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Introduction 1

Introduction

This volume had its beginnings in a conference entitled The Metaphysical
and Mathematical Discussion of the Status of Infinitesimals in Leibniz’s Time
held in April 2006 at Emory University in celebration of the 50th anni-
versary of the university’s graduate program in philosophy. Leroy E.
Loemker, who initiated the graduate program as the first chair of the new
Department of Philosophy at Emory, is well known as the father of North
American Leibniz scholarship. Thus, the conference was dedicated as well
to Loemker and his outstanding work on Leibniz, most notably his volume
of Leibniz’s Philosophical Papers and Letters, which remains one of the cen-
tral works of Leibnizian scholarship in English.

The conference centered on a topic of interest for many scholars in phil-
osophy as well as the history of mathematics, and it gave rise to many lively
and interesting discussions about the nature and status of infinitesimals.
Participants also had much to say about the notion of fiction, and especially
the concept of a “well-founded fiction” in Leibniz’s system. However, as
we can now see on the basis of the largely revised papers, this conference
also initiated a new effort to work out a clearer and more comprehensive
understanding of these questions, some focusing particularly on methodo-
logical approaches to the infinitesimals in mathematics, physics and meta-
physics. As a result, this volume offers a tightly focused collection of papers
that address the metaphysical, physical, and mathematical treatment of in-
finitely small magnitudes in Leibniz’s thought and that of his contempor-
aries, whether in the foundations of the calculus differentialis, the physics of
forces, the theory of continuity, or the metaphysics of motion.

Although the central focus of the volume is on the development of Leib-
niz’s calculus, the contributions provide a consistent and comprehensive
overview of seventeenth and early eighteenth century discussions of the in-
finitesimal. In addition to addressing the role of infinitesimals in Leib-
niz’s thought, contributors also consider the approaches of his predeces-
sors, contemporaries, and immediate successors as Bonaventura Cavalieri,
Evangelista Torricelli, Gilles Personne de Roberval, Thomas Hobbes, John
Wallis, Isaac Newton, Blaise Pascal, Christiaan Huygens, Johann Ber-
noulli, Guillaume de L’Hôpital, Jacob Hermann, and Bernard Nieuwentijt.
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The resulting collection therefore offers insight into the origins of Leibniz’s
conception of the infinite (and particularly the infinitely small), as well as
the role this conception plays in different aspects of his mature thought on
mathematics, physics, and metaphysics.

Leibniz mastered the mathematics of his day and developed his own cal-
culus over the short span of a few years. But despite the success of his cal-
culus in solving outstanding mathematical problems, the apparent ambi-
guity of Leibniz’s conception of infinitesimals as fictions led to controversy
at the end of the 17 th century. Although urged to explain his approach more
explicitly, Leibniz was generally reluctant to present the foundations of his
new method. Moreover, he had offered very different accounts of the in-
finitesimal to different correspondents, further complicating a univocal
understanding of his approach to the calculus. Even without an explicit
statement of foundations, however, it is clear that Leibniz’s mature view
never characterized infinitesimals as real quantities, although he considered
the prospects of a “realist” approach to infinitesimals in his earlier years. Al-
though the calculus was undoubtedly successful in mathematical practice,
it remained disputed precisely because its procedures seemed to lack an ad-
equate metaphysical or methodological justification. In addition, Leibniz
freely employed the language of infinitesimal quantities in the foundations
of his dynamics and theory of forces, so that disputes over the very nature
of infinitesimals naturally implicate the foundations of the Leibnizian
science of bodies.

The fourteen essays collected here enhance and develop current
scholarly understanding of the different conceptual and metaphysical issues
raised by the mathematics of infinitesimals. Some essays are concerned
principally with the historical origins of the mathematics of the infinitesi-
mal, while others focus on the theoretical foundation of the calculus or on
Leibniz’s mature “fictionalism” about the infinite. In addition, a number of
contributors seek to clarify the physics of forces Leibniz expressed in the
language of the calculus. Richard Arthur’s paper compares the Leibnizian
doctrine of the infinitesimal and Newton’s method of prime and ultimate
ratios. He argues that these two approaches are not nearly as different as
has commonly been supposed, and that both are motivated by surprisingly
similar concerns about the rigorous development of a theory of continu-
ously varying quantities. Philip Beeley’s essay discusses John Wallis’ mo-
tives for reforming Cavalieri’s geometry of continua, known as indivisibles.
These had already been transformed into infinitely small entities through
authors such as Torricelli, Roberval and Pascal. Beeley argues that Wallis
sought for the first time to combine the concepts of “infinitesimals” and
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arithmetical limits, when coming up with their arithmetization. Beeley also
gives an account of some of the debates which ensued with the likes of
Hobbes and Fermat.

Ursula Goldenbaum argues on the basis of newly discovered marginalia
of Leibniz in Hobbes’ Opera philosophica (1668) that Leibniz embraced
Hobbes’ conatus while reading De homine in the end of 1669. Leibniz’s
great expectation toward Hobbes’ theory of sensation, due to his own pro-
jected philosophy of mind, spurred him to study the conatus conception of
Hobbes in De corpore and consequently the mathematics of indivisibles.
Siegmund Probst presents and analyzes newly discovered material concern-
ing Leibniz’s use of indivisibles and infinitesimals in his earliest mathemat-
ical writings, shedding some light on his unknown mathematical studies of
Hobbes. In particular, he draws attention to mathematical manuscripts of
Leibniz that “illustrate how Leibniz operated with concepts such as indivis-
ibles and infinitesimals,” in the early 1670s.

Samuel Levey’s paper analyzes the reasons for Leibniz’s ultimate aban-
doning of his earlier commitment to actual infinitesimals in 1676. He then
takes up the question of how Leibniz’s fictionalism about infinitesimals
should be understood, concluding that there is no single “fictionalist” treat-
ment to which Leibniz was invariably committed, although they all can be
styled “Archimedean” in their reliance on classical exhaustion techniques.
O. Bradley Bassler distinguishes Leibniz’s metaphysical concerns with infi-
nitesimals (which concern their fictional status) from his mathematical
treatment of infinitesimals as differentials. Bassler argues that the central
technical issue surrounding the status of differentials concerns the specifi-
cation of the “progression of variables.” He then suggests some ways in
which Leibniz’s metaphysical and mathematical approaches to infinitesi-
mals can be related.

Emily Grosholz emphasizes Leibniz’s “productively ambiguous no-
tation” as crucial for his development of the calculus. Leibniz’s ambiguous
notation, connected with the law of continuity, allowed for yoking together
very unlike things and offers a means of making them mutually intelligible.
Thus Leibniz’s development of the infinitesimal calculus and his investi-
gations of transcendental curves can be read as instances of ambiguity
which, far from hindering understanding, makes novel mathematical ob-
jects comprehensible. Eberhard Knobloch’s contribution focuses on Leib-
niz’ claim for the generality of his calculus. He investigates Leibniz’s de-
clared debt to the ancients, particularly to Archimedes’ emphasis on
geometrical rigor. Although Leibniz made his great mathematical progress
by studying the work of most recent mathematicians in Paris, Knobloch
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shows how Leibniz avoided “the danger” of the method of indivisibles by a
conscious turn to Archimedean methods. In addition, Knobloch draws an
illuminating contrast between the Leibnizian theory of infinitesimals and
the more robust (but ultimately incoherent) realism about infinitesimals
embraced by Leonhard Euler. Herbert Breger’s essay focuses on Leibniz’
mathematical development after his departure from Paris. He emphasizes
the strong influence of Pascal and Huygens on Leibniz’s approach and
gives an instructive survey of their methods and arguments. The result is
that, given this background to the calculus, there was in fact no genuine
“foundational problem” to be addressed. Breger argues that “what was
really new and what posed the actual problem of understanding the new
method of calculation was the higher level of abstraction.”

