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37 Bernstein Functions, René Schilling, Renming Song and Zoran Vondraček
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Introduction

In many branches of mathematics, one encounters the question of how to reconstruct
a convex set from information on its vertices. This idea successfully emerged as the
Krein–Milman theorem for compact convex subsets of locally convex spaces since
any such set has plenty of extreme points. For any point of a compact convex set, a
reformulation of the Krein–Milman theorem provides a representing measure that is
concentrated in some sense on the set of extreme points. The goal of our book is to
present a more general approach to integral representation theory based upon a notion
of a function space and apply the obtained results to the theory of convex sets, Banach
spaces and potential theory.

We point out that this approach is far from being new, but we hope that our ex-
position may be profitable both for students interested in the basics of integral rep-
resentation theory as well as for more advanced readers. The former group could be
attracted by a self-contained presentation of the Choquet theory, the latter by a sub-
stantial amount of results of fairly recent origin or appearing in a book form for the
first time. We also try to incorporate more techniques from descriptive set theory into
subject, which further supports our belief that the book will be worth reading even for
those well acquainted with the monographs by E. M. Alfsen [5], R. R. Phelps [374],
Z. Semadeni [414], L. Asimow and A. J. Ellis [24] or V. P. Fonf, J. Lindenstrauss and
R. R. Phelps [179].

Let us continue by looking briefly at the contents of the book. After a prologue
on the Korovkin theorem, we present basic facts on the extremal structure of finite-
dimensional compact convex sets. Then we move on to infinite-dimensional spaces
and prove the Krein–Milman theorem and several of its consequences. The second
part of Chapter 2 studies the concept of measure convex and measure extremal sets.

Chapter 3 is devoted to cornerstones of the Choquet theory of functions spaces
such as the Choquet order and its properties and integral representation theorems due
to G. Choquet and E. Bishop and K. de Leeuw. Even though the results are standard,
the key limiting process is established by means of the Simons lemma, which allows
us to present later on several of its applications. The chapter is finished by a discussion
on deeper properties of the Choquet ordering.

The next chapter studies basic properties of affine functions on compact convex sets
and characterizations of functions satisfying the barycentric formula. A link between
the theory of function spaces and compact convex sets starts to emerge at the end of
the chapter.

Chapter 5 is crucial for the subsequent application of descriptive set theory; it de-
scribes a hierarchy of Borel sets and functions in topological spaces and proves their
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basic properties. The most important fact is that many descriptive properties are sta-
ble with respect to perfect mappings, which allows us to transfer abstract Borel affine
functions to the setting of compact convex sets.

Simplicial function spaces are studied in Chapter 6. We discuss several classes of
simplicial function spaces, namely the Bauer and Markov simplicial function spaces
and spaces with boundary of type Fσ. Among other results, the abstract Dirichlet
problem for continuous and non-continuous functions is considered. Choquet sim-
plices are presented at the end of the chapter.

Next we generalize the basic concepts for function cones since they are indispens-
able in potential theory. We focus in particular on ordered compact convex sets.

Analogues of faces in a non-convex setting, so-called Choquet sets, are investigated
in Chapter 8. The main result is a characterization of simplicial spaces by means of
Choquet sets.

Suitably chosen families of closed extremal sets generate interesting boundary
topologies on the set of extreme points. Chapter 9 studies these topologies and func-
tions continuous with respect to them. It turns out that maximal measures induce
measures on sets of extreme points that are regular with respect to boundary topolo-
gies. The last section is devoted to a study of a facial topology and facially continuous
functions.

Chapter 10 collects several deeper results on function spaces and compact convex
sets. Among others, study of Shilov and James boundaries, Lazar’s improvement of
the Banach–Stone theorem, results on automatic boundedness of affine and convex
functions, embedding of `1 in Banach spaces, metrizability of compact convex sets
and their open images and some topological properties of the set of extreme points.

The Lazar selection theorem and its consequences occupy the first part of Chap-
ter 11. The second part is devoted to a presentation of Debs’ proof of Talagrand’s
theorem on measurable selectors.

Chapter 12 is concerned with two methods of constructing new function spaces:
products and inverse limits. We show that both operations preserve simpliciality and
describe resulting boundaries. The inverse limits lead to an interesting description
of metrizable simplices as inverse limits of finite-dimensional simplices. The general
results are illustrated by a construction of the Poulsen simplex and a couple of compact
convex sets due to Talagrand.

In Chapter 13, general results from the Choquet theory are applied to potential
theory and several of its basic notions are investigated from this perspective. Impor-
tant function cones and spaces appearing in potential theory are studied in detail, in
particular, in connection to various solution methods for the Dirichlet problem. The
functional analysis approach makes it possible to provide an interesting interpretation,
for instance, of balayage and regular points in terms of representing measures and the
Choquet boundary of suitable spaces and cones. The exposition covers potential the-
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ory for the Laplace equation and the heat equation as well as a more general setting
(harmonic spaces, fine potential theory etc.).

The final Chapter 14 presents several applications of the integral representation
theorems, such as for doubly stochastic matrices, the Riesz–Herglotz theorem, the
Lyapunov theorem on the range of a vector measure, the Stone–Weierstrass theorem,
positive-definite functions and invariant and ergodic measures.

Each chapter concludes with a series of exercises with sketches of proofs and with
concluding notes and comments where we try to give precise references and due cred-
its for the results presented in the main body of the text, and discuss additional mate-
rial which is related to the topics of the chapter in question, but was not included with
complete proofs. Open problems are also mentioned.

Since the presented material originates in an amalgamation of functional analy-
sis, measure theory, topology, descriptive set theory and potential theory, we collect
the needed notions and facts in the Appendix, sometimes even with proofs. We se-
lected the following books for each subject as the key references: W. Rudin [403]
and M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucı́a, J. Pelant and V. Zizler
[173] for functional analysis, D. H. Fremlin [182], [181] and [183] for measure the-
ory, R. Engelking [169] and K. Kuratowski [285] for topology, A. S. Kechris [262]
and C. A. Rogers and J. E. Jayne [394] for descriptive set theory, D. H. Armitage and
S. J. Gardiner [21] for classical potential theory and J. Bliedtner and W. Hansen [66]
for abstract potential theory.

Next we point out what is omitted from the book. First, we focus on integral repre-
sentation theorems for compact sets, and thus the readers interested in theory of sets
with the Radon–Nikodym property are referred to R. D. Bourgin [82], and those inter-
ested in Choquet theory in sets of measures are referred to G. Winkler [473]. Second,
although we consider several geometric aspects of simplicial spaces, they are not at
the center of our attention. They are thoroughly investigated in H. E. Lacey [290] and
P. Harmand, D. Werner and W. Werner [216]. Further, we do not pursue applications
of integral representation theory inC∗-algebras and thus we refer the interested reader
to E. M. Alfsen and F. W. Schultz [10] and [9], M. Rørdam [395] and M. Rørdam and
E. Størmer [396], B. Blackadar [59] and H. Lin [303] and the references therein. And
last but not least, our applications to potential theory do not require the full strength
of abstract potential theory and thus we restrict ourselves to a less general framework
than the one presented in J. Bliedtner and W. Hansen [66].

Except on a few explicitly stated occasions, we consider only real vector spaces and
apart from Chapter 9 we deal only with Hausdorff topologies and Radon measures.
We use the standard notation and terminology:

• N, Q, Z, R, C denote the usual sets of numbers,

• Re z and Im z denote the real and imaginary part of a complex number z, respec-
tively,
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• cA is the characteristic function of a set A (sometimes we write 1 for the charac-
teristic function of a space),

• A4B is the symmetric difference of sets A and B,
• Ac is the complement of a set A,
• f ∧ g, f ∨ g denote the infimum and supremum of functions f, g, respectively,

(usually they are considered pointwise),
• f+, f−, |f | denote the positive and negative parts, and absolute value of a func-

tion f , respectively,
• f |A is the restriction of a function f to a set A,
• if F is a system of functions, Fb and F+ are the families of all bounded and

positive elements from F , respectively,
• ω0 and ω1 are the first infinite and first uncountable ordinals, respectively,
• A, IntA, ∂A are the closure, interior and boundary of a set A in a topological

space, respectively,
• dist(A,B) denotes the distance of sets in a metric space,
• diamA is the diameter of a set A in a metric space,
• U(x, r), B(x, r) and S(x, r) are the open ball, closed ball and sphere centered

at x with radius r > 0, respectively,
• coA and spanA are the convex and linear hull of a set A in a vector space,

respectively, coA is the closed convex hull of a set A in a topological vector
space,

• kerT denotes the kernel of an operator between linear spaces,
• BE , UE and SE are the closed unit ball, open unit ball and sphere of a normed

linear space E, respectively,
• E/F is the quotient space of a locally convex space with respect to a closed

subspace F ,
• E ⊕ F is the sum of locally convex spaces E and F ,
• E∗ is the dual space of a topological linear space E,
• (x, y) stands for the scalar product of vectors x, y in a Hilbert space,
• c0 is the space of sequences converging to 0,
• C(X) is the space of real-valued continuous functions on a topological space X ,
• Cb(X) is the space of bounded continuous functions on a topological space X ,
• `p and Lp(µ), p ∈ [1,∞], are the usual Lebesgue spaces (see Section A.3),
• Cn(U), Cn, C∞(U), C∞ stand for the space of n-times continuously differen-

tiable functions on U or infinitely differentiable functions on U , respectively,
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• −
∫
A f(y) dy is the integral mean value of f over a set A,

•
∫
S(x,r) f(y) dS(y) is the surface integral of f over the sphere S(x, r) ⊂ Rd,

• ∇f is the gradient of f .

A function f is positive if f ≥ 0, it is strictly positive if f > 0. Similarly we use
increasing, strictly increasing and so on. If µ is a measure, we often write µ(f) for
the integral

∫
f dµ.

In preparation of the present book, we have received many valuable suggestions
from many colleagues. In particular, we would like to express our thanks to P. Hájek,
P. Holický, M. Johanis, O. Kalenda, P. Kaplický, M. Kraus, E. Murtinová, P. Simon,
J. Tišer, L. Zajı́ček and M. Zelený for stimulating and fruitful discussions, and to
E. Crooks for linguistic assistance. We are also indebted to the publishers for their
care and cooperation.

The preparation of the manuscript was supported by the grant 201/07/0388 of the
Grant Agency of the Czech Republic and partly by the grant MSM21620839 of the
Czech Ministry of Education.

Finally, our thanks go to Jana, Jarka, Hana and Hanka for encouragement and pa-
tience during the preparation of this book.

Prague, Summer 2009 Jaroslav Lukeš
Jan Malý

Ivan Netuka
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Contents

Introduction v

1 Prologue 1
1.1 The Korovkin theorem . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Compact convex sets 4
2.1 Geometry of convex sets . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.A Finite-dimensional case . . . . . . . . . . . . . . . . . . . . 5
2.1.B The Krein–Milman theorem . . . . . . . . . . . . . . . . . . 9
2.1.C Exposed points . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Interlude: On the spaceM(K) . . . . . . . . . . . . . . . . . . . . . 22
2.3 Structures in convex sets . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.A Extremal sets and faces . . . . . . . . . . . . . . . . . . . . . 26
2.3.B Measure convex sets . . . . . . . . . . . . . . . . . . . . . . 30
2.3.C Measure extremal sets . . . . . . . . . . . . . . . . . . . . . 36

2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Choquet theory of function spaces 52
3.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 More about Korovkin theorems . . . . . . . . . . . . . . . . . . . . . 64
3.3 On theH-barycenter mapping . . . . . . . . . . . . . . . . . . . . . 66
3.4 The Choquet representation theorem . . . . . . . . . . . . . . . . . . 67
3.5 In-between theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Maximal measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Boundaries and the Simons lemma . . . . . . . . . . . . . . . . . . . 78
3.8 The Bishop–de Leeuw theorem . . . . . . . . . . . . . . . . . . . . . 81
3.9 Minimum principles . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Orderings and dilations . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.12 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Affine functions on compact convex sets 107
4.1 Affine functions and the barycentric formula . . . . . . . . . . . . . . 107
4.2 Barycentric theorem and strongly affine functions . . . . . . . . . . . 113



xii Contents

4.3 State space and representation of affine functions . . . . . . . . . . . 120
4.4 Affine Baire-one functions on dual unit balls . . . . . . . . . . . . . 127
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.6 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Perfect classes of functions and representation of affine functions 135
5.1 Generation of sets and functions . . . . . . . . . . . . . . . . . . . . 136
5.2 Baire and Borel sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3 Baire and Borel mappings . . . . . . . . . . . . . . . . . . . . . . . 146
5.4 Perfect classes of functions . . . . . . . . . . . . . . . . . . . . . . . 149
5.5 Affinely perfect classes of functions . . . . . . . . . . . . . . . . . . 150
5.6 Representation ofH-affine functions . . . . . . . . . . . . . . . . . . 154
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.8 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Simplicial function spaces 168
6.1 Basic properties of simplicial spaces . . . . . . . . . . . . . . . . . . 169
6.2 Characterizations of simplicial spaces . . . . . . . . . . . . . . . . . 176
6.3 Simplicial spaces as L1-preduals . . . . . . . . . . . . . . . . . . . . 178
6.4 The weak Dirichlet problem and Ac(H)-exposed points . . . . . . . . 180
6.5 The Dirichlet problem for a single function . . . . . . . . . . . . . . 182
6.6 Special classes of simplicial spaces . . . . . . . . . . . . . . . . . . 185

6.6.A Bauer simplicial spaces . . . . . . . . . . . . . . . . . . . . . 185
6.6.B Markov simplicial spaces . . . . . . . . . . . . . . . . . . . . 188
6.6.C Simplicial spaces with Lindelöf boundaries . . . . . . . . . . 190
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Chapter 1

Prologue

1.1 The Korovkin theorem

We start with the famous Weierstrass approximation theorem.

Theorem 1.1 (The Weierstrass approximation theorem). The space of all polynomial
functions on the interval [0, 1] is uniformly dense in the space C([0, 1]).

There are several different proofs of this result and several methods for how to
associate to a given continuous function f ∈ C([0, 1]) a sequence of polynomials
{Pn} that converges uniformly to f on [0, 1].

For example, given f ∈ C([0, 1]) and n ∈ N, we define the corresponding Bernstein
polynomial Bnf by

Bnf : x 7→
n∑
j=0

(
n

j

)
f
( j
n

)
xj(1− x)n−j , x ∈ [0, 1].

The task is to show that the sequence {Bnf} converges uniformly to f on [0, 1]. This
can be easily verified in the case when

f(x) = 1, x or x2,

since
Bn1 = 1, Bnx = x and Bnx

2 =
n− 1
n

x2 +
1
n
x.

Surprisingly, this is all that we need to compute, since these three tests are enough
to guarantee the uniform convergence of Bnf to f for all f in C([0, 1]). Indeed, one
of the current proofs of the classical Weierstrass approximation theorem is based on
the Korovkin theorem about linear operators. The Weierstrass theorem is an easy
consequence since the mappings

Bn : f 7→ Bnf, f ∈ C([0, 1]),

are positive linear operators on C([0, 1]).

Theorem 1.2 (Korovkin). Let pj , j = 0, 1, 2, denote the monomial function pj : x 7→
xj and let {Tn} be a sequence of positive linear operators on the space C([0, 1]).
Assume that Tnpj → pj uniformly on [0, 1] as n→∞ for j = 0, 1, 2. Then Tnf → f
uniformly on [0, 1] as n→∞ for all f ∈ C([0, 1]).
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Proof. Pick f ∈ C([0, 1]) and ε > 0. By the uniform continuity of f , there exists
δ ∈ (0, 1) such that |f(s) − f(t)| ≤ ε for any s, t ∈ [0, 1], |s − t| ≤ δ. Now fix
t ∈ [0, 1] and set

p∗(x) := f(t)− ε− (x− t)2 2‖f‖
δ2 , x ∈ [0, 1],

and

p∗(x) := f(t) + ε+ (x− t)2 2‖f‖
δ2 , x ∈ [0, 1].

Dealing separately with the cases |x− t| ≤ δ and |x− t| > δ, we get

|f(x)− f(t)| ≤ ε+ 2(x− t)2 ‖f‖
δ2

for each x ∈ [0, 1]. Hence,

p∗(x) ≤ f(x) ≤ p∗(x), x ∈ [0, 1],

and, therefore, for any n ∈ N,

Tnp∗ ≤ Tnf ≤ Tnp∗.

We find N ∈ N such that for any n ≥ N∥∥Tnpj − pj∥∥ < εδ2, j = 0, 1, 2.

Since

p∗(x) =
(
f(t) + ε+ t2

2‖f‖
δ2

)
− 4‖f‖t

δ2 x+
2‖f‖
δ2 x2, x ∈ [0, 1],

for n ≥ N we have the estimate

‖Tnp∗ − p∗‖ ≤ Cε with C := 9‖f‖+ ε.

