

Var(Xy + --- 4+ Xp) = Var(X1) + --- + Var(Xy). (1.3)

As an easy consequence of the definition of the expectation constitute the following
inequalities whose importance to the probability analysis is difficult to overestimate.

Theorem 1.1.2. Markov’s inequality: If X is a non-negative random variable, then
forany e >0

EX
P(X >¢) < —.
€

Chebyshev’s inequality: For any € > 0 and a random variable Y

Var(Y)

P(Y —EY|>¢) < —
€

Jensen’s inequality: If g is a convex (respectively concave) function, then

g(E(X)) = E(g(X))

(respectively vice versa) whenever X and g(X) are both integrable.
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Proof. Evident inequalities
EX > E(X1xs¢) > €Elxysc = eP(X > ¢)

imply Markov’s one. Applying Markov’s inequality with X = |Y — EY|? yields
Chebyshev’s one. Finally, if g is convex, then for any x¢ there exists a A(xp) such
that g(x) > g(xo) + (x — x¢)A(xp) for all x. Choosing xo = EX and x = X yields

g(X) = g(EX) + (X —EX)A(EX).

Passing to the expectations leads to Jensen’s inequality. Concave g are analyzed sim-
ilarly. m|

Exercise 1.1.2. Let X, Y be a random variable and a d-dimensional random vector
respectively on a probability space. Show that for a continuous g : RY > R

B = [ g(wiay).

where v is the signed measure v(B) = E(X1p(Y)). Hint: start with indicator func-
tions g.

A more complicated inequality that we are going to mention here is the following
Kolmogorov’s inequality that states that for the sums S, = & + & + --- + &, of
independent zero mean random variables &1, &>, ... one has

|Sn]?

P( max |Sy|>¢) < (1.4)

1<m<n
We shall not prove it here, but we shall establish later on its far-reaching extension: the
Doob maximum inequality (notice only that both proofs, as well as other modification
like Ottaviani’s maximal inequality from Theorem 2.6.2, are based on the same idea
of stopping at a point where the maximum is achieved). Doob’s maximum inequality
implies directly the following more general form of Kolmogorov’s inequality (under
the same assumptions as in (1.4)):

P( max |S;| >¢€) < M (1.5)
1<m=<n €p

for any p € [0, 1]. In order to appreciate the beauty of this estimate it is worth noting
that they give precisely the same estimate for max |S,,| as one would get for S, itself
via the rough Markov—Chebyshev inequality.

Let us recall now the four basic notions of the convergence of random variables.
Let X and X,, n € N, be S-valued random variables, where (S, p) is a metric space
with the distance p. One says that X, converges to X
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1. almost surely or with probability 1 if limy, o X5 (w) = X(w) almost surely;
2. in probability if for any € > 0 lim,, 00 P(0(X,, X) > €) = 0;
3. indistribution if px, weakly converges to px,i.e. if

im [ f@pe@n) = [ feopxan

n—>oo
for all bounded continuous functions f.
If S is R4, or a Banach space, X is said to converge in L? (1 < p < oo0) if
lim, o E(| X, — X|?) = 0.
To visualize these notions, let us start with two examples.
1. Consider the following sequence of indicator functions {X,} on [0, 1]: 1o 1],

Lio,1/21: Tny2,11 po1/31 1nys2/310 1i2zas jo,1/43: 1ija,2/4), ete. Then
X, — 0asn — oo in probability and in all L?, p > 1, but not a.s. In fact
limsup X, (x) = 1 and liminf X,,(x) = 0 for each x so that X, (x) — X(x)
nowhere.

2. Choosing X, = X’ for all n with X’ distributed like X but independent of it,
shows that X;, — X in distribution does not imply in general X,, — X — 0.

The following statement gives instructive criteria for convergence in probability and
a.s. and establish the link between them.

Proposition 1.1.1. 1. X,, — X in probability if and only if

( p(Xn, X)
1+ p(Xn, X)

2. Xp — X a.s. if and only if

lim E

n—o0

) =0 lim E(1Ap(Xy, X)) =0.  (16)

lim P(sup p(X,,X)>¢€) =0 (1.7)
m—0o0

n>m

forall e > 0.
3. Almost sure convergence implies convergence in probability.

4. Any sequence converging in probability has a subsequence converging a.s.
Proof. 1. Convergence in probability follows from (1.6), because by Chebyshev’s
inequality

P(p(Xn. X) > €) = P(L A p(Xn. X) > €) < éE(l A p(Xn. X))

for € € (0, 1). The converse statement follows from the inequalities

E( p(Xn, X)

m) <E(IAp(Xn. X)) < € + P(0(Xp. X) > €).
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2. The event X;, — X is the complement of the event

B=|JB, Br=(){sup|Xy—X|>1/r},
reQ meQ nzm
i.e., a.s. convergence is equivalent to P(B) = 0 and hence to P(B,) = 0 for all r.
3. This is an obvious consequence of either of statements 1 or 2.
4. If X,, converge in probability, using statement 2, we can choose a subsequence
X} such that

E) (1A p(Xe. X)) = ) E(Ap(Xe. X)) < oo,
k k

implying that ) ; (1 A p(Xg, X)) < oo a.s. and hence p(X, X) — 0 as. |

Proposition 1.1.2. L?-convergence = convergence in probability = weak conver-
gence. Finally, weak convergence to a constant implies convergence in probability.

