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Preface

Professor Masatoshi Fukushima is one of the most influential probabilists of our times.
His fundamental work on Dirichlet forms and Markov processes made Hilbert space
methods a tool in stochastic analysis and by this he opened the way to several new
developments. His impact on a new generation of probabilists in his native country as
well as in many other countries can hardly be overstated.

In publishing a selection of his seminal papers we aim to serve the community, and
at the same time we want to express our appreciation of a highly respected, humane
scholar.

All owners of copyrights of papers being included in the Selecta (see the list at
the end of this volume) followed the old and good tradition to grant permission for a
reproduction in a Selecta without any charge. Unfortunately this is no longer a policy
adopted by all publishers. Therefore we are especially grateful to those who by their
generosity continue to support the mathematical community in keeping the tradition
of publishing selected or collected works alive.

The editors’ thanks go to all who supported us in our enterprise, in particular we
want to mention Professor T. Uemura (Kansai University), Dr. K. P. Evans (Swansea
University) as well as S. Albroscheit and Dr. R. Plato (Walter de Gruyter).

Swansea, Kumanoto and Sendai
Fall 2009 Niels Jacob
Yoichi Oshima
Masayoshi Takeda
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Professor Masatoshi Fukushima — Scholar and Mentor*

Let me start with some remarks on the scientific achievement of Professor Fukushima.
First investigations of Professor Fukushima were related to diffusions under boundary
conditions and this led him to consider related Hilbert spaces. From here the road was
open to Dirichlet forms, Beurling’s and Deny’s axiomatisation of the notion of energy
in potential theory. The breakthrough was the 1971 paper in the Transactions of the
American Mathematical Society where a Hunt process was constructed associated to
a given regular Dirichlet form. This result was immediately recognised by experts
as an outstanding one, already 1978 Professor Fukushima was an invited speaker in
the session on Probability Theory in the ICM in Helsinki. Adding to this I would
like to mention two other honours Professor Fukushima received: The Analysis Prize
from the Japanese Mathematical Society and being an Invited Lecturer of the London
Mathematical Society.

The 1971 paper and the book “Dirichlet forms and Markov Processes” published in
1980 in English changed the landscape of modern probability theory. Of course there
are many other contributions of Professor Fukushima’s worth mentioning:

 exceptional sets and refinements

* plurisubharmonic functions (especially the Acta Mathematica Paper with M. Okada)
* stochastic analysis on fractals

* boundary behaviour and traces of Markov processes

and many more. Of particular importance was and is the influence of his work to
mathematical physics. The construction of diffusion processes on infinite dimensional
state spaces highly depend on his seminal contribution. The impact of the “new” book
“Dirichlet Forms and Symmetric Markov Processes” written jointly with Y. Oshima
and M. Takeda can hardly be overstated.

In 1990 when participating in a conference organised by Professor Kunita in Nago-
ya, I once had a coffee with Professor Shinzo Watanabe. In our discussion Professor
Watanabe stated that for him in the 1970’s there had been two major breakthroughs
in probability theory: Malliavin calculus and Fukushima’s theory of Hunt processes

*This is a slightly modified version of a banquet speech given during a meeting to celebrate Professor
Fukushima’s 70th birthday.



Professor Masatoshi Fukushima — Scholar and Mentor

associated with Dirichlet forms — Professor Watanabe is a very modest person — he
should have added his own contributions too. However there is no doubt, Professor
Fukushima’s work is of lasting impact.

Mathematics is an international subject and Professor Fukushima was and is acting
on the international stage. This is natural to all the outstanding Japanese probabilists
raised in Professor K. Itd’s school. Professor Fukushima’s work on the 1971 paper
was partly done when being in the U.S.A. with the late Professor Doob. Here he
also established contacts to Martin Silverstein and he, Professor Fukushima, always
emphasised Professor Silverstein’s contributions to our subject. Professor Fukushima
was very engaged in the series of Japanese-Russian seminars on probability theory
and a frequent visitor to European countries. In addition he was a great help and
supporter of many young non-Japanese mathematicians, Y. Lejan, J. Kim, Z.-M. Ma,
Z.-Q. Chen, J. Ying, ..., and of course I have to mention myself.

Being a world-open mathematician, a scholar who has visited (partly for longer
periods) many countries is one aspect of Professor Fukushima. There is another one:
As many cosmopolitans he is deeply rooted in his own culture, i.e. in the traditional
Japanese culture. This makes any encounter with him also an encounter with Japan.
Through him I myself as well as quite a few of my students and colleagues learnt to
appreciate Japan’s great culture.

Professor Fukushima belongs to the generation whose childhood was in war-time
— I recommend everyone to read Kappa Senoh’s “A Boy Called H” to get a feeling
of what this meant to his generation. He as many other Japanese scientists, writers
and artists of his generation took on the difficult task to assure his country a respected
place in the modern post-war world — and they were rather successful.

A final more personal word. Due to his relations to the late Professor Heinz Bauer
we met first in Erlangen. I am very happy that I could build on Professor Bauer’s
contacts and could even extend them. This refers to the Oberwolfach meetings on
Dirichlet forms or a German-Japanese exchange programme supported by DFG and
JSPS. Moreover I am grateful that several of my own (former) PhD students could not
only visit Japan but could start to build up their own contacts bringing the collabora-
tion to the next generation.

You, Professor Fukushima, have made lasting contributions to Mathematics and
you have been over the years of great support to many of us. For this we are grateful
and we are looking forward to many further years to come with your company.

Niels Jacob
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A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN
MOTIONS FOR BOUNDED DOMAINS

Masatosur FUKUSHIMA
(Received February 20, 1967)

1. Introduction

Let D be an arbitrary bounded domain of the N-dimensional Euclidean space
RN,

We will call a function G,(x, y) («>0, x, yeD, x+7y) a (continuous)
resolvent density on D if the following conditions are satisfied:

(G.1)  Gux,3)=0, a>0, x ysD, x=*y.

(G.2) aSDGa,(x, Wdy<l, a>0, x&D.

(G.3)  Gult )= Galw, )+(@—B) | Gulw, 2)Gils, 3)dz=0,
a, >0, x, yeD, x*y.

(G.4) For fixed a>0, G,(x, y) is continuous in (x,y) on DXD off the
diagonal.

A resolvent density on D is called conservative if the equality holds in (G.2)
for all @>0 and all xD.

In this paper, we will construct a conservative resolvent density on D and
show that it determines a diffusion process (that is, a strong Markov process
having continuous trajectories) which takes values in a natural enlarged state
space D¥*. When the relative boundary 0D of D is sufficiently smooth, our
diffusion process is shown (Theorem 6) to be the well known reflecting barrier
Brownian motion on DU9D. For this reason, our process for an arbitrary D
may be considered the reflecting barrier Brownian motion in an extended sense.

A function p(t, x, y), t>0, x, ye D, will be called a (continuous) transition
density on D, if it satisfies the following conditions:

(T.1)  pt, x,v)=0, >0, x, yeD .

1) dy denotes the Lebesgue measure on D.

3



184 M. FUKUSHIMA

(T.2) Sp(t,x,y)dy§1,t>0,xeD.
D

(T.3)  pltts, x, y):S pt, %, 2)p(s, 7, ¥)dz, 1, >0, x, yED .
D

(T.4)  p(t, x, y) is continuous in (¢, x, y)= (0, +-0)XDx D .

A transition density for which the equality holds in (T. 2) for all >0 and
all x= D will be called conservative.

Let p°(t, x, y) be the transition density corresponding to the absorbing barrier
Brownian motion on D?». Set

+oo

(1.1 G =] e w )d a0, xyeD,

0
then GY(x, y) is a resolvent density on D and can be expressed in the form,
(1.2)  GYx, y)=I,x, y)—E (e I (X,,y) a>0,xycD,

where,
1

_ —Clx-y(2/2) N ®
(Zﬂt)lee dt, x, y& RN ¥,

u(x, y)= S;m e "t

E, is the expectation with respect to the standard Brownian measure P,, x€ D,
and 7 is the first exist time from D of ithe Brownian path X,.
A function u defined on an open set U of RY will be called a-harmonic on
U if
1 \ . . Y0
<a—3 A) u(x)=0, xe U, where A is the Laplacian; A= >} o For func-
i=1 Qx5
tions u, v on D, we set

1.3) (4 v):SDu(x)'v(x) dx ,
D(u, v):SD(grad u, grad v)(x)dx .

For each a>0, let H, be the Hilbert space formed by all a-harmonic functions
on D with the following norm:
(1. 4) D,(u, u)=D(u, u)+2a(u, u)<-+co .

In section 2, we shall prove the following.
Theorem 1.

(i) For each a>0 and each x=D, there exists a unique y-function RZ(y)
=R, (x, y) in H, such that the equation

2) cf. [8].
3) [x—y/ denotes the distance between x and y.

4



A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN MOTIONS 185

(L5)  D(R:, v)+2a(R%, 0)=20(x)
holds for all ve H,.
(if) Set
G, _’V)=G.5(x, )+ Ra(x, y), a>0, x,yeD.

Then G,(x, y) is a conservative resolvent density on D, symmetric in x, yE D.
(iii) Denote by B(D) (resp. C(D)) the collection of all bounded measurable (resp.
bounded continuous) functions on D. The operator G, defined by

(1L6)  Guf()=| Gu(-0)f0)dy, fEBWD),

maps B(D) into C(D). Moreover, if f& C(D), then wlim aG, f(x)=f(x), x€ D.

(iv) Suppose that K, and K, are compact, D, is open and K,CD,CK,CD.
Then, sup Gu(x, y) is finite.
xEKI,}’ED*Kz
(v) There is a unique transition density p(t, x, y) on D satisfying
+oo
(1.7)  Gax, y)zg e p(t, %, y)dt, a>0, xyeD.
0
p(t, x, y) is conservative and S p(t, x, ¥)[(y)dy is continuous in (t, x) (0, + o)
D
X D for any fe B(D).

When 9D is suffciently smooth, the transition density in Theorem 1 turns

out to be the fundamental solution of the heat equation <%—%Ax>u(t, x)
t
=0, t>0, x& D, with the boundary condition —a—u(t, x)=0, t>0, x€9D,

nx
where 7, is the inner normal at the point x9D. Indeed, assuming that
9D is in class C°, let us denote the latter by p(¢, x, y), t>0, x, yD. Then,
it is a transition density and

+oo

Rw(x, y):S e " p(t, x, y)dt—GY(x, y) is an a-harmonic function in the class
C-’I(DL.JaD) 0as a function of y». THence, we have only to show that
RZ=R,(x, +) satisfies equation (1.5). Applying the Green formula to the
identity —%Rﬁ(y):;’—z—Gg(x, y), yE0D, we see that

y y

(1.8) %D(R’;, o) +a(Rz, ”)Z%SM%G%’C’ y)o(y)o(dy)

4) cf. [7]. C'(DUOAD) denotes the totality of continuously differentiable functions on
DuoD.



186 M. FUKUSHIMA

holds for every v&C'(DUOD), o(dy) standing for the surface Lebesgue
measure of 9D. The right hand side of (1.8) is the a-harmonic function
with the boundary value ». A usual limiting procedure leads us to the validity
of (1.5) for Rz and for every ve H,.

We call a compact set D* a compactification of D if D* contains D as an
open dense subset and the relative topology of D in D* is equivalent to the
original Euclidean topology there. In Sections 3 and 4, the following theorem
will be proved.

Theorem 2.

(1) There is a compactification D* of D such that p(t, x, v), >0, of Theorem 1
is extended to (x, y)E D* X D uniquely in a certain way and the extended function
(denoted again by p(t, x, y)) satisfies conditions (T. 1), (T. 2) and (T. 3) for
xeD* and yeD.

(i) There exists a Markov process X={X,, P,, x D*} possessing the following
properties.

(a) For each Borel set A of D*,
P (X, 4)= S #t, %, y)dy, >0, xeD*.
pna

(b) X is continuous;
P (X, is continuous in t for every t=0)=1, x&D* .

(¢) X has the strong Markov property.
(d)  The part of X on the set D is the absorbing barrier Brownian motion there;
Jor every x€ D and Borel set A of D,

P(X,c4; t<7)=SAp°(t, x, y)dy, >0,

T being the first exit time from D.
(e) There exists a Borel subset D * of D* containing D such that
Px(onx) =1, x€D*,
P (X,=x)=0, xeD*-—D*.