In particular,(
Tnf

)
(t) ≤

(
Tnp

∗)(t) ≤ p∗(t) + Cε = f(t) + Cε+ ε, n ≥ N,

and similarly(
Tnf

)
(t) ≥

(
Tnp∗

)
(t) ≥ p∗(t)− Cε = f(t)− Cε− ε, n ≥ N.

Hence
‖Tnf − f‖ ≤ ε(C + 1), n ≥ N,

and the proof is complete.
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In stating the Korovkin theorem, which sometimes bears the name the first Korovkin
theorem, it is possible to go further, replacing the interval [0, 1] by a suitable space,
and the set of three functions {p0, p1, p2} by a more general family of functions. In
the sequel, we will take a deeper look at this issue.

Definition 1.3 (Korovkin closure). Let K be a (metrizable) compact space and P a
family of continuous functions on K (sometimes called test functions). We say that a
sequence {Tn} of positive operators on C(K) is P-admissible if ‖Tnϕ− ϕ‖ → 0 for
any ϕ ∈ P , and define the Korovkin closure of P as

Kor(P) := {f ∈ C(K) : ‖Tnf − f‖ → 0 for any P-admissible sequence {Tn}} .

LetH be the linear span of P . It is simple to check that

H ⊂ Kor(H) = Kor(P).

Two questions immediately arise:

(a) How can Kor(P) be characterized ?

(b) Under what conditions does the equality Kor(P) = C(K) hold ?

In what follows, we will give answers to these questions and will also study analo-
gous problems. To these ends, the framework of abstract linearity and convexity will
turn out to be useful and efficient.

1.2 Notes and comments

The Korovkin theorem was proved independently by H. Bohman in [74] for a kind
of special positive operators, and by P. P. Korovkin in [277] for integral-type oper-
ators. Korovkin extended his theory in [278] and we followed his proof from this
monograph. The Korovkin theorem 1.2 sometimes bears the name of the Bohman–
Korovkin theorem. Excellent sources for the Korovkin material are the monograph of
F. Altomare and M. Campiti [13], and Chauvenet’s prize paper of H. Bauer [42].



Chapter 2

Compact convex sets

We begin our exposition with classical results on convex sets in finite-dimensional
spaces. After showing Carathéodory’s theorem 2.6, we define extreme points and
prove Minkowski’s theorem 2.11 stating that any compact convex set in Rd is the
convex hull of its extreme points. An amalgamation of these two results contained
in Theorem 2.12 is a starting point leading to generalizations in infinite-dimensional
spaces.

So the next section is devoted to the study of the Krein–Milman theorem and re-
lated results. In particular we are interested in its reformulation known as the Integral
representation theorem. The basic idea of representing points of a compact convex set
as barycenters of probability measures is a central topic of the whole book. Thus after
the proof of the Krein–Milman theorem 2.22 and Bauer’s minimum principle 2.24 we
define the barycenter of a probability measure on a compact convex set and show its
existence and uniqueness (see Theorem 2.29). Then the Integral representation the-
orem 2.31 and properties of the barycentric mapping are proved. We finish this part
by some classical facts: Bauer’s characterization 2.40 of extreme points of a com-
pact convex set, Choquet’s observation on extreme points of a compact convex set
contained in Proposition 2.41 and the Milman theorem 2.43.

The aim of Subsection 2.1.C is to show that a metrizable compact convex set has
abundance of exposed points, namely, that a metrizable compact convex set is the
closed convex hull of its exposed points and that exposed points are dense in the set
of extreme points.

Section 2.2 prepares the ground for examples concerning extremal sets and faces
of compact convex sets presented in Section 2.3. We prove several facts on probabil-
ity measures on compact spaces and show how they lead to a construction of affine
functions on compact convex sets that do not satisfy the barycentric formula (see
Proposition 2.63).

Subsection 2.3.A investigates more closely extremal sets and faces of compact con-
vex sets. The main result contained in Proposition 2.69 shows that a closed extremal
set is a union of closed faces. We generalize the concept of convexity and extremality
in Subsections 2.3.B and 2.3.C by introducing measure convex and measure extremal
sets. The main tool is Theorem 2.75 due to D. H. Fremlin and J. D. Pryce that charac-
terizes measure convex sets. Then we show that convex sets of low Borel complexity
are also measure convex, but that there are examples of Fσ or Gδ faces that are not
measure convex. Analogous results are proved in the next section for extremal and
measure extremal sets.
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2.1 Geometry of convex sets

2.1.A Finite-dimensional case

Throughout this subsection, let W be a real vector space.

Definition 2.1 (Convex sets in vector spaces). A set C ⊂ W is convex if λx + (1 −
λ)y ∈ C whenever x, y ∈ C and λ ∈ (0, 1).

Let A be an arbitrary subset of W . The convex hull of A, denoted by coA, is the
intersection of all convex sets of W that contain A. Since W is a convex set and the
intersection of any family of convex sets is convex, the set coA is the smallest convex
set containing A. It is easy to check that

coA =
{ n∑
j=1

λjxj : n ∈ N, x1, . . . , xn ∈ A and λ1, . . . , λn ≥ 0,
n∑
j=1

λj = 1
}
.

Definition 2.2 (Affine independence and n-simplices). Recall that vectors e0, . . . , en
ofW are said to be affinely independent if e1−e0, . . . , en−e0 are linearly independent.
In other words, if whenever

λ0e0 + · · ·+ λnen = 0 and λ0 + · · ·+ λn = 0,

then λ0 = · · · = λn = 0. In this case, the convex hull co {e0, . . . , en} is termed an
n-simplex with vertices e0, . . . , en.

In Rd, there exist at most d+ 1 affinely independent points.

Definition 2.3 (Affine hulls and subspaces, hyperplanes). For a set A ⊂W , the affine
hull of A, denoted by affA, is the set of all affine combinations of points of A. (A
linear combination α1x1 + · · ·+ αnxn, where α1 + · · ·+ αn = 1, is called an affine
combination of points x1, . . . , xn.)

A set A ⊂W is said to be an affine subspace of W if affA = A. Affine subspaces
are just the translations (of type) x + F , where F is a linear subspace of W and
x ∈W . By definition, the dimension (or, the codimension) of x+F is the dimension
(or, the codimension, respectively) of F .

A set H is a hyperplane if there exists a nonzero linear functional f on W and
α ∈ R such that

H = {w ∈W : f(w) = α}.

Since a subspace F of W is a maximal proper subspace of W if and only if there
exists a nonzero linear functional f on W such that F = ker f , we see that H is a
hyperplane if and only if there exist a maximal proper subspace F of W and w ∈ W
such that H = w + F . In other words, hyperplanes are exactly affine subspaces of
codimension 1.
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Let C be a subset of W and H := {w ∈ W : f(w) = α} be a hyperplane. We say
that H is a support hyperplane of C if C ∩H 6= ∅ and either

C ⊂ {w ∈W : f(w) ≤ α} or C ⊂ {w ∈W : f(w) ≥ α}.

Any point c ∈ C ∩H is called an H-support point of C. We also say that H supports
C at c.

In the sequel, we need the following assertion.

Proposition 2.4. Let C be a closed convex subset of Rd with a nonempty interior and
c ∈ ∂C. Then there exists a hyperplane H such that H supports C at c.

Proof. See, for example, A. Barvinok [31], Corollary 2.8.

Remark 2.5. In what follows, we direct our attention to geometry of compact convex
sets in the Euclidean d-dimensional space Rd. All results of this subsection remain
valid in any finite-dimensional topological vector space, since any such space is iso-
morphic to a suitable space Rd.

Theorem 2.6 (Carathéodory). Let A be an arbitrary subset of Rd. Then each point of
coA is a convex combination of at most d+ 1 points of A which are affinely indepen-
dent.

Proof. Assume that x ∈ coA,

x = λ1x1 + · · ·+ λnxn

where x1, . . . , xn ∈ A, λj > 0 for all j = 1, . . . , n (which we may suppose) and
λ1 + · · ·+λn = 1. If the vectors x1, . . . , xn are affinely independent, then n ≤ d+ 1
and we are done. Otherwise, n > d + 1 and there is (α1, . . . , αn) 6= (0, . . . , 0) such
that

α1x1 + · · ·+ αnxn = 0 and α1 + · · ·+ αn = 0.

Let k ∈ {1, . . . , n} be such that∣∣∣αj
λj

∣∣∣ ≤ ∣∣∣αk
λk

∣∣∣ for all j = 1, . . . , n.

Setting

ηj := λj −
λk
αk
αj , j = 1, . . . , n,

we have

x =
∑
j 6=k

ηjxj ,
∑
j 6=k

ηj = 1 and ηj ≥ 0 for j = 1, . . . , n.

Thus, x is a convex combination of n − 1 points. If these points are affinely inde-
pendent, the proof is finished. If not, the above argument can be repeated, and after
finitely many steps x can be represented as a convex combination of affinely indepen-
dent points of A.
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Corollary 2.7. The convex hull coA of any set A ⊂ Rd is the union of all n-simplices
(n ≤ d) with vertices in A.

Proof. Obviously, any n-simplex with vertices inA, where n ≤ d, is a subset of coA.
The reverse inclusion immediately follows from Carathéodory’s theorem 2.6.

Corollary 2.8. The convex hull of any compact subset of Rd is compact.

Proof. Let K be a compact subset of Rd and

D :=
{
λ ∈ Rd+1 : λ = (λ0, . . . , λd),

d∑
j=0

λj = 1 and λj ≥ 0 for j = 0, . . . , d
}
.

The mapping F : D ×K × · · · ×K → K defined as

F : (λ, x0, . . . , xd) 7→
d∑
j=0

λjxj

is continuous. By Carathéodory’s theorem 2.6,

coK = F (D ×K × · · · ×K).

Hence, coK, as a continuous image of the compact set D×K×· · ·×K, is compact.

Definition 2.9 (Extreme points). A point z of a set C ⊂W is called an extreme point
of C if z is not an internal point of any segment having its endpoints in C. In other
words, z is an extreme point of C if x, y ∈ C, λ ∈ (0, 1) and z = λx + (1 − λ)y,
implies x = y. It is easy to check that z is an extreme point of a convex set C if and
only if the set C \ {z} is convex, and this is the case if and only if z is not a midpoint
of any nondegenerate segment having its endpoints in C.

We denote by extC the set of all extreme points of C.

Lemma 2.10. Let S be an n-simplex in Rd with vertices e0, . . . , en. Then

extS = {e0, . . . , en} .

Proof. Let x ∈ extS. Since S = co {e0, . . . , en} and the set S \ {x} is convex,
x = ek for some k ∈ {0, 1, . . . , n}. Conversely, select ek and assume that

ek =
1
2
s+

1
2
t

where s, t ∈ S = co {e0, . . . , en}. Write

s =
n∑
j=0

αjej , t =
n∑
j=0

βjej ,
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with

αj , βj ≥ 0,
n∑
j=0

αj =
n∑
j=0

βj = 1.

Then

ek =
n∑
j=0

1
2
(αj + βj)ej

or ∑
j 6=k

1
2
(αj + βj)(ej − ek) = 0.

Consequently,
αj + βj = 0 for j ∈ {0, . . . , n} \ {k} ,

thus s = t = ek.

The following assertion shows the prominent role of extreme points in finite-dim-
ensional compact convex sets. Infinite-dimensional situation is more complicated, see
Example 2.15 and the Krein–Milman theorem 2.22.

Theorem 2.11 (Minkowski). Each point of a compact convex set C ⊂ Rd is a convex
combination of extreme points of C.

Proof. We proceed by induction on the dimension d. For the dimension d = 0, the
set C reduces to a one-point set and the assertion holds. So assume that d > 0 and
that the assertion is valid for compact convex sets in spaces of dimension smaller than
d. We may also assume that the interior of C is nonempty, for otherwise C is a subset
of an affine subspace of a smaller dimension (cf. Exercise 2.107(c)) and the assertion
follows by the induction assumption.

We distinguish two cases. If x is a boundary point of C, then by Proposition 2.4
there exists a support hyperplane L of C at x. Then the compact convex set F :=
C ∩ L lies in the affine subspace L of dimension smaller than d. By the induction
assumption, x ∈ co extF . Since obviously extF ⊂ extC, the induction step is
finished.

Now suppose that x ∈ IntC. There exists a segment [a, b] ⊂ C such that x ∈ (a, b)
and a, b ∈ ∂C. Since a, b ∈ co extC by the previous argument, we see that x can be
expressed as a convex combination of extreme points of C.

Theorem 2.12 (Minkowski–Carathéodory). Each point of a compact convex set C ⊂
Rd is a convex combination of (at most d + 1) affinely independent extreme points of
C.

Proof. A consequence of Theorems 2.6 and 2.11. Indeed, given a point c ∈ C, by the
Minkowski theorem 2.11, there exists a set A ⊂ extC such that c ∈ coA. Now, it
suffices to apply Carathéodory’s theorem 2.6.
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Corollary 2.13. Let x be a point of a compact convex set C ⊂ Rd. Then there exists
an n-simplex S, n ≤ d, such that x ∈ S ⊂ C and extS ⊂ extC.

Proof. The assertion is a rewording of the previous Minkowski–Carathéodory theo-
rem.

Remark 2.14. In [1] E. M. Alfsen constructed a non-simplicial compact polyhedron in
`1, showing that the conclusion of the previous Corollary 2.13 in infinite-dimensional
spaces fails. At the same time, he posed a question that “it would be of some interest
to find sufficient conditions for a compact convex set X to admit a decomposition” as
in Corollary 2.13: Given x ∈ X , there would exists a set S ⊂ X such that x ∈ S,
extS ⊂ extC, and a unique representing measure for x carried by extS. We present
in Exercise 6.93 an example illustrating this phenomenon.

2.1.B The Krein–Milman theorem

Recall that a point z of a subset C of a vector space W is an extreme point of C if z
is not an internal point of any nondegenerate segment having endpoints in C and that
extC denotes the set of all extreme points of C.

In the Euclidean space Rd, the set extC is of fundamental importance. The Min-
kowski theorem 2.11 says that each point of a compact convex set C ⊂ Rd is a convex
combination of extreme points of C. Thus, C = co(extC).

The aim of this subsection is to examine an analogous result and its relatives in the
framework of infinite-dimensional spaces. Note, that in infinite-dimensional spaces, a
compact convex set need not be a convex hull of its extreme points, as Example 2.15
shows.

Example 2.15. Let {en}∞n=1 be the orthonormal basis in `2 formed by the standard
unit vectors en, and let

B := {0, e1,
1
2
e2,

1
3
e3, . . . } and C := coB.

Since B is clearly compact, it is easy to see that C is a compact convex set (see [173],
Exercise 1.56). By the Milman theorem 2.43, extC ⊂ B. (In fact, it is easy to verify
that extC = B.) Defining

xn := (1− 2−n)−1
n∑
k=1

2−k
1
k
ek, n ∈ N,

we have xn ∈ co extC and

xn → x :=
∞∑
k=1

2−k
1
k
ek ∈ C.

Since every element of co extC has only a finite number of nonzero coordinates,
x /∈ co extC.
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Definition 2.16 (Extremal sets and faces). A generalization of the notion of extreme
points leads to an important concept: A nonempty subset F of a set C ⊂ W is an
extremal subset of C if x, y ∈ F provided that x, y ∈ C and λx + (1 − λ)y ∈ F for
some λ ∈ (0, 1). It is needless to say that one-point extremal sets are exactly extreme
points of C, and that C itself is an extremal set.

Convex extremal sets are called faces.

Definition 2.17 (Affine, concave and convex functions). Let C be a convex subset of
a vector space W . A real-valued function s on C is said to be concave if

s
(
λx+ (1− λ)y

)
≥ λs(x) + (1− λ)s(y)

for each x, y ∈ C and λ ∈ [0, 1].
A real-valued function f on C is convex if −f is concave and f is called affine if

both f and −f are concave.

Obviously, the restriction of any linear functional on W to C is an affine function.

Lemma 2.18. If H is an extremal subset of F and F is an extremal subset of D, then
H is an extremal subset of D.

Proof. Obvious.

Lemma 2.19. If X is a nonempty compact convex subset of a locally convex space E,
s is a concave lower semicontinuous function on X and

L := {x ∈ X : s(x) = min s(X)},

then L is a compact extremal subset of X .
If K is a nonempty compact subset of E, f ∈ E∗ and

H := {x ∈ K : f(x) = min f(K)},

then H is a compact extremal subset of K.

Proof. It is clear that L is compact and nonempty. Choose x, y ∈ X , λ ∈ (0, 1). If
a := λx+ (1− λ)y and a ∈ L, then

s(a) ≥ λs(x) + (1− λ)s(y) ≥ λs(a) + (1− λ)s(a) = s(a).

From this it easily follows that x, y ∈ L.
The proof of the second assertion is similar.

Proposition 2.20. Let K be a nonempty compact subset of a locally convex space
E and F a compact extremal subset of K. Then F ∩ extK 6= ∅. In particular,
extK 6= ∅.