Proof. The first implication follows from Chebyshev’s inequality.

For the second one assume S is R?. Decompose the integral [1f(Xn(w)) —
f(X(w))|P(dw) into the sum [ + I, + I3 of three terms over the sets {| X, — X | > §},
{IXn — X| <6,|X| > K} and {| X, — X| <§,|X| < K}. First choose K such that
P(|X| > K + 1) < €. Next, by the uniform integrability of f on the ball of radius K
(here we use its compactness), choose § such that | f(x) — f(y)| < € for |x — y| < 4.
By the convergence in probability, choose N such that P(|X,, — X| > §) < € for
n > N. Then

In+ 1 + Iz < 3¢|| f || +e.

For general metric spaces S a proof can be obtained from statements 1 and 4 of Propo-
sition 1.1.1.
Finally, the last statement follows from (1.6). O

Exercise 1.1.3. If probability measures p, on R4 converge weakly to a measure p
as n — oo, then the sequence p; (A) converges to p(A) for any open or closed set A
such that p(dA) = 0 (where 04 is the boundary of A).

A family H of LY(Q, ¥, ) is called uniformly integrable if

lim sup E(|X[1x)>,) = 0.
XeH

Cc—> 00

Proposition 1.1.3. Ifeither (i) supyc g E(|X|?) < ocofora p > 1, or (ii) there exists
an integrable rv. Y s.t. |X| <Y forall X € H, then H is uniformly integrable.
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Proof. Follows from the inequalities.

E(1X7).

E(|X|p1\X|>c) <

(1) E(|X|1|X|>c) < cp—1

(i) E(|X|1|X|>c) < E(Y1Y>c)' d

cp~1

Proposition 1.1.4. If X,, — X a.s. and { X} is uniformly integrable, then X, — X
in L.

Proof. Decompose the integral [ |X, — X|p(dw) into the sum of the three integrals
over the domains {| X, — X | > €}, {|Xn —X| < €, |X| < c}and {| X, — X| <€, |X]| >
c}. These can be made small respectively because X, — X in probability (as it holds
a.s.), by dominated convergence and by uniform integrability. |

Two famous theorems of integration theory, the dominated and monotone conver-
gence theorems, give easy-to-use criteria for a.s. convergence to imply convergence
inLj.

The following famous result allows one to transfer weak convergence to a.s. con-
vergence by an appropriate coupling.

Theorem 1.1.3 (Skorohod coupling). Let £, &1, &>, ... be a sequence of random vari-
ables with values in a separable metric space S such that &, — & weakly as n —
oo. Then there exists a probability space with some S-valued random variables
N, 1M1, N2, ... distributed as &,&1,&,, ... respectively and such that n, — 1 a.s. as
n— oQ.

The following celebrated convergence result is one of the oldest in probability the-
ory.

Theorem 1.1.4 (Weak law of large numbers). If &1,&,,... is a collection of i.i.d.
random variables with E§; = m and Var§; < oo, then the means (§1 + -+ + &,)/n
converge to m in probability and in L.

Proof. By (1.3)

var(u_m) v EL o et G ) Varer
n n "

implying convergence in L,. Hence by Chebyshev’s inequality
Vi
P( m| > e) <A 1

— n 6 2 b
implying convergence in probability. m|

§1+"'+§n
n
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Using the stronger Kolmogorov’s inequality allows one to get the following im-
provement.

Theorem 1.1.5 (Strong law of large numbers). Let S, denote the sums &1 + &> +
-o- 4+ &, for a sequence £1, &5, ... of independent zero-mean random variables such
that E|§;|*> = 02 < oo for all j. Then the means Sy /n converge to 0 a.s.

>e)=0.

Proof. By (1.7) we have to show that

lim P{ sup |—
n
Denote by A the events
S
A = { max —| > e}.
2k=l<p<2k | N

Then by (1.4)

k—1y _ -k 40?
P(Ap) <P( max [Sy>e€2" 1) 27" —-
2

—l<n<2k €2’

Hence the sum ) ; P(Ay) converges. Consequently

P( sup
nzszl

as m — oo for any €. m|

o0

>e)5 ZP(Ak)—>O

k=m

n

Remark 1. Using (1.5) instead of (1.4) allows us to prove the above theorem under
a weaker assumption that E|§;|? = @ < oo for some p > 1. It is instructive to see
where this proof breaks down in case p = 1. By more involved arguments one can
still prove the strong LLN if only E|&;| < oo, but assuming that §; are i.i.d.

The following result is routinely used in stochastic analysis to check a validity of a
certain property for elements of o (I"), where I is a collection of subsets closed under
intersection. According to the theorem it is sufficient to check that the validity of this
property is preserved under set subtraction and countable unions.

Theorem 1.1.6 (Monotone class theorem). Let 8 be a collection of subsets of a set
Q s.t.