Moreover X 1is conservative on D *; P(X,eD* for every t=0)
=1, xeD*.

5) For veE Hy, we can find a sequence of functions v, CD U dD) which converges to
v with respect to the norm VD(v, v)+2a(v, v). The boundary function of v,, then, con-
verges to that of v (which is determined by v, g-almost everywhere on dD) in L?(s) sense.

6



A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN MOTIONS 187

Let D* be the completion of D of the Martin-Kuramochi type with respect
to the resolvent density G,(x, y) of Theorem 19. In Section 3, we will show
that this D* satisfies condition (i) of Theorem 2 and we will derive a right
continuous strong Markov process X on D* satisfying the condition (ii, a).
Moreover, the property (ii, d) will be verified.

We now give some conments on the completion in Theorem 2. The first
remark is that the validity of Theorem 2 (i) for our D* owes essentially to the
conservativity of the resolvent density of Theorem 1. The second remark is
concerned with the strong Markov property of X in the theorem. D. Ray [20]
proved that, under certain hypotheses, to a resolvent on a compact space cor-
responds a strong Markov process. One of Ray’s hypotheses is that the given
resolvent makes invariant the space of all continuous functions. 'This condition,
however, is not necessarily satisfied by the resolvent (operator) induced by the
density function G,(x, y) on the extended space D¥*. Therefore, Ray’s original
theorem is not enough to verify the strong Markov property of our X. We will
reproduce the proof of H. Kunita and H. Nomoto [9]; they treat a wide class
of Markov processes including ours. (T. Watanabe pointed out that there is
another nice completion for which Ray’s original results can be applied in them-
selves. Under this completion, Theorem 2 is still valid and the conservativity
of the resolvent density is irrelevant. See [11].) Third, we note that D*— D, *
is the set of all branching points in Ray’s sense [20]”. Finally, statements (b)
and (e) imply that almost all trajectories starting from a non-branching point
never contact with branching points.

In order to complete the proof of Theorem 2, we must show the continuity
of trajectories of X. Section 4 will be devoted to the proof of the above feature
of X by a potential-theoretic method. First, G,(x, y) of Theorem 1 will be
extended to (x, y)e D* X D¥* and every summable 1-excessive function will be
expressed as the integral of the kernel G(x, y) with a unique measure on D,*
(Theorem 3). Second, we will introduce the notion of the Dirichlet norm

[||ulll x of the function u(x):g G,(x, ¥)f(y)dy, x= D*, f= B(D), with respect to
D
our process X and we will then show (Theorem 4) that the equality |||ul||%
:S (grad u, grad u) (x) dx holds for each function of above type. This is a charac-
D

teristic feature of reflecting barrier Brownian motions. Owing to the result of
M. Motoo and S. Watanabe [18], this characteristic property of X permits us
to conclude that, for any additive functional 4, of X such as E,(4,)=0 and

E (A7) <+ oo, x=D*, t>0, the stochastic integral S Xps—pdA, vanishes

6) cf. [12] and [13].
7) For xeD*—D.* the life time of our path X, is either infinity or zero P,-almost
every-where (see Lemma 3.4 and 3.5).



188 M. FUKUSHIMA

identically (Theorem 5). Here, Xpx—p is the indicator function of D *—D.
This property of X will exclude the possibility that the trajectories of X have
jumps on D *—D with positive probability.

Acknowledgement. K. Ito and N. Ikeda suggested me the problem treated
here and encouraged me throughout the research. The analysis of the con-
tinuity of trajectories pérformed in §3 and §4 is in debt to valuable advices by
H. Kunita and S. Watanabe. I wish to thank them all for their kindness.
Thanks are due to K. Sato and T. Watanabe for their kind and useful opinion
on the manuscript.

2. Construction of resolvent density (proof of Theorem 1)

From now on, we fix an arbitrary bounded domain D of R¥. The following
criterion for a function on D to be a-harmonic is easily verified and it will be
frequently used in this paper.

Lemma 2.1. Let a be positive number. A function u on D is a-harmonic,
if and only if, for each ball B with closure contained in D, it holds that

u@={ ki Dum)od), +<B,
1

where o(dy) is the surface Lebesgue measure of 0B and h5(x, 19 BGY(x, y),
'y y 2 on y

y

xE B, y= 0B, 8Gy(x, v) being the resolvent density defined by (1. 1) for the ball B.
For functions # and v on D, define D(u, v) and (, v) by (1. 3). Put

2.1) D,(u, v)=D(u, v)+2a(u, v), a>0.
Denote by H, the space of all @-harmonic functions u satisfying D,(u, u) <+ oco.

Lemma 2.2. For each a>0, H, forms a real Hilbert space with the inner
product Dy(u, v). Moreover, any Cauchy sequence of functions in H, with respect
to the norm \/ D,(u, u) converges on D uniformly on amy compact subset of D.

Proof. Suppose thatu,e H,,n=1, 2 ,---, and D,(u,—u,,, u,—u,,) —> 0.

Let K be any compact subset of D. Choose £>0 smaller than the distance
of K with 0D. Let By(x) be the ball with radius & centered at x in K. Ap-
plying Lemma 2. 1 to the a-harmonic function u,—u,,, we have

(2.2) U(X) — U (%)

- T%L,w"w( |y—2)((y)—tm(¥)) by, *€K,

where V, is the volume of B,(x), |y—x| is the distance between x and y, and
74(r) is a function of real r>0 which depends only on a>0 and satisfies

8



A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN MOTIONS 189

0<7,4(r)<1. The Schwarz inequality applied to (2.2) leads to
1

€

(1) — 1, (%)) =

1
2aV,

(unﬁum ’ un_um)

=

bD,(u,—u,,, v,—u,), x=K.

Thus, u, converges to a function # on D uniformly on any compact subset of
D. By virtue of Lemma 2. 1, u is also a-harmonic on D and the first derivatives
of u, converge to those of u uniformly on any compact subset of D. On the
other hand, since u,, n=1, 2 .-+, form a Cauchy sequence with respect to the
norm D,, one can find, for any £>0, a compact subset K CD such that

-S-D—.K | grad u, |*(x) dx+2 g () dx<e

D

uniformly in #». Hence, v H,, and D,(u,—u, u,—u) ———— 0.
n— -+ oo

Lemma 2.3. Let a>0 be fixed.
(i) For each x= D, there exists a function u”™ < H,, uniquely such that

(2.3) D,(u®, v)=2v(x), for any ve H, .

(i) The function u™ in (i) is a unique element of H, minimizing the value of the
Junctional V¥ (u)=D,(u, u)—4u(x) on H,.

Proof. (i). For a fixed x€ D, define the linear mapping @ from H, to R'
by ®(v)=2v(x), v H,. @ is continuous by the latter half of Lemma 2.2.
The Riesz theorem implies (i).

(i)). We have only to notice the equality W(u)=(u™)+D,(u—u®,
u—u®), uc H,.

DeriNiTION 1. For >0 and x, yE D, denote by Ri(y)=R,(x, y), yED,
the function #®(y) of Lemma 2.3.

DrriNITION 2. Let GY(x, y) by the resolvent density defined by (1.1).
Define the function G,(x, y), a>0, x, ye D, by

Gm(x> y):Gg(x, y)+Rw(x’ y) .

Before examining those properties of Gu(x, y) stated in Theorem 1, we
prepare three lemmas.

An exhaustion of D is a sequence of domains D,, n=1, 2.+, such that
the closure of D, is contained in D,., and D, converges monotonically to D.
An exhaustion {D,} of D is called regular if 0D, are of class C*.

9



190 M. FUKUSHIMA

Lemma 2.4. Let aa>0 be fixed.
(1) Any non-negative a-harmonic function on D is either identically zero on D or
strictly positive on D.
(i) The function w=1—aGil is strictly positive on D. Moreover w is the
unique element in H, satisfying

(24) D,(w, v)=2a(1, v) for all ve H, .

Proof. (i). Since Lemma 2.1 implies that the value of an «-harmonic
function at any point of D is a weighted volume mean on the ball centered at the
point, property (i) is verified in the same manner as in the case of harmonic
functions.

(ii). It is evident, by expression (1.2) of G, that w is a-harmonic and
strictly positive on D. In order to show identity (2.4), consider a regular ex-
haustion {D,} of D.

Put w,=X,,—a”GiX,,, where X, is the indicator function of
D, "G;XDn(x)zj *Gi(x, y)dy and "GY(x, y) is the resolvent density (1. 1) for

Dy

D,. The function w, is @-harmonic in D,, converges to @ monotonically and
(consequently) uniformly on any compact subset of D. On account of Lemma
2. 1, the derivatives of w, converge to those of w on D. Denote byDy( , )
the integral (2. 1) on D,. Since w, belongs to C*(D,UdD,), we can apply
Green’s formula to =, and o€ H,, obtaining Dj(w,, v)=2a(Xp,, v).
This equality implies the inequality Dxw,, w,)—4a(Xp,, w,) =Dy(v, v)
—4a(Xp,, v) for all veH,. Letting n tend to infinity and using Fatou’s
lemma, we obtain

D,(w, w)—ﬁ-a(l, w) < D,(v, v)—4a(l, v) .

Thus, we H,, and if we put, instead of v, w-+&v in the inequality above, we
arrive at (2.4). 'The proof of the uniqueness is straightforward.

Lemma 2.5. Take an exhaustion {D,} of D arbitrarily. Let "Ri(y) and
"Ga(x, ¥), >0, x, yE D,, be the functions defined by Definition 1 and Definition 2
for the domain D,. Then, lim"G,(», ¥)==G4(x, ), a>0, x, yED, x=+y.

Moreover, for each x= D, the equality

(2 5) lim ”RZ(y):RZ(y), yED )

holds and the convergence is uniform in 'y on any compact subset of D.

Proof. Let "GY(x, y) be the resolvent density defined by (1. 1) for the
domain D,. Since "G{(x, y) increases to Gg(x, y) we have only to discuss the
convergence of "R, to Rj,.

10
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Let us fix x&D. We can assume that x is in D,. For each D,,, denote its
associated a-Dirichlet norm by Dj and its associated Hilbert space by HJ.
It is clear that, if m <n, the restriction of the function of H, to D,, is an element
of H}.

If m<n, we have

D}("R;—"™R%, "Ra—"™R3)

— DI("Rz, "R2)—2D("Rz, "Re)+ D("Rz, "R)
We will apply Lemma 2. 3 to each term of the last expression. The first term
is not greater than Dj("R%, "RI)=2"R%(x). 'The second and third terms are

equal to —4”R%(x) and 2"™R%(x), respectively. Therefore, for each N, it holds
that

(2.6)  0<DX("Rz—™Rz, "R7—™Rz) <2("R%(x)—"R2(x)) ,

for any m and # such that N<m<n. Inequality (2. 6) implies that "RZ(x) is
non-increasing in z and since "R%(x)=% Dy("R%, "R%) is non-negative, "R%(x)
converges. Thus, inequality (2. 6) and Lemma 2. 1 show that "R%(y) converges
to an a-harmonic function R%(y) on D uniformly on any compact subset of
D, and for each N, the restriction of "R to D, converges to that of B2 in the
norm DY .

Let us prove that R%(y)=R%(y), y&D. Since RZ belongs to H?”,, Lemma
2. 3 (i) implies

Dy("R;, "R3)—4"R3(x) = Dy(R3, R7)—4R;(x) .
Letting 7 tend to infinity, we have, for each N,

D(R;, R7)—4Ri(x) = Do(R;, R7)—4R(x) .
Let N tend to infinity, then

Dy(Rz, Ry)—4R;(x) < Do(R:, R2)—4R(x).

Thus, we see that RZ& H, and that, by Lemma 2. 3 (i1), the inequality above is
just the equality and R%(y)=R(y), y&D. The proof of Lemma 2. 5 is com-
plete.

We have seen (in the paragraph following Theorem 1) that, if 8D, is of
class C° "G,(», y) is nothing but the Laplace transform of the fundamental.

solution of the heat equation on D, with the boundary condition iu=0

Ny

and this solution is a transition density on D,. Hence, we have

Lemma 2.6. Let {D,}, {"R,(x, y)} and {*(G,(x, y)} be those in Lemma
2.5. If D, is regular, then we have

11
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(2.7) "Gu(x, ¥)=0, a>0, x yeD,, x*y.
(2. 8) "Ry(x, y)=0, a>0, x, yeD,.