Some of Leibniz’s contemporaries objected that his methods violated
standards of mathematical rigor, and the resulting controversies are impor-
tant in understanding the reception of the calculus. Two papers in this col-
lection are directed toward these controversies. Fritz Nagel’s contribution
investigates into the conception of the infinitesimal put forward by Her-
mann, which arose in response to the criticisms advanced by Nieuwentijt
against Leibniz in the 1690s. Nagel notes that Herman’s approach, endors-
ing Leibniz’ position, has a significant degree of methodological and tech-
nical sophistication, and understanding it can shed some considerable light
on the foundations of the calculus at the close of the seventeenth century.
Douglas Jesseph’s essay deals with both early and late Leibnizian writings on
the calculus. He argues that some of the fundamental notions in the calculus
differentialis can be found in Hobbes’s concept of conatus. Jesseph then in-
terprets the fictionalism espoused by Leibniz in response to criticisms as a
further development of some of the key concepts that he had first en-
countered decades earlier in his reading of Hobbes.

The role of infinitesimals in Leibnizian physics is the focus of three of
the contributions to this volume. François Duchesneau’s discusses the often
mentioned ambiguities of Leibnizian scientific statements, arguing that
such ambiguous analogies for Leibniz, when duly controlled, could be-
come crucial means for promoting the art of discovery (ars inveniendi). Du-
chesneau shows how Leibniz’ scientific methodology itself favors hypo-
thetical constructions. With hypotheses, truths of reason may be applied to
the analysis of contingent truths expressing the connection of natural phe-
nomena. Along this line, a condition of valid hypothesizing consists in the
framing of relevant mathematical models within science. Donald Ruther-
ford focuses on the notion of force and the connection between the physical
theory of forces and the calculus. His essay aims to reconcile two Leibni-
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zian claims: first, that force as the only “real and absolute” property of
bodies is an infinitesimal element of action which produces continuous
change over time; and second, that the infinitesimal quantities which model
forces are mere fictions rather than real entities. This reconciliation is
undertaken by seeing that a substance’s transition from state to state is to
be understood in terms of internal forces, which Leibniz thinks can best be
modeled on the internal dynamics of the soul. Daniel Garber’s essay is also
concerned with this tension between the physical and mathematical under-
standing of infinitesimals, notably the notion of “dead force” in Leibniz’s
mechanics, and the connection between it and the notion of an infinitesimal
magnitude. Garber argues that Leibniz distinguishes mathematics (and
such fictions as infinitesimals) from the physical world in a way that allows
physically real forces to be modeled or represented by mathematical de-
vices that are not, strictly speaking, real entities.

We are grateful to the Graduate School of Emory having supported and
generously sponsored this conference and to the colleagues of the Philo-
sophy Department who encouraged us to organize this conference. We
also thank the Gottfried-Wilhelm-Leibniz Gesellschaft at Hannover and the
North American Leibniz Society for their official support and promotion of
the conference. We are particularly grateful to Gertrud Grünkorn at the
de Gruyter Publishing House at Berlin as well as to Andreas Vollmer for their
supportive cooperation and the careful work on this volume, whose tech-
nical content makes it rather difficult. We would also like to thank Matt
Traut, graduate student at Emory, and Stephen P. Farrelly, former graduate
student at Emory (and now Assistant Professor at the Department of Philo-
sophy at the University of Arkansas at Little Rock) for their great support
in revising the papers for the publisher. Last but not least we are very grate-
ful for the reliable cooperation with all the authors of this volume whose
readiness to improve their papers mirrored the cheerful and enthusiastic
atmosphere of our conference.

March 2008 Ursula Goldenbaum and Douglas Jesseph
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Richard T. W. Arthur

Leery Bedfellows: Newton and Leibniz
on the Status of Infinitesimals1

1. Newtonian and Leibnizian Foundations:
The Standard Contrast

As is well known, Newton did not welcome Leibniz’s efforts at establishing
a differential calculus: his attitude, one might say, ranged between deep sus-
picion, disdain and utter hostility. In his eyes, Leibniz’s differential calculus
was at best a sample of the new method of analysis, an unrigorous sym-
bolic method of discovery that could not meet the standard of rigorous
proof required in geometry; and at worst, not just a plagiarism of his own
work, but a dressing up and masking in Leibniz’s fancy new symbols of the
deep truths of his method of fluxions, which did not depend on the sup-
position of infinitesimals but was instead founded directly in the “real ge-
neses of things.” Leibniz, for his part, while accepting many of Newton’s
results, harbored doubts about Newton’s understanding of orders of the
infinitely small, which to his way of thinking was betrayed by the unfoun-
dedness of Newton’s composition of non-uniform with uniform motions
in the limit.

There are some profound differences here in the respective thinkers’
philosophies of mathematics, involving differing conceptions of proof, of
the utility of symbolism, and in the conceptions of how mathematics is re-
lated to the physical world. I do not want to understate them. Neverthe-
less, I shall contend here, there is a very real consilience between Newton’s
and Leibniz’s conceptions of infinitesimals, and even in the foundations
they provide for the method of fluxions and for the differential calculus.

Newton’s own evaluation of the difference in their methods was given
by him in the supposedly “neutral” report he submitted anonymously to

1 I would like to thank Sam Levey and Niccolò Guiciardini for their helpful feedback on ear-
lier drafts.
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the Royal Society in 1715, Account of the Commercium Epistolicum (in MPN
VIII). There he depicted his method as proceeding “as much as possible” by
finite quantities, and as founded on these and the continually increasing
quantities occurring in nature, in contrast to Leibniz’s, founded on indivis-
ibles that are inadmissible in geometry and non-existent in nature:

We have no Ideas of infinitely little, & therefore Mr. Newton introduced Fluxions
into his Method that it might proceed by finite Quantities as much as possible. It
is more Natural & Geometrical because founded upon the primae quantitatum
nascientum rationes wch have a Being in Geometry, whilst Indivisibles upon which
the Differential Method is founded have no Being either in Geometry or in Na-
ture. There are rationes primæ quantitatum nascentium but not quantitates primæ
nascentes. Nature generates Quantities by continual Flux or Increase, & the
ancient Geometers admitted such a Generation of Areas & Solids […]. But the
summing up of Indivisibles to compose an Area or Solid was never yet admitted
into Geometry. (MPN VIII, 597–8)

This has been an influential account. Although it has long been recognized
that Leibniz’s differential calculus is a good deal more general than the
Cavalierian geometry of indivisibles, and that Newton’s characterizing of it
as founded on indivisibles must be interpreted accordingly, the idea that
Leibniz’s methods were committed to the existence of infinitesimals has
stuck. As a result, his official position that they are to be taken as fictions
has been regarded as a not very successful attempt to distance himself from
the foundational criticisms brought to bear by Nieuwentijt, Rolle, and the
Newtonians, when in fact his method is based upon infinite sums and infi-
nitely small differences, and thus firmly committed to infinities and infinite-
simals. Newton, on the other hand, has been seen as moving from an early
purely analytic method depending on a free use of infinitesimals to a ma-
ture view, represented in his Method of First and Ultimate Ratios (MFUR)
published in the Principia, where (officially, at least) there are only limiting
ratios of nascent or evanescent quantities, and never infinitely small quan-
tities standing alone.