() Qes,
(i) A,Be8=A\Bes,
(i) Ay CArC---CA,e8=,4n 8.
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If a collection of subsets I" belongs to S and is closed under pairwise intersection,
theno(I') € 8.

Exercise 1.1.4. For S C R? the universal o-field U(S) is defined as the intersec-
tion of the completions of $B(S) with respect to all probability measures on S. The
(U(S), B(S))-measurable functions are called universally measurable. Show that a
real valued function f is universally measurable if and only if for every probability
measure 1 on S there exists a Borel measurable function g, such that u{x : f(x) #
gu(x)} = 0. Hint for “only if” part: show that

fx)=inf{reQ:x € U(r)}, whereU(r)={xeS: f(x)<r}.

Since U(r) belong to the completion of the Borel o-algebra with respect to u there
exist B(r), r € Q, such that

u( U (B(r)AU(r))) — 0.
reQ
Define
gu(x) =inf{r e Q : x € B(r)}.

1.2 Characteristic functions

As we already mentioned, expectation and variance supply two basic numeric char-
acteristics of a random variable. Some additional information on its behavior can
be obtained from higher moments. A complete analytical description of a random
variable is given by the characteristic function, which we recall briefly in this section.

If p is a probability measure on R4 its characteristic function is the function
op(y) = fei(y’x)p(dx). For a R%-valued r.v. X its characteristic function is de-
fined as the characteristic function ¢y = ¢, of its law py, i.e.

¢x (y) = B/ %) = /Rd 'O px (dx).

Any characteristic function is a continuous function, which clearly follows from
the inequalities

lgx (v + h) — dx ()] < Ele!™X — 1] < max | — 1| + 2P(|X| > a). (1.8)

|x|<a

Theorem 1.2.1 (Riemann—Lebesgue lemma). If a probability measure p has a den-
sity, then ¢, belongs to Coo (Rd). In other words, the inverse Fourier transform

£ F7U) = @402 [0 fnya

is a bounded linear operator L' (R%) — Coo(R?).



14 Chapter 1 Tools from probability and analysis

Sketch of the proof. Reduce to the case, when f is a continuously differentiable
function with a compact support. For this case use integration by parts.

For a vector m € R< and a positive definite d x d-matrix A4, a r.v. X is called
Gaussian (or has Gaussian distribution) with mean m and covariance A, denoted by
N(m, A), whenever its characteristic function is

im0 = exp fiGn.3) = 50 an |,

It is easy to deduce that m = E(X) and 4;; = E((X; —m;)(X; —m;)) and that if 4
is non-degenerate, N(m, A) random variables have distribution with the pdf

f(x) =

l()c —m, A Y (x — m))}.

1
Q)2 Jaetd) T { 2

It is useful to observe that if X; and X5 are independent R4 -valued random vari-
ables with laws 1, (2 and characteristic functions ¢ and ¢;, then X1 4+ X5 has the
characteristic function ¢; ¢, and the law given by the convolution ju1 » o defined by

Gur + 1)) = [ (4 = 0ua(d).

Similarly, for independent random variables X7y, ..., X;, with the laws p1,..., un
and characteristic functions ¢y, . .., ¢,, the sum X + - - - + X}, has the characteristic
function ¢y - - - ¢, and the law @y x - -+ x w,. In particular, if X1, ..., X, are indepen-
dent identically distributed (common abbreviation i.i.d.) random variables, then the
sum X1 + --- + X, has the characteristic function ¢ and the law j1q * -+ % uy.

The next exercise anticipates the discussion of weak compactness or measures
given at the end of this chapter.

Exercise 1.2.1. Show that if probability distributions p, on Rd, n € N, converge
weakly to a probability distribution p, then

(i) the family pj is tight, i.e.

Ve > 03K >0:Vn, py(|x] > K) <¢;

(i1) their characteristic functions ¢, converge uniformly on compact sets.

Hint: for (ii) use tightness and representation (1.8) to show that the family ¢, is
equicontinuous, i.e.

Veds: |pn(y +h)—¢p(y)| <e Vh<d,neN,

which implies uniform convergence.
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Theorem 1.2.2 (Glivenko’s theorem). If ¢,, n € N, and ¢ are the characteristic
functions of probability distributions p, and p on R?, then limy o0 ¢ (y) = ¢ ()
foreach y € R4 if and only if p, converge to p weakly.

Theorem 1.2.3 (Lévy’s theorem). If ¢, n € N, is a sequence of characteristic func-
tions of probability distributions on R? and lim, o0 ¢n(y) = ¢(y) for each y € R4
for some function ¢, which is continuous at the origin, then ¢ is itself a characteristic
function (and so the corresponding distributions converge weekly as above).

The following exercise suggests using Lévy’s theorem to prove a particular case of
the fundamental Prohorov criterion for tightness.

Exercise 1.2.2. Show that if a family of probability measures p, on R4 is tight, then
it is relatively weakly compact, i.e. any sequence of this family has a weakly conver-
gent subsequence. Hint: tight = family of characteristic functions is equicontinuous
(by (1.8)), and hence is relatively compact in the topology of uniform convergence on
compact sets. Finally use Lévy’s theorem.

