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Boulevard de Marechal Juin, B. P. 5186, 14032 Caen Cedex, France

e-mail: Leonid.Vainerman@math.unicaen.fr

Series Editor
Vladimir G. Turaev
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Preface of the Series Editor

This volume of IRMA Lectures in Mathematics and Theoretical Physics contains the
proceedings of the workshop “Quantum Groups, Hopf Algebras and their Applica-
tions” held in Strasbourg in February 2002. The workshop was hosted by IRMA
(Institute of Advanced Mathematical Research) in the framework of a longstanding
wide-range program of meetings between mathematicians and theoretical physicists.
This program was initially called “Cooperative Research Program” and was introduced
by Jean Frenkel and Georges Reeb in 1965. Since then, these meetings between math-
ematicians and physicists have taken place at IRMA on the average twice a year. They
are sponsored by CNRS (National Center of Scientific Research, France) and IRMA.

The proceedings of a number of these meetings have appeared as IRMA preprints,
but were never published. The proceedings of the previous (68th) meeting “Deforma-
tion Quantization” appeared as the first volume of IRMA Lectures in Mathematics and
Theoretical Physics. The 69-th meeting, whose proceedings constitute this volume,
was organized by Leonid Vainerman and myself

The papers published in this volume concern the theory of quantum groups and
quantum groupoids. The book should be useful to specialists in this area and related
areas, as well as to students of quantum groups.

Préface de l’éditeur de la collection

Ce deuxième volume de “IRMA Lectures in Mathematics and Theoretical Physics”
présente les actes du colloque “Groupes quantiques, algèbres de Hopf et leurs ap-
plications” qui s’est tenu à l’IRMA (Strasbourg) en février 2002. Le colloque s’est
déroulé dans le cadre du programme général de rencontres entre physiciens théoriciens
et mathématiciens. Ce programme intitulé initialement “Recherche Coopérative sur
Programme” (RCP) a été créé en 1965 sur l’initiative de Jean Frenkel et Georges
Reeb avec l’aide de Jean Leray et de Pierre Lelong. Depuis 1965 les rencontres entre
physiciens et mathématiciens se déroulent à l’IRMA en moyenne deux fois par an.
Ces rencontres sont soutenues financièrement par le CNRS et l’IRMA.

Les actes de plusieurs de ces rencontres avaient donné lieu aux prépublications de
l’IRMA sans pour autant être publiés. Les actes de la rencontre précédente (68-ème)
sur le thème “Deformation Quantization” sont parus dans le premier volume de la
présente collection “IRMA Lectures in Mathematics and Theoretical Physics”. La
69-ème rencontre “Groupes quantiques, algèbres de Hopf et leurs applications” – dont
les actes constituent ce volume – a été organisée par Leonid Vainerman et moi-même.

Les articles de ce volume traitent de la théorie des groupes quantiques et des
groupoïdes quantiques. Ce livre sera utile aux mathématiciens et physiciens travaillant
sur ce sujet ainsi qu’à ceux qui étudient la théorie des groupes quantiques.

Strasbourg, novembre 2002 Vladimir Turaev
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Introduction of the editor

Leonid Vainerman

Département de Mathématiques et Méchanique
Université de Caen, Campus II – Boulevard de Maréchal Juin

B.P. 5186, 14032 Caen Cedex, France
email:leonid.vainerman@math.unicaen.fr

This volume contains seven papers written by participants of the 69 th meeting of
theoretical physicists and mathematicians held in Strasbourg (February 21–23, 2002).
One of the main topics discussed there was “Locally compact quantum groups and
groupoids” which is the title of the volume. The purpose of this introduction is to
recall some motivations and ideas from which the above topic emerged and to present
the above mentioned papers.

1 Locally compact quantum groups

1.1 Kac algebras

The initial motivation to introduce objects which are more general than usual locally
compact groups was to extend classical results of harmonic analysis on these groups,
including the Fourier transform theory and the Pontryagin duality. It is well known
that the above theories work perfectly in the framework of abelian locally compact
groups. If G is such a group, then the role of exponents is played by the unitary
continuous characters of G, and the set Ĝ of all such characters is again an abelian
locally compact group – the dual group ofG. The Fourier transform maps functions on
G to functions on Ĝ, and the Pontrjagin duality claims that the dual of Ĝ is isomorphic
to G.

If a locally compact groupG is not abelian, the set of its characters is too small, and
to extend the harmonic analysis and duality in a reasonable way, one should consider
instead the set Ĝ of (classes of) its unitary irreducible representations and also their
matrix coefficients. For compact groups, this point of view leads to the widely known
Peter–Weyl theory; the duality theory for such groups was done by T. Tannaka [75]
and M. G. Krein [42]. A new feature of this duality is that Ĝ does not carry a structure
of a group, but can be equipped with some quite different structure (block-algebra
or Krein algebra [30]); however, starting with such a structure, the initial compact
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group can be reconstructed. Such a non-symmetric duality was later established by
W. F. Stinespring [69] for unimodular groups, and by P. Eymard [28] and T. Tatsuuma
[76] for general locally compact groups.