2.1 Geometry of convex sets 11

Proof. Consider the family F of all closed extremal subsets of F ordered by the
reverse inclusion. If R is a chain in F , then Y :=

⋂
{R : R ∈ R} is nonempty

in view of the compactness of K. Since it is easy to check that Y is an extremal
subset of K, Y is an upper bound for R. Zorn’s lemma now provides a maximal
element of this family, call it D. An appeal to the Hahn–Banach theorem reveals that
D is a one-point set. Indeed, assuming that D were to contain distinct points x and
y, the Hahn–Banach theorem would provide f ∈ E∗ such that f(x) < f(y). By
Lemma 2.19, the set

{z ∈ D : f(z) = min f(D)}

would be a proper closed extremal subset of D and, in view of Lemma 2.18, also a
closed extremal subset of F . This contradicts the maximality of D. Since, as men-
tioned above, one-point extremal sets are exactly extreme points of F , we can find a
point x ∈ extF . Again, by Lemma 2.18, x ∈ extK and we are done.

Theorem 2.21. Let K be a compact subset of a locally convex space E. Then K ⊂
co extK.

Proof. Assume that there exists a point x ∈ K\co extK. Using the geometric version
of the Hahn–Banach theorem, there exists f ∈ E∗ such that

f(t) > f(x) for any t ∈ co extK.

If
H := {z ∈ K : f(z) = min f(K)},

then H is a (nonempty) extremal subset of K by Lemma 2.19. Hence, by Proposi-
tion 2.20, H ∩ extK 6= ∅. Since H ∩ co extK = ∅, this is impossible. Therefore,
K ⊂ co extK.

Theorem 2.22 (Krein–Milman). Let X be a nonempty compact convex subset of a
locally convex space E. Then X = co extX .

Proof. It is pretty clear that co extX ⊂ X . The reverse inclusion follows from Theo-
rem 2.21.

Remarks 2.23. (a) The Krein–Milman theorem also holds in locally convex spaces
over complex numbers. For a proof see, for example, W. Rudin [403], Theorem 3.21.

(b) If K is a compact subset of a locally convex space, then coK = co extK. This is
an immediate consequence of Theorem 2.21.

Corollary 2.24 (Bauer’s concave minimum principle). Let s be a lower semicontin-
uous concave function on a nonempty compact convex subset X of a locally convex
space. Then there exists z ∈ extX such that s(z) = min s(X).
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Proof. Denote
D := {x ∈ X : s(x) = min s(X)} .

Then D is a nonempty compact subset of X and, by Lemma 2.19, an extremal subset
of X . By Proposition 2.20, D ∩ extX 6= ∅, and thus the proof is complete.

Remarks 2.25. (a) The Krein–Milman theorem is an easy consequence of Bauer’s
concave minimum principle. Indeed, if X is a nonempty compact convex subset of a
locally convex space E, the constant function 1 on X attains its minimum on extX .
Thus the set extX is nonempty. If x ∈ X \ co extX , then, by the geometric version
of the Hahn–Banach theorem, there exists f ∈ E∗ such that

f(x) < 1 and f ≥ 1 on co extX.

This contradicts Bauer’s minimum principle since f |X is a continuous affine function.

(b) In Section 3.9 we prove a generalization of Bauer’s concave minimum principle
by a different method.

Integral representation. Now we would like to show how to use the Krein–Milman
theorem for establishing integral-type representation theorems.

Let x be a point of a compact convex set X in a locally convex space. Our aim is
to find a Radon measure µ on X so that

f(x) =

∫
X
f dµ

for any continuous affine function f on X . Of course, the Dirac measure εx at x is
one such measure. However, we try to find other “representing” measures, preferably
concentrated on a very small part of X . More precisely, we are looking for a measure
µ such that
(a) the support sptµ of µ is contained in the closure extX of the set of all extreme

points of X , or even

(b) µ is carried by the set extX .

Definition 2.26 (Barycenter of a measure). LetX be a compact convex set in a locally
convex space E. Denote by Ac(X) the set of all continuous affine functions on X .

A point x ∈ X is said to be the barycenter of a probability Radon measure µ ∈
M1(X) if the following barycentric formula

f(x) =

∫
X
f dµ

holds for any f ∈ Ac(X). Since the functionals fromE∗ separate the points ofE, and
since the restrictions to X of such functionals are elements of Ac(X), we see that the
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barycenter r(µ) of µ (which exists by Theorem 2.29), is uniquely determined. Note
that

r(µ) =

∫
X
t dµ(t),

where the integral is to be understood as the Pettis integral.
In the case when r(µ) = x, we also say that the measure µ represents the point x.

In other words, the equality x = r(µ) means that the Integral representation theorem
holds for the point x. We denote byMx(A

c(X)), or for shortMx(X), the set of all
measures representing the point x.

Obviously, as noted above, the Dirac measure εx always represents the point x. In
what follows, we answer the following questions:

(a) Does any Radon measure have a barycenter ?

(b) Is any point of X a barycenter of a Radon measure carried by extX ?

Proposition 2.27. The spaceM1(K) consisting of all probability measures on a com-
pact space K is a compact convex subset ofM(K) and

extM1(K) = {εx : x ∈ K} .

The mapping ε : x 7→ εx, x ∈ K, is a homeomorphism of K onto extM1(K).

Proof. It is easy to verify that M1(K) is a convex subset of M(K). By Theo-
rem A.85(a), it is compact.

If x ∈ K and

εx = αµ+ (1− α)ν where µ, ν ∈M1(K) and α ∈ (0, 1),

then
1 = αµ({x}) + (1− α)ν({x}).

This implies that µ({x}) = ν({x}) = 1, and therefore µ = ν = εx.
If µ ∈M1(K) is not a Dirac measure, then there exists a compact set F ⊂ K such

that the measures ν := µ|F and λ := µ|K\F are nontrivial and distinct from µ. Since

µ = ν(F )
ν

ν(F )
+ λ(K \ F ) λ

λ(K \ F )
,

we see that µ is not an extreme point ofM1(K).
The mapping x 7→ εx, x ∈ K, is an injective continuous mapping from K onto

{εx : x ∈ K} and hence K and extM1(K) are homeomorphic.

Corollary 2.28. The set of all convex combinations of Dirac measures is dense in
M1(K).
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Proof. As an easy consequence of the Krein–Milman theorem 2.22 and the charac-
terization of extreme points given by Proposition 2.27, we have

M1(K) = co extM1(K) = co {εx : x ∈ K} ,

which finishes the proof.

Theorem 2.29. Let X 6= ∅ be a compact convex subset of a locally convex space E.
Then each Radon measure fromM1(X) has a (unique) barycenter in X .

Proof. With the uniqueness part already out of the way, we now concentrate on an
existence proof. If a measure µ in question is molecular, µ =

∑n
j=1 λjεxj , where

xj ∈ X , λj ≥ 0, j = 1, . . . , n,
∑n

j=1 λj = 1, then obviously r(µ) :=
∑n

j=1 λjxj ∈
X is the barycenter of µ. Given a measure µ ∈ M1(X), there exists a net {µγ} of
molecular measures on X such that µγ → µ. Since X is a compact set, there exists a
subnet {r(µα)} of {r(µγ)} converging to an element z ∈ X . Pick f ∈ Ac(X). Then

f(z) = lim
α
f(r(µα)) = lim

α

∫
X
f dµα =

∫
X
f dµ,

and therefore z is a barycenter of µ.

Definition 2.30 (Barycenter mapping). LetX be a compact convex subset of a locally
convex space. The mapping r : µ 7→ r(µ), assigning to each measure µ ∈ M1(X)
its barycenter, is called the barycenter mapping.

In Proposition 2.38 we show that the barycenter mapping is a continuous and affine
mapping fromM1(X) into X . This mapping is surjective since r(εx) = x for any
x ∈ X .

Theorem 2.31 (Integral representation theorem). Let X be a compact convex subset
of a locally convex space E and let x ∈ X . Then there exists a measure µ ∈ M1(X)
such that r(µ) = x and sptµ ⊂ extK.

Proof. From the Krein–Milman theorem 2.22, we can see the following fact: if f ∈
Ac(X) and f = 0 on extX , then f = 0 on X . We denote by B the subspace of
C(extX) consisting of all restrictions of functions in Ac(X) to extX . Then, for every
h ∈ B, there exists, by the above mentioned fact, a unique function ĥ ∈ Ac(X) which
coincides with h on extX . We fix x ∈ X and set

ϕ : h 7→ ĥ(x), h ∈ B.

Evidently ϕ ∈ B∗ and ‖ϕ‖B = 1. The functional ϕ can be extended by the Hahn–
Banach theorem from B to a functional Φ ∈ (C(extX))∗ with the same norm. Since,
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in addition, Φ(1) = ϕ(1) = 1, Φ is a positive functional. Indeed, if f ∈ C(extX),
f ≥ 0, a = 1

2 sup f(extX), then ‖a− f‖ ≤ a and so

a−Φ(f) = Φ(a)−Φ(f) = Φ(a− f) ≤ ‖a− f‖ ≤ a.

This yields Φ(f) ≥ 0. By the Riesz representation theorem, there exists a probability
measure µ on extX such that Φ(f) =

∫
X f dµ for every function f ∈ C(extX).

The measure µ can be regarded as a measure on X carried by the set extX . Since
obviously ∫

X
g dµ = Φ(g) = ϕ(g|extX) = ĝ(x) = g(x)

for every g ∈ Ac(X), we see that the barycenter of the measure µ is exactly the
point x.

Remarks 2.32. (a) Theorem 2.31 can be proved by an alternative manner. In fact, we
can follow the proof of Proposition 2.39 step by step.

(b) In concrete applications, we are often able to characterize the set extX . However,
the character of the elements of the set extX \extX is generally rather obscure. Con-
sequently, the information concerning the support of the measure from the theorem on
integral representation is problematic, unless the set extX is closed. Moreover, there
is another problem. Let us imagine that the set of extreme points of a compact convex
set X is dense in this set, that is, extX = X . Then, naturally, the Krein–Milman
theorem says nothing, and equally useless is the theorem on integral representation.
Indeed, it suffices to take the Dirac measure εx at the point x for the measure repre-
senting the point x . This situation can actually occur. As an example, we can take
the closed unit ball B in an arbitrary infinite-dimensional Hilbert space, which we of
course consider to be equipped with the weak topology. The extreme points of B are
then the points of the unit sphere, and its (weak) closure is equal to the whole ball B.
A more sophisticated example with extX = X is the Poulsen simplex in the Hilbert
space `2 (see Subsection 12.3.A).

However, much more is known. Namely, if we consider the so-called Hausdorff
metric on the set F of all nonempty compact convex subsets of a given Banach space
X of infinite dimension, the space F is complete and the set

{
C ∈ F : extC 6= C

}
is merely meager in F . This assertion was proved by V. L. Klee in [271]. Thus, in a
certain sense, for the majority of compact convex sets we have extC = C.

Hence the problem of whether it is possible to find a measure µwhich is carried just
on the set of extreme points in the theorem on integral representation is crucial. This
problem was solved successfully by G. Choquet in the fifties of the 20th century and
laid the foundations of the Choquet theory. We will devote the next chapters to it, in
the more general setting of function spaces. The Choquet theory has provided many
insights for abstract analysis, infinite-dimensional geometry, descriptive set theory,
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potential theory and other fields of mathematics. It has remained fruitful ever since
and has found new applications again and again in deriving new results.

(c) In Sections 14.5 and 14.6, we exceptionally consider locally convex spaces over
the field of complex numbers. Note that the Integral representation theorem 2.31
extends trivially to the complex case. Indeed, consider a compact convex subset X
of a complex locally convex space E. Of course, E can be regarded as a locally
convex space over the field of real numbers. Then, given x ∈ X , there exists, by
Theorem 2.31, a measure µ ∈M1(X) carried by extX such that

f(x) =

∫
X
f dµ (2.1)

for every real continuous functional f on E. Given a complex continuous functional
F on E, we can apply (2.1) to ReF and ImF to conclude that

F (x) =

∫
X
F dµ.

The Integral representation theorem will be applied several times in the sequel. For
this purpose, the following easy consequence of the previous theorem will be useful.

Proposition 2.33 (Krein–Milman theorem with transfer). Let E be a locally convex
space of real-valued functions on a set M such that, for every x ∈M , the evaluation
functional Fx : f 7→ f(x) is continuous on E. Let K ⊂ E be a compact convex
set. Let Q be a compact space and Φ : y 7→ ϕy, y ∈ Q, be an injective continuous
mapping of Q onto extK. Then there exists a probability measure µ on Q such that,
for every f ∈ K,

f(x) =

∫
Q
ϕy(x) dµ(y), x ∈M.

Proof. Since extK is a continuous image of a compact set, it is closed. Let f ∈ K.
By Theorem 2.31, there exists a probability measure µ̃ carried by extK such that

F (f) =

∫
extK

F dµ̃ (2.2)

for each continuous linear functional F on E. Let us define µ = Φ−1
]µ̃. By Proposi-

tion A.92, ∫
extK

F dµ̃ =

∫
extK

(F ◦Φ) ◦Φ
−1 dµ̃ =

∫
Q
F ◦Φ dΦ

−1
]µ̃

=

∫
Q
F ◦ ϕy dµ(y).

(2.3)
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Applying (2.2) and (2.3) to the evaluation functional Fx, we obtain

f(x) =

∫
extK

Fx dµ̃ =

∫
Q
ϕy(x) dµ(y), x ∈M.

Lemma 2.34. Let X be a compact convex subset of a locally convex space E. Then
the space (E∗ + R)|X is dense in Ac(X).

Proof. Let X be a nonempty compact convex set. Fix a function h ∈ Ac(X) and
ε > 0. Denote

J1 := {(x, t) ∈ X × R : t = h(x)}
and

J2 := {(x, t) ∈ X × R : t = h(x) + ε} .
Then J1, J2 is a pair of disjoint nonempty compact convex subsets of E × R. By the
Hahn–Banach theorem, there exist a functional F ∈ (E × R)∗ and λ ∈ R such that

supF (J1) < λ < infF (J2).

There are ϕ ∈ E∗ and β ∈ R such that F (t, r) = ϕ(t) + βr for any t ∈ E and
any r ∈ R. From the separation of J1 and J2 it easily follows that β 6= 0. Put
ψ(t) := 1

β (λ− ϕ(t)) for t ∈ E. Since

ϕ(t) + βh(t) < λ < ϕ(t) + βh(t) + βε, t ∈ X,

we easily get ‖h− ψ‖ < ε.

Remark 2.35. In general, there might exist a continuous affine function on a compact
convex set X that is not of the form (E∗ + R)|X ; see Exercise 2.111.

Proposition 2.36. A Radon measure µ ∈M1(X) represents x ∈ X if and only if

ϕ(x) =

∫
X
ϕdµ for any ϕ ∈ E∗.

Proof. Recall that, by definition, µ represents x ∈ X if h(x) =
∫
X h dµ for any

h ∈ Ac(X). Hence the assertion is an easy consequence of Lemma 2.34 and the
Lebesgue dominated convergence theorem.

Definition 2.37 (The barycenter revisited). Proposition 2.36 enables us to extend sli-
ghtly the definition of a barycenter to the case of nonconvex sets and points not be-
longing to this set.

Let K be a compact subset of a locally convex space E. We say that x ∈ E is the
barycenter of a Radon measure µ ∈ M1(K), or that µ represents x, in a symbol
x = r(µ), if

ϕ(x) =

∫
K
ϕdµ for any ϕ ∈ E∗.
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Proposition 2.38. If X is a compact convex subset of a locally convex space, the
barycenter mapping r : M1(X)→ X is affine and continuous.

Hint. Obviously, r is affine. If {µγ} is a net inM1(X), µγ → µ and f ∈ E∗, then

f(r(µγ)) = µγ(f)→ µ(f) = f(r(µ)).

Consequently, the net {r(µγ)} is weakly converging in X to r(µ). Since X is a
compact set, r(µγ)→ r(µ) by Proposition A.28.

Proposition 2.39. If K is a compact subset of a locally convex space E and x ∈ E,
then the following statements are equivalent:

(i) x ∈ coK,

(ii) there exists a Radon measure µ ∈M1(K) such that r(µ) = x.

Proof. Let µ ∈ M1(K) satisfy r(µ) = x. Assuming that x /∈ coK, by the Hahn–
Banach theorem there exist ϕ ∈ E∗ and λ ∈ R such that ϕ(x) < λ ≤ ϕ(t) for any
t ∈ coK. Then, obviously, no Radon measure µ ∈ M1(K) with ϕ(x) =

∫
K ϕdµ

exists.
Conversely, assume that x ∈ coK. There exists a net {xα} of points in coK such

that xα → x. We can write

xα =

nα∑
j=1

λαj x
α
j , where nα ∈ N, xαj ∈ K,λαj ≥ 0,

nα∑
j=1

λαj = 1.

We define for each α

µα :=
nα∑
j=1

λαj εxαj .

Then µα ∈ M1(K) and r(µα) = xα. Since the set M1(K) is compact, we may
assume that {µα} converges to µ ∈M1(K). For any ϕ ∈ E∗,

ϕ(r(µα)) = µα(ϕ)→ µ(ϕ) and ϕ(r(µα)) = ϕ(xα)→ ϕ(x).