Exercise 1.2.3. (i) Show that a finite linear combination of R4 -valued Gaussian
random variables is again a Gaussian r.v.

(i) Show that if a sequence of R4 -valued Gaussian random variables converges
in distribution to a random variable, then the limiting random variable is again
Gaussian.

(iii) Show that if (X,Y) is a R2-valued Gaussian random variables, then X and Y

are uncorrelated if and only if they are independent.

Theorem 1.2.4 (Bochner’s criterion). A function ¢ : R? + C is a characteristic
Sfunction of a probability distribution if and only if it satisfies the following three prop-
erties:

@ ¢(0) =1;
(1) ¢ is continuous at the origin;

(iii) ¢ is positive definite, which means that

d
Y cjard (i —yi) = 0

J.k=1

forallreal yy,...,yz and all complex cy, ..., cg4.
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Remark 2. To prove the “only if” part of Bochner’s theorem is easy. In fact:

d d
> cjdrx (vi — vi) =/ Y cje’ YTV py (dx)
: R4 .
Jik=1 Jik=1
d . 2
=/ ( c,'e’(yf"x)) px(dx) = 0.
RSN

1.3 Conditioning

Formally speaking, probability can be considered as a part of measure theory. What
actually makes it special and fills it with new intuitive and practical content is condi-
tioning. On the one hand, conditioning is a method for updating our perception of the
probability of an event based on the information received (conditioning on an event).
On the other hand, it is a method for characterizing random variables from their coarse
description that neglects certain irrelevant details, like increasing the scale of an atlas
or an image (conditioning with respect to a partition or subalgebra).

Assume a finite partition A = {A;} of our probability space (2, ¥, P) is given, i.e.
it is decomposed into the union of non-intersecting measurable subsets Ay, ..., Az.
Assume that for certain purposes we do not need to distinguish the points belonging
to the same element of the partition. In other words, we would like to reduce our
original probability space to the simpler one (2, 4, P), where ¥4 is the finite o-
algebra generated by the partition # (that consists of all unions of the elements of
this partition). Now, if we have a random variable X on (2, ¥, P), how should we
reasonably project it on the reduced probability space (2, ¥4, P)? Clearly such a
projection X should be measurable with respect to ¥4, meaning that it should be
constant on each A;. Moreover, we want the averages of X and X to coincide on each
A;. This implies that the value of X on A; should equal the average value of X on A;.
The random variable X, obtained in this way, is denoted by E(X|%,4) and is called
the conditional expectation of X given the o-algebra ¥4 (or equivalently, given the
partition +4). Hence, by definition,

E(X|F4)(w) = / X(w)P(dw)/P(A;), o e A, (1.9)

1

foralli = 1,...,m. Equivalently, E(X|¥4)(w) is defined as a random variable on
(2, F4, P) such that

/ E(X|%4)(@)P(do) = / X(0)P(do)
A A

forany A € F4.
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This definition can be straightforwardly extended to arbitrary subalgebras. Namely,
for a random variable X on a probability space (2, ¥, P) and a o-subalgebra § of
F , the conditional expectation of X given § is defined as a random variable E(X |9)
on the probability space (€2, 9, P) such that

/ E(X|9)(w)P(dw) = / X(0)P(dw)
A A

for any A € §. Clearly, if such a random variable exists it is uniquely defined (up
to the natural equivalence of random variables in (€2, §, P)), because the difference
of any two random variables with the required property has vanishing integrals over
any measurable set in (2,9, P), and hence this difference vanishes a.s. However,
the existence of conditional expectation is not so obvious for infinite subalgebras. In
fact, the defining equation (1.9) does not make sense in case P(A4;) = 0. Hence in
the general case, another approach to the construction of conditional expectation is
needed, which we now describe.

For a given measure space (S, ¥, i), a measure v on (S, ¥) is called absolutely
continuous with respect to u if v(A) = 0 whenever A € ¥ and u(A4) = 0. Two
measures are called equivalent if they are mutually absolutely continuous.

Theorem 1.3.1 (Radon—Nikodym theorem). If u is o-finite and v is finite and ab-
solutely continuous with respect to i, then there exists a unique (up to almost sure
equality) non-negative measurable function g on S such that forall A € ¥

w&=Lﬂmmw1

This g is called the Radon—Nikodym derivative of v with respect to | and is often
denoted dv/d .

Let X be an integrable random variable on a probability space (2, ¥, P) and let §
be a sub-c-algebra of . If X > 0 everywhere, the formula

QﬂMZMMMZLXme)

for A € § defines a measure Qx on (£2,%) that is obviously absolutely continuous
with respect to P. Ther.v. dQx /dP on (2, &, P) is called the conditional expectation
of X with respect to §, and is usually denoted E(X|§). If X is not supposed to be
positive one defines the conditional expectation as E(X|§) = E(XT|§) —E(X|9).
Clearly this new definition complies with the previous one, as so defined Y = E(X|9)
isarv.on (2,9, P) satisfying

/Y(co)P(dw) =/X(a))P(da)) (1.10)
A A
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for all A € § or, equivalently,
E(YZ)=E(XZ2) (1.11)

for any bounded §-measurable Z.
If X = (X1....,Xg) € R?, then

E(X|9) = (E(X1]9).....E(Xx]9)).
The following result collects the basic properties of the conditional expectation.