2.9) aS "Golx, y)dy=1, a>0, xeD,.
Dpn

(2.10)  "Gu(w, 9)—"Golo, 3) H@—B) | "Gulw, )Gz, y)dz=0,
«, B>O, x’yEDn’ x:.:y' ’
We note that (2. 8) follows from (2. 7).

Now, let us complete the proof of Theorem 1 by the following series of
lemmas.

Lemma 2.7. R,(x, y) 1is non-negative for a>0, x, y&D and
ag Gu(x, v)dy =<1, for a>0, x&D. Gy(x, y) is symmetric in x, yeD and
D

continuous in (x, y) on DX D off the diagonal.

Proof. The first part of Lemma 2. 7 is an immediate consequence of
Lemma 2. 5 and Lemma 2. 6. It is well known that G(x, y) is symmetric in
x, y&D and continuous in (¥, y)e DX D off the diagonal set. R,(x, y) is sym-
metric because D,(R7, RY)=2R}(y)=2RY(x), x, yeD.

We shall show that R,(x, y) is continuous in (¥, y)e DX D. Since R,(x, y) is

a-harmonic in x and in y, applying Lemma 2. 1 for any x, y&D and for

sufficiently small balls B, and B, containing x and y, respectively, we have

Rq(x, y):S S hBy(x, 2)R,(2, 2')hB(y, 2')o,(d)o(dz’), where o,(dz) and
0B,

B>
o(dz’) are the surface Lebesgue measures of 0B, and 0B,, respectively.

While, R,(z, 2’) being continuous in 2z’ for each z,S R,(2, 2")o,(dz’) is
9B,

finite and a-harmonic in 2. Thus,
S S Rz, ') ory(d2) oo(dz") <+ oo .
9B, JoB,

Since R, is non-negative, Lebesgue’s convergence theorem implies continuity of
R,(x, ). The proof of the latter half of Lemma 2. 7 is complete.
We will show assertion (iv) of Theorem 1.

Lemma 2.8. Let K, and K, be compact subsets of D such that K, and the
closure of D-K, are disjoint. Then, sup  Gy(x, y) is finite.

*EK,VED-K,

Proof. Without loss of generality, we can assume that S=38(D—K,)ND
is sufficiently regular. Consider a regular exhaustion {D,} of D such that
D DK,. Let xbe fixed in K,. For a fixed n, set D'=D,—K, and u(y)

12
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="Gy(x, y), y&D'"UdD’. Since 58_ u(y)=0, yedD,, we see by Green’s
n}'

formula that D,’(u, v-u)=0 holds if v&€C'(D’ U9D’) and v=u on S®. Hence,
the equality

(2. 11)  D,'(u, u)=D,'(v, v)— D, (u—v, u—2v)

is valid for each v belonging to ®,= {v; v is square summable on D’, v has

square summable weak-derivatives on D', v€C(D'US) and v=u on S}°.

Set 8= sup u(y) and u,(y)= min (u(y), 8), y&D'US. Obviously, D,'(u, u)
yE

=D,'(u,, u,). But, since u,€9,, (2. 11) holds for v=u, and consequently

u(y)=u(y) on D',
We have proved that, if x€K, and yeD,—K,, then "G,(x,y)
= sup "Ga(x, y). Letting n tend to infinity, we see by virtue of Lemma 2. 5,

Gu(x, y)=< sup G,(x, y), x&€K,, yeD—~—K,. Thus,
res

sup  Go(x, )= sup Ga(x, y).
e 1,VE

*EK,YED-K,

The right hand side above is finite by Lemma 2. 7.
Let us show statement (iii) of Theorem 1.

Lemma 2.9. The operator G, defined by (1. 6) maps B(D) into C(D).
Moreover, if f = C(D), then wlim aG,f(x)=f(x), xD.

Proof. We note that Gy has those properties in Lemma 2. 9. For

feB(D), Ra,f(x)zg R.(x, ¥)/(y)dy is a-harmonic and bounded on account
D

of Lemma 2. 1 and Lemma 2. 7. Moreover, we see by Lemma 2. 1 that, for
any x& D and sufficiently small ball B containing x.,

aRf)| < | o, ) aRf(9) o(d)

< sup 1)1 |, 7 D) otdy) — ——0.

The proof of Lemma 2. 9 is complete.
The following lemmas are statements (ii) and (v) of Theorem 1.

8) D,  denotes the integral (2.1) on D’.

9) We call f the weak derivative of v with respect to the coodinate x;, if (f, @)
= —(v, 5% go)l), holds for every infinitely differentiable function on D’ with a compact sup-
port, ( , )p being the integral (1. 3) on D’,

10) See (1. 2).

13



194 M. FukusHIMA

Lemma 2.10. G,(x, y) is a conservative resolvent density on D. R,(x, y)
is strictly positive.

Proof. We must prove that G,(x, y) satisfies conditions (G. 1)~(G. 4)
stated in the beginning of Section 1 and the conservativity condition. Con-
dition (G. 1), (G. 2) and (G. 4) were already proved in Lemma 2. 7.

Proof of the resolvent equation (G. 3). Take a regular exhaustion {D,}
of D. Let f and g be non-negative continuous functions on D with compact
supports. Owing to equation (2. 10) of Lemma 2. 6, we have for sufficiently large
n,

(2.12)  (f, "Gag)u—(f, "Gpg)ut(a—B)("Guf, "G58)n=0,

where (u, v), denotes the integral of # v on D,,.

Note that 0="G, f(x)"Gp g(x)§% sup f(x)-sup g(x) and that "G,g converges to
o3 x€p rED

G,g on D (since, "Ggg increases to Gyg and "Ri(y) converges uniformly on
any compact subset).
Hence, we can delete both superscript and subscript #z in (2. 12). Owing to
Lemma 2. 8 and Lemma 2. 9, the left hand side of (G. 3) is, for each x= D,
continuous in y& D— {x}, and we can see that the resolvent equation (G. 3) is
valid.

Proof of conservativity. If we show that R,1< H, and that

(2.13)  Dy(aR,l, v)=2a(1, v),

holds for all v& H,,, then, we have, by (ii) of Lemma 2. 4, 1 —aGjl=aR,1 and
aG,1=1.

Let D, be an exhaustion of D. Integrating D,(R;, R))=2R,(x, y) on
D,,x D,, we obtain

(2.14)  D(RXp,, RXp)=2( S Ru(x, y)dxdy .
. Dpn

' Don

Here, we have used the Fubini theorem, which is valid for the following reason:
if m=<n,

S S dxdyS | (grad, R(2), grad, RY(2))|dz
Dy v Dy D

=\ | VDR, RV DL, Re)andy
Dy JdDn

:(S V2R ,(x, x) dx)2§2g R,(x, x)dx X Lebesgue measure of D,
Dy

Dn
the integral in the last expression being finite by Lemma 2.7. In view of

14
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Lemma 2.7, R,(x, y)=0 and S g Ry(x, v) dxa’ygl X Lebesgue measure of D.
DVJD (04

Therefore, R,X,, forms a Cauchy sequence in H, and, by Lemma 2.2,
converges to R,1 in H,. We have D,(R,1, R,1)=2(1, R,1). In the same
way, identity (2.13) is obtained. Strict positivity of R,(x, y) follows from
Lemma 2. 4.

Lemma 2.11.  There is a unique transition density p(t, x, y) on D satisfying

the following conditions.
(i) G, y):g+we““p(t, x, y)dt, a>0.
(i) For each t>0, f = B(D),

S p(t, x, ¥) () dy is continuous in (¢, x) (0, + o) x D.
D

(iil)  p(2, x, y) is symmetric in x, y= D and it is conservative.
(iv)  Set v(t, x, y)=p(t, x, y)—p(t, %, y), then

%S (¢, x, y)dy t—O-) 0 uniformly in x on any compact subset of D.
D —>

Proof. First of all, we will show the existence of a non-negative function
v(¢, %, y) continuous in #>0, satisfying
+oo
0

(2.15)  Ru(x, y):S ey, x, y)dt, a>0, x,yeD.

If x4y, R,(», y) is completely monotonic in @< (0, +). In fact, by the
resolvent equation (G. 3) for G, and G, we have, if x=+7y,

2. 16) (-1)”5{% Ru(x, y)=n! [GFY(x, 3)— (GO Ux, y)], n=0,1,2,-.

Here GL(x, 1)=G,(x, y) and GI""(x,y)=\ G (x, 2) Gu(s, y)ds, n=1,2,---.
) y b Yy

(G)I is defined similarly. Evidently, the right hand side of (2. 16) is non-
negative and, by Lemma 2. 8, finite. Hence, R,(x, ) is expressed by a measure
on [0, 4 o0) as

| oo
2.17)  Ry(x, y):S ey (ds, x,, ¥), x¥y, a>0.

0

Take a ball B with closure contained in D. Since R,(x, ¥) is a-harmonic in
x, we see, by Lemma 2. 1, for any x& B and any ye D,

(2.18)  Ry(x, y):Sthf(x, ) Ra(z, y)o(dz) .

15



196 M. FuKUSHIMA

Note that A2(x, =) is written in the form
+oo

2.19)  h¥(x, z):S e *hB(t, x, 2)dt, w<B, =c0B,
0

where h5(t, x, z):—% 9 pi(tx, 2), p% being the transition density p° for B. Let
n

z

us put, for >0, x& B and ye D,

(2.20) (¢, x,y):S S:hB(t—s, %, 2)y(ds, %, y)o(ds) .

oB

Owing to equations (2. 17), (2. 18) and (2. 19), the function (¢, x, y) of (2. 20)

satisfies the desired equation (2. 15). On the other hand, for any ball B’ such

as B"U0B’C B, the obvious idenity A%(¢, x, z):S /SthB'(t-—s, x, 2'VhE(s, 7', %)
9B" Jo

dsa'(dz’), x€ B’, 2 0B,

leads us to the relation

2.21)  9(t, %, y)= S /SthB’(ths, x, 2)y(s, &'y y)dsa'(dz")
9B

0

t>0, xeB' yeD,

which implies the continuity of (¢, x, y) in (¢, )= (0, + o)X B’.
Here, we have used the following estimate which is a consequence of (2. 17),
(2. 20) and Lemma 2. 8.

(2.22) sup  y(4 x, ¥Y)<C-eT- sup Rz, y)<+oo,
D

0I=T, *eB,YED 2EJB, VE

where T is an arbitrary positive number and C is a constant determined by T,
B and B’. Hence, we see that, for any x and y in D, v(¢, x, y) defined by
(2. 20) is independent of ball B such that x&B and BUOBCD, because it
satisfies (2. 15) and it is continuous in ¢ It is symmetric in x, ¥ because of the
symmetry of R,(x, y) (Lemma 2.7). Henceforce, it is continuous in y, and
(2. 21) and (2. 22) imply its continuity in (¢, x, y)E(0, +o0)X DX D. In view
of (2. 22), we see that S (¢, %, ¥)f(y)dy is continuous in (¢, x)= (0, + o)X D
D
for each feB(D).
Now put, for >0, x, ye D,

(2.23)  p(t, x, y)=p"(t, x, ¥)+7(¢, %, ) .

Then, p(¢, x, ¥) is continuous in (¢, &, y)E(0, 4 )X Dx D and satisfies
conditions (i), (ii) and the first half of Lemma 2. 11 (iii). In particular,

S p(, x, ¥)dy is continuous in £, so that, the conservativity of p(t, x, y) follows
D

16
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from that of G,(x, y). For each x, yeD, p(t+s, x, y) and S P, %, 2)
D

p(s, 2, y)dz are continuous in (¢, s)(0, 4 0)x (0, 4-c0), and so, they are
identical by virtue of (G. 3) for G,(x, y). Thus, p(¢, x, ¥) is a transition den-
sity. Assersion (iv) of Lemma 2.11 follows from (2.21) and the inequality

S v(¢, %, y)dy<1, >0, xD.
D

3. Compactification of D. Construction of a strong Markov
process on the compactified space

Consider the resolvent density G,(x, y), a>0, x, ye D, in Theorem 1.
Let x,D, n=1, 2 ,---, be a sequence having no accumulation point in D and
{D,, I=1, 2 ,---} be an exhaustion of D. For each ], there exists N such that
x,&D—D,,,, n=N. By Theorem 1 (iv), the family of functions {G(x,, ¥),
n=N} of y is uniformly bounded in y&D,.,. Moreover, Lemma 2. 1 implies
that, for n= N, the first derivatives of G,(x,, ¥), n= N, are also uniformly bounded
in ye D, and that functions G,(x,, ¥), =N, are equi-continuous there. Hence,
a subsequence of G (x,, y) converges uniformly on each D, and consequently,
by Lemma 2. 1, the limit function is 1-harmonic in D.