Hence ϕ(x) = µ(ϕ) and r(µ) = x.

Theorem 2.40 (Bauer’s characterization of extX). LetX be a compact convex subset
of a locally convex space and x ∈ X . Then x ∈ extX if and only if the Dirac measure
εx is the only measure fromM1(X) with a barycenter x.

Proof. If x = 1
2(a+b) where a, b ∈ X , a 6= b, then the measure 1

2(εa+εb) ∈M
1(X),

which differs from εx, has the barycenter x.
Assume now that x ∈ extX and µ ∈ M1(X) with r(µ) = x are given. It must

be shown that µ = εx. To see this, it suffices to show that sptµ = {x}. Assume that
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z ∈ sptµ \ {x}. Let U ⊂ X be a closed convex neighborhood of z in X such that
x /∈ U . The set U is compact and convex, µ(U) < 1 in view of Proposition 2.39, and
obviously µ(U) > 0. Set

µ1 :=
1

µ(U)
µ|U and µ2 :=

1
µ(X \ U)

µ|X\U .

Then µ1, µ2 are inM1(X). Since µ1(U) = 1, we get r(µ1) ∈ U (again from Propo-
sition 2.39). Hence r(µ1) 6= x. We have

µ = µ(U)µ1 + (1− µ(U))µ2

and we see that
x = µ(U)r(µ1) + (1− µ(U))r(µ2)

is a convex combination of r(µ1) and r(µ2). This contradicts the assumption that x is
an extreme point of X and yields the required conclusion.

Proposition 2.41 (Choquet). Let X be a compact convex subset of a locally convex
space E and x ∈ extX . Then the family

{y ∈ X : f(y) < λ}, f ∈ E∗ and λ ∈ R with f(x) < λ,

form a base of neighborhoods of x in X .

Proof. Let U be an open neighborhood of x. Then X \ U is a compact set so that
x /∈ co(X \ U).

Indeed, if this were not true, then Proposition 2.39 would provide a probability
measure µ carried by X \U with r(µ) = x. But this would contradict our assumption
that x is an extreme point because the only representing measure for x is the Dirac
measure εx (see Theorem 2.40).

Now the Hahn–Banach separation theorem yields the existence of a continuous
linear functional f and λ ∈ R such that f(x) < λ and f > λ on co(X \ U). Thus
x ∈ {y ∈ X : f(y) < λ} ⊂ U and the proof is finished.

Proposition 2.42. Let K1, . . . ,Kn be compact convex subsets of a topological vector
space. Then co(K1 ∪ · · · ∪Kn) is compact.

Proof. We follow the same lines as in the proof of Corollary 2.8. Since

co(K1 ∪ · · · ∪Kn) = F (D ×K1 × · · · ×Kn)

where

D :=
{
λ ∈ Rn : λ = (λ1, . . . , λn),

n∑
j=1

λj = 1 and λj ≥ 0 for j = 1, . . . , n
}
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and

F : (λ, x1, . . . , xn) 7→
n∑
j=1

λjxj , (λ, x1, . . . , xn) ∈ D ×K1 × · · · ×Kn

is continuous, it follows that co(K1 ∪ · · · ∪Kn) is compact.

Theorem 2.43 (Milman). Let B be a subset of a locally convex space E such that the
set X := coB is compact. Then extX ⊂ B.

Proof. Assume that x ∈ extX \ B. By Proposition 2.41, there exist f ∈ E∗ and
λ ∈ R such that

f(x) > λ ≥ inf f(B).

Since f ∈ E∗, inf f(B) = inf f(coB). Therefore we get x /∈ coB = X , which is a
contradiction.

Proposition 2.44. Let X be a compact convex subset of a locally convex space E and
∅ 6= B ⊂ X . Then the following assertions are equivalent:

(i) coB = X ,

(ii) inf f(B) = min f(X) for each f ∈ E∗,

(iii) extX ⊂ B.

Proof. Assertions (i) and (iii) are equivalent by the Krein–Milman and Milman theo-
rems 2.22 and 2.43. The implication (i) =⇒ (ii) is obvious. Conversely, the proof
of the implication (ii) =⇒ (i) follows the same lines as the end of the proof of the
Krein–Milman theorem: if coB 6= X , the Hahn–Banach separation theorem yields
the assertion.

Proposition 2.45. Any metrizable compact convex subset X of a locally convex is
affinely homeomorphic to a compact convex subset of the Hilbert space `2.

Proof. Since X is a metrizable compact set, the space C(X) is separable, so it is the
space Ac(X) of all continuous affine functions on X . Let {fn : n ∈ N} be a dense
subset of the closed unit ball of Ac(X). If

T : x 7→
{ 1
n
fn(x)

}
, x ∈ X,

then T is a continuous affine injective mapping of X into `2. Thus T is an affine
homeomorphism of X onto a compact convex subset T (X) of `2.
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2.1.C Exposed points

Definition 2.46 (Exposed points). If X is a compact convex set, a point x ∈ X is
exposed if there exists a function f ∈ Ac(X) such that f(x) > f(y) for each y ∈
X \ {x}.

We call such a function f an exposing function for x and the set of all exposed
points of X is denoted as expX .

We point out the following simple, but important fact.

Proposition 2.47. For any compact convex set, expX ⊂ extX .

Proof. The proof follows by a straightforward verification.

Definition 2.48 (Farthest points). Let D be a subset of a normed linear space E. A
point z ∈ D is called a farthest point of D if there exists x ∈ E such that ‖x− z‖ =
sup{‖x− t‖ : t ∈ D}.

The set of all farthest points of D is denoted by farD.

Lemma 2.49. If X is a nonempty compact convex subset of a Hilbert space H , then
farX ⊂ expX and it is a nonempty set.

Proof. The inclusion farX ⊂ expX follows from the fact that any point x in the
closed unit ball BH of norm 1 is an exposed point of BH (we recall that BH is a
compact convex set in the weak topology of H). Indeed, f(y) := (y, x), y ∈ H , is an
exposing function for x.

If y ∈ H is chosen arbitrarily, a simple compactness argument yields the existence
of a point z ∈ X such that ‖y − z‖ = sup{‖y − x‖ : x ∈ X}. Hence farX is
nonempty.

Proposition 2.50. Let X be a nonempty compact convex subset of a Hilbert space H .
Then X = co farX = co expX .

Proof. Since farX ⊂ expX , it suffices to show that X = co farX . Assume that
x ∈ X \co farX . By the Hahn–Banach theorem and the Fréchet–Riesz representation
theorem, there exist h ∈ H and λ ∈ R such that (x, h) < λ ≤ (y, h) for each
y ∈ co farX . Denote s := sup{‖t‖ : t ∈ X}. Let α > 0 be such that

2α
(
λ− (h, x)

)
> s2 − ‖x‖2.

By compactness, there exists z ∈ X such that ‖αh − z‖ = sup{‖αh − t‖ : t ∈ X}.
Of course, z ∈ farX . Since

‖αh− z‖2 = α2‖h‖2 − 2α(h, z) + ‖z‖2 ≤ α2‖h‖2 − 2αλ+ s2

< α2‖h‖2 − 2α(h, x) + ‖x‖2 = ‖αh− x‖2,

we get ‖αh− z‖ < ‖αh− x‖, which is a contradiction.
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Theorem 2.51. Let X be a metrizable compact convex subset of a locally convex
space. Then X = co expX .

Proof. By Proposition 2.45, X is affinely homeomorphic to a compact convex subset
of `2. Obviously, exposed points are preserved by an affine homeomorphism and thus
the assertion follows from Proposition 2.50.

Corollary 2.52. Let X be a metrizable compact convex subset of a locally convex
space. Then extX ⊂ expX .

Proof. The assertion is an immediate consequence of Theorem 2.51 and Proposi-
tion 2.44.

2.2 Interlude: On the space M(K)

Let K be a compact space and M(K) the space of all signed Radon measures on
K. We emphasize that on the spaceM(K) we always consider the weak∗-topology
given by the duality of C(K) andM(K). In this chapter we collect some properties
of this space and its subspaces.

Example 2.53 (Image of a measure fromM1(K)). IfK is a compact space, it follows
from Proposition 2.27 that the mapping ε : x 7→ εx, x ∈ K, is a homeomorphism
of K onto extM1(K). Let Λ := ε]λ be the image of a probability measure λ with
sptλ ⊂ K under ε.

The following proposition will be useful in many examples.

Proposition 2.54. The measure Λ from Example 2.53 is carried by the (closed) set
ε(sptλ) and its barycenter equals λ.

Proof. Since
Λ(ε(sptλ)) = λ(ε−1(ε(sptλ))) = λ(sptλ) = 1,

we see that Λ is carried by ε(sptλ).
Pick ϕ ∈

(
M(K)

)∗. By duality theory, there exists f ∈ C(K) such that

ϕ(µ) = µ(f) for any µ ∈M(K).

Then (cf. Proposition A.92),

Λ(ϕ) = (ε]λ)(ϕ) = λ(ϕ ◦ ε) =
∫
K
ϕ(εx) dλ(x) =

∫
K
f(x) dλ(x)

= λ(f) = ϕ(λ),

and r(Λ) = λ.
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Proposition 2.55. Let F be a closed subset of a compact space K and b > 0. Then
the function

ϕb : µ 7→ µ({x ∈ F : µ({x}) ≥ b}), µ ∈M1(K),

is upper semicontinuous onM1(K).

Proof. Let c > 0 and

µ ∈ G := {ν ∈M1(K) : ϕb(ν) < c}

be given. We will show that G contains a neighborhood W of µ.
The set L := {x ∈ F : µ({x}) ≥ b} is finite. Let U be an open subset of K such

that L ⊂ U and µ(U) < c. For every x ∈ F \U we find an open neighborhood Vx of
x so that µ(V x) < b. Using compactness, we select finitely many points x1, . . . , xn
such that

F \ U ⊂ Vx1 ∪ · · · ∪ Vxn .

Since the function ν 7→ ν(H) is upper semicontinuous onM1(K) for every closed
set H ⊂ K (see Theorem A.85(b)), the set

W := {ν ∈M1(K) : ν(U) < c, ν(V xi) < b, i = 1, . . . , n}

is open and contains µ. It remains to show that ϕb(ν) < c for every ν ∈W .
Given a measure ν ∈ W , let Lν := {x ∈ F : ν({x}) ≥ b}. It follows from the

choice of W that Lν ⊂ U . Thus

ϕb(ν) = ν(Lν) ≤ ν(U) < c,

and ϕb is upper semicontinuous.

Proposition 2.56. Let F be a closed subset of a compact space K. Then the function

ψ : µ 7→ µd(F ) :=
∑
x∈F

µ({x}), µ ∈M1(K),

is a limit of an increasing sequence of positive upper semicontinuous functions on
M1(K).

Proof. For n ∈ N, let ψn be the function ϕb from Proposition 2.55 for b = 1/n. Then
it is easy to check that ψn ↗ ψ on M1(K). As ψn are upper semicontinuous and
positive functions, the proof is finished.

Definition 2.57 (Fσ and Gδ faces). A face which is simultaneously an Fσ set is called
an Fσ face. Analogously, a Gδ face is a face which is a Gδ set.
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Proposition 2.58. Let F be a closed subset of a compact space K. Then the set

G :=
{
µ ∈M1(K) : µ|F is continuous

}
is a Gδ face ofM1(K) such that G ∩ extM1(K) = ∅.

Proof. Let ψ : µ 7→ µd(F ), µ ∈M1(K), where µd is the discrete part of µ. Accord-
ing to Proposition 2.56, there is a sequence {ψn} of positive upper semicontinuous
functions such that ψn ↗ ψ onM1(K). Then

G =
{
µ ∈M1(K) : ψ(µ) = 0

}
=

∞⋂
n=1

∞⋂
k=1

{
µ ∈M1(K) : ψn(µ) <

1
k

}
.

It follows that G is a Gδ set which is obviously convex and extremal. Since

extM1(K) = {εx : x ∈ K}

(cf. Proposition 2.27) and Dirac measures are discrete, we have G ∩ extM1(K) =
∅.

Proposition 2.59. Let

H :=
∞⋃
n=2

{
µ ∈M1([0, 1]) : sptµ ⊂

[ 1
n , 1
]}
.

Then H is an Fσ face ofM1([0, 1]) which is not of type Gδ.

Proof. Obviously, H is a convex set and extremal. Moreover, H is of type Fσ. Since
both sets H andM1([0, 1]) \H are dense inM1([0, 1]), H is not a Gδ set (cf. Theo-
rem A.58).

Proposition 2.60. Let K be a compact space and ω ∈M1(K). Define

ψ : µ 7→ µs(K), µ ∈M1(K),

where µs is the singular part of µ with respect to the measure ω. Then ψ is a limit of
a decreasing sequence of lower semicontinuous functions onM1(K).

Proof. For n ∈ N, set

ψn(µ) := sup
{
µ(G) : G ⊂ K open and ω(G) <

1
n

}
, µ ∈M1(K).

Obviously, {ψn} is a decreasing sequence of lower semicontinuous functions. Recall
that, by Theorem A.85(b), the function

µ 7→ µ(G), µ ∈M1(K),

is lower semicontinuous onM1(K) for any open set G ⊂ K.
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Pick n ∈ N and µ ∈M1(K). There exists a Borel set B ⊂ K such that

µs(B) = µs(K) = ψ(µ) and ω(B) = 0.

Let G ⊂ K be an open set containing B for which ω(B) < 1
n . Then

ψ(µ) = µs(B) ≤ µs(G) ≤ µ(G) ≤ ψn(µ).

Hence, ψ ≤ ψn for any n ∈ N.
It remains to show that limn→∞ ψn = ψ. To this end, pick µ ∈ M1(K) and

c > ψ(µ). Since µac � ω (recall that µac denotes the absolutely continuous part of µ
with respect to ω, see Proposition A.65), there exists n ∈ N so that

µac(B) < c− ψ(µ)

whenever B is a Borel set with ω(B) < 1
n . Now, if G ⊂ K is an open set satisfying

ω(G) < 1
n , then

µ(G) = µs(G) + µac(G) ≤ µs(K) + c− µs(K) = c.

Thus, ψn(µ) ≤ c, and therefore ψn → ψ.

Proposition 2.61. If λ denotes Lebesgue measure on [0, 1] and

L :=
{
µ ∈M1([0, 1]) : µ ⊥ λ

}
,

then L is a Gδ face ofM1([0, 1]) which is not of type Fσ.

Proof. It is easy to check that L is convex, extremal and dense inM1([0, 1]).
Therefore all that needs to be proved is that L is a Gδ set. Let {ψn} be a sequence

of functions as in Proposition 2.60 for K := [0, 1] and ω := λ. The assertion then
follows from the following equalities

L =
{
µ ∈M1([0, 1]) : µs([0, 1]) = 1

}
=

∞⋂
n=1

{
µ ∈M1([0, 1]) : ψn(µ) = 1

}
=

∞⋂
n=1

∞⋂
k=1

{
µ ∈M1([0, 1]) : ψn(µ) > 1− 1

k

}
,

because the functions ψn are lower semicontinuous. Since L is dense, it is not an Fσ
set.

Remark 2.62. In Exercise 2.118 we indicate another reasoning of the fact that L is a
Gδ set.
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Proposition 2.63 (Choquet’s examples). Let

ϕ : µ 7→ µd([0, 1]), µ ∈M1([0, 1]),

and
ψ : µ 7→ µs([0, 1]), µ ∈M1([0, 1]).

Then ϕ and ψ are bounded affine functions onM1([0, 1]) of the second Baire class
and there exists a probability measure Λ onM1([0, 1]) such that

Λ(ϕ) 6= ϕ(r(Λ)) and Λ(ψ) 6= ψ(r(Λ)).

Proof. Obviously, ϕ and ψ are bounded and affine.
By Propositions 2.60, 2.56 and A.53, both functions ϕ and ψ are of the second

Baire class onM1([0, 1]) becauseM1([0, 1]) is metrizable by Theorem A.85.
Let Λ be the image of Lebesgue measure λ on [0, 1] under ε. According to Propo-

sition 2.54, Λ is carried by the (closed) set ε([0, 1]) and its barycenter is equal to λ. It
remains to show that the “barycentric formula”

Λ(ϕ) =

∫
M1(K)

ϕdΛ

does not hold. Indeed,

Λ(ϕ) =

∫
M1(K)

ϕdΛ =

∫
ε([0,1])

ϕdΛ

=

∫
ε([0,1])

1 dΛ = 1 6= 0 = ϕ(λ).

The same argument can be used in the case of the function ψ.

2.3 Structures in convex sets

Throughout this section, X will be a compact convex subset of a locally convex space
E.

2.3.A Extremal sets and faces

Recall that a nonempty set F ⊂ X is called extremal if x, y ∈ F whenever

x, y ∈ X,λ ∈ (0, 1) and λx+ (1− λ)y ∈ F.