Newton’s Account of the Commercium Epistolicum is a late text in his
mathematical development, occurring as the culmination of a process of
distancing himself from Analysis. By the 1680s he had turned away from
the “moderns” in favor of Pappus and Apollonius, and an insistence on
geometric demonstration. But the contrast between an early analytic New-
ton and the later conservative geometrician should not be overemphasized.
The conception of fluxions or velocities by means of which Newton articu-
lated what we call the Fundamental Theorem of the Calculus is intimately
bound up with the kinematic conception of curves that he inherited from
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Barrow and Hobbes. Thus although Newton’s first formulations of his
theory of fluxions are analytic in the sense that they are couched in terms of
equations and algebraic variables, his kinematic understanding of curves
and surfaces already implicitly involves a notion of the quantities repre-
sented by the variables as geometric, and as generated in time.

I shall argue, accordingly, that there is not such a huge gulf between
Newton’s analytic method of fluxions and the synthetic methods he later
developed. Moreover, I contend, when Newton comes to secure the foun-
dations of his synthetic method in the Method Of First and Ultimate Ratios,
he appeals to Lemma 1, which is a synthetic version of the Archimedean
axiom: “Quantities, and also ratios of quantities, which in any finite time
constantly tend to equality, and which before the end of that time approach
so close to one another that their difference is less than any given quantity,
become ultimately equal” (Newton, 1999, 433). The axiom then serves to
justify Newton’s appeals to infinitesimal moments in supposedly geo-
metric proofs such as that of Proposition 1 of the Principia, since these mo-
ments can be understood as finite but arbitrarily small geometric quantities
in accordance with the Archimedean axiom. Furthermore, although New-
ton himself is careful to apply Lemma 1 only to ratios of quantities, the
lemma as stated by him also applies directly to quantities; and Leibniz will
appeal to a very similar principle applied to quantities as the foundation of
his own method. In fact, the principle Leibniz appeals to, which takes dif-
ferences smaller than any assignable to be null, is stated independently by
Newton in his analytic method of fluxions (1971), and is a straightforward
application of the Archimedean axiom.

Contrary to the standard depiction of their methods, then, there is a
great similarity in the foundations of Newton’s and Leibniz’s approaches to
the calculus. In fact, as I show by a detailed analyses of Newton’s proof of
Lemma 3 of his MFUR, and of Leibniz’s proof of his Proposition 6 of De
quadratura arithmetica (1676; DQA), their (contemporary and indepen-
dent) attempts to provide rigorous foundations for their infinitesimalist
methods by an appeal to the Archimedean axiom are in detailed correspon-
dence, and perfectly rigorous. The rigor of Leibniz’s approach to proving
proposition 6 has already been stressed by Eberhard Knobloch (Knobloch,
2002). Here I extend that analysis to show its compatibility with the syn-
categorematic interpretation of infinitesimals attributed to Leibniz by Hidé
Ishiguro.
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2. Newton’s Moments and Fluxions

The paper that is generally taken as containing Newton’s first full statement
of his analytic method of fluxions is To Resolve Problems by Motion, writ-
ten in October 1666 as the culmination of several redraftings (MPN I,
400–448). The commitment to the kinematical representation of curves is
evident in its title, and this is so also for the earlier drafts out of which it de-
velops: two drafts of How to draw tangents to Mechanicall lines [30? Oc-
tober 1665 and 8 November 1665, resp.], a third draft titled To find y e velo-
citys of bodys by ye lines they describe, [November 13th 1665], and a fourth
titled To resolve these & such like Problems these following propositions may
bee very usefull, [May 14, 1666].2 Thus Newton’s recipe in Proposition 7 for
what we, after Leibniz, call differentiation, is couched by him in terms of
the velocities of bodies:

[Prop.] 7. Haveing an Equation expressing ye relation twixt two or more lines x,
y, z &c: described in ye same time by two or more moveing bodies A, B, C, &c
[Fig. 1]: the relation of their velocitys p, q, r, &c may bee thus found, viz:

Figure 1.

Set all ye termes on one side of ye Equation that they may become equall to no-
thing. And first multiply each terme by so many times p /x as x hath dimensions
in y t terme. Secondly multiply each terme by so many times q/y as y hath di-
mensions in it. Thirdly (if there be 3 unknowne quantitys) multiply each terme
by so many times r / z as z hath dimensions in y t terme, (& if there bee still more
unknowne quantitys doe like to every unknowne quantity). The summe of all
these products shall be equall to nothing. wch Equation gives ye relation of ye

velocitys p, q, r, &c. (MPN I, 402)

The first thing to notice about this algorithm is that it is not purely analytic:
the equations are given a geometrical interpretation in terms of lines traced
by moving bodies. Second, what results from the algorithm is not a veloc-

2 These drafts are given in MPN I, 369–377, 377–382, 382–389, and 390–392, resp. The last
draft was subsequently cancelled and rewritten as To resolve Problems by motion ye 6 fol-
lowing prop. are necessary and sufficient, dated May 16, 1666 (MPN I, 392–399).
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ity but the ratio of two velocities, and these velocities (say, p and q) are the
instantaneous velocities of two bodies at the beginning of the moment o for
which they are assumed to travel with that velocity.

A very simple example of applying this algorithm is provided by the result
Newton quotes in his demonstration of Proposition 1 of this tract – this being
perhaps the very first application of the method of fluxions in physics.3 Pro-
position 1 is a statement of the resolution of velocities, and its demonstration
depends on finding the relation between the velocities of the body A in two
directions, towards d and towards f, as it travels along the line gc below, with
df ⊥ ac, at the very point a when it reaches the perimeter of the circle. Letting
df = a, fg = x, and dg = y, we have (since Δadf  is a right triangle)

a 2 + x 2 – y 2 = 0.

According to Newton’s algorithm given in Proposition 7 above, we must
multiply each term in x in the equation by 2p /x and each term in y by 2q/y,
yielding

2xp – 2yq = 0.

This result is quoted by Newton in his demonstration as follows:

Now by Prop 7th, may ye proportion of (p) y e velocity of y t body towards f; to
(q ) its velocity towards d  bee found viz: 2px – 2pq = 0. Or x:y ::q :p. That is
gf : gd :: its velocity to d : its velocity towards f or c. & when ye body A is at a,
y t is when ye points g & a are coincident then is ac :ad :: ad:af :: velocity to c : vel-
ocity to d. (MPN I, 415)

3 Newton first gives the demonstration of Proposition 1 immediately after stating all 8 propo-
sitions (MPN I, 415), but as Whiteside notes, Newton alludes to the fact that it can be so
demonstrated in the draft of May 14th, 1666 (MPN I, 390).