A sequence x,eD, n=1, 2,--- having no accumulation point in D is
called fundamental, if nlir+n G\(x,, v) exists for each yeD.

Two fundamental sequences {x,} and {x,’} are called equivalent, if
lim G(x,, y)= lim G(x,’, ¥), yD. This defines a usual equivalence relation

among fundamental sequences.

DErFINITION 3.
(i) Denote by A the collection of equivalent classes of fundamental
sequences.
(ii) For x= A, define G, y) by G(x, y):nlim G\(x,, v), yeD, where,

{x,} is a fundamental sequence belonging to «.
(ii1) Set D*=DU A. For x,, x,&D*, set

dy .

— [Gl(xI’ y)_Gl(xzay)|
(3 1) P(-X'u xZ)_SDl—I— I Gl(x“ y)—Gl(xz, y)l

Evidently, p defines a metric on D¥.

Lemma 3.1.
(1) (D*, p)is a compactification of D.
(ii) For each y in D, the extended function G, (x,y) is p-continuous in x on
D*—{y} and the class of functions (of x), {G\(x, y), yE D}, separates points of
D*,

17
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(i) If K is a compact subset of D and F is a closed subset of D*—K, then
sup Gi(x, y) s finite.
IEF,YEK

(iv) When the relative boundary 0D of D in RN is of class C°, DUOD coincides
with D* up to a homeomorphism which is the identity on D.

Proof. Martin’s original proof (cf. [13], §2, Theorem I and II) can be
applied with no change to obtain the statements (i) and (ii). Third assertion
is a consequence of Theorem 1 (iv). Suppose that 9D is of class C°. As we
have seen in Section 1, G,(x, ¥) of Theorem 1 is the Laplace transform of a
fundamental solution p(¢, x, y) of a boundary problem of the heat equation.
P(¢, x, y) and G,(x, y) can be continuously extended to DU®9D as functions

of x and it holds that, for each xeDUlaD, fec(DuUaD), limS b, %, y)
t>0 Jp

f(y)dy=f(x)>,  which  implies a}imeaSDG‘”(x’ () dy=f(x). Hence,
{G(x, y), yE D} separate points of DU0D. Therefore, DU0D is homeomor-
phic to D* (cf. [1], §9).

Denote by B(D*) the o-field of all Borel subsets of D¥*. B(D*), C(D¥)
and Cy(D) will stand for the classes of all bounded Borel measurable functions
on D*, p-continuous functions on D* and continuous functions on D with
compact supports in D, respectively. Each f&Cy(D) will be considered as a
function on D¥* by setting f(x)=0, x& A.

As an immediate consequence of Lemma 3. 1 and Theorem 1 (iii), we have

Corollary. The operator G,, defined by G, (x):SDGl(x, () dy, xD*,

maps Cy(D) into C(D*) and the collection of functions G.f, f& CyD), separates
points of D¥*.
Now, let us extend every function G,(x, ), «>0, as follows.

DrrFINITION 4. For >0, x€ A, yE D, define G,(x, y) by
(3.2) Gu(x, v)=G\(x, y)—(a—1) sDGl(x, ?)G4(z, v)dz .
Lemma 3.2. For each x= /\, G,(x, y) has the following properties:

(G. 1) Gu=, v), a>0, ye D, is non-negative, finite and a-harmonic in ye D ,
(G.2) aG,lx)=Gl(x)=<1, a>0,

where G,1(x)= SD Ga(x, y)dy.

(G.3) Gafx, ¥)—Galx, ¥)+(a—pB) SD Go(x, 2)Go(z, y)dz=0, a, B>0, yD.

11) cf. [7].
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Proof. Let us fix x& A. By Fatou’s lemma,
(3.3) Glx)<1.

By virtue of (3. 3), assertion (iii) of Lemma 3. 1 and assertion (iv) of Theorem
1, the integral appering in (3. 2) turns out to be finite for «>0 and y&D. When
a<<l, G,(x, y) is clearly non-negative. By Fatou’s lemma, G,(x, y)=0 for
a>1. We can easily verify

(a—% Ay> Gu(x, )=0, a>0, yeD.
Integrating both sides of (3. 2) in y and noting the conservativity of G, of
Theorem 1, we get aG,l1(x)=G,1(x), «a>0. The equation (G. 3)’ is obtained
from (3. 2) by a simple calculation.

We now extend p(t, x, y) of Thoerem 1 (v) from D to D* with respect to «.

Lemma 3.3. For each x= /\, there is one and only one function p(t, x, y),
t>0, ye D, which is continuous in t and satisfies

400
(.4 G, y)= S e p(t, x, y)dt, a>0, yeD.
Moreover the function p(t, x, v) has the following properties:

(T. 1) It is non negative.

(T. 2)’ Sp(t, x, y)dy=Gl(x)<1, 0.
D

(T. 3)’ Sp(t, %, 2)p(s, %, y)de=p(t+s, x,y), 1,s>0, yeD.
D

(T.4)" For each x= /\, it is continuous in (t, y)=(0, 4+c0)X D and, for each
t>0 and ye D, it is measurable in x on /\. Moreover, for any f=B(D*) and

xXEN, S p(t, x, ) () dy is continuous in t>0.
D

Proof. In view of (G. 3)" of Lemma 3. 2, we see that G,(x, y), x& A,
ye& D is completely monotonic in a=(0, +<0). By (G. 1)’ of Lemma 3. 2, it is
a-harmonic in yeD. Hence, we can construct p(¢, x, v), >0, x& /A, yED,
satisfying (3. 4), (T. 1)" and the first half of (T. 4)" in the same manner as the
construction of (¢, x, y) of Lemma 2. 11.

As consequences of properties (G. 2)" and (G. 3)’ of Lemma 3. 2, the equation
in (T. 2)’ holds for almost all >0 and relation (T. 3)" holds for almost all
t, s>0. By virtue of (2. 22), the left hand side of (T. 3)’ is continuous in s>0
for each ¢ satisfying (T. 2)’. So the equation (T. 3)" holds for almost all >0
and for all s>0. In view of property (T. 3) of the transition density p(t, x, y),
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>0, x, yeD, (T. 3)" holds for all #, s>0. (T.3)" implies that the left hand
side of (T. 2)’ is a constant in £. Hence (T. 2)’ holds for all £>0. It follow

from the first half of ('T. 4)" that S p(t, %, v)f(y)dy is lower semi-continuous in
D
¢t for each non-negative bounded function f on D. Moreover, on account of
(T. 2)’, it is continuous in ¢. Thus, S p(t, x, ¥)f(y)dy is continuous in >0
D

for each f= B(D¥*) and x= A.

Now, we are in a position to construct the Markov process (on D¥) associ-
ated with p(z, x, y), x€D*, ye D, and investigate its properties.

Add a point 3 to D* as an isolated point. B(D* U9) will stand for the
collection of sets whose restrictions to D* are the elements of B(D*). Denote
by B(D* Ud) (C(D*U0)) the aggregate of all the functions on D* U3 whose
restrictions to D* are the elements of B(D¥) (resp. C(D¥)). Each element f
of B(D*) will always be considered as the one of B(D* U d) by setting f(9)=0,
unless particularly mentioned. Let p(¢, x, ¥) be the function defined for >0,
xeD* and yeD by Theorem 1 (v) and Lemma 3.3. For E€B(D*U0d),
define

(3.5 ptx B)=|_ plt % )dy+(1—g@)Xs0), x€D¥,
p(t, a: E):XE(a) )

where X is the indicator function of the set E, and

(3.6)  qx)= S G(x, y)dy, xED*.
D
We put for f € B(D*U9),

T )= ptt, % anfo),
D*U9

(3.7) o
G,,,f(x):S e T, f(x)dt, x&D*Ud, t>0, a>0.

G,f is expressed in the form

Cuf@)={ G Nf0)y+1=21010), seD*,
(3.8) 0)
wa(a): TX-— .

By virtue of Theorem 1 (v) and Lemma 3. 3, p(¢, x, E) defined by (3. 5) is a
transition function on D* U0; p(¢, x, -) is a probability measure on D* U9,
p(+, +, E) is, for each EcB(D* U0), measureable in (¢, x)(0, + o)X {D* U2}
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and it satisfies the Chapmann-Kolmogorov equation.

Let Q be the product compact space {D* U8} +=. Denote by X,(w)
the t-th coodinate of weQ. Let F(F,) be the o-field of subsets of Q
generated by the cylindrical open sets of Q (resp. cylindrical open sets
depending on the coodinates up to and including #). Denote by U the o-field
of subsets of Q) generated by all open set of Q. For each x&D*U?d, there
is a unique Radon measure' P, over (2, ) which is a probability measure and
satisfies the following conditions.

(3.9  P.(X.€E)=p( x, E),
t>0, xeD*Ud, E=B(D*U9),

(3.10) For each AP, and bounded F-measurable function F on Q,
E(F,(0,0); N)=E(Ex,(F); A), x&D*U?9,

where E, denotes the integration with respect to P,-measure and 6,; :>0, is
the shift from Q to Q defined by X,(6,0)=X, (), s>0.

Lemma 3.4.
(i) Set Q,={w; X (w)ED* for every t>0} and Q,={w: X,(0)E {0} for
every t>0}. Then, P, (Q,)=¢(x), P,(Q,)=1—q(x), x&D* and Py (Q,)=1.
(i) For each x& D* U0, we have P(X, has the right limits for all t=0 and the
left Limits for all t>0)=1.

Proof. (i). Relations (3. 5), (3. 9) and (3. 10) imply P,(X,ED¥*,
X, {0})=0 for every ¢, s such as #>s>0 and for every xD*. Since
{X,, P,}, x€D¥*, is separable,”® we see P,(Q,)= lim P (X, D¥*)=q(x) and

P(Q,)= lim P(X,& (0))=1—q(x).

(it). Denote by C5(D) the collection of all non-negative functions in Cy(D) and
by S,(D) a countable dense subset of Cg(D) in uniform norm. By virtue of
Corollary to Lemma 3. 1, functions G,f, f&S,(D), are continuous on D¥* and
separate points of D¥*. Moreover, {Z,=e'G,f(X,), By P}, fES(D),
xeD*, is a bounded supermartingale. Hence, we have assertion (ii) by a
standard argument'.

It follows from Lemma 3. 5 that there is well defined X,(w)= }1?’1 Xy(w) for

every =0 almost everywhere (P,), x&€D*U9d. X, is right continuous in =0
and has the left limit in >0 almost everywhere (P,), x&D*UJd. On account
of Theorem 1 (v) and Lemma 3. 3 (T. 4)’, X, is a modification of X,;
P.(X,=X,)=1, for each t>0 and x& D* U3.

12) cf. [15].
13) cf. [15].
14) cf. [10] and [20].
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Let us examine the distribution of X, .

DEFINITION 5.
(i) For each x=D* U2, define a probability measure u(x, E) on B(D* Ud) by

w(x, E)=P,(X,EE), E=B(D*U0).

This u(x, -) is called the branching measure at .
(i) A point x in D* U3 is called a branching point if u(x, {x})<<1.

The notion of branching measure was introduced by D. Ray [20]. The
above definition, slightly different from Ray’s original one, is due to H. Kunita
and T. Watanabe [10]. We shall use the general results obtained by these
authors, whenever their methods of the proof are applicable to our situation
without essential change.

Denote by A, the totality of branching points. Then, we have

Lemma 3.5.
(1) A,CA.
(i1) A, isan F -set and p(x, N)=0, x& A,.