One-point extremal sets are just extreme points of X .
It is simply checked that a set F is extremal if and only if⋃

{(λF − (λ− 1)X) ∩X : λ ≥ 1} ⊂ F.
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Proposition 2.64. Let F be a subset of X . Then
(a) F ∩ extX ⊂ extF ,

(b) if F is extremal, then extF = F ∩ extX .

Proof. The assertion is a straightforward consequence of definitions.

Recall that convex extremal sets are called faces. Closed extremal sets occasionally
bear the name absorbent sets.

Definition 2.65 (Generated faces). It is easy to see that any intersection of faces of
X is again a face. Hence, given a set A ⊂ X , there exists the smallest face of X
containing A. It equals the intersection of all faces containing A and is denoted by
faceA. Given x ∈ X , we will write simply facex instead of face {x} where no
confusion can arise.

Proposition 2.66. If F is a convex subset of X , then

faceF =
⋃
{(λF − (λ− 1)X) ∩X : λ ≥ 1} .

Moreover, if F is closed, faceF is an Fσ set.

Proof. Let
Fλ := (λF + (λ− 1)X) ∩X, λ ≥ 1.

First we notice that, given λ > 1, y ∈ Fλ if and only if there exists x ∈ F such that

y + (λ− 1)−1(x− y) ∈ X.

Hence Fλ ⊂ F ′λ if 1 ≤ λ ≤ λ′. It follows that
⋃
λ≥1 Fλ is a convex set. Since it is

easy to observe that
⋃
λ≥1 Fλ is extremal, we have

faceF ⊂
⋃
λ≥1

Fλ.

On the other hand, it is immediate to verify from the definition the converse inclusion.
Hence faceF =

⋃
λ≥1 Fλ.

If F is closed, a routine verification yields that each Fλ is closed as well. Hence

faceF =
∞⋃
n=1

Fn

is an Fσ set.

Corollary 2.67. If x ∈ X , then

facex = {y ∈ X : there exists z ∈ X and λ ∈ [0, 1) such that x = λz + (1− λ)y}

and facex is an Fσ set.
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Proof. Use Proposition 2.66.

Proposition 2.68. Let F be a subset of X . Then the following assertions are equiva-
lent:

(i) F is extremal,

(ii) the characteristic function cF of F is convex,

(iii) F is a union of faces.

Proof. The equivalence of (i) and (ii) is clear from the definition. Since it is easy to
check that any union of extremal sets is extremal, we have (iii) =⇒ (i).

If (i) holds, then
F =

⋃
x∈F

facex,

since facex ⊂ F for any x ∈ F .

Proposition 2.69. Let F be a subset of X . The following assertions are equivalent:

(i) F is a closed extremal set,

(ii) the characteristic function cF of F is upper semicontinuous and convex,

(iii) there exists a positive, lower semicontinuous and concave function f on X such
that F = {x ∈ X : f(x) = 0},

(iv) F is closed and sptµ ⊂ F whenever µ ∈M1(X) and r(µ) ∈ F ,

(v) F is closed and a union of faces,

(vi) F is closed and a union of closed faces.

Proof. The equivalence of (i), (ii) and (v) follows immediately; see Proposition 2.68.
Assertions (ii) and (iii) are obviously equivalent.

To see that (i) =⇒ (iv), suppose that F is a closed extremal set and µ ∈ M1(X)
such that r(µ) ∈ F . If sptµ is not a subset of F , then there exists a closed convex
set C ⊂ X \ F such that µ(C) > 0. We have µ(C) < 1, since otherwise r(µ) =
r(µ|C) /∈ F . Set

µ1 :=
1

µ(C)
µ|C and µ2 :=

1
1− µ(C)

µ|X\C .

Now,
µ = µ(C)µ1 + (1− µ(C))µ2,

hence
r(µ) = µ(C)r(µ1) + (1− µ(C))r(µ2) ∈ F.

Since F is extremal, r(µ1), r(µ2) ∈ F , which is a contradiction.
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Now let F be a closed set and let x ∈ F , x = λy + (1 − λ)z where y, z ∈ X ,
λ ∈ (0, 1). If

µ := λεy + (1− λ)εz,

then r(µ) = x and sptµ = {y, z}. Hence y, z ∈ F , which shows that F is extremal
and proves that (iv) =⇒ (i).

Since (vi) obviously implies (v), all that remains to be proved is that (i) =⇒ (vi).
So let F be a closed extremal subset of X and x ∈ X . The set

F := {C ⊂ F : x ∈ C,C convex}

ordered by inclusion satisfies the assumptions of Zorn’s lemma. Indeed, if R ⊂ F is
a chain, then the set ⋃

{R : R ∈ R}

belongs to F and it is an upper bound of R. Hence there exists a maximal element
C ∈ F . Since x ∈ C ⊂ C ⊂ F and C ∈ F , the maximality of C implies that
C = C. It remains to show that C is a face.

Since C is convex, we must verify only that C is extremal. So, we are given
a, b ∈ X and λ ∈ (0, 1) such that z := λa+ (1− λ)b ∈ C, and we wish to show that
a, b ∈ C. In order to prove this, let C̃ be the convex hull of C and {a, b}. The proof
that a, b ∈ C will be achieved by showing that C̃ ⊂ F . Then, due to the maximality
of C, C̃ = C.

Choose c̃ ∈ C̃. Then

c̃ = λ1(λ2a+ (1− λ2)b) + (1− λ1)c,

where c ∈ C and λ1, λ2 ∈ [0, 1]. It is clearly sufficient to assume that λ1 ∈ (0, 1).
(If λ1 = 0, c̃ = c. If λ1 = 1, c̃ belongs to the segment joining a and b, and thus
c̃ ∈ F by the extremality of F .) Moreover, we may assume that λ2 ≥ λ (otherwise,
1− λ2 ≥ λ). With λ1 and λ2 chosen in this manner, we set

α :=
λ1λ2

λ1λ2 + λ(1− λ1)
and β :=

λ

λ1λ2 + λ(1− λ1)
.

Since β > 0,
βc̃+ (1− β)b = αz + (1− α)c ∈ C ⊂ F

and since F is extremal, we get c̃ ∈ F .

Remarks 2.70. (a) Let F be an extremal set and x ∈ F . If µ ∈ M1(X) and
x = r(µ), then sptµ ⊂ F . The proof of this assertion can be obtained as a slight
modification of the proof of the implication (i) =⇒ (iv) in Proposition 2.69.

(b) In general, the closure of a face need not be a face. An example can be found in
E. M. Alfsen [1], Theorem 1. In Exercise 4.52 we present an example of a compact
convex set X and a point x ∈ X such that facex is not a face.
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Corollary 2.71. Let F be a closed convex subset of X . Then F is a face if and only if
for every measure µ ∈M1(X) with barycenter r(µ) in F , we have sptµ ⊂ F .

Proof. A closed convex set is a face if and only if it is extremal. Hence the assertion
follows immediately from Proposition 2.69, (i)⇐⇒ (iv).

Proposition 2.72. Let ϕ : X → Y be a continuous affine surjection of a compact
convex set X onto a compact convex set Y .

(a) If H ⊂ Y is extremal, then ϕ−1(H) is an extremal set of X .

(b) If H ⊂ Y is a face, then ϕ−1(H) is a face of X .

(c) ϕ(extX) ⊃ extY .

Proof. Let H ⊂ Y be an extremal set and αx1 + (1 − α)x2 ∈ ϕ−1(H), where x1,
x2 ∈ X , α ∈ [0, 1]. Then αϕ(x1)+ (1−α)ϕ(x2) ∈ H , which yields ϕ(x1), ϕ(x2) ∈
H . Hence x1, x2 ∈ ϕ−1(H), concluding the proof of (a).

Since (b) is a straightforward consequence of (a), we proceed to the proof of (c).
Given a point y ∈ extY , the set ϕ−1(y) is a closed extremal set by (a). By Proposi-
tion 2.20, it intersects extX . Hence y ∈ ϕ(extX), and we are done.

2.3.B Measure convex sets

In the sequel, stronger versions of convexity and extremality are investigated. Con-
structions of counterexamples use properties of sets of probability measures studied
in Section 2.2.

As above, throughout this subsection, X will be a compact convex subset of a
locally convex space E.

Definition 2.73 (Measure convex sets). A universally measurable set F ⊂ X is mea-
sure convex if the barycenter r(µ) belongs to F for any measure µ ∈M1(X) carried
by F .

We will show that, for a universally measurable set F ⊂ X , the relations between
“F measure convex” (labelled as MC) and “F convex” (labelled as C) are as follows:

MC⇒ C (2.74)
MC : C (2.81)
MC⇐ C F is closed or open (2.74, 2.76)
MC⇐ C F is resolvable (2.80)
MC⇐ C dimE <∞ (2.77)
MC⇐ C F is a resolvable face (2.91)
MC : C F is Fσ face (2.82, 2.83)
MC : C F is Gδ face (2.84)
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Proposition 2.74. Every measure convex universally measurable subset of X is con-
vex, and every closed convex subset of X is measure convex.

Proof. Let F ⊂ X be measure convex, x, y ∈ F , λ ∈ [0, 1] and z = λx+ (1− λ)y.
Since the measure µ := λεx+(1−λ)εy is carried by F and r(µ) = z, we get z ∈ F .
Therefore, F is convex.

If F is a closed convex set and if a measure µ ∈ M1(X) has its support contained
in F , then the implication (ii) =⇒ (i) of Proposition 2.39 tells us that r(µ) ∈ F .
Accordingly, F is measure convex.

Theorem 2.75. Let A be a universally measurable subset of X . Then A is measure
convex if and only if coK ⊂ A for any compact set K ⊂ A.

Proof. Let A be a measure convex subset of X and K ⊂ A a compact set. If
x ∈ coK, then there exists a measure µ ∈ M1(K) such that x = r(µ) (see Proposi-
tion 2.39). By the assumption, x ∈ A.

For the proof of the converse implication, let µ ∈M1(X) be a probability measure
with µ(A) = 1. If µ(K) = 1 for some compact set K ⊂ A, then by Proposition 2.39
and by the assumption, r(µ) ∈ coK ⊂ A.

So assume that µ(K) < 1 for each compact set K ⊂ A. In this case, there exists
an increasing sequence {Kn}∞n=0 of compact sets in A satisfying

K0 = ∅, αn := µ(Kn+1 \Kn) > 0, n ≥ 0, and µ(Kn)→ 1.

Since
∑∞

n=1 αn = 1− α0 < 1, there is a sequence {βn}∞n=1 of real numbers in (0, 1]
such that

βn → 0 and
∞∑
n=1

αn
βn

= 1.

Put

L := K1 ∪
∞⋃
n=1

(βnKn+1 + (1− βn)K1) .

Then L ⊂ A. Since each Kn is compact and βn → 0, L is compact as well. Pick
f ∈ E∗ and set

sn := sup f(Kn+1), n ≥ 0.

Then

s := sup f(L) = max
(
s0, sup

n∈N

(
βnsn + (1− βn)s0

))
= s0 + sup

n∈N
(sn − s0)βn.
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Hence sn ≤ s0 + β−1
n (s− s0) for each n ∈ N. Since f ≤ sn on Kn+1 \Kn, we get

f(r(µ)) =

∫
X
f dµ =

∞∑
n=0

∫
Kn+1\Kn

f dµ

≤
∞∑
n=0

αnsn ≤ α0s0 +
∞∑
n=1

αn(s0 + β−1
n (s− s0))

= α0s0 + (s− s0)
∞∑
n=1

αn
βn

+ s0

∞∑
n=1

αn

= s0 + s− s0 = s.

Thus f(r(µ)) ≤ sup f(L). As f is arbitrary, Proposition 2.44 gives r(µ) ∈ coL.
Since our assumption ensures that coL ⊂ A, the proof is finished.

Proposition 2.76. Any open convex subset of X is measure convex.

Proof. LetG ⊂ X be an open convex set. By Theorem 2.75, it is enough to show that
coK ⊂ G whenever K ⊂ G is a compact set. So fix such K. For every x ∈ K there
exists a compact convex neighborhood Vx such that x ∈ Vx ⊂ G. By compactness,
the set K can be covered by finitely many compact convex sets Vx1 , . . . , Vxn . Then,
by Proposition 2.42,

coK ⊂ co (Vx1 ∪ · · · ∪ Vxn) = co (Vx1 ∪ · · · ∪ Vxn) ⊂ G,

which is the required inclusion.

Proposition 2.77. Let X be a subset of a finite-dimensional space. Then any univer-
sally measurable convex set A ⊂ X is measure convex.

Proof. We again use Theorem 2.75. If K ⊂ A is a compact set, then coK ⊂ A is
compact by Theorem 2.8 (see also Remark 2.5).

Lemma 2.78. Let λ be a probability measure on X . If

T := {µ ∈M+(X) : µ ≤ λ, µ 6= 0}

and
S := {r( µ

‖µ‖
) : µ ∈ T },

then the closure of S equals co sptλ.
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Proof. It is easy to see that

S = {r(µ) : µ ∈M1(X), there exists c ∈ R so that µ ≤ cλ},

from which it follows that S is convex.
Set L := co sptλ. To show that S ⊂ L, let µ be a nontrivial measure on X with

µ ≤ λ. Then µ is carried by L and thus r( µ
‖µ‖) ∈ L because L is a closed convex set.

Thus S ⊂ L and consequently S ⊂ L.
Conversely, assuming that λ(S) < 1, we can find a compact set K ⊂ X \ S

such that λ(K) > 0. For every x ∈ K we choose its closed convex neighborhood
Vx not intersecting S. Using a compactness argument we select finitely many points
x1, . . . , xn ofK so that Vx1∪· · ·∪Vxn coversK. As λ(K) > 0, there is i ∈ {1, . . . , n}
so that λ(Vxi) > 0. We set V := Vxi and µ := λ|V . Then µ is nontrivial and µ ≤ λ.
Hence the barycenter of µ

‖µ‖ belongs to S. On the other hand, r( µ
‖µ‖) ∈ V because

V is a closed convex set. This contradiction shows that λ(S) = 1. Thus sptλ ⊂ S
which gives L ⊂ S.

We recall that resolvable sets are defined and their basic properties presented in
Section A.5. (In particular we note that any resolvable set in a compact space is
universally measurable by Proposition A.118.)

Lemma 2.79. Let F ⊂ X be a resolvable convex set and let λ ∈ M1(X) be carried
by F . Then there exists a nonempty set G ⊂ F ∩ co sptλ which is open in co sptλ.

Proof. Let L := co sptλ. In order to find the required set G we note that L = F ∩ L
because the latter set is a closed convex set containing the support of λ. In particular,
F ∩ L is a dense resolvable set in L. Due to Proposition A.117(c), F ∩ L has a
nonempty interior (relative to L). Hence, the interior of F ∩L is the sought set G.

Proposition 2.80. Any resolvable convex subset of X is measure convex.

Proof. Let F be a resolvable convex subset of X and let λ be a probability measure
onX carried by F . We set λ0 := λ and let L0 := co sptλ0. Let S0, T 0 andG0 be sets
obtained from Lemma 2.78 and Lemma 2.79 when applied to the measure λ0. Since
S0 is dense in L0 and G0 is nonempty and open in L0, there is a measure µ0 ∈ T 0
with

r(
µ0

‖µ0‖
) ∈ G0 ⊂ F.

We set λ1 := λ0 − µ0 and construct by transfinite induction a sequence {λα} of
positive measures on X such that, for every ordinal number α ≥ 1,

(i) λα+1 ≤ λα,

(ii) either λα = 0 or ‖λα+1‖ < ‖λα‖,



34 2 Compact convex sets

(iii) if λα − λα+1 6= 0, then

r(
λα − λα+1

‖λα − λα+1‖
) ∈ F.

Suppose that the construction has been completed up to an ordinal α. If λα = 0,
we set λα+1 := 0. If λα is nontrivial, we apply Lemma 2.78 and Lemma 2.79 to the
measure λα

‖λα‖ (which is carried by F ) and get relevant sets Lα, T α, Sα and Gα with
the properties described there. In particular, we have Gα ⊂ F ∩ L0. As in the first
step of the proof we choose a nontrivial measure ν ∈ T α such that

r
( ν

‖ν‖

)
∈ Gα.

By setting λα+1 := λα−ν we finish the inductive step for an isolated ordinal number.
Let α be a limit ordinal number. Assume that λβ has been defined for every β < α.

Since {λβ}β<α is a decreasing sequence of positive measures, by the Riesz represen-
tation theorem, the mapping

λα : g 7→ inf
β<α

λβ(g), g ∈ C(X), g ≥ 0,

defines the measure λα. This step finishes the inductive construction.
Let γ be the first ordinal number for which λγ = 0. Since {‖λα‖ : α < γ}

is a strictly decreasing transfinite sequence, the ordinal number γ is countable. We
enumerate {λα − λα+1}1≤α<γ into a (possibly finite) sequence {µn}, and obtain that

λ = µ0 +
∑
n≥1

µn

and
‖λ‖ = ‖µ0‖+

∑
n≥1

‖µn‖.