In 1961 G. I. Kac [33], [34] proposed a completely new idea, which allowed to
restore the symmetry of the duality for unimodular, not necessarily abelian, groups.
Namely, he introduced a category of objects (he called them ring groups), containing
both unimodular groups and their duals, and constructed the Fourier transform and
duality within this category. His duality extended those of Pontryagin, Tannaka–Krein
and Stinespring.

In algebraic terms, one can think of a ring group as of a Hopf ∗-algebra with
an involutive antipode S (i.e., S2 = id). In topological terms, its algebra A is a
von Neumann algebra, and the comultiplication � : A → A ⊗ A and the antipode
S : A→ A are von Neumann algebra maps. On the contrary, its counit is not a well
defined von Neumann algebra map, that is why it is not present in the definition of
a ring group. Instead, A is required to be equipped with a faithful normal trace ϕ
compatible with� and S and playing the role of a Haar measure. Without discussing
here this definition in detail, let us show two standard examples of ring groups related
to an ordinary unimodular group G with a Haar measure µ.

Example 1.1. A = L∞(G,µ), � : f (g) �→ f (gh), S : f (g) �→ f (g−1), ϕ(f ) =
∫

G
f (g)dµ(g), where g, h ∈ G, f (·) ∈ L∞(G,µ).

Example 1.2. A = L(G) – the von Neumann algebra generated by left translations
Lg or by left convolutions Lf =

∫

G
f (g)Lgdµ(g) with continuous functions f (·) ∈

L1(G,µ) � : Lg �→ Lg ⊗ Lg , S : Lg �→ Lg−1 , ϕ(f ) = f (e), where g ∈ G, e is the
unit of G.

G.I. Kac showed that for any commutative (resp., co-commutative) ring group G,
i.e., such that the algebraA is commutative (resp., σ �� = �, where σ : a⊗b �→ b⊗a
is the usual flip in A⊗ A), there is a unimodular group G such that G is isomorphic
to the ring group of Example 1.1 (resp., 1.2) related to G. Thus, the category of
unimodular groups (resp., their duals) is embedded into the category of ring groups.

The theory of ring groups used, as a technical tool, I. Segal’s theory of traces
on von Neumann algebras, which is a non-commutative extension of the classical
theory of measure and integral. In [36], [37], [38] G. I. Kac and V. G. Paljutkin gave
concrete examples of non-trivial, i.e., non-commutative and non-co-commutative, ring
groups, which were neither ordinary groups nor their duals. As it was mentioned by
V. G. Drinfeld [13], the Kac–Paljutkin examples were the first concrete examples of
quantum groups.

The theory was completed in the early ’70s, when the Tomita–Takesaki theory and
the foundations of the theory of weights on operator algebras became available – our
reference to these topics is [70]. Namely, G. I. Kac and L. Vainerman [39], on the
one hand, and M. Enock and J.-M. Schwartz [21], on the other hand, extended the
category of ring groups in order to cover all locally compact groups (certain results
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in this direction were obtained also by M. Takesaki [72], [73]). They allowed ϕ and
ϕ � S to be different weights on A playing respectively the role of a left and a right
Haar measure (for ring groups ϕ = ϕ � S was a trace), gave appropriate axioms and
extended the construction of the dual.

To emphasize the importance of the pioneering work of G. I. Kac, M. Enock and
J.-M. Schwartz called these more general objects Kac algebras. Locally compact
groups and their duals were embedded in this category respectively as commutative
(see [72]) and co-commutative (see [81]) Kac algebras, the corresponding duality
covered all versions of duality for such groups. The standard reference to the Kac
algebra theory is [22]. C∗-algebraic Kac algebras have been discussed in [63], [24]
(see also [82]).

1.2 From Kac algebras to locally compact quantum groups

The discovery of quantum groups by V. G. Drinfeld [13] was accompanied by the
arrival of new important examples of Hopf ∗-algebras, obtained by deformation either
of universal enveloping algebras of Lie algebras [13], [31], or of function algebras on
Lie groups [92], [93], [68]. Their operator algebra versions did not fit into the Kac
algebra theory, because the antipodes were neither involutive, nor even bounded maps.
This provided a strong motivation to construct a more general theory, which would be
as elegant as that of Kac algebras but would also cover these new examples. The first
steps in this direction were made in [92], [94], where S. L. Woronowicz constructed
the theory of compact quantum groups and developed for them the Peter–Weyl theory
and the Tannaka–Krein duality. Moreover, he managed to deduce the existence of a
Haar measure from his set of axioms rather than assume it, as was the case in the Kac
algebra theory (and, as we will see below, in some of its extensions). The last feature
holds also for discrete quantum groups – see [64], [16], [15], [87].