Figure 2.
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Or, as we would say in more Leibnizian terms, differentiating a 2 + x 2 – y 2 =
0 yields 2xp – 2yq = 0, with p and q the derivatives of x and y respectively.
Thus the velocities p and q are in the inverse ratio of x and y. Now when the
body A reaches the point a we have x = af, y = ad, q=vad and p=vac, yielding

vac : vad = ad : af

and since by similar triangles ad:af = ac :ad, we obtain finally

vac : vad = ac : ad or vad : vac = ad : ac

which, in modern notation, is the correct formula for the resolution of
velocities in an oblique direction:

vad = vac cos φ, where φ = ∠dac

Of interest to us here is the justification Newton gives in 1666 for Proposi-
tion 7. The demonstration he provides is by reference to a specific equation,
x 3 – abx + a 3 – dy 2 = 0. There is no loss in generality in our substituting for
it the above equation for Proposition 1, a 2 + x 2 – y 2 = 0. Newton first sup-
poses two bodies A and B moving uniformly, the one from a to c, d, e, f, the
other from b to g, h, k, l, in the same time. Then the pairs of lines ac and bg,
cd and gh, de and hk etc. are “as their velocitys” p and q (MPN I, 414):

He then reasons that:

And though they move not uniformely, yet are ye infinitely little lines wch each
moment they describe, as their velocitys wch they have while they describe ym.
As if ye body A wth y e velocity p describe ye infinitely little line (cd =) p x o in one
moment, in y t moment ye body B wth ye velocity q will describe ye line (gh =) q
x o. For p :q :: po:qo. Soe y t if y e described lines bee (ac =) x, & (bg =) y, in one
moment, they will bee (ad =) x + po, & (bh =) y + qo in ye next. (MPN I, 414)

Now he claims that “I may substitute x + po & y + qo into ye place of x & y;
because (by ye lemma) they as well as x & y, doe signify ye lines described
by ye bodys A & B ” (414). Thus for the equation a2 + x2 – y2 = 0 we get

a 2 + x 2 + 2pox + p 2o 2 – y 2 – 2qoy – q 2o 2 = 0

Figure 3.
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Subtracting the original equation gives

2pox + p 2o 2 – 2qoy – q 2o 2 = 0

“Or dividing it by o tis [2px + p 2o – 2qy – q 2o = 0]. Also those termes are
infinitely little in wch o is. Therefore omitting them there rests [2xp – 2yq =
0]. The like may bee done in all other equations” (MPN I, 414–15).

Here Newton’s division by o prior to omitting terms in o because they are
“infinitely little” is, of course, lacking in rigor. Either, one may object, ad-
ding po to x takes body A to “ye next” point on the line representing its path,
and one is committed to composing that line out of successive infinitesimal
linelets (and thus succumbing to the paradoxes of the continuum); or in-
deed, x + po does not at all differ from x, in which case division by o is com-
pletely illegitimate. And yet Newton’s algorithm is framed in terms of ratios
of quantities and their velocities in the moment o. Of course, there is no way
to represent an instantaneous velocity geometrically save by showing the
line segment (cd in figure 3) that a body would cover if it continued with that
velocity for a time o. From this point of view, the moment o is more nearly a
device enabling instantaneous velocities to be geometrically represented: po
is the distance the body A would have covered if it had proceeded with the
velocity p for some time o. The ratio po:qo is of course equal to the ratio of p
and q for any finite o. Moreover, it is implicit in the kinematic representation
that the velocities p and q are the velocities at the very beginning of the mo-
ment o, so that the term for po:qo calculated by Newton’s algorithm, which
will still generally contain terms in o, will be closer to p:q the closer o is to 0.
The justification for neglecting the remaining terms in o is therefore not so
much that they are conceived as “infinitely little” in the sense of absolutely
infinitely small, but in the sense that the ratio p:q = po:qo represents the ratio
of p and q right at the beginning of the moment, so that the smaller o is
made, the smaller will be the terms still containing o, and the more nearly
will the resulting expression represent the ratio.

Thus in the context of a kinematic and geometric interpretation of the
quantities involved, Newton’s early appeal to the infinitely small cannot
simply be taken as committing him to a composition of quantities out of in-
finitesimals. In fact, his procedure already implicitly involves a kind of li-
miting process: to find the ratio of the velocities precisely at the beginning
of the moment o (e.g. at the instant the moving body A reaches the point a
in the above diagram), o must be shrunk to zero, so that the extra terms in
the expression of this ratio still depending on the quantity o will therefore
also vanish, with the resulting expression yielding the “first ratio” of these
velocities.
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Newton himself recognized this soon enough, and proceeded to make
the limit concept implicit in the kinematical representation the foundation
of the synthetic method of fluxions. He drew up these early results, as well
as those outlined in his De Analysi per æquationes numero terminorum in-
finitas (1669; publ. 1711), into a formal Latin treatise intended for publi-
cation, the Tractatus de methodis serierum et fluxionum (1671; publ. 1736;
MPN III, 32–328), or Treatise on Fluxions for short, where the terminology
of “fluxions” was first introduced. But he remained unsatisfied with the
foundations of his methods, and in an Addendum on The Theory of Geo-
metrical Fluxions made just after completing the latter, he developed a
wholly synthetic approach, “based on the genesis of surfaces by their mo-
tion and flow” (MPN III, 328–31; Guicciardini, 2003, 315). Axiom 4 of this
Addendum was “Contemporaneous moments are as their fluxions”
(MPN III, 330), or more perspicuously perhaps, “Fluxions are as the con-
temporaneous moments generated by those fluxions” (draft). Whiteside
observes: “This fundamental observation opens the way to subsuming
limit-increment arguments as fluxional ones, and conversely so” (MPN
III, 330, fn 7).

As Guicciardini has noted (Guicciardini, 2002, 414–17), these foun-
dations are synthetic in two distinct senses: they are based on explicit
axioms from which propositions are derived, “synthesis” as opposed to
“analysis”; and the quantities are not the symbols but fluent geometrical
figures, synthetic in the sense of flowing, increasing, staying constant, or
decreasing continuously in time. The emphasis on synthesis (in this dual
sense) is a symptom of Newton’s progressive disenchantment with analysis
in the 1670s, and a growing respect for the geometry of the ancients. This
process is taken further in Geometria curvilinea, written some time be-
tween 1671 and 1684, where Newton stresses the generation of geometric
quantities in time:

Those who have measured out curvilinear figures have usually viewed them as
consisting of infinitely many infinitely small parts. But I will consider them as
generated by growing, arguing that they are greater, equal or smaller according as
they grow more swiftly, equally swiftly or more slowly from the beginning. And
this swiftness of growth I shall call the fluxion of a quantity. (MPN IV, 422–23)

This interpretation of his mathematics explains the contrast Newton draws
between the ontological foundation of his methods (“This Method is de-
rived immediately from Nature her self”) and the lack of such a foundation
in the analysis of Leibniz. It is emphasized even more strongly in the De
quadratura curvarum of 1693, where Newton writes:
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I don’t here consider Mathematical Quantities as consisting of indivisibles,
whether least possible parts or infinitely small ones, but as described by a con-
tinual motion. Lines are described, and by describing are generated, not by any
apposition of Parts, but by the continuous motion of Points, Surfaces by the mo-
tions of Lines, Solids by the motion of Surfaces, Angles by the Rotation of their
Legs, Time by a continual Flux, and so on in all the rest. These Geneses are
founded upon Nature, and are every Day seen in the motions of Bodies. (New-
ton, 1964, 141)

In these passages Newton not only claims that geometric quantities are
founded in rerum natura, he also explicitly repudiates their composition out
of infinitely small parts (infinitely small quantities have “no Being either in
Geometry or in Nature”). As he had come to recognize, the moments of
quantities do not have to be supposed as infinitely small quantities, falling
outside the scope of geometry based on the Archimedean axiom, but can
instead stand for finite quantities that can be taken as small as desired. This
is the foundation of his synthetic method of fluxions Newton presents in
the Geometria curvilinea, and which he will publish in the Principia under
the new moniker the Method of First and Ultimate Ratios. Although infi-
nitely small quantities still occur in Newton’s mature work, they are inter-
preted as standing for finite but small quantities that are on the point of van-
ishing, with the ratio between two such quantities remaining finite in this
temporal limit.