Theorem 1.3.2. (i) E(E(X|9)) = E(X);
(i) ifY is §-measurable, then E(XY |9) = YE(X|9) a.s.;

(iii) if Y is §-measurable and X is independent of G, then a.s.
E(XY|§) = YE(X),

and more generally

E(f(X.Y)[%) = G(Y) (1.12)
a.s. for any bounded Borel function f, where Gr(y) = E(f(X,y)) a.s.;

@iv) if K is a sub-o-algebra of § then E(E(X |§)|H) = E(X|H#) a.s. (this property
is called the chain rule for conditioning);

(V) the mapping X +— E(X|§) is an orthogonal projection L*>(Q, F,P) —
L%(Q,9,P);

(vi) X1 < Xp = E(X1]9) <E(X32|9) a.s.;
(vii) the mapping X — E(X|€) is a linear contraction LY (Q, ¥ ,P) - LY(Q, &, P).

Exercise 1.3.1. Prove the above theorem. Hint: (ii) consider first the case with Y
being an indicator function of a §-measurable set; (v) assume X = Y + Z with
Y from L?(Q2,9.P) and Z from its orthogonal complement and show that ¥ =
E(X|9). (vi) Follows from an obvious remark that X > 0 = E(X|9g) > 0.

Remark 3. Property (v) above can be used to give an alternative construction of
conditional expectation by-passing the Radon—-Nikodym theorem.

If Zisarv.on (2,5 ,P) one calls E(X|o(Z)) the conditional expectation of X
with respect to Z and denotes it briefly by E(X|Z).

The measurability of E(X|Z) with respect to o (Z) implies that E(X|Z) is a con-
stant on any Z-level set {w : Z(w) = z}. One denotes this constant by E(X|Z = z)
and calls it the conditional expectation of X given Z = z. From statement (iv) of



Section 1.3 Conditioning 19

Theorem 1.3.2 it follows that
E(X) = /E(X|Z)(a))P(da)) = /E(X|Z =2z)pz(dz) (1.13)

(the second equality is obtained by applying (1.2) to f(Z(w)) = E(X|Z)(w)).

Let X and Z be R¢ and respectively R”-valued r.v. on (€2, ¥, P), and let § be a
sub-c-algebra of ¥ . The conditional probability of X given § and X given Z = z
respectively are defined as

Pyg(B:w) = P(X C B|F)(0) = E(1p(X)[9)(w), o €;
Pyjz=:(B) =P(X C B|Z =z) = E(13(X)|Z = 2),

for Borel sets B, or equivalently through the equations
B9 = [ 10Pys(drio.
BU(OIZ =2 = [ fPxiz=o(d)

for bounded Borel functions f. Of course Px|z—,(B) is just the common value of
Py |z(B:w) on the set {w : Z(w) = z}.

It is possible to show (though this is not obvious) that, for any R4-rv. X, the
regular conditional probability of X given § exists, i.e. such a version of conditional
probability that Py ¢ (B, w) is a probability measure on R¢ as a function of B for
each w (notice that from the above discussion the required additivity of conditional
expectations hold a.s. only so that they may fail to define a probability even a.s.) and
is ¥-measurable as a function of w. Hence one can define conditional r.v. Xg(w),
Xz (w) and Xz=; as r.v. with the corresponding conditional distributions.

Proposition 1.3.1. For a Borel function h
Eh(X,Z) = /h(x,z)PX|Z:Z(dx)pZ(dz) (1.14)

whenever the l.h.s. is well defined.

Proof. Tt is enough to show this for the functions of the form (X, Z) = f(X)1zec
for a measurable C. And from (1.13) it follows that

Ef(X)lzec = /Z (X Z)@P(do) = /C E(f(X)|Z = 2)pz(d=)

_ / / J@)Py|z—:(dx) pz(dz). -
C JRY
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For instance, if X, Z are discrete r.v. with joint probability P(X =i,Z = j) =
pij. then the conditional probabilities p(X = i|Z = j) are given by the usual
formula p;; /P(Z = j).

On the other hand, if X,Z are r.v. with a joint probability density function
Jx,z(x, z), then the conditional r.v. Xz—, has a probability density function

Sxz_.(x) = fx,z(x,2)/fz(2)

whenever fz does not vanish. In order to see this, one has to compare (1.14) with the
equation

Eh(X,Z) = /h(x,z)f(x,z) dxdz

/h( f ( ) dxfz(z)dz.