(i) Put N,'={x: q(x)<<1}, where q(x)zg G(x,y)dy. Then, /\,’C/\, and
D
u(x, {8))=1—q(x), ¥ A,.
Proof. If feC(D*U2d), then
+
0

(3.11)  lim aG,f(x)= lim Ex(g T f(X ) dt)

—E(fX)={  uln d)f), xeD*Ud.

On the other hand, because of Theorem 1 (ii) and formula (3. 8), lim aG,f(x)

=f(x), for x&D U0, feC(D*U 9). Hence, DU contains no branching point.
For the proof of (ii), let us cite a criterion of D. Ray [20] in a modified form
fitted to our situation: x& A,, if and only if f(x)>mlim aGuf(x), for some

felC={f=GhNc; h&,S(D), ¢ is non-negative rational}. Since, for fEC,,
oGy f<f and Gy f=G(f—aGu..f) is lower semi-continuous on D¥*

A= U U N {{(x)=aGy f(x)+1/n} is an F, -set. By (3.11), we

fec, n=1  a>0, rational

have for f=G.h, heCyD), and conseqeuntly, for f=Gh, he B(D¥), a>0, the
equality f(x):g y w(x, dy)f(y). Therefore,
D*Ud

[ ne, @) Jim (@Gaf)(y)=Jim aG,f(x)

:SD*%/‘("’ d)f(y), fecC,.
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A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN MOTIONS 203

Using the inequality lim aG,f<f, f€C, and the criterion above, we can see
@G>+ o0 @y + 00

that p(x, A,)=0.

Assertion (iii) is immediate from (3. 8) and (3. 11).

In the next section, we shall see that u(x, D)=0, x& A,.

Let us set D*=D*—/\,. By Lemma 3.5 (i), we see DC D,*. By Lemma
3,4 (i) and Lemma 3. 5 (iii), we have P, (X,eD* for every t=0)=1, x&D *.
The following two lemmas will assure that the properties stated in Theorem 2
(i) are valid for X={X,, P,, x&D*} except the continuity of the trajectory
X, at the boundary A.

We call a random time o=0 a Markov time (relative to ,) if, for each
t>0 and each probability measure » on D*, the set {o<<t} is in §, up to a

set of P,-measure zero (Pv(-):SD*v(dx)Px(-)). For a Markov time o, let

B, denote the o-field of subsets A of Q such that, for each t>0 and each
probability measure » on D* AN {c<t} is in &, up to a set of P,-measure
ZETO0.

Lemma 3.6.
(i) X={X,, P,, x&D*} is a strong Markov process; for each Markov time
o, NEF,. and f € B(D¥),

E(f(Xorr); N=EEx,(f(X0); A), x&D*.
(ii) For each x&D¥, P (X, A\, for every t=0)=1.

Lemma 3.7.
(i)  Let {D,} be an exhaustion of D. Set
T,=inf {t: X,eD*-D,} and 7= limT,.

Then, P,(X, is continuous in 0<t<7)=1, x= D*.
(ii) For each xD and Borel set E of D,

PAX,€E, t<n)=| p(t, % »ay.
E
(iii) For each x& D¥,
P (X, is continous for any t =0 such that X, or X,_isin D)=1.
(iv) For each x= D*,
P(X,, X, &\, for every t=0)=1.

(v) X is quasi-left continuous; for any sequence of Markov times o, increasing to

g,
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P(lim X =X_; 0<+4o0)=P (c<+c0), x&D*.

4 o0

Proof of Lemma 3. 6 (i). Since X, is a modification of X,, relations (3. 9)
and (3. 10) hold for X, if we replace X, there with X,.

Take a Markov time ¢ and a set AES,,. The Markov property (3. 10)
for X, and a usual limiting procedure lead us to

(3.12)  ELG.f(X.); A)

=B([ e (X )Ha— 1) G )dt; A),

for feCy(D), xeD*. Here, we have used the resolvent equation, the right

continuity of X, in =0 and the continuity of G,f(x), f €C,(D) in x&D*. Since

P (X, e N)=0, x&D*, t>0, we can see that equation (3. 12) holds also for

fEB(D¥). By setting f=G,h. he B(D), a>0, in equation (3. 12), we have
teo

E(G,G.h(X,); A):Ex(g e" " GLh(X,)dt; A). By the resolvent equation

(G.3) and (G. 3)" (Lemma 3. 2), we have, for B8>0 and feC(D¥),

E(Gu(BGH(X.); N=E. (|

o0
g

e (BGAf)(X,)dt; )
—E([ e BGANX XX )t A) .

Letting B tend to infinity, we have, by Theorem 1 (iii),
EAGuf(Xs); M)
:Ex(g me“’”f(X,,,,t)dt; A), a>0, feC(D*), xeD*,

+
0
which proves conclusion (i) of Lemma 3. 6.
Proof of Lemma 3. 6 (ii).
Here, we can go along the same line as in H. Kunita and T. Watanabe [11],
Section 2, (j). Set, for 4C D¥,

(3.13) o= inf {>0; X, 4},

=} oo, if there is no such #.

o 4 is a Markov time if 4 is open or closed. Since A, is an F,-set (Lemma 3. 5
(ii)), Lemma 3. 5 (ii) and the strong Markov property will imply the second asser-
tion of Lemma 3. 6.

Proof of Lemma 3. 7 (1), (ii).

It follows from Lemma 2. 11 (iv), that, for each compact set KCD and
>0,
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(3.14)  lim = sup p(t, x, D— U, (x))=0.
t10 f ek

where U, (x)={yED, p(x, y)<<&} .
(3.14)  implies
(3.15) P, (X, is continuous for every t<<7,)=1,

x& D¥*, (see E.B. Dynkin [3], Lemma 6.6). Letting # tend to infinity, we have
the first statement of Lemma 3.7.
Next, take a regular exhaustion {D,}. Then, we have

(3.16) P/(r,=0)=1, x€8D,, n=1,2 -,

(3.17)  for each n and compact set KCD,,,

lim sup P,(1,=u)=0,
“|0 rEK

(3.18)  for each twice continuously differentiable functions f on D,
.1 1
lim (T f0) )= 1 A fw), xED.

Indeed, (3. 18) is immediate. Property (3. 16) follows from P (7,>#)<1—-P,
(X,eD—D,)and P(X,eD*—D,)= S p°(t, x,y)dy. Property (3. 17) follows
D-Dp

from the following estimate ([3], Lemma 6.1): for any Borel subset G of D,
P (X,eD,UdD, for every t<u)=p(u, x, Gy— sup p(t,y, G). Since T,

YED - Dy, 0 t<H

maps B(D) into C(D) (Theorem 1 (v)), it follows from (3. 16) and (3. 17)
that the operator 77, defined by T7f(x)=E.(f(X,);t<7,), x€D,, makes
invariant the space of all continuous functions which vanish on 8D, (see E.B.
Dynkin [4]. Theorem 13.1 and Theorem 13.8). Let p™(¢, x, y) denote the
transition density of the absorbing barrier Brownian motion on D,. 'Then,
combining the above property of 77, the continuity of trajectory X,, <7, and
formula (3. 18), we can conclude ([4], chap. V, §6) that, for any Borel subset £
of D,,

P/(X,<E, t<7n):g P, %, y)dy, t>0, x&D,.
E

Let » tend to infinity to obtain conclusion (ii) of our lemma.

Proof of Lemma 3.7 (iii), (iv).
Let us fix ¢>0. Denote by € the class of all D*-valued functions defined on
[0, ¢]. Define the operator q from € to € by qe(t)=@(c—t), 0=t=c, pEl,
For w=Q, we define v(w)={X,(0); 0=t=c}.
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v(w)EL for almost all w(P,). We set for AP, vA=v'qvA. According
to the symmetry and the conservativity of p(¢, x, y), it is easy to see that

(3.19) SDPx(fyA)dxstPx(A)dx, AEF,.

We shall first prove assertion (iv).
Put 4;"={w; X,_ €/, for some t=(h, c+h)}
and Bj= {w; X, /\, for some (0, c)}, h=0.

Obviously, A5=vBj, and by Lemma 3.6 (ii), and (3. 19), we have S P (A5)dx
D
:S P.(B§)dx=0. Hence, P,(A5)=0 for almost all xD. By (3. 10), we see,
D
for each xeD¥, Px(A,i'”‘):S p(h, x, y)P,(A5)dy=0. Letting ¢ tend to
D

infinity and then % tend to zero, we obtain conclusion (iv) of the present lemma.

Coming to the proof of assertion (iii), consider the set Aj= {w; X, €D,
X, #X, for some t£(0, ¢)}. Then, Ai=A4,U4,, where, A,={w; X,_€D,
X,eD, X,+X,_ for some t£(0, ¢)} and 4,={w; X, €D, X,/ for some
te(0, ¢)}. Denote by S a countable dense subset of (0, ¢). Obviously,
A,cC SU {o; X,€D, X, has a discontinuity for some ¢E(s, (s+7(f,0)) Ac)} and

(S}

4,c |J {o; X,€D, X, 4.,60D, for some n such as s+7,(0,w)<c}. By
ses

virtue of (i) and (ii) of Lemma 3. 7, one has P,(4,UA4,)=0 for x&€D, and
consequently (see the proof of (iv)) for all x&D*. Set Bi=vA?, then the same
argument as in the proof of (iv) leads to P,(B¢)=0, xD*.

The final statement of Lemma 3. 7 follows from assertion (iv) of the lemma
and assertion (i) of Lemma 3. 6. (see [11], Section 2, (i)).

4. The Dirichlet norm related to the process and the continuity
of trajectories at the boundary

The main purpose of this section is to show in Lemma 4. 5 that, for almost
all o, the entire trajectory X,(w), 0=<t< + oo, is continuous. Since we already
proved that X () is continuous for all £>0 such that X,(w) or X, (0)ED, it
remains to prove that X,(w) has no jumps at the boundary A.

First, we will give an integral representation of 1-excessive functions.

DErFINITION 6. A non-negative function # on D* is called a-excessive if

4.1 e T u(x)  u(x) as ¢ | 0 for each x& D*.

Lemma 4.1.
(1)  If a non-negative function u defined on D satisfies (4. 1) for every x& D, then
u is uniquely extended to an a-excessive function on D¥*,
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(i1)  If u, and u, are a-excessive and u,(x)=u,(x) almost everywhere on D, then
u, and u, coincide on D*.

Proof. (i). For x=D*, ¢ ¢ T,u(x):e“”’S p(t, x, y)u(y)dy is monotone
D
increasing as t| 0, and we have only to set #(x)= lim T,u(x). The uni-
£10
queness of # and assertion (ii) are easily verified.

Set Ay =A—A,.

Lemma 4.2.
(i) Gu(x, ¥), (v, y)ED*X D, can be extended to (x, y) D* X D* in such a way
that the extended function G,(x, y) is symmetric in x, yeD* and, for each
x(resp. y)= D*, it is a-excessive in y(resp. x).
(i) For each branching point x /\,, the branching measure u(x, ) is concen-
trated on /\,U0.

Proof. (i). By Theorem 1 (v) and Lemma 3.3, G,(x, ) is, for each yED,
a-excessive in x€D* and it satisfies (4.1) as a function of yeD, for each
xeD* By virtue of Lemma 4.1, G,(x, ¥), x€D¥*, has an a-excessive ex-
tension with respect to y. The symmetry of the extended kernel follows from
Theorem 1 (ii). (ii). As we have seen in Section 3, (see the proof of Lemma

3.5),
fo)=1, . e, )fiy), for f=Gh hEBD?).

Hence, by Lemma 4.1 (ii),

4.2)  Gax, y)— gDUAl,b(x, d2)Go(z,y), yeD.

When x€ A, G,(%, y) is a-harmonic in y and equation (4.2) implies that
p(x, +) has no mass on D (see Lemma 2.1).

Theorem 3.
If u is 1-excessive and S u(x)dx<<+oo, then there exists a unique measure v con-
D

centrated on DU /\, such as

(4. 3) u(x):S Gl )u(d), x=D*.

DU
We call v the canonical measure corresponding to u.

Proof. Since u is 1-excessive, there is an increasing sequence of non-
negative functions f,, n=1, 2 .-+, such that
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208 M. FukusHIMA
G, f,,(x)ni mu(x), xeD* .

Because of Theorem 1 (ii), SDf,,(x)dxz(f,,, G 1)=(G.f, 1)gSDu(x)dx<+oo.