An example of this synthetic method of fluxions, I claim, is provided by
Newton’s demonstration of Proposition 1, in Book 1 of the Principia. In
fact, this proposition provides a particularly good specimen of the advan-
tages of the synthetic method of fluxions. For not only is the proof ex-
tremely economical compared to any analytic derivation of Kepler’s Area
Law, it also depends on no assumptions about the nature of the force ex-
cept that it is continuous and centrally directed.4 Newton’s demonstration
goes as follows:

Let the time be divided into equal parts, and in the first part of the time let a
body by its inherent force describe the straight line AB. In the second part of the
time, if nothing hindered it, this body would (by law 1) go straight on to c, de-
scribing line Bc equal to AB, so that – when radii AS, BS and cS are drawn to the
centre – the equal areas ASB and BSc would be described. But when the body
comes to B, let a centripetal force act with a single but great impulse and make

4 Also, of course, as explained by Nauenberg, 2003, 450, the curvature of the curve must re-
main finite, and the radius vector cannot become tangential to it.
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the body deviate from the straight line Bc and proceed in the straight line BC.
(Newton, 1999, 444)

Newton now completes the parallelogram VBcC to compute where the
body would end up under the joint action of the inertial force and the force
impressed at B by applying the parallelogram law (corollary 1), and uses
elementary geometry to prove the equality of the triangles SAB and SBC.
The motion along BC will now be the new inertial motion, and the same
reasoning can be applied to triangles SBC and SCD, etc.

Now let the number of triangles be increased and their width decreased indefi-
nitely, and their ultimate perimeter ADF will (by lem. 3, corol. 4) be a curved
line; and thus the centripetal force by which the body is continually drawn back
from the tangent of this curve will act uninterruptedly, while any areas described,
SADS and SAFS, which are always proportional to the times of description, will
be proportional to the times in this case. Q.E.D. (Newton, 1999, 444)

Crucial in this proof is the appeal to Lemma 3, Corollary 4: “And therefore
these ultimate figures (with respect to their perimeters acE ) are not rectilin-
ear, but curvilinear limits of rectilinear figures” (Newton, 1999, 434).5

5 Michael Nauenberg (Nauenberg, 2003, 444ff.) was the first to draw attention to the im-
portance of this lemma in Newton’s justification of Proposition 1. A minor oddity of this
appeal to Lemma 3 is that the figure for Lemma 3 involves curvilinear limits of rectangles
under the curve, rather than curvilinear limits of the triangles subtended under it in Pro-
position 1. But this does not undermine the appeal to this Lemma, since in principle the
same arguments can be run for triangular rather than rectangular elements.

Figure 4.
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Lemma 3 itself is: “the ultimate ratios [which the inscribed figure
AKbLcMd D, the circumscribed figure AalbmcndoE, and the curvilinear figure
Aabcd E have to one another] are also ratios of equality when the widths AB,
BC, CD, […] of the parallelograms are unequal and are all diminished indefi-
nitely” (Newton, 1999, 433). Newton uses this result to argue in Corollary 1
that “the ultimate sum of the vanishing parallelograms coincides with the
curvilinear figure in its every part,” in Corollaries 2 and 3 that the figure
comprehended by the chords or the tangents of the vanishing arcs “coincides
ultimately with the curvilinear figure,” and in Corollary 4 that “therefore
these figures (with respect to their perimeters acE) are not rectilinear, but
curvilinear limits of rectilinear figures” (Newton, 1999, 434). Thus by a
similar argument the triangles in Figure 4 are not rectilinear, but curvilinear
limits of rectilinear figures, the ratios between any two of which are equal.

Let us now turn to Newton’s justification of this Lemma. He demon-
strates it by reference to the same figure used for all the first four Lemmas.
Having proved Lemma 2 on the supposition of equal intervals AB, BC,
DE, etc., he now supposes them unequal, and lets “AF be equal to the grea-
test width” of any of the rectangles. Hence FAaf  is at least as wide as any of
the rectangles, and its total height will be the sum of the heights of the dif-
ferences between the circumscribed and inscribed figures. “This parallelo-
gram will therefore be greater than the difference of the inscribed and cir-
cumscribed figures; but if its width AF is diminished indefinitely, it will
become less than any given rectangle. Q.E.D.” (Newton, 1999, 434)

The last step of this proof is an application of Lemma 1 of the Method of
First and Ultimate Ratios, which I quote here in its original wording from
the First Edition:

Quantities, and also ratios of quantities, which in a given time constantly tend to
equality, and which before the end of that time approach so close to one another that

Figure 5
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their difference is less than any given quantity, become ultimately equal. (Newton,
1999, 434)

Here one might object that an infinitesimal is precisely a quantity that is
“less than any given quantity,” so that if there exist non-zero infinitesimals
then such a difference will be non-zero. In default of some further premise,
the argument therefore seems to assume what it needs to prove. The miss-
ing premise is that in order for the quantities to count as geometrical quan-
tities, they must obey the Archimedean axiom:

If a and b are two line segments (or other continuous geometric quantities) with
a < b, we can always find a (finite) number n such that na > b.

This axiom rules out the existence of an actual infinitesimal quantity, such
as the “difference less than any given quantity” mentioned in Lemma 1. As
Newton argues in his demonstration of the Lemma:

If you deny this, let their ultimate difference be D. Then they cannot approach so
close to equality that their difference is less than the given difference D, contrary
to the hypothesis. (Newton, 1999, 433)

The “hypothesis” in question here is that they can always “approach so
close to one another that their difference is less than any given quantity.”
This is simply an expression in synthetic form of the Archimedean axiom:
given two quantities whose difference D is less than some quantity a, we
can always find a number n such that nD > a, so that c = a /n < D.

In fact, if we explore the origins of Lemma 1 of the MFUR we can trace a
direct line of descent from the “Treatise on Fluxions.” Two paragraphs of
this are rewritten into the “Addendum on Geometrical Fluxions,” the latter
is reworked into the Geometria curvilinea, and it is from this that the
Method of First and Ultimate Ratios is derived. The first of the two para-
graphs of the Treatise on Fluxions runs:

This method for proving that curves are equal or have a given ratio by the equa-
lity or given ratio of their moments, I have used because it has an affinity
with methods usually employed in these cases; but a method based on the
genesis of surfaces from the motion of their flowing seems more natural […].
(MPN III, 282)

This is transcribed to the Addendum, with the addition “[…], one which
will prove to be more perspicuous and elegant if certain foundations are laid
out in the style of the synthetic method; such as the following” (MPN III,
328–330), and this introduces the axioms and theorems that constitute the
synthetic method. But the previous method referred to in this paragraph,
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that of proving “through the equality of moments,” is described in the im-
mediately preceding paragraph of the Treatise as follows:

In demonstrations of this sort it should be observed that I take those quantities to
be equal whose ratio is one of equality. And a ratio of equality is to be regarded as
one which differs less from equality than any unequal ratio that can be assigned.
Thus in the preceding demonstration I set the rectangle Ep × Ac, that is, Feqf,
equal to the space FEef since (because their difference Eqe is infinitely smaller
than them, i.e. nothing with respect to them), they have no ratio of inequality.
And for the same reason, I set Dp × HI = HIih, and likewise in the others.
(MPN III, 282)

The principle appealed to here is this:

If an inequality is such that its difference from a strict equality can be made
smaller than any that can be assigned, it can be taken for an equality.