If the sequence {µn} is finite, the equality

λ = ‖µ0‖ ·
µ0

‖µ0‖
+
∑
n≥1

‖µn‖ ·
µn
‖µn‖

yields that λ is a finite convex combination of probability measures having their
barycenters in F . Thus, in this case, r(λ) ∈ F .

Now, assume that the sequence {µn} is infinite. For every k ∈ N we set

c0 := ‖µ0‖, ck :=
∑
n≥k
‖µn‖

and

ωk :=
c0

c0 + ck
· µ0

c0
+

ck
c0 + ck

·
∑

n≥k µn

ck
.
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Then {ωk} is a sequence of probability measures tending to c−1
0 µ0. Moreover, µ0 +∑

n≥k µn is obviously an element of T 0, and thus the barycenter r(ωk) of ωk is con-
tained in L0. As r(µ0

c0
) ∈ G0, which is a relatively open subset of L0, we can find a

sufficiently large k ∈ N such that r(ωk) ∈ G0 ⊂ F . Then

λ = c0
µ0

c0
+

k−1∑
n=1

‖µn‖
µn
‖µn‖

+
∑
n≥k
‖µn‖

µn
‖µn‖

=
k−1∑
n=1

‖µn‖
µn
‖µn‖

+ (c0 + ck) · ωk,

and the last formula shows that λ is a finite convex combination of measures which
have their barycenters in F . Since F is convex, the barycenter of λ belongs to F as
well.

There are convex Borel subsets of a compact convex set which are not measure
convex. We present some of them.

Proposition 2.81. Let X :=M1([0, 1]) and

B :=
{
µ ∈M1([0, 1]) : µ is discrete

}
.

Then B is a convex Borel set containing extX which is not measure convex.

Proof. It is clear that B is convex. Further, by Proposition 2.27, extX = extX =
{εx : x ∈ [0, 1]} ⊂ B, and B is a Borel set by Proposition 2.56, since

B =
{
µ ∈M1([0, 1]) : µd([0, 1]) = 1

}
.

Assume that B is measure convex. Pick ω ∈ X and find a measure Ω ∈ M1(X)
with barycenter ω carried by extX (see Theorem 2.31). Since B is supposed to be
measure convex, ω ∈ B. Hence B = X , which is a contradiction.

Proposition 2.82. Let

X :=
{
{xn} ∈ `1 : 0 ≤ xn ≤

1
n2 for any n ∈ N

}
and

B :=
{
{xn} ∈ X : the set {n ∈ N : xn 6= 0} is finite

}
.

Then X is a compact convex set and B is an Fσ face of X which is not measure
convex.



36 2 Compact convex sets

Proof. Since

B =

∞⋃
j=1

{
{xn} ∈ X : xn = 0 for all n ≥ j

}
,

B is an increasing countable union of closed faces. Therefore, B is an Fσ face. If
an := 1

n2 en, n ∈ N, where en is the standard unit vector in `1, then an ∈ B for each
n. Setting

µ :=
∞∑
n=1

1
2n
εan ,

µ is carried by B whereas r(µ) =
∑∞

n=1
1

2nan /∈ B.

Proposition 2.83. If

H :=
∞⋃
n=2

{
µ ∈M1([0, 1]) : sptµ ⊂ [ 1

n , 1]
}
,

then H is an Fσ face ofM1([0, 1]) which is not measure convex.

Proof. By Proposition 2.59, H is an Fσ face ofM1([0, 1]). Define the measure ω on
[0, 1] as

ω :=
∞∑
n=1

1
2n
ε 1
n
.

If Ω := ε]ω, then Ω ∈M1
(
M1([0, 1])

)
, Ω(H) = 1 and r(Ω) = ω /∈ H . This shows

that H is not measure convex.

Proposition 2.84. There exists a Gδ face which is not measure convex.

Proof. Let λ be Lebesgue measure on [0, 1] and

L :=
{
µ ∈M1([0, 1]) : µ ⊥ λ

}
.

By Proposition 2.61, L is a Gδ face. If Λ := ε]λ (cf. Example 2.53), then Λ ∈
M1

(
M1([0, 1])

)
, Λ(L) = 1 and r(Λ) = λ /∈ L. Hence, L is not measure convex.

2.3.C Measure extremal sets

Definition 2.85 (Measure extremal sets). Recall (see condition (iv) of Proposition
2.69) that a closed set F is extremal if and only if sptµ ⊂ F for every measure
µ ∈ M1(X) having its barycenter r(µ) in F . Hence, the following definition seems
to be quite natural.

A universally measurable set F ⊂ X is measure extremal if every measure µ ∈
M1(X) with barycenter r(µ) in F is carried by F .
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We will show that, for a universally measurable set F ⊂ X , the relations between
“F measure extremal” (labelled as ME) and “F extremal” (labelled as E) are as fol-
lows:

ME⇒ E (2.86)
ME⇐ E F is closed or open (2.86, 2.88)
ME⇐ E F is resolvable (2.92)
ME⇐ E dimE <∞ (2.89)
ME : E F is Fσ face (2.94, 2.96)
ME : E F is Gδ face (2.93, 2.95)

Proposition 2.86. Every measure extremal universally measurable subset of X is ex-
tremal, and every closed extremal subset of X is measure extremal.

Proof. Let F ⊂ X be measure extremal. Suppose that x, y ∈ X , λ ∈ (0, 1) and
z := λx+(1−λ)y ∈ F . Then the barycenter of the measure µ := λεx+(1−λ)εy is
z, hence in F . Since F is measure extremal, µ is carried by F . Therefore, x, y ∈ F .

As has been already mentioned, any closed extremal set is measure extremal.

Proposition 2.87. Let F be a universally measurable extremal subset of X . Then F
is measure extremal if and only if X \ F is measure convex.

Proof. Assume that F is measure extremal and µ ∈ M1(X) is carried by X \ F .
According to the hypothesis, r(µ) ∈ X \ F , which gives that X \ F is measure
convex.

Conversely, let X \ F be measure convex. Pick µ ∈M1(X) with r(µ) ∈ F . Note
that µ(F ) > 0 since otherwise r(µ) would be contained both in F and in X \ F .
Assume that µ(X \ F ) > 0 and set

µ1 :=
1

µ(F )
µ|F and µ2 :=

1
µ(X \ F )

µ|X\F .

Then
r(µ2) ∈ X \ F

and
r(µ) = µ(F )r(µ1) + µ(X \ F )r(µ2).

This is a contradiction since F is assumed to be extremal. Hence µ(X \ F ) = 0 and
F is measure extremal.

SinceX \F is convex if F is extremal, Propositions 2.77, 2.74 and 2.76 yield using
Proposition 2.87 the following two corollaries.

Corollary 2.88. Every open or closed extremal subset of X is measure extremal.
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Corollary 2.89. If A is a universally measurable extremal subset of a compact convex
set in a finite-dimensional space, then A is measure extremal.

Lemma 2.90. If X is a compact convex subset of a locally convex space E and F a
proper extremal subset of X , then it has empty interior in X .

Proof. Assume that z ∈ IntF and let x be any point of X \ F . By the continuity of
the vector operations in E, there is α ∈ (0, 1) so that y := αx + (1 − α)z ∈ IntF .
Since F is extremal, x ∈ F , which is a contradiction.

Proposition 2.91. A resolvable face is closed and, consequently, it is measure convex.

Proof. Let F be a nonempty resolvable face such that F \ F 6= ∅. Notice that F is a
convex compact set. By Lemma 2.90, F has empty interior in F . Thus F \F is dense
in F . Since F and F \ F are disjoint nonempty dense subsets of the compact space
F , Proposition A.117(e) and Theorem A.58 yield a contradiction.

Proposition 2.92. Any resolvable extremal set is measure extremal.

Proof. This follows from Proposition 2.80 and Proposition 2.87.

Proposition 2.93. There exists a Gδ face which is not measure extremal.

Proof. Let
G :=

{
µ ∈M1([0, 1]) : µ = µc

}
.

By Proposition 2.58, G is a Gδ face ofM1([0, 1]) such that G ∩ extM1([0, 1]) = ∅.
Let λ denote Lebesgue measure on [0, 1]. If Λ := ε]λ (cf. Example 2.53), then by
Proposition 2.54, r(Λ) = λ ∈ G whereas Λ(G) = 0 since Λ is carried by ε([0, 1]).
Whence, G is not measure extremal.

Proposition 2.94. There exists an Fσ face which is not measure extremal.

Proof. Let again λ denote Lebesgue measure on [0, 1] and Λ = ε]λ (see Example
2.53). If F := faceλ is the face generated by λ, then by Corollary 2.67, F is an Fσ
face.

Assume that µ ∈ F ∩ ε([0, 1]). Hence, µ = εx for some x ∈ [0, 1] and by
Corollary 2.67, there exist ν ∈M1([0, 1]) and α ∈ [0, 1) so that

λ = αν + (1− α)εx.

Then
0 = λ({x}) = αν({x}) + (1− α),

which implies that α = 1, a contradiction. Therefore, F ∩ ε([0, 1]) = ∅. We see that
Λ(F ) = 0 while r(Λ) = λ ∈ F . Therefore F is not measure extremal.
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Proposition 2.95. There exists aGδ face which is neither measure convex nor measure
extremal.

Proof. We combine Examples 2.84 and 2.93. Let λ be Lebesgue measure on [0, 1]
and C the Cantor ternary set. Set G := G1 ∩G2 where

G1 :=
{
µ ∈M1([0, 1]) : µ ⊥ λ

}
and

G2 :=
{
µ ∈M1([0, 1]) : µ|C is continuous

}
.

It follows from Propositions 2.58 and 2.61 that G is a Gδ set inM1([0, 1]). Further,
as an intersection of faces, G is a face.

Let Λ denote again the image ε]λ of Lebesgue measure λ on [0, 1] (see Exam-
ple 2.53). Then r(Λ) = λ by Proposition 2.54 and the barycenter r(Λ) does not
belong to G, although

Λ(G) = λ(ε−1(G)) = λ([0, 1] \ C) = 1.

Thus G is not measure convex.
Let Ω := ε]ν, where ν is a continuous probability measure carried by C. Then Ω

is carried by ε(C), and consequently Ω(G) = 0. On the other hand, r(Ω) = ν ∈ G,
and consequently G is not measure extremal.

Proposition 2.96. There exists an Fσ face which is neither measure convex nor mea-
sure extremal.

Proof. Here we combine examples constructed in Propositions 2.83 and 2.94. Set
F := F1 ∩ F2, where

F1 :=
∞⋃
n=2

{
µ ∈M1([0, 1]) : sptµ ⊂ [ 1

n , 1]
}

and F2 := faceλ

(here, λ is again Lebesgue measure on [0, 1] and faceλ denotes the face generated by
λ). According to the aforementioned examples, F is an Fσ face inM1([0, 1]). Let

ω := 2λ|[ 1
2 ,1]

and Ω := ε]ω.

Then spt Ω = ε
(
[1

2 , 1]
)
, thus spt Ω ∩ F = ∅. Hence Ω(F ) = 0, but r(Ω) = ω is

contained in F . Hence F is not measure extremal.
For the proof of the second statement, we define for n ∈ N

λn :=
n

n− 1
λ|[ 1

n
,1] and Ω :=

∞∑
n=1

1
2n
ελn .
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Since λn ∈ F for every n ∈ N, Ω(F ) = 1. On the other hand,

r(Ω) =
∞∑
n=1

1
2n
λn

is not contained in F . Thus F is not measure convex and the proof is finished.

2.4 Exercises

Exercise 2.97. Let {Cα}α∈A be a collection of nonempty convex subsets of a vector
space W . Prove that

co
(⋃
α∈A

Cα

)
=
∞⋃
n=1

{
x ∈W : x =

n∑
j=1

λjxαj ,
n∑
j=1

λj = 1, λj ≥ 0, xαj ∈ Cαj

for j = 1, . . . , n and αj 6= αk for j 6= k
}
.

Exercise 2.98. Prove that x is an extreme point of a convex set X if and only if
x = x1 = x2 = · · · = xm whenever x = λ1x1 + λ2x2 + · · · + λmxm with m ∈ N,∑m

j=1 λj = 1, xj ∈ X and λj > 0 for each j = 1, 2, . . . ,m.

Exercise 2.99. Let X 6= ∅ be a compact convex subset of Rd. Prove directly (do not
use the Minkowski theorem 2.11) that extX 6= ∅.

Hint. Find x, y ∈ X such that |x− y| = diamX (here |x− y| denotes the Euclidean
distance between points x and y). It easily follows that x, y ∈ extX . Indeed, assume
that

x =
1
2
(x1 + x2) where x1, x2 ∈ X,x1 6= x2.

Since the vectors x1 − y and x2 − y are linearly independent, we get

diamX = |x− y| =
∣∣∣∣12(x1 − y) +

1
2
(x2 − y)

∣∣∣∣
<

1
2
(
|x1 − y|+ |x2 − y|

)
≤ diamX.

Another hint. Prove that any point z ∈ X having the property that |z| ≥ |x| for any
x ∈ X is an extreme point of X .

Exercise 2.100 (Radon). Assume that a set M ⊂ Rd contains at least d + 2 points.
Then M =M1 ∪M2 where M1 ∩M2 = ∅ and coM1 ∩ coM2 6= ∅.
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Hint. Suppose that x1, . . . , xn ∈M , n ≥ d+2. Then there exists a nontrivial solution
(α1, . . . , αn) to the system of d+ 1 equations

n∑
j=1

αj = 0 and
n∑
j=1

αjxj = 0.

Set
I+ := {j : αj ≥ 0} and I− := {j : αj < 0}

and
M1 :=

{
xj : j ∈ I+

}
and M2 :=

{
xj : j ∈ I−

}
.

Then M1 ∩M2 = ∅. Since
λ :=

∑
j∈I+

αj > 0,

we get

coM1 3
∑
j∈I+

αj
λ
xj =

∑
j∈I−

−αj
λ
xj ∈ coM2.

Exercise 2.101 (Helly). Assume that K is a family of at least d+ 1 convex sets in Rd
such that either K is finite or the sets of K are in addition closed and one of them is
compact. If each d+ 1 sets of K have nonempty intersection, then⋂

{K : K ∈ K} 6= ∅.

Hint. For a finite family K = {K1, . . . ,Kn}, suppose first that n = d + 2. By our
assumption, there exist

xi ∈
⋂

j∈{1,...,n}\{i}

Kj , 1 ≤ i ≤ n.

If there exist indices i 6= k with xi = xk, then xi ∈
⋂n
j=1 Ki. Otherwise we use

Exercise 2.100 to find disjoint sets M1, M2 such that M1 ∪M2 = {x1, . . . , xn} and
coM1 ∩ coM2 contains a point y. Let i ∈ {1, . . . , n} be arbitrary. If xi ∈ M1, then
Ki ⊃M2. Hence y ∈ coM2 ⊂ Ki. Analogously we get that y ∈ Ki in the case when
xi ∈M2. Hence y ∈

⋂n
i=1 Ki.

Assume now that the assertion has been proved for each family K in Rd consisting
of n−1 sets, where n ≥ d+2. LetK = {K1, . . . ,Kn}. By the first part, each family
K′ ⊂ K of at most d+ 2 elements has nonempty intersection. Thus the family

{K1, . . . ,Kn−2,Kn−1 ∩Kn}
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satisfies that any subfamily with d+1 elements has nonempty intersection. Hence the
inductive assumption yields that the latter, and, consequently, the former family has
nonempty intersection.

Assume now that the family K consisting of closed convex sets is infinite and a
set Z ∈ K is compact. By the first part, every finite subfamily of K has nonempty
intersection. HenceK, and consequently {Z∩K : K ∈ K}, has the finite intersection
property. By compactness,⋂

{Z ∩K : K ∈ K} =
⋂
{K : K ∈ K}

is nonempty.

Exercise 2.102. (a) Let G be an open subset of Rd. Prove that coG is an open set.

(b) If F is a closed subset of Rd, the convex hull coF need not be closed.

Hint. Consider, for example, the following sets

{(x, y) ∈ R2 : x > 0, xy = 1 or xy = −1}

or {(x, y) ∈ R2 : x = 0} ∪ (1, 0).

Exercise 2.103. (a) Let C be a compact convex subset of R2. Prove that the set extC
is closed.

(b) The set extC need not be closed if C is a compact convex subset of Rd for d ≥ 3.

Hint. Let {xn} be a sequence of points in extC converging to x. Assuming that x is
not an extreme point of C, let x = 1

2(a + b) for some points a, b ∈ C, a 6= b. By
passing to a subsequence, we may assume that all points xn are contained in the same
open halfplane determined by the line passing through a and b. Then the interior
of the triangle co{x1, a, b} contains xn for a suitable n ∈ N, a contradiction with
xn ∈ extC.

For (b), consider the convex hull in R3 of the set{
(x, y, z) : (x− 1)2 + y2 = 1, z = 0

}
∪ {(0, 0, 1) ∪ (0, 0,−1)} .

Exercise 2.104. Let C be a closed convex subset of Rd containing a line. Prove that
extC = ∅. If C contains no line, then extC 6= ∅.

Hint. If C contains a line L and x ∈ C, then C contains also a line passing through
x parallel to L.