Theorem 1.3.3. Let X be a integrable variable on (2, ¥ ,P) and let §,, be either
(1) an increasing sequence of sub-o-algebras of ¥ with § being the minimal o -
algebra containing all §,, or
(ii) a decreasing sequence of sub-o-algebras of ¥ with § = ﬂflozl G,.
Then a.s. and in L
E(X|9) = lim E(X|§,). (1.15)
n—>oo

Furthermore, if X, — X a.s. and |Xy,| < Y for all n, where Y is an integrable
random variable, then a.s. and in L'

E(X[) = lim E(Xu[5y). (1.16)

Proof. We shall sketch the proof of the convergence in L! (a.s. convergence is a bit
more involved, and we shall neither prove, nor use it), say, for increasing sequences.
Any r.v. of the form 1p with B € § can be approximated in L? by a §,-measurable
r.v. £,. Hence the same holds for any r.v. from L?(Q, ¥, P). As E(X|§,) is the best
approximation (Lz—pTOJCCtIOH) for E(X|%) one obtains (1.15) for X € L%(Q, F,P),
and hence for X € L1(Q, ¥, P) by density arguments. Next,

E(Xu[9n) —E(X[9) = E(X;, — X[5,) + (E(X[5,) — E(X[9)).

Since |X,| < Y and X,, — X a.s. one concludes that X,, — X in L! by dominated
convergence. Hence as n — oo

E(E|X, — X|[%s) = E|X, — X| — 0. O

Theorem 1.3.4. If X € LY(Q, F,P), the family of rv. E(X|§), as § runs through
all sub-o-algebra of ¥, is uniformly integrable.
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Proof.
Lig(x1g)>cE(X[9) = E(X1igx|9)|>c|9).

because {|E(X|9)| > c} € §. Hence

E(Lgxig)>cE(X[9)) < EQgx|g)>c| X
<E(|X|1x=q) + dP(E(X|9)| > ¢)

d
<E(Xlx)>q) + ;E(IXl)»

where in the last inequality Markov’s inequality was used. First choose d to make the
first term small, then ¢ to make the second one small. O

One says that two sigma algebra 91, §, coincide on a set A € §; N 9, whenever
ANG =ANSG,.

Theorem 1.3.5 (Locality of conditional expectation). Let the o-algebras §1,8, € ¥
and the random variables X1, X2 € LY (2, ¥, P) be such that §; = §, and X, = X»
onaset A€ g NEG. ThenE(X1|91) = E(X2|9,) a.s. on A.

Proof. The sets 14E(X1]91) and 14E(X3|9,) are both §; N G,-measurable, and for
any B C A such that B € §; (and hence B € §,)

/ E(X1]61)P(do) = / X1P(dw) = / X>P(dw) = / E(X2|%)P(dw). O
B B B B

1.4 Infinitely divisible and stable distributions

Infinitely divisible laws studied here occupy an honored place in probability, because
of their extreme modeling power in the variety of situations. They form the corner-
stone for the theory of Lévy processes discussed later.

A probability measure z on R? with a characteristic function ¢ is called infinitely
divisible if, for all n € N, there exists a probability measure v suchthat t = v*---xv
(n times) or equivalently ¢, (y) = f"(y) with f being a characteristic function of a
probability measure.

A random variable X is called infinitely divisible whenever its law px is infinitely
divisible. This is equivalent to the existence, for any 7, of i.i.d. random variable Y;,
j =1,...,n,suchthat Y1 4 --- + Y}, has the law px.

For example, any Gaussian distribution is clearly infinitely divisible.

Another key example is given by a Poisson random variable with mean (or param-
eter) ¢ > 0, which is a random variable N with the non-negative integers as range

and law
n

P(N =n) = C—'e_c.
n!
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One easily checks that E(N) = Var(N) = ¢ and that the characteristic function of N
is pn (y) = exp{c(e’”” — 1)}. This implies that N is infinitely divisible.

Of importance is the following generalization. Let Z(n), n € N, be a sequence
of R¥-valued i.i.d. random variables with the common law i z. The random variable
X =Z1)+---+Z(N)is called a compound Poisson random variable. It represents
a random walk (each step specified by a random variable distributed like Z (1)) with
a random (Poisson) number of steps. Let us check that

#x() = exp | /R @O0~ Depz(dn). (1.17)

In fact,

WK

ox(y) = ) E(exp{i(y. Z(1) + -+ Z(N))}|N = n)P(N = n)

3
Il
<)

n

E(expli (7. Z(1) + -+ Zm)) e

o

3
Il
S

n

P () e = exple(@z(7) — D).

M

3
Il
S

A Borel measure v on R is called a Lévy measure if v({0}) = 0 and

/ min(1, x2)v(dx) < oo.
R4

The major role played by these measures in the theory of infinite divisibility is re-
vealed by the following fundamental result.

Theorem 1.4.1 (The Lévy—Khintchine formula). For any b € R4, a positive definite
d x d-matrix G and a Lévy measure v the function

30 = exp {iGo. 0= 300, + [ 61 <1 =it )1a, G| 119

is a characteristic function of an infinitely divisible measure, where B, denotes a ball
of radius a in R4, Conversely, any infinite divisible distribution has a characteristic
Sfunction of form (1.18).