Let us call this the Principle of Unassignable Difference. This principle,
clearly, is the analytic equivalent of the chief synthetic axiom, Lemma 1 of
the Method of First and Ultimate Ratios. And like that Lemma, it derives its
warrant from the Archimedean axiom. This common warrant underwrites
the equivalence between the analytic and synthetic methods of fluxions,
allowing the translatability of statements given in terms of “indivisibles”
(i.e. infinitesimals) into fluxional terminology, thus justifying Newton’s
claim in the Principia that having reduced the propositions there to the li-
mits of the sums and ratios of First and Ultimate ratios of nascent and evan-
escent quantities, he had thereby “performed the same thing as by the
method of indivisibles.” He continues:

Accordingly, whenever in what follows […] I use little curved lines in place of
straight ones, I wish it always to be understood that I mean not indivisibles but
evanescent divisible quantities, and not the sums and ratios of determinate parts,
but the limits of such sums and ratios; and that the force of such demonstrations
always rests on the method of the preceding lemmas. (Newton, 1999, 441–2;
trans. slightly modified)

3. Leibniz’s Syncategorematic Infinitesimals

Now let us turn to Leibniz. During the same period (1671–1684) in which
Newton was perfecting his synthetic interpretation of the results he had ob-
tained in 1666, Leibniz was independently developing the algorithms and
techniques he was to present as the differential and integral calculus. In his
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approach to the development and application of his calculus, Leibniz often
stressed the pragmatic utility of his techniques, and how they could be ex-
ploited by mathematicians without their having to trouble themselves with
foundational problems. These comments, together with the lack of clarity
regarding foundations in his early publications, and his late pronounce-
ments on the nature of infinitesimals precipitated by the controversies in-
volving Rolle, Nieuwentijt and Varignon, have conspired to produce the
impression that Leibniz developed his calculus without much attention to
its foundations.

But this impression is entirely mistaken. For just as Newton had at-
tempted to strengthen the foundations of his methods in his Latin treatise
De methodis serierum et fluxorum in 1671, and again in Geometria curvilinea
not long afterwards, so in 1675–76 Leibniz had also written a comprehen-
sive Latin treatise on his infinitesimal methods, De quadratura arithmetica,
which has only recently been edited and published by Eberhard Knobloch
(DQA); and in this treatise, as Knobloch has shown, “Leibniz laid the rig-
orous foundation of the theory of infinitely small and infinite quantities”
(Knobloch, 2002, 59). I have argued elsewhere (Arthur, 2008a) that Knob-
loch’s interpretation of Leibniz’s foundational work is fully in keeping with
Hidé Ishiguro’s attribution to Leibniz of an interpretation of infinitesimals
as “syncategorematic.” That is, as I have tried to show, Leibniz’s mature in-
terpretation of infinitesimals as “fictions” has a precise mathematical con-
tent, perfectly consistent with his philosophy of the infinite and solution to
the continuum problem (Arthur, 2001, 2008b). Moreover, I shall argue
here, this content is given by the foundation of the method on the Archime-
dean axiom. Thus Leibniz’s justification of his infinitesimal methods will be
seen to be in surprising conformity with Newton’s.

As regards foundations, the nub of the De quadratura arithmetica occurs
in Proposition 6 (DQA, 28–36), as Eberhard Knobloch has explained.
Leibniz himself describes it as

spinosissima in qua morose demonstratur certa quaedam spatia rectilinea gradi-
formia itemque polygona eousque continuari posse, ut inter se vel a curvis dif-
ferant quantitate minore quavis data, quod ab aliis plerumque assumi solet.
Praeteriri initio ejus lectio potest, servit tamen ad fundamenta totius Methodi in-
divisibilium firmissime jacienda.6 (DQA, 24).

6 “[…] most thorny; in it, it is demonstrated in fastidious detail that the construction of cer-
tain rectilinear and polygonal step spaces can be pursued to such a degree that they differ
from one another or from curves by a quantity smaller than any given, which is something
that is most often [simply] assumed by other authors. Even though one can skip over it at
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The “thorniness” is evident from Figure 6 (fig. 3 in the DQA):

In this figure, the x-axis is vertical, and the y-axis is the horizontal axis
across the top. The curve considered here is a circular arc C, the tangents to
which at successive points on this curve (1C, 2C, 3C, 4C) cut the y-axis at
the points 1T, 2T, 3T, 4T. Now a second, auxiliary curve D is defined by the
points of intersection of these tangents to C with the ordinates 1B, 2B, 3B,
4B, yielding the points 1D, 2D, 3D, 4D, on this new curve. The secants join-
ing successive pairs of points on the original curve, 1C2C, etc., are extended
to cut the y-axis in the points 1M, 2M, 3M. The points of intersection of the
perpendiculars from these points M down through the ordinates B of the
original curve define another set of points 1N, 2N, 3N. Provided certain
conditions are satisfied – continuity, no point of inflection, no point with a
vertical tangent – this construction is always possible, and as Knobloch

first reading, it serves to lay the foundations for the whole method of indivisibles in the
soundest possible way”.

Figure 6.
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comments, “once the second curve has been constructed, the first curve
can be omitted.”7

Following Knobloch, we will now give a simplified figure depicting a
portion of the area under the curve D between the ordinates 1B and 3B:

The demonstration of Proposition 6 then proceeds in eight numbered
stages. First Leibniz partitioned the interval containing the area under the
curve D is into a finite number of unequal subintervals (in the above figure
there are two, 1B2B and 2B3B). The rectangles bounded by the ordinates,
the x-axis to the left, and the normals through N to the right, here
1B1N1P2B and 2B2N2P3B, he called elementary rectangles; the rectangles
overlapping these bounded by successive points on the curve, here
1Dα2D1E and 2Dβ3D2E, he called complementary rectangles.

In stage 2, he computed the (absolute value of the) difference between
the area under the mixtilinear figures 1B1D2D2B and 2B2D3D3B, and their
corresponding elementary rectangles 1B1N1P2B and 2B2N2P3B. In each case
this difference is less than the corresponding complementary rectangle:

7 See Knobloch, 2002, 63, for a discussion of these conditions.

Figure 7.
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⏐1B1D2D2B – 1B1N1P2B⏐ < 1Dα2D1E, etc. This is proved in stage 3 by
subtracting from each their common part, 1B1D1F1P2B, etc., leaving a
difference of two trilinear areas. Even the sum of these two areas is less
than the complementary rectangle, so their difference certainly is. Thus
⏐1B1D2D2B – 1B1N1P2B⏐ = ⏐1D1N1F – 1F2D1P⏐ < 1Dα2D1E, etc. In step 4,
it is shown that this inequality holds for all such differences between curvi-
linear areas and their corresponding elementary rectangles. As Knobloch
has shown, Leibniz is here implicitly appealing to the triangle inequality
⏐⏐A⏐ – ⏐B⏐⏐ ≤ ⏐A – B⏐ (Knobloch, 2002, 65).