Hence, extracting a subsequence if necessary, the sequence of measures f,(x)dx
converges weakly to a measure v,(dx) on D*. By Corollary to Lemma 3. 1,
G,p is continuous if p=CyD), so that (@, u)= lim (p, G.f,)= lim (G, f,)

:S ,, Gp(x)r(d), pEC(D).  Thus, it holds that
D
49 uw=| G ),
DUA
for almost all ¥ D, and consequently (Lemma 4. 1 (ii)) for every x& D¥*. Using

(4. 2) and Lemma 4. 2 (ii), we can rewrite (4. 4) in the form (4. 3) with » defined
by u(dy):uo(dy)—l—g vy(d2) u(2, dy). The measure v of (4. 3) is uniquely deter-
Do k

mined by u. In fact, for any feC(D¥), S f(x)v(dx)= lim (xS A G of(x) v(dx)
D¥ @yt o0 DU/

== limaSDUA (G.f(x)—(@—1) G,Guf(x)) w(dx)= lim a(u, f—(@—1)Gaf). The

@y p oo

proof of Theorem 3 is complete.

Our next task is about the canonical measures corresponding to a special
class of excessive functions.

DEFINITION 7. The (— oo, + oo]-valued function A,(w) on [0, +co]xXQ
is called an a-additive functional of X, if

(A. 1) for fixed ¢, A,(w) is §,,-measurable in o,

and if there is 2A-measurable set Q4 closed under the operation 6,, t>0, such
that P,(Q4)=1, xD¥*, and for each fixed wEQ 4,

(A.2) A, w) is right continuous and has the left limit in ¢,
(A. 3) &(0)=0 implies A,(w)=0 for t=0,

where {§(w) is a hitting time to 0, and

(A.4) A4, (0)=A(w)+e A, (0,0), for t, s=0.

Two a-additive functionals 4 and B are called equivalent and denoted by
A=~B, when A,=B, holds almost everywhere (P,) for each t=0 and x&D*.
A 0-additive functional will be called an additive functional simply.

Put R= {u; u=G,f, f€B(D*)}. Riscontained in B(D*) and independent
of >0. If G,f(x)=G,fx), x&D*, f,, f,€B(D¥), then, as one easily sees,
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f1=f. almost every-where on D.
Take uEER If u:GI/Zf, fEB(D*)’ we set

(4. 5) A?:e“”zu(X,)——u(Xo)—i—Ste‘s/zf(Xs) ds, 1=0.

0
It is easy to see that AY is a 1/2-additive functional and it is uniquely determined
by u up to equivalence. Clearly E,(4%)=0, x&D*, t=0. We sce that
(4:60) v (x)=E((41-))

is a 1-excessive function. In fact, 4%.(w)=A% w)+e **A%.(0,0) implies v,(x)
=B (A7) 4 2E (e AtEx (A% 2))+En(e7 Ex (A%.)) = EL(AY)) + €7 Tivu(x),

and e”*Tv,(x) 1 v,(x) as t | 0, x & D*. Moreover, S v,(x) dx<<-+ oo, and so, v,
D

is expressed as the G)-potential of a measure on D*=DU A, according to
Theorem 3.

DeriniTION 8. For ueR, define 4% and v, by (4.5) and (4. 6), respec-
tively. Denote by v, the canonical measure on DU A, corresponding to v,.
Set ||lulllx=\v(D U A,) and call this the Dirichlet norm of uc®R with respect
to the process X.

We will show

Theorem 4. Let u bein R. Then,
() Ilulii={ (erad u, grad u) (x)dx,
(i1) v (A)=0.

Let us prepare two lemmas.

Lemma 4.3.
k=2, f)—(u, u), usR.

Proof. Since SD G.(x, y) dx= SDGI(y, x)dx—q(y)=1for yeDU A, (Lemma
3.5 (iii)), we have ||[ul||%= v, (DU Al)zspvu(x) dx. On the other hand,
0@ =E((| e fX) do)—u(y
—2B([ et fx)ae| e X, ds)—u(sy
—2B(| et X dtEx (| e X, ds))—u(ay
=2{ Gy Dfw)u(y) dy—uy .
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Hence, Lemma 4.3 is valid.

Lemma 4.4. Let 7 be the first exit time from D defined in Lemma 3.7 (i).
Then we have, for ueR,

4.7) E,,((A:_)Z):SDGg(x, y)(grad u, grad u)(y)dy, xE€D,
(+.8)  E(42))=( Gix,5)ndy), veD,

(4.9) uu(D)=SD(grad u, grad u)(y)dy .

Proof. Let {r,} be the first exit times from an exhaustion {D,} of D.
By definition, 7,4 7. In view of Lemma 3.7 (ii), {X,, t<7,} is equivalent to
the absorbing barrier standard Brownian motion on D,. Now, suppose that f
belongs to C'(D). Then, u=G,),f=G.,f+R,f belongs to C*D) and

(% ——%—L\ > u(x)=f(x), x& D**. Applying the formula concerning stochastic inte-

n
grals' to the function F(¢,x)=e **u(x), we obtain A’,‘”zs e~ grad w(X,)dXj,
0
and consequently
Tn
(4. 10) Ex((A':n)z)zEx(S e *(grad u, grad u)(X,)ds), x<D.
0

Consider the collection © of all bounded functions f on D such that u=G,),f
satisfies equation (4.10) for a fixed n. Obviously 9 is a linear space and C*(D)
9. Itis easy to see that, if f,E9 converges boundedly to a bounded function
f, then f€D. Hence, D=B(D). We get formula (4.7) by letting n tend to
infinity in (4.10). In order to show identity (4.8), we have only to let z tend to
infinity in the first and last term of the following identity.

E (A%, ))=0ux) —E(en0u(X.,)
= S pia, O V2l d) = S o, Bl GA(Xo, )2l )

DU

= (G =BT G(Xep y)Ild) .

The formulae (4.7) and (4.8) imply identity (4.9).

Proof of Theorem 4. It follows from the definition of R,(x, y) that, when
ueR and u=G,,,f, fe B(D),

15) CYD) (C%(D)) is the aggregate of all bounded, continuously (resp. twice continu-
ously) differentiable functions on D.
16) cf. [4], (7. 77).
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4.11)  Dy(u, u)=2(u, f) .

Indeed, the same procedure as in the proof of Lemma 2.10 is applicable to

get Dy(Rf, Rf)=2(R,f, f). It is easy to see that Dy,(Gi.f, Gi.f)
=2(G.f, ) and D,;(Gy).f, R,f)=0. Rewrite (4.11) in the form, 2(u, f)—(u, u)

———S (grad u, grad u)(y)dy. Now,. assertions (i) and (ii) of Theorem 4 follow
D

from Lemma 4.3 and Lemma 4.4, respectively.

Coming to our main task about the continuity of trajectories of X, we shall
introduce several notations and concepts given by M. Motoo and S. Watanabe
[18]. In [18], Hunt processes are treated. Our process X is not a Hunt pro-
cess in general: It may include branching points. However, owing to Lemmas
3.6, 3.7 and 4.1, all the results in [18] can be applied to our process.

Set

Ci={A4; 4 is an additive functional of X such that 4,(»), =0, ©=Q4, is non-
negative, continuous in ¢ and E (4,)<+ oo for t=0, x& D*}*”

€, ={4; A=A4,—A4,, A;C}, i=1, 2},

M ={4; A4 is an additive functional of X such that E (4%)<<+ oo and E,(4,)
=0 for t=0, x& D*}.

Let 4, BEM. Then there exists a unique element of €,, denoted by
{4, B>, satisfying the following condition: E ({4, B>;)=E,(A4,B,) holds for
every =0 and xD*. ForAeM, <4, A> will be denoted by (4>. It is an
element of. €7.

We set, for A=IN,

L*(A)={f; f is a measurable function on D* such that E,( St fXPd{A))<+ o0
0
for every t>0, x& D*}.

DErFINITION 9.

Let AWM and f € L*(A4). B&M is called the stochastic integral of f by A
and is denoted by B—:S fdA if Ex(B,C,):Ex(,S "f(X.)d<A, C,), t=0, holds for
every CeM.

The stochastic integral exists uniquely for A€M and fe L*(4) (Theorem
10.4 of [18]). As a consequence of Theorem 4, we have

Theorem 5. Denote by X, the indicator function of the set /\,. It holds

that SXAIdAzOfor any A=M.

17) 8,4 is a suitable defining set of 4 (see Definition 7).
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Proof. (i). Set, for ueR and u=G,,,f with f € B(D¥),

~

t
(4. 12) A-Z;:u(X,)—u(XO)-}—SO( f(Xs)~%u(Xs)) ds, t=0.
Obviously, A“cIM. Let us show, for ucR,
(4.13) SXAI dA“~0, or equivalently

(4.14) S: Xp (X,)d<A">,=0, t=0, almost everywhere (P,), x& D*.

o - t o~
Since 4* defined by (4.5) is related to A“ by A?;:e"/zA?+—})—S e Atds, v,

n

defined by (4.6) is expressed as
+

(4. 15) z;,,(x):Ex(S Tetd(A*,), xeD*.

On the other hand, v,,(x)zg G(x», y)v,(dy), and by virtue of Theorem 4
ST

DU
(which states v,(A,)=0), (A“>, can never increase when X, A, (see [6] or

[14]), that is, SXAI(Xs)d<ﬁ”>s~O.

(ii). In order to derive Theorem 5 from (4.13), we introduce several nota-
tions. We write Lim A”=A4, for A" and A€M, if and only if E (47— A4,)’)

-—r 0, x&D¥*, t=0. A subset L of M is called a subspace, if L satisfies
n— -+ oo

the following conditions.
(a) If A, B€L, then A+Be<L.
(b) If A"eL and A=li.m A", then A€ L.

(¢) If AEL and fe L¥(A), then S fdAeL.

For a subset M of M, L(M) will stand for the minimum subspace which
contains M. We note that, Theorem 12.2 of [18] states M= L(A“; u< R), where

A“is defined by (4.12). If we set M'= (4; A=, SXAIdAmO}, then M’ is a

subspace of M and contains A*, ucR, by (4.13). Hence M'=M, completing
the proof of Theorem 5.

By the following lemma, we will complete the proof of Theorem 2 stated in
Section 1.

Lemma 4.5. The strong Markov process X={X,, §,,, P,, x&D*} is
a diffusion, that is, X satisfies the condition
(b) P(X, is continuous for every t=0)=1, x& D*.
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Proof. Let p(x, y) be the metric on D* defined by (3.1). We shall set, for

convenience, p(x, 0)=-co, x&D* and p(0, 0)=0. For £>0, define &° by
ot—inf {t; p(X,_, X,)>€} ,
=00 if there is no such ¢,

and o1, 03 ,-+, by oi=0", on=0r_y(0)+ (0o, ). Set p;F= Z Xp(Xo,2), for
Ec®B(D*U9d) and t=0. Obviously, ;€ is an additive funct10na1 We shall
denote p;'P*U% by p;. Statement (b) is equivalent to
(4.16)  p;=0, for any =0 and £>0.

Let us show (4.16). We can find B,,=8(D* U9) such that B,,  D* U0 and
E,(p}Bm)<+ oo, x&D*, t=0 (Lemma 3.1 of [22]). For B,,, there is ;" "=}
such as

(4.17)  E (p;Bm)=E (™), t=0, x=D*.
1t we put q;™=p;'2»—P,"™, then ¢~ Wt and
4.18)  <g*">~p>" (Theorem 2.2 of [22]).

Now Theorem 5 implies
(4. 19) Ex(S:XAl(Xs) dp ™ =0, 1=0, xeD*.
On the other hand, we have from identity (4.17),
(h:20) B 3 Xo (X)X Ko )=E [ XXy a5,

xeD* (Lemma 3.2 of [22]). The left hand side of equation (4.20) is, owing to
assertions (iii) and (iv) of Lemma 3.7, no other than E, (p;?m). Therefore, the
formulae (4.19) and (4.20) imply p;'B»~0, and consequently assertion (4.16).

We call the conservative diffusion process {X,, Bis,> Pry xED,*} the reflect-
ing barrier Brownian motion on D *=DU A,.