Remark 1.3. 1) The Haar theorem for compact C∗-algebraic ring groups has been
proven by V. G. Paljutkin [63] (see also [82]).

2) In [11], the Peter–Weyl theory was constructed for much more general objects
than compact quantum groups, for which the comultiplication is not necessarily an
algebra map.

In the case of non-compact and non-discrete quantum groups, an in-depth prior
analysis of concrete examples was necessary. It was not so difficult to construct
such examples in terms of generators of certain Hopf ∗-algebras and commutation
relations between them. It was much harder to represent these generators as (typically,
unbounded) operators acting on a Hilbert space and to give a meaning to the relations of
commutation between these operators. Finally, it was even more difficult to associate
an operator algebra with the above system of operators and commutation relations and
to construct comultiplication, antipode and invariant weights as applications related
to this algebra. There is no general approach to these highly nontrivial problems, and
one must design specific methods in each specific case [95]–[98], [64], [1], [90].
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There are other examples of operator algebraic quantum groups which are easier
to construct. For example, given a non-commutative locally compact group G, one
can replace the comultiplication � of the co-commutative Kac algebra described
in Example 1.2 with the new comultiplication of the form ��(·) = ��(·)�−1,
where � is an element from L(G) ⊗ L(G) such that �� remains co-associative.
This construction (called twisting) was developed on a purely algebraic level by V.G.
Drinfeld [14] and on an operator algebraic level in [23], [83] and [55], where numerous
concrete examples were obtained as well. Note that a, in a sense dual, construction
has been proposed by M. Rieffel [65].

The other construction has been developed in [35]. Given two finite groups, G1
and G2, viewed respectively as a co-commutative ring group (L(G1),�1) (see Ex-
ample 1.2) and a commutative ring group (L∞(G2),�2) (see Example 1.1), let us try
to find a ring group (A,�) which makes the sequence

(L∞(G2),�2)→ (A,�)→ (L(G1),�1) (1)

exact. G. I. Kac explained that: 1) (A,�) exists if and only ifG1 andG2 are subgroups
of a group G such that G1 ∩ G2 = {e} and G = G1G2. Equivalently, G1 and G2
must act on each other (as on sets), and these actions must be compatible. 2) To get
all possible (A,�) (they are called extensions of (L∞(G2),�2) by (L(G1),�1)),
one must find all possible 2-cocycles for the above mentioned actions, compatible in
certain sense. Under these conditions, [35] gives the explicit construction of (A,�)
(the cocycle bicrossed product construction). The famous Kac–Paljutkin examples
of non-trivial ring groups [36], [37], [38] are exactly of this type. Later on, both
algebraic and analytic aspects of this construction were intensively studied by S. Majid
[50]–[53] who gave also a number of examples of operator algebraic quantum groups,
some of them were not Kac algebras. Very recently, the theory of extensions of the
form (1), with locally compact G1 and G2, has been developed in [80].

An important step in the generalization of the Kac algebra theory was the theory of
multiplicative unitaries. Already W. F. Stinespring [69] mentioned an important role
in the construction of the dual for a unimodular nonabelian group G played by the
unitary

WG(ξ)(g, h) = ξ(g, g−1h) (2)

acting on L2(G,µ) ⊗ L2(G,µ). G. I. Kac, in order to construct his duality for ring
groups, introduced in this more general context a similar unitary

W ∗(�(a)⊗�(b)) = (�⊗�)(�(b)(a ⊗ 1)), (3)

where a, b ∈ Nϕ := {x ∈ A : ϕ(x∗x) < ∞}, � is the GNS-mapping for ϕ [70].
Moreover, he was the first to point out that W verifies the Pentagonal relation:

W12W13W23 = W23W12 (4)

and to show that all the information about the ring group could be encoded in W .
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On the contrary, S. Baaj and G. Skandalis [2] took a unitary verifying (4) (they
called it a multiplicative unitary), as the starting point of their theory. They have
constructed two Hopf C∗-algebras in duality out of a given multiplicative unitary,
under certain regularity conditions, and gave a number of important constructions
of C∗-algebraic quantum groups in this framework (including the bicrossed product
construction). The investigation of the above mentioned regularity conditions and
alternative manageability conditions [96] is one of the most important topics in the
theory of multiplicative unitaries [1], [3], [96], [5]. Note that several examples of
C∗-algebraic quantum groups, more general than Kac algebras, were given in [2],
[67].