Proof. We shall prove only the simpler first part. For the converse statement see e.g.
[20], [302] and references therein. If any function of form (1.18) is a characteristic
function, then it is infinitely divisible (as its roots have the same form). To show the
latter we introduce the approximations

1 .
¢n(u) = exp {i(b—/B \B yv(dy),u)—i(u, Gu)—{—/Rd\B (e’(”’y)—l)v(dy)}.
1 1/n 1/n
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Each ¢, is a characteristic function (of the convolution of a normal distribution and an
independent compound Poisson) and ¢, (1) — ¢ (u) for any u. By the Lévy theorem
in order to conclude that ¢ is a characteristic function, one needs to show that ¢ is
continuous at zero. This is easy (check it!). O

The function 7 appearing under the exponent in the representation ¢ (1) = e®)
of form (1.18) is called the characteristic exponent or Lévy exponent or Lévy symbol
of ¢ (or of its distribution). The vector b in (1.18) is called the drift vector and G is
called the matrix of diffusion coefficients.

Theorem 1.4.2. Any infinitely divisible probability measure |u is a weak limit of a
sequence of compound Poisson distributions.

1/n

Proof. Let ¢ be a characteristic function of u so that ¢*/” is the characteristic func-

tion of its “convolution root” i, . Define

¢n () = explnlg'/" (u) — 1]} = exp { / (') — 1)nun(dy)}'
R4
Each ¢y, is a ch.f. of a compound Poisson process and
¢n = exp{n(eM/MMEW _ 1)y 5 b)), n— oo.
The proof completes by Glivenko’s theorem. m|

An important class of infinitely divisible distributions constitute the so-called stable
laws. A probability law in R, its characteristic function ¢ and a random variable X
with this law are called stable (respectively strictly stable) if for any integer n there
exist a positive constant ¢, and a real constant y,, (resp. if additionally y, = 0) such
that

¢ (y) = [¥(y/cn)explivay}]".

In other words, the sum of any number of i.i.d. copies of X is distributed like X up
to a shift and scaling. Obviously, it implies that ¢ is infinitely divisible and therefore
log ¢ can be presented in the Lévy—Khintchine form with appropriate b, 4, v.

Theorem 1.4.3. If ¢ is stable, then there exists an a € (0,2], called the index of
stability such that:

(1) ifa = 2, then v = 0 in the representation (1.18), i.e. the distribution is normal;

(i) if @ € (0,2), then in the representation (1.18) the matrix G vanishes and the
radial part of the Lévy measure v has the form ||~ je.

o) ) i(y, d
log ¢a(y) = i(b,y)+/0 /Sd_] (e"y’f)—l—%) |%_|E_|au(ds), (1.19)

where € is presented by its magnitude |&| and the unit vector s = £/|§| € S9!
in the direction &, and | is some (finite) measure in gd-1,
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The classical proof can be found e.g. in Feller [111] or Samorodnitski and Taqqu
[288].

The integration in |£| in (1.19) can be carried out explicitly, as the following result
shows.

Theorem 1.4.4. The stable exponent (1.19) can be written in the form

log o) = 16,30 = [ 1091 (1= sen((y o) tan ). £ 1
(1.20)
s .2 .
oz o) = 16,3 = [ 10911 47 sen(y,) log |3, )e). = 1
1.21)
where

- ogcos(ma/2)m, o #1
b=b+%/ su(ds). ﬁ:{“ (ro/2p. o # (1.22)
§d—1 /2, a=1

with some constants aq and oo specified below. The measure i on S~V is called
sometimes the spectral measure of a stable law.

Proof. Fora € (0,1) and a real p

*® d ra-— ;
/ €7 =) T = - (a D emimasmriz|ppe, (123)
0

where sgn p is of course the sign of p. In fact, one presents the integral on the r.h.s.
of (1.23) as the limit as € — 04 of

*° i dr
—(e—ip)r _
A(e D-Tra- (1.24)

Let, say, p > 0. Then '
c—ip=( +p2)1/2€—16

with tan @ = p/e. So by the Cauchy theorem one can rotate the contour of integration

in (1.24) through the angle 6. Changing the variable r to s = e in the integral

thus obtained yields for (1.24) the expression

o0
e_iga (e_(€2+p2)1/2S _ ]) ds
0 slta’

which equals (by integration by parts)

2 2\1/2 2 2\a/2
_p—ifa (" +p _) / /Oo e_(52+P2)1/2ss_a ds = _e—iOaMF(l —a).
o 0 o
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Passing to the limit ¢ — 04 (and hence 8 — 7/2) yields (1.23). In case p < 0 one
would have to rotate the contour of integration in (1.24) in the opposite direction.
Next, for @ € (1,2) and p > 0 integration by parts gives

”p—l—lrp ip or dr
/0 — ite dr = / (€' l)r_“’

and then by (1.23)

elP —1—irp MNo—1) _;
/0 Td —Y ¢ ina/2 pa (1.25)

Note that the real parts of both (1.23) and (1.23) are positive. From (1.23), (1.25) it
follows that for o € (0,2), ¢ # 1,

0 ' d .
/ (e”p - li—pﬂ) e = aap —oue TP (126)
0
with
_1 o dr
Og =« F(l —(X), Aoy = — . m, o€ (0, 1), (1.27)
0 2—ad
0g = - 'T(@—1), aq= / rH—rzr ae(l,2). (1.28)
0

The case of « = 1 is a bit more involved. In order to deal with it observe that

o) irp_l_- : © 1 _ 0 i _ :
/ e 2lpsmrdr:_/ C(Z)srp dr—i—i/ sinrp zpsmrdr
0 r 0 r 0 r

1
= —Enp —iplogp.