Consider the case when 0D is of class C°. By virtue of Lemma 3.1 (iv), we
can find a homeomorphism W from D U9D onto D* such as ¥(x)=x, x&D. In
this case, A\, is empty and so,D¥=D* (see the identity (3.11) and the proof of
Lemma 3.1). Set Xt_—\If Y(X,), t=0 and P =Py, x€DUOD. Theorem 2
and the argument in the paragraph following Theorem 1 now imply

Theorem 6. Suppose that 0D is of class C°. Then, X’z(X,,Px,x
e€DU0dD) is a conservative diffusion process on D\UOD satisfying Px(X,EE )
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214 M. FUKUSHIMA

:S Pty %, y)dy, t>0, x&DUDOD, for any Borel set E of DUdD. Here,
END
P, x, v), t>0, xeD*, yeD is the fundamental solution of the heat equation

<;867‘% ’;)u(t, x)=0 with the condition Ba—u(t, x)=0, x€dD. We call X the
nx
reflecting barrier Brownian motion on D \J0D.

See K. Sato and T. Ueno [21] for another version of X.

Tokyo UNIVERSITY OF EDUCATION
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On boundary conditions for multi-dimensional Brownian
motions with symmetric resolvent densities

By Masatoshi FUKUSHIMA

(Received Jan. 7, 1968)

§1. Introduction.

Let D be an arbitrary bounded domain of the N-dimensional Euclidean
space R¥(N=1). A function G, (x,y) defined for a« >0, x, ye D, x#y will be

called a resolvent density on D, if it satisfies that, G,(x, ) =0, af Gux,2)dz<1
D

and G.(x, )—Gax, »)+(a— ﬁ)jDGa,(x, z2)Gy(z, )dz=0 for all « >0, >0 and x, y

€D, x+y. Denote by GY%x,y) the resolvent density corresponding to the
absorbing barrier Brownian motion on DV,

Consider the family G of all conservative symmetric resolvent densities® on
D possessing the following properties :

(G. a) Gulx,) is written in the form

Ga(x, 9) = Go(x, N+Ra(x, 3) -

R (x,¥) is a non-negative function of « >0, x,y € D, and a-harmonic® in x& D
for each >0 and y < D.
(G. b) For any compact subset K of D, sup R(x,y) is finite.
K, yeED

In [15], we constructed a particular element of  and showed that it
determines a continuous strong Markov process (called the reflecting barrier
Brownian motion) on an extended state space D*.

In the present paper, by studying the structure of Dirichlet spaces asso-
ciated with elements of G, we will answer the questions:

(i) How many elements are there in G ?

(i) In what sense is the resolvent density of [15] typical among G ?

1) Cf. [5].
2) We will say that a resolvent density G,(x,y) is conservative (resp. symmetric)

when aj Gua(x,2)dz=1, a>0, xeD(resp. G,(*,y)=Gy(y, x), >0, x,yED).
D
3) We call a function on D a-harmonic when

1oy
25 ox = au(x), xeD.

36



Boundary conditions for multi-dimensional Brownian motions 59

Our goal is to establish in section 5 and section 7 a one-to-one correspondence
between G and a class of Dirichlet spaces formed by functions on the Martin
boundary of the domain D.

The present paper consists of nine sections.

Sections 2 and 3 will serve as preparations for later discussions. In sec-
tion 2 we will introduce the notion of the Dirichlet space (relative to an L*-
space), in a slightly modified sense, due to Beurling and Deny [2]. In section
3, the Dirichlet space formed by every square integrable BLD function (denoted
by B/I:D) will be studied by making use of the Feller kernels on the Martin
boundary.

With a given element G.(x, y) = Gi(x, y)+R.(x, y) of the class G, we asso-
ciate a Dirichlet space (9, &) relative to L¥D) by

Fp={ue L*D); &u, w)= lim Bu—pBGsu, wrsp < +oo}.
ﬁ" i oo

In sections 4, 5 and 6, the space (¥, &) will be analized in details as outlined
in the following.

Let &9 (actually independent of « >0) be the space spanned by {G.f,
f € B(D)} with respect to the norm v&%(u, u) =+, w)+a(u, Wyep and K,
the space spanned by {R.f, f = B(D)}. For each a>0, spaces g% and 4%,
are orthogonal with respect to €% and F,=99 P, Further the space
(P, &) is identical with the space BLD, of BLD functions of potential type.
The proof of these facts will be carried out in section 4 by making use of a
Feller type expression of R,f: R,f(x)=HiR“H,f.

Denote by M the Martin boundary of the domain D. Using the Feller
kernels, we introduce by (3.14) and (3.15) respectively a bilinear form D(,) for
functions on M and a space H, of functions on M. Theorem 5.2 and 5.3 will
characterize the above-mentioned Hilbert spaces {(4,, &%), a« >0} by means of
a Dirichlet space (F,, EM(,)) satisfying the following conditions®.

(B. 1) Fy is a linear subspace of Hy. Fy contains every constant func-
tion on M.

(B. 2) &y is a bilinear form on Fy which is written as Ey(p, )=
D(o-P)+N(p, ), ¢, g Fy, where N is a non-negative symmetric bilinear
form on Fy satisfying N(1-1)=0. The space F, is complete with metric
Eu(,) A0 Drzan for a 2> 0.

B.3) If o Fy and if ¢ is a normal contraction of ¢ in the sense of
[4], then € &y and N($, $) < N(o, ).

Conversely, for any pair (F,, N) satisfying the conditions (B. 1), (B. 2)

4) Conditions (B.1), (B.2) and (B.3) implies that (Fy, &) is a Dirichlet space re-
lative to L2(M)’, the space L2(M)’ being defined in section 3.
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60 M. FUKUSHIMA

and (B. 3), we will construct in section 7 an element G,(x,y) of the class G
which corresponds to this pair (¥, N) in the manner of Theorem 5.2. In this
way, we will establish a one-to-one correspondence between the class G and
the class of the pairs (F,, N).

Section 6 will be concerned with the boundary condition. Consider again
the Dirichlet space (7, ) associated with a given element G,(x,y) of G.
Since 2D(¢, ¢) for ¢ € H, is nothing but an expression of the Dirichlet integral
of the harmonic function with fine boundary function ¢ (see Doob [7] and
Fukushima [13]), our results of sections 4 and 5 enable us in Theorem 6.1 to

conclude that BLDOCEF”CB/I\,D and, for every ue g, &(u, u)gé—f (grad u,
D

grad u)(x)dx. Furthermore, we can see that the space 9 =G, (L¥D)) is a re-
striction of the domain 9(4) of the generalized Laplacian 4 (denoted by the
same symbol 4 as the usual Laplacian), which is defined in terms of the space
BLD (Definition 6.1). This restriction will be decided in terms of (F,, N) by
the boundary condition (6.8). Formula (6.8) includes implicitly the notion of
the (generalized) normal derivative in Doob’s sense [7]. Moreover, (6.8) is
analogous to a boundary condition by Feller [11; p. 5607, where the Markov
chains with a finite number of exit boundary points are treated.

The final two sections will be devoted to the study of several special cases.
In section 8, we will be concerned with the subclass G, formed by those ele-
ments of G for which the corresponding forms N(,) vanish identically on the
corresponding spaces ¥ ,. We will see that a diffusion process on an extended
state space corresponds to each element of ;. There are two extreme ele-
ments of G,: the cases when F, = H, and when &, contains only constant
functions. We will see that the former case turns out to reconstruct the
resolvent density of [15]. In section 9, we will examine the cases that the
domain D is a disk and an interval®.

Here are two remarks about our class G of resolvent densities.

First, we note that there is a one-to-one correspondence between G and a
family of (equivalent classes of) Markov processes dominating the absorbing
Brownian motion on D. Indeed, with each element G. (-, -) of G, we can asso-
ciate, exactly in the same manner as in [15; section 3], a right continuous
strong Markov process X =(X,, P,, x € D*) whose state space D* is the Martin-
Kuramochi type completion of D with respect to the class of functions
{G,(-,»), y= D}. X has the following properties:

(X. 1) X is conservative on D :

5) & is the refinement of the space Fj (see (4.18)).
6) There, we can compare our boundary condition (6.8) with those of Wentzell
[23] and Feller [127.
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P(X,eD)=1. t>0, xeD.

(X. 2) Let 7 be the first exit time from D of the path X, then (X, t<r,
P,, x e D) is the absorbing Brownian motion on D.
(X. 3) For any Borel set E of D¥*,

[ewpx,cEyt={ G.xdy, a>0, xcD.
0 END

Conversely, suppose that a right continuous strong Markov process X on an
enlarged state space D* satisfies the conditions (X. 1) and (X. 2). Further we
assume the existence of a symmetric, jointly continuous function G,(x, y), « >0,
x, ye D, x+y satisfying the condition (X. 3). Then, as one easily verifies, this
function is an element of G.

Second remark is about the relation between the class G and the class of
symmetric Brownian resolvents in the sense of T. Shiga and T. Watanabe [21].
By a Brownian resolvent, we mean a resolvent kernel {G.(x, E), a >0, x D,

EcC D} such that G, f(x):j‘DGa(x, dy)f(v) satisfies the equation

(a—3 B a )CuS =12, x=D,

for any infinitely differentiable function f with compact support. A resolvent
kernel {G.(x, E)} is said symmetric if, for any non-negative measurable func-

tions f and g, j' Gu (x)g(x)dx:j f(X)Gog(x)dx<-+4oco. Any symmetric resolvent
D D

kernel defines a symmetric resolvent (operator) on L2(D) in the sense of sec-
tion 2, so that we can associate with it a Dirichlet space relative to L*(D). It
is obvious that each element of the class G is a density function of a con-
servative symmetric Brownian resolvent (kernel). Conversely, we can prove
that any conservative symmetric Brownian resolvent is of the class G, as is
outlined in the following. It is implied in the remark preceding Proposition
A. 6 of [21] that the decomposition theorem (Theorem 4.3) of the present
paper is still valid for the Dirichlet space associated with any symmetric
Brownian resolvent. Hence, starting with a conservative symmetric Brownian
resolvent (without assuming the existence of a density function), we can go
along the same line as in section 5-and we can reconstruct in section 7 the
resolvent considered, by showing that it has a density function of the class G.

I wish to express my hearty thanks to T. Shiga and T. Watanabe for
their valuable advices. They have shown me the manuscript of [217] before
publication. T. Watanabe admitted me to mention one of his unpublished
results that the space 4,, in our context, is contained in the space of «-har-
monic functions with finite Dirichlet integrals (Theorem 5.1). This made the
arguments of section 5 simpler than those of the original version.
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§ 2. Symmetric resolvents and Dirichlet spaces relative to L’-spaces.

Let (X, 8, m) be a measure space on a Hausdorff space X with the topo-
logical Borel field @. We assume that m is finite: m(X) < +oco. Denote by
L*(X) the space of all real-valued square integrable functions on X with the

inner product (u, v) X:fxu(x)v(x)m(dx).

DEFINITION 2.1. A symmetric resolvent on L*X) is a family of symmetric
linear operators {G,, @ >0} on L*X) such that G,u is non-negative for any
non-negative u € LA(X), aG,1 =1, G,—Gg+(a—p)G.G;=0 and G,u, decreases
to zero m-almost everywhere on X when u, e L*(X) decreases to zero.

DEFINITION 2.2. Let u and v be measurable functions on X. We call u a
normal contraction of v if the following inequalities are valid on X;

lu|=lv™],  [u)—u()|=v)—v()].

DEFINITION 2.3. A function space (Fy, £x(,)) is called a Dirichlet space
relative to L*X), if the following three conditions are satisfied.

(2.1) gy is a non-emply linear subset of LX) and &€4x(,) is a non-negative
symmetric bilinear form on .
(2.2) For some (or equivalently for every) a >0, &y is a real Hilbert space
with the inner product

x5 (u, V) =Ex(u, V)+a(u, V),
two functions of F, being identified if they coincide m-almost everywhere
on X.
(2.3) Every normal contraction operates on (¥4, &4); if u is a normal con-
traction of v e Fy, then us Fy and Ex(u, u) < Ex(v, v).

Following Beurling and Deny [2] and Deny [4], let us state two theorems
about a one-to-one correspondence between Dirichlet spaces and symmetric
resolvents.

THEOREM 2.1. Let (Fx, €x(,)) be a Dirichlet space relative to L*(X).