If C contains no line then use induction on the dimension d. Find a boundary point
of C and follow the reasoning of the proof of the Minkowski theorem 2.11.
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Exercise 2.105 (Closed convex hulls). Let C be a subset of a locally convex space E.
Prove that the closed convex hull coC defined as

coC :=
⋂
{F : F is a convex closed subset of E,F ⊃ C}

is the closure of the convex hull coC, that is, coC = coC.

Exercise 2.106 (Exposed points in Rd). (a) Construct a compact convex set K ⊂ R2

for which extK \ expK 6= ∅.

(b) Construct an example of a nonempty closed convex subset C of Rd such that the
set expC is not closed and co expC 6= C.

Hint. For the proof of (a) consider K to be the convex hull of the union of two circles

{(x, y) ∈ R2 : (x+ 1)2 + y2 = 1} ∪ {(x, y) ∈ R2 : (x− 1)2 + y2 = 1}

then (−1, 1) ∈ extK \ expK.
To show (b) consider again the example from (a).

Exercise 2.107. (a) Let S be a d-simplex in Rd determined by affinely independent
points e0, . . . , ed. Prove that S has nonempty interior.

(b) Using (a) prove that there are no d+ 1 affinely independent points in any convex
subset of Rd with empty interior.

(c) Let C be a convex subset of Rd with empty interior. Prove that there is an affine
subspace A of Rd containing C such that dimA < d.

Hint. For (a) show that
e0 + · · ·+ ed

d+ 1
∈ IntS.

To verify (c), let e0, . . . , en be affinely independent points in C where n < d + 1
is the maximum number of affinely independent points in C. Consider now the affine
hull of e0, . . . , en.

Exercise 2.108. Let X be a nonempty compact convex subset of a locally convex
space E and x ∈ X . Prove that Mx(X) is a nonempty convex compact subset of
M1(X).

Hint. A straightforward verification.

Exercise 2.109. Let F be a closed subset of a compact convex setX such that extX ⊂
F . Assume that for any x ∈ X there exists a unique measure µ ∈ M1(F ) such that
r(µ) = x. Prove that extX = F .
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Hint. Let x ∈ F \ extX . Then x = y+z
2 , y 6= z, for some y, z ∈ X . The Integral

representation theorem 2.31 yields measures µy, µz ∈ M1(extX) such that r(µy) =
y and r(µz) = z. If µ = 1

2(µy + µz), then

µ ∈M1(extX), r(µ) = x and µ 6= εx.

This contradicts the assumption, hence extX = F .

Exercise 2.110 (Proof of the Milman theorem 2.43). Verify the following indication
of an alternative proof of Theorem 2.43.

Hint. Let x ∈ extX . We note that coB = coB. By Proposition 2.39 applied to
K = B, there exists a measure µ ∈ M1(B) representing the point x. Since x ∈ X ,
Bauer’s characterization in 2.40 asserts that µ = εx. The measure µ is carried by the
(closed) set B, which yields that x ∈ B.

Exercise 2.111. Find an example of a compact convex setX in a locally convex space
E such that (E∗ + R)|X 6= Ac(X).

Hint. LetE := `2,X := {x ∈ E : 0 ≤ xn ≤ 4−n, n ∈ N} and f(x) :=
∑∞

n=1 2nxn,
x ∈ X .

Exercise 2.112. Prove that in any infinite-dimensional Banach space E, there exists a
compact convex set X such that (E∗ + R)|X 6= Ac(X).

Hint. Find inductively points xn ∈ SE and functionals ϕn ∈ E∗, n ∈ N, such that

ϕn(xm) =

{
1, n = m,

0, n 6= m,
n,m ∈ N.

Set X := co{4−nxn : n ∈ N} and f :=
∑∞

n=1 2nϕn. Since 0 ≤ ϕn ≤ 4−n on X ,
n ∈ N, f is well defined.

If f = ϕ + c on X for some ϕ ∈ E∗ and c ∈ R, then c = 0, because f(0) = 0.
Further, since f(4−nxn) = 2−n, we get ϕ(xn) = 2n for each n ∈ N. But this is
impossible as ϕ is bounded on BE .

Exercise 2.113. Find a compact convex set X ⊂ R2 such that farX 6= expX .

Hint. Let
X = {(x, y) ∈ R2 : |x|3 ≤ y ≤ 1,−1 ≤ x ≤ 1}.

Then the point (0, 0) is obviously exposed. However, (0, 0) /∈ farX as an easy geo-
metrical argument shows.

Exercise 2.114. Find an example of a compact convex subset X of a locally convex
space E and a point z ∈ X that is exposed but there is no f ∈ E∗ exposing z.
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First hint. Let H be a Hilbert space, M be a dense proper subspace of H∗ and let
Φ : H∗ → H be the mapping assigning to each ϕ ∈ H∗ a point y ∈ H such that
ϕ(h) = (h, y) for any h ∈ H . LetX := BH be equipped with the σ(H,M)-topology.
Since BH is w-compact and σ(H,M) is weaker and Hausdorff, w = σ(H,M) on
X . Choose x ∈ SH \Φ(M) and denote ψ := Φ−1(x). Show that ψ is not σ(H,M)-
continuous. Further show that ψ|X ∈ Ac((X,σ(H,M)) and that ψ exposes x. On the
other hand, no functional from (H,σ(H,M))∗ = M exposes x. (This easily follows
from the fact that, given x, y ∈ SH , (x, y) = 1 if and only if y = x.)

Second hint. Let {en} be a sequence of standard unit vector in c0. For 1 ≤ i ≤ j
denote ui,j := −ei + 2ej . Let further

X := co‖·‖C where C :=
{

2−i−jui,j : 1 ≤ i ≤ j
}
.

Define the function h on X as

h : x 7→
∞∑
n=1

xn, x = {xn} ∈ X.

It is easy to show that h is an affine continuous function on X . Obviously, C ∪ {0} is
a compact subset of c0 and C ⊂ {{xn} ∈ c0 : |xn| ≤ 2−n}. It easily follows that X
is compact.

Let x ∈ X \ {0}. Since extX ⊂ C ∪ {0}, by the Krein–Milman theorem 2.22 we
have x =

∑
i≤j αi,j2

−i−jui,j , where αi,j ≥ 0 and their sum is smaller or equal to 1.
There exists a pair i ≤ j such that αi,j > 0. Hence

h(x) =
∑
i≤j

αi,j2−i−jh(ui,j) =
∑
i≤j

αi,j2−i−j > 0.

It follows that 0 is an exposed point of X .
On the other hand, 0 is not exposed by any functional from (c0)

∗ = `1. Indeed,
assume that 0 6= f = {fn} ∈ (c0)

∗ = `1. There exists i such that fi 6= 0. If fi < 0,
then f(ui,i) = f(ei) = fi < 0. If fi > 0, then f(ui,j) = f(−ei + 2ej) = −fi + 2fj .
Since limj→∞ fj = 0, we have limj→∞ f(ui,j) = −fi. Hence, there exists j ≥ i such
that f(ui,j) < 0. If x := 2−i−jui,j , then x ∈ X , x 6= 0, and f(x) < 0 = f(0).

Exercise 2.115. Keeping the notation of the first hint in Exercise 2.114, consider lo-
cally convex spaces E1 := (H,w) and E2 := (H,σ(H,M)). Prove that the compact
convex sets (BH , σ(H,M)) and (BH , w) are affinely homeomorphic (by the identity
mapping), and that the point x is exposed by a functional from E∗1 whereas it is not
exposed by a functional from E∗2 . (Compare with the proof of Theorem 2.51.)

Hint. Follow the reasoning of Exercise 2.114.
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Exercise 2.116. Let X be a nonempty compact convex set and K ⊂ X \ extX be
compact. Then co K ∩ extX = ∅.

Hint. For any x ∈ coK \K there exists µ ∈ Mx(K) (see Proposition 2.39). Obvi-
ously, µ 6= εx, and thus x /∈ extX by Theorem 2.40.

Exercise 2.117. Let F be a closed face of a compact convex set X and let U ⊂ X be
an open set containing F . Then F ∩ co(X \ U) = ∅.

Hint. Proceed as in Exercise 2.116.

Exercise 2.118. Let ν be a Radon probability measure on a compact space K. Let

L :=
{
µ ∈M1(K) : µ ⊥ ν

}
.

Prove that L is a Gδ set.

Hint. For each n ∈ N and each open subset G of K, let

L(n,G) :=
{
µ ∈M1(K) : µ(G) > 1− 2−n

}
and

Ln :=
⋃{

L(n,G) : G ⊂ K open, ν(G) < 2−n
}
.

Since each set L(n,G) is open inM1(K) by Theorem A.85(b), the set
⋂∞
n=1 Ln is a

Gδ set. The proof will be complete once we show that

L =

∞⋂
n=1

Ln.

Pick an arbitrary index n ∈ N and µ ∈ L. As µ ⊥ ν, there is a Borel set A ⊂ K such
that ν(A) = 0 and µ(A) = 1. Due to the regularity of ν it follows that there exists an
open set G ⊃ A such that ν(G) < 2−n. Since µ(G) ≥ µ(A) = 1 > 1− 2−n, we get
µ ∈ Ln.

Conversely, assume that µ ∈
⋂∞
n=1 Ln. There is a sequence {Gn} of open subsets

of K such that
ν(Gn) < 2−n and µ(Gn) > 1− 2−n

for each n ∈ N. Set G :=
⋂∞
m=1

⋃∞
n=mGn. Then ν(G) = 0. Since

1 ≥ µ(G) = lim
m→∞

µ(
∞⋃
n=m

Gn) ≥ lim sup
m→∞

µ(Gm) ≥ lim sup
m→∞

(1− 2−m) = 1,

it follows that µ ⊥ ν. Hence, µ ∈ L, as required.

Exercise 2.119. If F is a face of X and G is a face of F , then G is a face of X .
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Hint. A straightforward verification.

Exercise 2.120. Prove that a set A ⊂ X is convex if X \A is extremal.

Hint. A straightforward verification.

Exercise 2.121. Find an Fσ face that is not a countable union of closed faces.

Hint. Use the set F from Proposition 2.94. If F were a countable union of closed
faces, F would be measure extremal by Proposition 2.86. But this is not the case.

Exercise 2.122. If F is a closed face of X , then there exists a set A ⊂ extX such that
F = coA. In particular, if F is a nonempty closed face of X , then F ∩ extX 6= ∅
(cf. Theorem 2.20).

Hint. Set A := F ∩ extX . Then A = extF by Proposition 2.64(b) and it suffices to
apply the Krein–Milman theorem 2.22.

Exercise 2.123. Let X be a convex subset of a locally convex space E. Prove that the
boundary ∂X is an extremal subset of X .

Hint. If IntX = ∅, the assertion is obvious. Hence, assume that IntX 6= ∅ and
that ∂X is not extremal. In this case, there exist z ∈ ∂X , x ∈ X and y ∈ IntX so
that z = λx + (1 − λ)y for some λ ∈ (0, 1). Find a neighborhood V of 0 such that
y + V ⊂ IntX . For every ε > 0, there exists zε such that zε ∈ (z + εV ) \X . Let

wε :=
zε − λx
1− λ

.

Show that we can choose ε small enough such that wε ∈ y + V . Since zε = λx +
(1− λ)wε, this implies that zε ∈ X , which is a contradiction.

Exercise 2.124. Let X be a compact convex set and x ∈ X . Prove that

D :=
⋂
{A ⊂ X : A is a closed extremal set containing x}

is convex.

Hint. The set D is obviously closed and extremal. Then use characterization (vi) of
Proposition 2.69.

Exercise 2.125. Find a continuous affine surjection of a compact convex set X onto a
compact convex set Y such that extY 6= ϕ(extX).

Hint. Consider a triangle given as the convex hull of points (0, 0), (1, 0), (1
2 , 1) and

its projection onto the unit segment [0, 1].
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Exercise 2.126. Prove that the set

G :=
{
µ ∈M1([0, 1]) : µ = µc

}
of all continuous Radon measures on [0, 1] is measure convex (cf. also Proposition
2.93).

Hint. Let Ω ∈ M1(M1([0, 1])
)
, Ω(G) = 1 with r(Ω) = ω be given. For a bounded

Borel function f on [0, 1], define an affine function If onM1([0, 1]) by the formula

If(µ) := µ(f), µ ∈M1([0, 1]).

Obviously, If is continuous whenever f is. Thus

Ω(If) = If(r(Ω)) = ω(f) for any f ∈ C[0, 1]. (2.4)

Now, use the Lebesgue dominated convergence theorem to show that equality (2.4)
holds for any bounded Borel function f on [0, 1]. Pick x ∈ [0, 1]. Then

ω({x}) = Ic{x}(ω) =

∫
G
Ic{x}(µ) dΩ(µ) = 0.

Thus ω({x}) = 0 for any x ∈ [0, 1], and therefore ω ∈ G.

Exercise 2.127. Let K be a compact space, X :=M1(K), ω ∈M1(K),

A1 :=
{ µ

µ(K)
: µ ∈M+(K), µ ≤ ω and µ(K) > 0

}
and

A2 :=
{ fω

ω(f)
: 0 ≤ f ≤ 1 Borel, ω(f) > 0

}
.

Prove that

(a) faceω = A1 = A2,

(b) faceω =M1([0, 1]) if K = [0, 1] and ω is Lebesgue measure on [0, 1].

Hint. (a) Let µ ∈ faceω be given. Then there exist α ∈ (0, 1] and ν ∈ M1(K) such
that ω = αµ+ (1− α)ν. Then 0 < αµ ≤ ω.

If µ ≤ ω, by the Radon–Nikodym theorem there exists a Borel measurable function
f such that µ = fω. Then 0 ≤ f ≤ 1 ω-almost everywhere and ω(f) = µ(K) > 0.
Hence

µ

µ(K)
=

fω

ω(f)

and µ ∈ A2.
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Finally, let µ = fω
ω(f) for some Borel function f with 0 ≤ f ≤ 1 and ω(f) > 0. We

may assume that ω(f) < 1. Then

ω = ω(f)
fω

ω(f)
+ ω(1− f)(1− f)ω

ω(1− f)
,

and µ ∈ faceω.
(b) Assume that λ is Lebesgue measure on [0, 1]. Given a point x ∈ [0, 1], it is easy

to find a sequence of measures in faceλ that converges to εx. Hence faceλ is a convex
set containing all extreme points ofM1([0, 1]), and thus faceλ =M1([0, 1]).

2.5 Notes and comments

The material of the Subsection 2.1.A on convexity in finite-dimensional spaces is
standard and can be found in many textbooks; see, for example, Barvinok’s mono-
graph [31]. Besides Minkowski’s result, at the beginning of 20th century, three im-
portant theorems on convex sets in Euclidean spaces associated with the names of
Carathéodory, Helly and Radon appeared. H. Minkowski proved Theorem 2.11 in the
period 1901-03. The result appeared for the first time in a chapter on convex bod-
ies (where the origin of the notion of extreme points can be traced) included in his
collected works published in 1911; see J. J. Saccoman [405]. An exhaustive survey
on Helly’s theorem 2.101 and its proofs, variants and applications is presented in the
paper by L. Dantzer, B. Grünbaum and V. Klee [130].

The Krein–Milman theorem 2.22 was proved by M. Krein and D. Milman in [283]
for the case of w∗-compact convex sets in the dual to a Banach space using the transfi-
nite induction. The proof of a more general version contained in Theorem 2.22, based
on an application of Zorn’s lemma, goes back to J. L. Kelley [266]. A similar proof
was given by E. Artin (a letter from Artin to his former student M. Zorn published in
the Picayune Sentinel of Indiana University in 1950; cf. [23]), A. Hotta [240] and by
K. Yosida and M. Fukamiya [477]. The Krein–Milman theorem is one of the funda-
mental theorems of functional analysis and has rich applications. For instance, recall
its use in de Branges’ proof of the Stone–Weierstrass theorem, Lindenstrauss’ proof
of the Lyapunov theorem on the range of a vector measure, and in the proof of the
Banach–Stone theorem on isometrically isomorphic spaces of continuous functions.
See Chapter 14 for more applications. Bauer’s concave minimum principle 2.24 (even
in a more general form) appeared in H. Bauer [36].

The Integral representation theorem 2.31 is a reformulation of the Krein–Milman
theorem. It has wide applications in several areas of analysis. We gave two different
proofs of this theorem (besides Theorem 2.31 it is its more general form in Propo-
sition 2.39). Still another proof of Theorem 2.29, avoiding the notion of a net, is
presented in Phelp’s book [374], Proposition 1.1.
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Bauer’s characterization of extX in Theorem 2.40 presented in [37] is used later on
as the definition of the Choquet boundary of function spaces in 3.4. Proposition 2.41
can be found as Proposition 25.13 in G. Choquet [108] and it is used several times in
our text. For example, Milman’s converse 2.43 of the Krein–Milman theorem, which
goes to V. P. Milman [346], is an easy consequence of it.