Therefore (stages 5 and 6) the absolute value of the difference between
the sum M of all the mixtilinear areas (the area under the curve, called by
Leibniz the “total Quadrilineal”) and the sum E of all the elementary rec-
tangles approximating the area under the curve (the Riemannian sum,
called by Leibniz the “step space [spatium gradiforme]”) is less than the sum
C of all the complementary rectangles: ⏐M – E⏐ 8 C. But the sum C of all
the complementary rectangles 1Dα2D1E, 2Dβ3D2E, etc. would be less than
the sum of all their bases times their common height, if all the ordinates
were equally spaced. Since by hypothesis they are not, let the greatest
height (say, the difference between successive ordinates 3B and 4B) be hm.
The sum of all the bases is the difference between the greatest and smallest
ordinate, 1L3D. Therefore C is smaller than the rectangle equal to the prod-
uct 3B4B x 1L3D, i.e. C < 1L3D hm. Hence, since ⏐M – E⏐ < C, we have

M – E <1L3D · hm,

where hm is the greatest height of any of the elementary rectangles.
But (stage 7) the abscissa representing this greatest height, “tametsi

caeteris majus, aut certe non minus sit assumtum intervallis, tamen assig-
nata quantitate minus assumi potest; nam ipso sumto utcunque parvo
caetera sumi possunt adhuc minora”.8 (DQA, 31–32) Therefore “sequetur
ut rectangulum ψ 4D 1L, altitudinem habens quae data recta minor sumi
posit, etiam data aliqa superficie reddi posse minus.”9 (DQA, ibid.).

It therefore follows (stage 8) that “Differentia hujus Quadrilinei, (de quo
et proposition loquitur) et spatii gradiformis data quantitate minor reddi po-

8 “[…] even though it is greater than, or at any rate not less than, any of the other intervals
assumed, can nevertheless be assumed smaller than any assigned quantity; for however
small it is assumed to be, others can be assumed still smaller.”

9 “[…] it will follow that the rectangle ψ 4D 1L [3B4B1L3D], having a height which can be
assumed smaller than any given line, also can be made smaller than any given surface”.
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test” 10 (DQA, 32). That is, the difference between the Riemannian sum
and the area under the curve is smaller than any assignable, and therefore
null.

As Leibniz points out, the prolixity of this proof is due in part to the fact
that it is considerably more general than the “communi methodo indivisi-
bilium”11 (DQA, 32), where one is “securitatis causa cognimur, ut Cavalie-
rius, ad ordinatas parallelas methodum restringere, et aequalia semper dua-
rum proximarum ordinatarum intervalla postulare”12 (DQA, 69). In that
case the points N and the points D coincide and “longe facilior fuisset de-
monstratio”13 (DQA, 32), as he proceeds to show.

Several things about this demonstration are worthy of note. As Leibniz
observes in the Scholium to Proposition 7: “Demonstratio illud habet sin-
gulare, quod rem non per inscripta ac circumscripta simul, sed per sola in-
scripta absolvit.”14 (DQA, 35) More accurately though, the step figure is, as
Knobloch says, “something in between” an inscribed and a circumscribed
one (Knobloch, 2002, 63). Leibniz’s method, in fact, is extremely general
and rigorous; the same construction of elementary and complementary
rectangles could be constructed for any curve whatsoever satisfying the
three conditions outlined. It amounts in modern terms to a demonstration
of “the integrability of a huge class of functions by means of Riemannian
sums which depend on intermediate values of the partial integration inter-
vals” (Knobloch, 2002, 63).

Second, it is strictly finitist. As Leibniz observes, the traditional
Archimedean method of demonstration was by a double reductio ad absur-
dum. But his preference is instead to proceed by a direct reductio to prove
that “inter duas quantitates nullam esse differentiam”.15 (DQA, 35) As he
explains in the continuation of the Scholium to Prop. 7,

Equidem fateor nullam hactenus mihi notam esse viam, qua vel unica quadratura
perfecte demonstrari possit sine deductione ad absurdum; imo rationes habeo,
cur verear ut id fieri possit per naturam rerum sine quantitatibus fictitiis, infinitis

10 “[…] the difference between this Quadrilineal (which is the subject of this proposition) and
the step space [i.e. M – E] can be made smaller than any given quantity”.

11 “[…] common method of indivisibles”.
12 “[…] compelled for safety’s sake, as was Cavalieri, to restrict the method to parallel ordi-

nates, and to suppose that the intervals between any two successive ordinates are always
equal”.

13 “[…] the demonstration is far easier”.
14 “[…] the demonstration has the singular feature that the result is achieved not by inscribed

and circumscribed figures taken together, but by inscribed ones alone”.
15 “[…] the difference between two quantities is nothing”.
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scilicet vel infinite parvis assumtis: ex omnibus tamen ad absurdum deduction-
ibus nullam esse credo simplicem magis et naturalem, ac directae demonstra-
tione propiorem, quam quae non solum simpliciter ostendit, inter duas quanti-
tates nullam esse differentiam, adeoque esse aequales, (cum alioquin alteram
altera neque majorem neque minorem esse ratiocinatione duplici probari soleat)
sed et quae uno tantum termino medio, inscripto scilicet circumscripto, non vero
utroque simul, utitur.16 (DQA, 35)

We see here a distinction between the method of integration using infinitely
many infinitely small elements, which Leibniz characterizes as fictitious,
and the direct reductio ad absurdum method just exploited in the demonstra-
tion above. As we saw there, this involves an inference from the fact that a
difference between two quantities can be made smaller than any that can be
assigned, to their difference being null. This is a reductio in the sense that
whatever minimum difference one supposes there to be, one can prove that
the difference is smaller. As we have seen, that is the very same reasoning
Newton appeals to in his Principia to demonstrate Lemma 1 of his Method
of First and Ultimate Ratios.

Third, Leibniz’s demonstration of Proposition 6, just like Newton’s
Lemmas 1–4, licenses his infinitesimal techniques in quadratures, “servit
tamen ad fundamenta totius Methodi indivisibilium firmissime jacienda.”17

(DQA, 24). The term “indivisible” here needs to be taken with a pinch of
salt: Leibniz is clear that “plurimum interest inter indivisibile et infinite par-
vum”,18 and that “Fallax est indivisibilium Geometria, nisi de infinite parvis
explicetur; neque enim puncta vere indivisibilia tuto adhibentur, sed lineis
utendem est, infinite quidem parvis, lineis tamen, ac proinde divisibilius.”19

16 “For my part I confess that there is no way that I know of up till now by which even a single
quadrature can be perfectly demonstrated without an inference ad absurdum. Indeed, I
have reasons for doubting that this would be possible through natural means without as-
suming fictitious quantities, namely, infinite and infinitely small ones; but of all inferences
ad absurdum I believe none to be simpler and more natural, and more proper for a direct
demonstration, than that which not only simply shows that the difference between two
quantities is nothing, so that they are then equal (whereas otherwise it is usually proved by
a double reductio that one is neither greater nor smaller than the other), but which also uses
only one middle term, namely either inscribed or circumscribed, rather than both to-
gether.”

17 “[…] laying the foundations of the whole method of indivisibles in the soundest possible
way”.

18 “[…] there is a profound difference between the indivisible and the infinitely small”.
19 “The Geometry of Indivisibles is fallacious unless it is explicated by means of the infinitely

small; for truly indivisible points may not safely be applied, and instead it is necessary to
use lines which, although infinitely small, are nevertheless lines, and therefore divisible.”
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(Scholium to Proposition 11, DQA, 133)20 In Proposition 7, explaining that
“Per Summam Rectarum ad quondam axem applicatarum”21 (DQA, 39)
he means “figurae perpetua applicatione factae aream”,22 he comments:

Quicquid enim de tali summa demonstrari poterit, sumto intervallo, utcunque
parvo, id quoque de areae curvilineae 0C0B3B3C0C magnitudine demonstratum
erit, cum summa ista (intervallo satis exiguo sumto) talis esse posit, ut ab ista
summa rectangulorum differentiam habeat data quavis minorem. Et proinde si
quis assertiones nostras neget facile convinci posit ostendendo errorem quovis
assignabili esse minorem, adeoque nullum.23 (DQA, 39)

This is precisely the same as the principle appealed to by Newton to found
his analytic method of fluxions, which I called above the Principle of Unas-
signable Difference; it is simply an application of the Archimedean axiom.