(1) For each a>0 and ue L*(X), there is a unique element G,u of Fy
such that

2.4) EF(Gau, v)=(u, V) x for any ve Fy.

(ii) The family of operators G,, a>0, defined by (2.4) is a symmetric re-
solvent on L*(X).

(i) For each a>0, {G,u; ue LA X)} is dense in Fy with respect to the
norm &% (>0 being arbitrary).

We note that the non-negativity and the sub-Markov property of aG,,
where G, is defined by the equation (2.4), follow from the condition (2.3) of

40



Boundary conditions for multi-dimensional Brownian motions 63

the space (Fy, €5). Conversely, suppose that we are given a symmetric re-
solvent {G,, @ >0} on L¥X). It is easy to see that G, on L*X) is a bounded
operator with norm less than 1/a and consequently (G,u, u)y is non-negative
for any ue L¥(X)?. Put for « =0 and u e L¥(X),

2.5) E%.pu, u)= p(u—pPGpsalt, Wx

(2.6) T, 51, ) = (U—PBGpratt, u—PBGpra)x -

We then have,

@.7 —f%ef{,,ﬁ(u, u)=9%,s(u, ) and 78{% T%.su, ) =0, >0,

which leads us to the following theorem.

THEOREM 2.2. Let {G,, a >0} be a symmetric resolvent on L*(X).

() &%.5(u, u) defined by (2.5) is non-negative and it is non-decreasing as B
increases. If we set

(2.8) Ex(u, u) :ﬂlim E%,5(u, u), ue LA(X),
(2.9) Fy={u; ue LlX(X), &Ex(u, u)<-+oo},

then (Fy, €x(,)) is a Dirichlet space relative to L X).
(i) For ues Fy and a>0,
&% (u, u)(= Ex(u, W+a(u, w)x) =ﬂlim Ex.p(u, u).

(ili) G, satisfies the equation (2.4) for the space (F x, Ex(,)) defined by (2.8)
and (2.9).

Assertions (i) and (ii) of the theorem can be proved easily from (2.5) and
(2.7). As for the statement (iii), note a consequence of (2.7): BGg converges
to v strongly in L% X) if v is in &;. Hence we can conclude that the equation
in statement (iii) is valid for every v e Fy.

The following lemma will be used in section 5.

LEMMA 2.1. Suppose that (Fx,Ex) is a Dirichlet space and ue Fy. De-
note by u, the truncation of u: u,(x)=u(x) for |u(x)| <n, u(x)=n for u(x)=n
and uy(x)=—n for u(x)< —n. Then,

Q) u,€ Fy, and Ex(Uy, uy,) increases to Ex(u, u) as n tends to infinity.

(1) (W)€ Fx and Ex(Ua)’ (Un)") S 4n°Ex(u, w).

PrOOF. Since u, is a normal contraction of u, u, is an element of u.
Obviously €x(u,, u,) is increasing and its limit is no greater than &y(u, u).
Define Gz and &%,3 by (2.4) and (2.5) successively. Theorem 2.1 and 2.2 imply
that, for any ve Fy, &%,50,v) increases to £x(,v) as f§—+oco. Hence, we

7) By the resolvent equation, -%(Gau, u) y=—(Gatt, Gqut) x <0.
24
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have &%,g(uy,, ,) = lim Ex(u,, u,). Letting n and § tend to infinity successively,
n—+00
we arrive at the statement (i). Assertion (ii) is an immediate consequence of
1 2, . 1
the fact that (Wun) is a normal contraction of o Une

From now on, we treat only the cases that the underlying space X is an
Euclidean domain or its Martin boundary.

Suppose that G (x,3), a >0, x, ye D, xxy is a symmetric resolvent den-
sity on a bounded Euclidean domain D. Then, by

(2.10) Gau(x)= | Galn u)dy,  a>0, ueLXD),

we have a symmetric resolvent {G,, « >0} on L*D).

DEFINITION 2.4. With the resolvent (2.10), we define a Dirichlet space
(Fp, &) relative to L* D) by formulae (2.8) and (2.9). We call (Fp, &) the Diri-
chlet space associated with the resolvent density G,(x,y) on D.

Denote by B(D)(C{(D)) the space of all bounded measurable functions on
D (resp. all infinitely differentiable functions with compact supports). By
Theorem 2.2 (iii), we have

LEMMA 2.2. Let G, (x,y) be a symmetric resolvent on D. Then, {G.u,
ues Cy(D)} and {G.u, ues B(D)} are the dense subsets of the associated Dirichlet
space Fp with metric £%(,)(B >0 being arbitrary).

§3. Space of BLD functions which are square integrable. Integrations
by the Feller kernel.

Properties of BLD functions were profoundly investigated by Deny and
Lions [5] and Doob [7]. In this section, we will study BLD functions in terms
of the associated Dirichlet spaces and the Feller kernels defined on the Martin
boundary. Theorem 3.1 will state that the space of BLD functions of potential
type is identical with the Dirichlet space associated with the resolvent density
of the absorbing barrier Brownian motion. We will give two applications of
this theorem to exhibit the properties of the Feller kernel. Finally, we will
present some results concerning boundary properties of «-harmonic functions
with finite Dirichlet integrals, analogous to those by Doob [7]. Inequalities in
Lemma 3.1 and equalities in the proof of the lemma will play basic roles in
the following sections.

Throughout this section to section 8, we fix an arbitrary bounded domain
D of RY.

DEFINITION 3.1. Denote by B/I:D the space of all BLD functions which are
square integrable on D. Precisely, ue B/I:D, if and only if ue L¥D), every
first partial derivatives of u (in the sense of Schwartz’s distribution) are in

42



Boundary conditions for multi-dimensional Brownian motions 65

L*D) and u is fine continuous quasi-everywhere on D¥.
ZAN
For u, v = BLD, put

U, vV)p,= %ﬁj (grad u, gradv)(x)dx.
D

The pair (BfD, (,)p,)) is a Dirichlet space relative to L*D) in the sense of
Definition 2.3. N

DEFINITION 3.2. Denote by BLD, the closure of C{°(D)in the space (BLD,
(o,

Note that, for each a >0, (u, w)p,+a(u, u), gives a metric equivalent to
(u, w)p, for the space BLD,([5]). In accordance with Doob [7], a function of
BLD, will be called a BLD function of potential type.

Let (9, &) be the Dirichlet space associated with the resolvent density
GYy(x, y) of the absorbing barrier Brownian motion on D (see Definition 2.4).
We put

B.D FO={uecs gFP, u is fine-continuous quasi-everywhere on D}.

We call  the refinement of the space FY.

THEOREM 3.1.

(i) For each function u of F$, there exists a function of F, which is
equal to u almost everywhere.

(i) FP=BLD, and &, u)=(u, w)p,, uc FO.

PrROOF. On account of Lemma 2.2 and the remark in the preceding para-
graph, it is sufficient to show that, for a fixed a >0,

(@) RO={GYu; ue Cy(D)}is contained in BLD, and, for v € R, &, v)
=(v, U)D,l-*—a(vi V)p-

(b) R is dense in the space BLD, with respect to the norm (,),,+a(,)p.

Consider a sequence of domains D, which increases to D. Assume that
boundaries 9D, are of class C% Approximate the function v=Gu, usC(D)
by functions

GPu(x) xe D,

.XED—D", n:]-yzy Ty
where GPu is defined by (2.10) for the resolvent density of absorbing Brownian
motion on D,. We can see that v, = BLD,”. By the equality

1 ¥ 5
avy(X) =5~ 21 “axr Ul Fu®),  xE Dy,

Ua(X) =

we have

(32) (vnr vm)D,l—l_a(Unr vm)D = (’l/l, vm)Dr n ; m.

8) By “quasi-everywhere” we means “ except for a set of capacity zero”.
9) GPu is in BLD, for the domain D, and hence, v,&BLD, for D [5].
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Since v, converges to v uniformly on each compact set of D, the formula (3.2)
implies that v, is convergent in norm v/(,),,+a(,), and the limiting function
in BLD, coincides with v almost everywhere. Hence, v = BLD, and (v, v)p,
+a, v)p =(u, v)p =E*v, v), completing the proof of assertion (a).

As for (b), assume that we BLD, satisfies (w, v)p,+a(w, v)p=0 for all
v=Gucs . Find w, e C7(D) which converges to w in BLD,, then we see
that the left-hand side of the above equation is equal to lil}} (Wny V)1 + (W, V)p)

= lim (w,, w)p =W, u)p. Thus, w must vanish. The proof of the theorem is

n

complete.

Now we are in a position to introduce several notions related to the Martin
boundary M of the domain D. Let u(E) be the harmonic measure of the Borel
set E of M relative to the fixed reference point x,< D.

DEFINITION 3.3. If a function u on D has a fine limit ¢(£) at pg-almost
every £ € M, we denote ¢ by yu and call it a boundary function of u.

Doob [7] has proved that every BLD function has a boundary function in
L*(M) and that u is an element of BLD, if and only if u is a BLD-function
and (yu)(§)=0 for almost all £ M. Thus,

COROLLARY TO THEOREM 3.1. u belongs to F if and only if u is a BLD
Sfunction and u has a boundary function vanishing p-almost everywhere on M.

Let K(x, £)=K¢%(x), x = D, be the Martin kernel associated with & € M.

Define, for a > 0.

33 Ko, &)= K§ () =K(x)—af Gix DK )y .
Put for &, e M, a >0,
34 U )= alK, K< +oo.

U, 1) is non-decreasing in a and we put
35) U, = lim Un&, )= +oo.

We call U, and U the Feller kernels'®. For functions ¢ and ¢ on M, we
define

(3:6) Udo, $)={ [ Ud& MA&PmImdeutdn),

37 Ulp, )= | UG ne@Pm)ude)uds).

Finally, we set for ¢ = L'(M),

@9 Ho() = [ K Oe@uds), xeD,

10) These kernels are symmetric g-almost everywhere (see [13] and footnote 15)).
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39 Hap)= [ K.(x, ©p@uds), x<D.

If o= L'(M), then we have y(Hyp)= ¢'>.
Here are two applications of Theorem 3.1.
THEOREM 3.2. Let ¢ be a non-negative bounded wmeasurable functions on
M. Then, it holds that
(3.10) Ulp, 9)=E(He, Hp) .
Morveover, if Ulp, 1) is finite, then ¢ must vanish almost everywhere on M.
ProoF. It is evident that Hp € L*(D). Identity (3.10) follows from U,(¢, ¢©)
= a(H,p, Hp)p = a(Hp—aGyHe, Hp)p =9 (Hp, Hp). Assume that U(p, 1) is
finite. Then U(y, ¢) is finite, and identity (3.10) implies that Hy must be an
element of . Corollary to Theorem 3.1 now implies that y(Hp)=¢=0.
Theorem 3.2 will be used in the next section. In section 8, we will refer
to the following theorem.
Let D=D\U {co} be the one point compactification of D. For a Borel
subset A of the Martin boundary M, we set I14(x)= Hpgy4(x), x4(§) being the
indicator function of the set A. Define a probability measure V3 on D by

f 114 (x)dx
(3.11) BE)=" ’(EIT;;D‘ if E is a Borel set of D
: ’ D
4 ({eo}) =0.

THEOREM 3.3. Suppose that p(A)>0. As B tends to infinity, the sequence
of measures V §(dx) on ﬁ:DU{oo} converges weakly to the o-measure con-
centrated at {oo}.

PrOOF. By virtue of Theorem 3.2, B(I14, 1)p = Up(y4, 1) —+co as B tends
to infinity. Hence, it suffices to prove that, for each open set E the closure of
which is compact in D, ‘BIEIIZ;‘ (x)dx is bounded in 3>0. Choose a non-nega-

tive e Cy(D) with u=1 on the set E. Let v be an element of C{(D) which
is less than Hy, everywhere on D and equal to Hy, on the support of u.
Then,

Bf ITg (dx < BUTH, wyp = BH 4, wp—F*GhHur W
= ‘B(v! u)D_‘BZ(G?iU’ u)D .

Owing to Theorem 3.1, the last term converges to (v, u)p,, as S—-+oo. The
proof of Theorem 3.3 is complete.
Turning to the study of boundary properties of a-harmonic functions, let

11) Cf. Doob [6].

45