Proposition 2.45 enables to solve certain problems concerning metrizable com-
pact convex sets reducing them to subsets of Hilbert spaces. It was shown by O. -H.
Keller [265] that any infinite-dimensional compact convex subset of a Hilbert space is
homeomorphic to the Hilbert cube [0, 1]N (which is affinely homeomorphic to the set{
{xn} ∈ `2 : |xn| ≤ 1

n , n ∈ N
}

). Moreover, V. L. Klee observed that any compact
(convex) subset of a Banach space is affinely homeomorphic to a subset of a Hilbert
space. An infinite-dimensional compact convex subsetC of a topological vector space
is said to be a Keller set ifC is affinely homeomorphic to a compact convex subset of a
Hilbert space `2. Hence, Proposition 2.45 shows that any infinite-dimensional metriz-
able compact convex set is a Keller set. Moreover, it has been shown by C. Bessaga
and T. Dobrowolski in [56] that any locally compact convex subset C of a topological
vector space with a countable family of continuous affine functions on C separating
points of C can be affinely embedded into `2.

The concept of exposed points in the case of Euclidean spaces was introduced
by S. Straszewicz [441] in 1935. In this case, Corollary 2.52 and example in Ex-
ercise 2.103(b) are due to him. The proof of Proposition 2.50 is taken from V. P. Fonf,
J. Lindenstrauss and R. R. Phelps [179]. In the paper [53] by S. K. Berberian, the
Krein–Milman theorem in Hilbert spaces is derived. This result can be deduced from
more general statements concerning the exposed points in normed linear spaces; see,
for example, the paper of V. L. Klee [272]. In fact, from the proof of Klee’s result
it follows that in any smooth and strictly convex normed linear space any compact
convex set is the closed convex hull of its set of so-called bare points (cf. a review of
the paper [53] in Mathematical Reviews). See also the paper by M. V. Balashov [30].
We also refer the reader to the paper [151] by M. Edelstein and J. E. Lewis on exposed
and farthest points.

In [18], R. F. Arens and J. L. Kelley described extreme points of the unit ball of the
space

(
C(K)

)∗ as Dirac measures εx and their antipodes −εx (cf. Proposition 2.27).
For an alternative proof of Corollary 2.28 see, for example, Theorem 30.4 and Corol-
lary 30.5 in Bauer’s monograph [45]. In Proposition 2.56 we present a simplified
version of the proof of [5], Proposition I.2.8. Examples described in Proposition 2.63
are due to G. Choquet [106]; see also Alfsen’s monograph [5], Example I.2.10.

Any union of faces was labelled in Goullet de Rugy in [200] as a σ-face. Closed
extremal sets were studied by E. M. Alfsen in [1] under the name “stable sets”. The
equivalence of (i) and (v) in Proposition 2.69 was proved by E. M. Alfsen in [1]; the
idea of the proof (i) =⇒ (vi) is from D. P. Milman [346] (§ 4, Theorem 7).
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In part, the material Subsections 2.3.B and 2.3.C concerning a more detailed study
of measure convex and measure extremal sets is taken from the paper [146] by
P. Dostál, J. Lukeš and J. Spurný. Theorem 2.75 and its proof are taken from
D. H. Fremlin and J. D. Pryce [185]. Alfsen’s example 2.81 is taken from [5], p. 130.
The proof of Proposition 2.92 can also be proved by means of a result of J. Saint
Raymond 10.75 without recourse to Proposition 2.80. Counterexamples contained in
Propositions 2.93 and 2.94 are just suitable modifications of the example by G. Cho-
quet in [106]. The examples of Propositions 2.95 and 2.96 partially use a construction
of H. v. Weizsäcker (see [463]). We also refer the reader to Lecture Notes [473] by
G. Winkler where a thorough investigation of measure convex sets is given.

The result of Exercise 2.103(a) is due to G. B. Price [377]. A characterization of
continuous affine functions on X (cf. Lemma 2.34 and Exercise 2.112) belonging to
E∗ + R|X even for noncompact convex sets X is given in a paper [281] by M. Kraus.
Examples of Exercises 2.114 and 2.115 are due to M. Kraus and O. Kurka.



Chapter 3

Choquet theory of function spaces

This chapter lays the groundwork for the rest of the book by presenting the founda-
tions of the Choquet theory of function spaces. The central concept of a function
space is defined and its basic properties investigated in Section 3.1. We generalize
the framework of spaces of affine continuous functions on compact convex sets by
taking a subspace H of the space C(K) of continuous functions on a compact space
K such that H contains constants and separates points of K. Then we introduce
H-representing measures, H-affine and H-convex functions, and so on. A suitable
substitute for the set of extreme points turns out to be the Choquet boundary and we
show in Proposition 3.15 its nonemptiness and prove a minimum principle in Theo-
rem 3.16.

A crucial notion for obtaining integral representation theorems is the Choquet or-
dering introduced in Definition 3.19. This ordering somehow indicates how close to
the Choquet boundary a measure is situated. A key tool for handling function spaces
is Lemma 3.21 which serves as a substitute for the Hahn–Banach theorem. Several of
its applications are shown afterwards, along with Bauer’s characterization 3.24 of the
Choquet boundary.

These abstract results are then applied to a reexamination of Korovkin’s theorems;
Theorems 3.32, 3.34 and 3.36 are proved by means of the Choquet theory. After gen-
eralizing the concept of the barycenter mapping in Section 3.3, we turn our attention
to the Choquet representation theorem 3.45 for function spaces on metrizable compact
spaces. Our approach is to use the existence of a “strictly convex” function.

Next, Section 3.5 indicates how the Key lemma 3.21 enables us to prove analogues
of classical results on approximation of semicontinuous convex functions on compact
convex sets. More precisely, we show that semicontinuousH-convex functions can be
approximated by continuousH-convex functions (see Propositions 3.48 and 3.54). An
important corollary is the fact that the Choquet ordering of measures can be extended
to semicontinuousH-convex functions (see Proposition 3.56).

Measures maximal with respect to the Choquet ordering are investigated in Sec-
tion 3.6. First we prove Mokobodzki’s characterization in Theorem 3.58. Then we
show that the set of maximal measures is rich enough (see Theorem 3.65) and we fin-
ish the section with Theorem 3.70, which describes the space of boundary measures.

In order to prove the most important properties of maximal measures, namely, that
they are carried by any Baire set containing the Choquet boundary, we need some
kind of Fatou’s lemma (see Lemma 3.77). This task is accomplished in Section 3.7
by presenting the important Simons inequality 3.74 and a couple of its applications.
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Then we can prove the integral representation theorem for nonmetrizable spaces in
Theorem 3.81.

The existence of representing measures “carried” by the Choquet boundary opens
the way for the proof of several variants of the minimum principle, as shown in Sec-
tion 3.9. The last section is devoted to a characterization of the fact that a pair of
measures µ, ν is related in the Choquet ordering. Theorem 3.92 shows that the impor-
tant notion of a dilation plays the key role here.

3.1 Function spaces

Definition 3.1 (Function spaces). By a function space H on a compact topological
space K we mean a (not necessarily closed) linear subspace of C(K) containing the
constant functions and separating points of K.

We introduce some main examples of function spaces.

Examples 3.2. (a) Continuous functions. The space C(K) of all continuous functions
on a compact space K represents a simple example of a function space. Clearly, the
space C(K) separates points of K.

(b) Quadratic polynomials. The space P2([0, 1]) of all quadratic polynomials on the
interval [0, 1] is a further example of a function space. We considered this example in
Chapter 1.

(c) Convex case – affine functions. Let X be a compact convex subset of a locally
convex space E. The linear space Ac(X) consisting of all continuous affine functions
on X is a function space.

(d) Harmonic case – harmonic functions. Let U be a bounded open subset of the
Euclidean space Rd. The function space H(U) consisting of all continuous functions
on U which are harmonic on U is another example of a function space.

More generally, we can consider a relatively compact open subset U of a Bauer
harmonic space (cf. Section A.8) and the function space H(U), the linear subspace
of C(U) of functions which are harmonic on U . We tacitly assume that constant
functions are harmonic and H(U) separates points of U .

(e) If K is a compact subset of Rd, we define

H0(K) :=
⋃
{H(U)|K : U is relatively compact open set,K ⊂ U}.

Generally, the function space H0(K) is not a closed subspace of C(K) (see Exer-
cise 13.155).

(f) Further examples can be found in 3.47, 3.82, 3.83, 3.103, 3.106, 3.111, 3.119,
6.67, 6.76, 6.77, 6.94, 7.65, 8.11(a), 8.29, 8.80, 9.11, 9.56, 10.97, 10.98, 10.99 and
12.3.B.
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(g) Let K be a compact space and T be a Markov operator on K (cf. Subsec-
tion 6.6.B). Let

HT := {h ∈ C(K) : T (h) = h} .

IfHT separates points of K, thenHT is a function space.

Convention. In what follows,H denotes a function space on a compact space K.

Definition 3.3 (H-representing measures). Recall thatM1(K) denotes the set of all
probability Radon measures on K. We denote byMx(H) the set of all H-represen-
ting measures for x ∈ K, that is,

Mx(H) := {µ ∈M1(K) : f(x) =
∫
K
f dµ for any f ∈ H}.

Of course, the Dirac measure εx at the point x always belongs toMx(H).

Definition 3.4 (Choquet boundary). Define the Choquet boundary ChH(K) of a func-
tion space H as the set of those points x ∈ K for which the Dirac measure εx is the
onlyH-representing measure for x; that is,

ChH(K) := {x ∈ K :Mx(H) = {εx}} .

Examples 3.5. We describe the Choquet boundary of our main examples from 3.2.
We postpone the proofs to later sections.

(a) Continuous functions. In the case when H = C(K) (K is a compact space), the
equality ChH(K) = K follows immediately from the definition.

(b) Quadratic polynomials. LetH = P2([0, 1]) be the function space of all quadratic
polynomials on the interval [0, 1]. Then ChH([0, 1]) = [0, 1], as easily follows by
Proposition 3.7.

(c) Convex case – affine functions. If H is the linear space Ac(X) of all continuous
affine functions on a compact convex set X , then ChAc(X)(X) = extX , by Bauer’s
characterization of extX in Theorem 2.40.

(d) Harmonic case – harmonic functions. If H(U) consists of all continuous func-
tions on U ⊂ Rd which are harmonic on U , then ChH(U) U = ∂ regU (cf. Theo-
rem 13.35).

In the general situation of an abstract Bauer harmonic space, the situation is more
delicate, cf. Theorem 13.41.

(e) The Choquet boundary of H0(K) (see Example 3.2(e)) consists of stable points
of K (see Definition 13.4 and Theorem 13.35).
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(f) Let
H := {f ∈ C([−1, 1]) : 2f(0) = f(−1) + f(1)}.

Then ChH([−1, 1]) = [−1, 1] \ {0}.
Further examples of Choquet boundaries can be found in the examples of function

spaces mentioned in Examples 3.2(f).

Definition 3.6 (H-exposing functions andH-exposed points). Let x ∈ K. A function
h ∈ H such that 0 = h(x) < h(t) for any t ∈ K, t 6= x, is said to be an H-
exposing function for x. A point x ∈ K is called an H-exposed point if there exists
anH-exposing function for x.

The set of allH-exposed points of K will be denoted by expH(K).

Proposition 3.7. AnyH-exposed point belongs to the Choquet boundary ofH.

Proof. Let x ∈ K and let h ∈ H for which 0 = h(x) < h(t) for any t ∈ K \ {x}. If
µ ∈ Mx(H), then 0 = h(x) = µ(h). Hence sptµ ⊂ {x}, and therefore µ = εx. We
see that x ∈ ChH(K).

Definition 3.8 (H-affine, H-convex and H-concave functions). We define the family
A(H) of all H-affine functions as the family of all universally measurable functions
f : K → [−∞,∞] such that µ(f) exists for every µ ∈ Mx(H), x ∈ K, and the
following barycentric formula holds:

f(x) =

∫
K
f dµ for each x ∈ K, µ ∈Mx(H).

Further, let Ac(H) be the family of all continuousH-affine functions on K.
Similarly, we say that a universally measurable function f : K → [−∞,∞] is

H-convex if µ(f) exists for every µ ∈Mx(H), x ∈ K, and f(x) ≤ µ(f). A function
f is H-concave if −f is H-convex. We denote by Kc(H), Kusc(H), and Klsc(H) the
family of all continuous, upper semicontinuous, and lower semicontinuousH-convex
functions, respectively. We write Sc(H), Susc(H) and S lsc(H) for the analogous
families ofH-concave functions.

Remark 3.9. As we will see later in Chapter 4, in the convex case of Example 3.2(c),
a continuous function is Ac(X)-concave if and only if it is concave in the usual sense.

Definition 3.10 (Cone W(H)). We denote by W(H) the smallest min-stable cone
generated by H, that is, W(H) consists of all functions of the form h1 ∧ · · · ∧ hn,
h1, . . . , hn ∈ H, n ∈ N.

The following proposition collects several easy facts.

Proposition 3.11.
(a) Ac(H) is a closed function space on K containingH.
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(b) The familiesW(H), Sc(H), Susc(H) and S lsc(H) form min-stable convex cones.

(c) The spaceW(H)−W(H) is dense in C(K).

Proof. Since (a) is obvious, we proceed to the proof of (b). Let F be any of the
considered families. Obviously, F is a convex cone and the required topological
property is stable with respect to taking finite minima (forF =W(H) we use identity

f1 ∧ · · · ∧ fn + g1 ∧ · · · ∧ gk =
n∧
i=1

k∧
j=1

(fi + gj).)

If k1, k2 ∈ F and µ ∈Mx(H), then µ(k1 ∧ k2) exists and

µ(k1 ∧ k2) ≤ µ(k1) ∧ µ(k2) ≤ (k1 ∧ k2)(x).

For the proof of (c), we just use the lattice version of the Stone–Weierstrass theorem
from Proposition A.31.

Definition 3.12 (H-extremal sets). Let H be a function space on a compact space K.
A universally measurable set F ⊂ K is calledH-extremal if any measure representing
a point in F is carried by F .

If X is a compact convex set in a locally convex space and H = Ac(X), then
a closed set F ⊂ X is Ac(X)-extremal if and only if F is extremal (see Proposi-
tion 2.69).

Lemma 3.13. Let F be a closedH-extremal set and f ∈ S lsc(H). Then the set

H := {x ∈ F : f(x) = min f(F )}

isH-extremal.

Proof. Obviously, H is closed. To show that H is H-extremal, pick x ∈ H and
µ ∈Mx(H). Since F isH-extremal, sptµ ⊂ F . Then from the inequalities

min f(F ) = f(x) ≥
∫
F
f(t) dµ(t) ≥ min f(F ),

it follows that sptµ ⊂ H .

Proposition 3.14. The family F of all closed H-extremal sets is stable under finite
unions and arbitrary intersection.
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Proof. Obviously, F is stable under finite unions.
If {Fa}a∈A are closed H-extremal sets, then their intersection F :=

⋂
a∈A Fa is a

closed set as well. Pick x ∈ F and µ ∈Mx(H) and choose a compact set

H ⊂ K \ F =
⋃
a∈A

(K \ Fa)

arbitrarily. There are sets Fa1 , . . . , Fan so that

H ⊂ (K \ Fa1) ∪ · · · ∪ (K \ Fan).

Since µ(K \ Faj ) = 0 for each j = 1, . . . , n, we get µ(H) = 0. From the inner
regularity of µ we obtain µ(K \ F ) = 0.

The proof of Proposition 3.15 follows along the lines to that of the Krein–Milman
theorem 2.22.

Proposition 3.15. The Choquet boundary ChH(K) intersects any nonempty closed
H-extremal set. In particular, the Choquet boundary ChH(K) is nonempty if K 6= ∅.

Proof. Let F be a nonempty closed H-extremal set. We partially order the family S
of all nonempty closed H-extremal subsets of F by the reverse inclusion. If Z is a
chain in S, then

⋂
{C : C ∈ Z} is nonempty since it is the intersection of a down-

directed family of nonempty compact sets. Moreover, it is H-extremal according to
the previous Proposition 3.14. Zorn’s lemma now provides a maximal element H ∈
S. Assume that H contains two distinct points x and y. Since H is a function space,
there exists a function h ∈ H such that h(x) 6= h(y). According to Lemma 3.13, the
set

{z ∈ H : h(z) = minh(H)}

is a closed H-extremal set strictly contained in H , which contradicts the fact that H
is maximal. Hence, H = {x} for some x ∈ F . Since one-point H-extremal sets are
in ChH(K), it follows that x ∈ ChH(K).

Theorem 3.16 (Minimum principle for S lsc(H)). Let f ∈ S lsc(H) be a lower semi-
continuousH-concave function, f ≥ 0 on ChH(K). Then f ≥ 0 on K.

Proof. Let K 6= ∅ and f ∈ S lsc(H) satisfy f ≥ 0 on ChH(K). Then

F := {x ∈ K : f(x) = min f(K)}

is a closed H-extremal set by Lemma 3.13. By Proposition 3.15, F ∩ ChH(K) 6= ∅,
which implies that f ≥ 0 on K.