Fourth, Leibniz is explicit that the equivalence between a proof effected
by infinitesimals and the corresponding rigorous kind of proof from first
principles given in Proposition 6, means that infinitesimals can always be
taken as a kind of shorthand for the arbitrarily small finite lines occurring in
the latter. Acknowledging his free use of infinite and infinitely small quan-
tities in proving his results concerning the circle, the ellipse and the infinite
hyperboloid, Leibniz writes in the Scholium to Proposition 23:

Quae de infinitis atque infinite parvis huc usque diximus, obscura quibusdam
videbuntur, ut omnia nova; sed mediocri meditatione ab unoquoque facile per-
cipientur: qui vero perceperit, fructum agnoscet. Nec refert an tales quantitates
sint in rerum natura, sufficit enim fictione introduci, cum loquendi cogitandique,
ac proinde inveniendi pariter ac demonstrandi compendia praebeant, ne semper
inscriptis vel circumscriptis uti, et ad absurdum ducere, et errorem assignabili
quovis minorem ostendere necesse sit. Quod tamen ad modum eorum quae
prop. 6. 7. 8. diximus facile fieri posse constat. Imo si quidem possibile est directas
de his rebus exhiberi demonstrationes, ausim asserere, non posse eas dari, nisi

20 This Scholium to Proposition 11 is recorded as deleted by Knobloch (DQA, 132–33), but is
included in the main text without comment in the edition of Parmentier (Leibniz, 2004,
96–101).

21 “[…] by the sum of the straight lines applied to a certain axis”.
22 “[…] the area of the figure formed by this continued application”.
23 “For whatever properties of such a sum could be demonstrated by taking the interval ar-

bitrarily small, will also be demonstrated of the curvilinear area 0C 0B3B3C0C, since, if the
interval is taken sufficiently small, this sum could be such that its difference from the sum
of the rectangles will be smaller than any given. And so anyone contradicting our assertion
could easily be convinced by showing that the error is smaller than any assignable, and
therefore null.”
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his quantitatibus fictitiis, infinite parvis, aut infinitis, admissis, adde supra prop. 7.
schol.24 (DQA, 69)

An infinitesimal, therefore, is simply a shorthand for a quantity that may be
taken as small as desired; likewise an infinite quantity is a quantity “qualibet
a nobis assignabili, numerisve designabili, majorem.”25 (DQA, 133; Leib-
niz, 2004, 98) Both are, with respect to geometry, fictions. On whether
they can be found in nature, Leibniz is here agnostic; but “Geometrae suf-
ficit, quid ex ipsis positis sequatur, demonstrare (Scholium to Prop. 11;
DQA, 133; Leibniz, 2004, 98).26

This interpretation, as I have argued elsewhere (Arthur, 2001, 2008a, b),
is completely in accord with the insightful presentation of Leibniz’s mature
interpretation of infinitesimals given by Hidé Ishiguro in the second edi-
tion of her Leibniz’s Philosophy of Logic and Language (1990). According to
Ishiguro, Leibniz held, analogously to Russell’s position regarding definite
descriptions,

that one can have a rigorous language of infinity and infinitesimal while at the
same time considering these expressions as being syncategorematic (in the sense
of the Scholastics), i.e. regarding the words as not designating entities but as
being well defined in the proposition in which they occur (Ishiguro, 1990, 82).

As she goes on to argue, “Leibniz denied that infinitesimals were fixed mag-
nitudes, and claimed that [in our apparent references to them] we were as-
serting the existence of variable finite magnitudes that we could choose as
small as we wished” (Ishiguro, 1990, 92). This is indeed the case, as we have
seen.

24 “The things we have said up to now about infinite and infinitely small quantities will appear
obscure to some, as does anything new; nevertheless, with a little reflection they will be
easily comprehended by everyone, and whoever comprehends them will recognize their
fruitfulness. Nor does it matter whether there are such quantities in the nature of things, for
it suffices that they be introduced by a fiction, since they allow economies of speech and
thought in discovery as well as in demonstration. Nor is it necessary always to use in-
scribed or circumscribed figures, and to infer by reductio ad absurdum, and to show that
the error is smaller than any assignable; although what we have said in Props. 6, 7 & 8 es-
tablishes that it can easily be done by those means. Moreover, if indeed it is possible to pro-
duce direct demonstrations of these things, I do not hesitate to assert that they cannot be
given except by admitting these fictitious quantities, infinitely small or infinitely large (see
above, Scholium to Prop 7).”

25 “[…] greater than any assignable by us, or greater than any number that can be desig-
nated”.

26 “[…] for Geometry it suffices to demonstrate what follows from their supposition”.
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There is, of course, much more to say on Leibniz’s syncategorematic in-
terpretation, in particular, concerning the philosophical status of infinite-
simals as fictions. Other contributors to this volume will have more to say
here on such issues. But I think it will be instructive for me to close by
showing how Leibniz’s use of infinities and infinitesimals can be justified by
the Archimedean foundation he shared with Newton. Eberhard Knobloch
has identified twelve rules occurring in his treatise that may be said to con-
stitute Leibniz’s “arithmetic of the infinite” (Knobloch, 2002, 67–8). In the
interests of space I shall just consider a small sample. The first of these rules
is “Finite + infinite = infinite”. Rule 2.1 is “Finite ± infinitely small = finite,”
and Rule 2.2 is “If x = y + infinitely small, then x – y ≈ 0 (is unassignable)”
where x and y are finite quantities.

Let us take 2.2 first. If x = y + dy, where dy is an arbitrarily small finite
variable quantity, and D is any pre-assigned difference between x and y, no
matter how small, then dy may always be taken so small that dy < D. In
particular, if D is supposed to be some fixed ultimate difference between
them, then dy can be supposed smaller: so long as D and dy are quantities
obeying the Archimedean axiom, the variability of dy means that it can al-
ways take a value such that dy < D for any assigned D. Therefore, since the
difference between x and y is smaller than any assignable, it is unassignable,
and effectively null. The same reasoning justifies 2.1.

Leibniz gives such an argument explicitly in a short paper dated
26 March, 1676:

Videndum exacte an demonstrari possit in quadraturis, quod differentia non
tamen sit infinite parva, sed quod omnino nulla, quod ostendetur, si constet
eousque inflecti semper posse polygonum, ut differentia assumta etiam infinite
parva minor fiat error. Quo posito sequitur non tantum errorem non esse infini-
tum parvum, sed omnino esse nullum. Quippe cum nullus assumi possit.27 (A
VI, 3, 434)

Notable here is his claim that this argument works even if the difference D
is assumed infinitely small; it does so, of course, only if the variable dy
obeys the Archimedean axiom.28

27 “We need to see exactly whether it can be demonstrated in quadratures that a difference is
not after all infinitely small, but nothing at all. And this will be shown if it is established that
a polygon can always be inflected to such a degree that even when the difference is assumed
infinitely small, the error will be smaller. Granting this, it follows not only that the error is
not infinitely small, but that it is nothing at all – since, of course, none can be assumed.”
(DLC, 64–65)

28 As Sam Levey has pointed out to me, this will also entail that the n in the Archimedean
axiom would have to be allowed to range over infinite numbers. In that case, by the same