In fact, the real part of this integral is evaluated using a standard fact that f(r) =
(1 —cosr)/(mr?) is a probability density (with the characteristic function v/ (z) that
equals to 1 — |z] for |z| < 1 and vanishes for |z| > 1), and the imaginary part can be
presented in the form

o0 o3 DE o
lim |:/ s1n§)r dr — p/ _s1nr dr] p lim _51112r dr
€e—~>0| Je r € e—>0 r

P siney P dy
= —p lim >-dy =-p —,
>0 )1 €y 1y

which implies the required formula. Therefore, for ¢ = 1

e irp dr 1
irp _  — _ g
/0 (e 1 1—|—r2) Tta =iapp 27rp iplogp (1.29)
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with
/oo sinr —r J (1.30)
ay = ——dr. .
e (2
Formulae (1.26)—(1.30) yield (1.20) and (1.21). O

Exercise 1.4.1. Check that ji is continuous in (1.22), i.e. that

lim o cos (E) = Z_ (1.31)
a—1 2

Hint: if « < 1, then

. 'l —ow) T . I'C—a) To . 1 T
lim ———cos| — ) = lim ————cos|{ — | = lim cos | — |.
a—1 o 2 a—>1 a(l —a) 2 a—11—« 2

For instance, if d = 1, SO consists of two points. Denoting their ji-measures by
[41, L—1 one obtains for o # 1 that

L . To
log¢a(y) =iby — Iyl"[(/u + p—1) —isgny(pur — p—1)tan 7}
This can be written also in the form
.z v/
log¢o(y) = iby —oly|* exp {lgysgny} (1.32)

with some o > 0 and a real y such that |y| < «, if @ € (0,1), and |y| < 2 — «, if
a € (1,2).

If the spectral measure /i is symmetric, i.e. fi(—2) = () for any Q ¢ §91,
then b = b and formulas (1.25), (1.26) both give the following simple expression:

log e (y) =i (b, y) _/Sd—l (v, )% [ (ds). (1.33)
In particular, if the measure ft is the Lebesgue measure ds on the sphere, then

logga(y) = i(b,y) —oly|, (1.34)
with the constant
@-n,e L@+ D/2)
F'((x+d)/2)
(where 6 € [0, 7] denotes the angle between a point on the sphere and its north pole,
directed along y), called the scale of a stable distribution.

o= / |cos0|%ds = 2 (1.35)
Sd—1

Exercise 1.4.2. Check the second equation in (1.35).

One sees readily that the characteristic function ¢ () with log ¢ (y) from (1.20)
and (1.21) and (1.33) with vanishing b enjoy the property that @2 (y) = ¢q (nt/y).
Therefore all stable distributions with index o # 1 and symmetric distributions with
o = 1 can be made strictly stable, if centered appropriately.
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1.5 Stable laws as the Holtzmark distributions

Possibly the first appearance of non-Gaussian stable laws in physics was due to Holtz-
mark [134], who showed that the distribution of the gravitation force (acting on any
given object), caused by the infinite collection of stars distributed uniformly in R3
(see below for the precise meaning of this) is given by the 3/2-stable symmetric dis-
tribution in R3. This distribution is now called the Holtzmark distribution and is
widely used in astrophysics and plasma physics. We shall sketch a deduction of this
distribution in a more general context than usual, showing in particular that, choosing
an appropriate power decay of a potential force, any stable law can be obtained in this
way, that is as a distribution of the force caused by the infinite collection of points in
R4, distributed uniformly in sectors.
Suppose the force between a particle placed at a point x € R4 and a fixed object at
the origin is given by
F(x) = yx|x|™™ 1, (1.36)

where y is a real constant and m is a positive constant. In the classical example of the
gravitational or Coulomb forces (the Holtzmark case) d = 3, m = 2 and y depends
on the physical parameters of the particles (mass, charge, etc). Suppose now that the
position x of a particle is random and is uniformly distributed in the ball Br of the
radius R in R?. Then the characteristic function of the force between this particle and
the origin is

$1(p) = |BR|‘1/

Bgr

ei(p’F(X))dx=1+|BR|_1/ (e PFG) _ 1) gy,
Bpr

where |Bgr| denote the volume of Bg. If there are N independent uniformly dis-
tributed particles in Bg, then the characteristic function of the force induced by all
these particles is clearly

) N
¢N(P) — |:1 + |BR|—1/B (el(P,F(X)) _ 1)dxi|

Assume now that the number of particles N is proportional to the volume with a
certain fixed density A > 0, that is N = A|Bg|. We are interested in the limit
of the corresponding distribution as R — oo (the constant density equation N =
A| Bg| makes precise the idea of ‘uniform distribution in R¢* mentioned above). The
resulting limiting distribution of stars in R¥ is called a Poisson point process with
intensity A and will be studied in more detail in Chapter 3.

Thus we are looking for the limit

) AlBR|
¢(p) = lim 1+ |BR|—1/ (el(P,F(X)) _ l)dx .
R—o0 Br