T. Masuda and Y. Nakagami proposed an extension of the Kac algebra theory by
requiring the antipode S to have a polar decomposition consisting of a unitary part
and a generator of one-parameter group of automorphisms of a von Neumann algebra
A. The idea of such a polar decomposition of S is due to E. Kirchberg (unpublished).
The Kac algebra case is exactly the situation when S equals its unitary part and for
that reason is involutive and bounded. A certain disadvantage of this approach was the
necessity for some quite complicated axioms which disappears in the Kac algebra case.
A joint work by T. Masuda, Y. Nakagami and S. L. Woronowicz on the C∗-algebra
version of this theory is still in progress.

To sum up, one can say that trying to extend the Kac algebra theory in order to cover
important concrete examples of quantum groups, one faces a mixture of algebraic
and analytic problems. That is why it was important to design a purely algebraic
framework, where the main algebraic features of the future theory would be present.
It was done by A. Van Daele in [88], [89] and in his joint work with J. Kustermans [46],
where the notion of a multiplier Hopf ∗-algebra with positive integrals was proposed
and a natural duality was constructed. As for analytic aspects of the story, by the end
of the ’90s the theory of weights on C∗-algebras had been further developed, mainly
by J. Kustermans, and after that the theory of locally compact quantum groups was
proposed by J. Kustermans and S. Vaes [43]–[45].

A locally compact quantum group is a collection G = (A,�, ϕ,ψ), where A is
either aC∗- or a von Neumann algebra equipped with a co-associative comultiplication
� : A → A ⊗ A and two faithful semi-finite normal weights ϕ and ψ - right and
left Haar measures. The antipode is not explicitly present in this definition, but can
be constructed from the above data, as well as its polar decomposition, using the
multiplicative unitary, canonically associated with G by means of the formula (3).
Kac algebras, compact and discrete quantum groups are special cases of a locally
compact quantum group, but what is even more interesting, all important concrete
examples of operator algebraic quantum groups fit into this framework. One can find
an exposition of this theory in [47] and [79]. In the present book, more information
on locally compact quantum groups can be found in the Preliminaries of the article
by S. Vaes and L. Vainerman. To simplify the notations, in what follows we denote
a locally compact quantum group by (A,�); usually we deal with the case when A
is a von Neumann algebra and � : A → A ⊗ A is a normal monomorphism of von
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Neumann algebras. Let us present now the three papers on locally compact quantum
groups contained in this volume. We start with a paper by J. Kustermans and E.
Koelink devoted to a concrete example of a locally compact quantum group, related to
SUq(1, 1). As a Hopf ∗-algebra, SUq(1, 1) is one of the three real forms of SLq(2,C),
the two others being SUq(2) and SLq(2,R). Remark that the quantum group SUq(2)
and its dual are well understood on the operator algebra level [92]–[94], [68]; such an
understanding of SLq(2,R) is still an open problem.

Concerning SUq(1, 1), in 1991 S. L. Woronowicz showed that this object cannot
exist as aC∗-Hopf algebra, and this result was a source of pessimism for several years.
Then L. Korogodsky explained that it was reasonable to deform rather the normalizer
S̃U(1, 1) of SU(1, 1) in SLq(2,C) than SUq(1, 1) itself. The paper of J. Kustermans
and E. Koelink gives a clear overview of the highly nontrivial construction of quantum
S̃U(1, 1) and its dual as locally compact quantum groups and their theory of repre-
sentations. The main tool they use is the explicit analysis of eigenfunctions of certain
unbounded operators in terms of special functions of q-hypergeometric type. The
paper also contains historical remarks and shows the contribution of other specialists.

The paper by A. Van Daele is a survey of the theory of algebraic quantum groups
(multiplier Hopf ∗-algebras with positive integrals) and their relations with locally
compact quantum groups. As was mentioned above, this theory provided one of
the main motivations for the development of locally compact quantum groups by
J. Kustermans and S. Vaes and showed almost all algebraic features of the latter. On
the other hand, it is much easier technically, even if much attention is attached to the
links with the corresponding operator algebraic results. The category of algebraic
quantum groups contains the categories of compact and discrete quantum groups (but
not all the ordinary locally compact groups), is self-dual and closed under several
constructions, such as, for example, the Drinfeld double. An important tool used in
the paper is the Fourier transform. Thus, algebraic quantum groups provide a good
and relatively simple model for studying more general objects. So the paper will be
of interest both for students and experts.

The paper by S.Vaes and L.Vainerman is devoted to extensions of Lie groups of the
form (1). In this case, instead of the condition G = G1G2, one should require G1G2
to be an open dense subset ofG, as in [3]. Then, for the corresponding Lie algebras we
have g = g1⊕g2 – the direct sum of vector spaces. So, to construct examples of locally
compact quantum groups, one can start with such a decomposition of Lie algebras and
try to construct a corresponding pair of groups (G1,G2). But this problem proves to
be not so easy to resolve (typically, one must deal with non-connected Lie groups), and
often it has no solution at all. In the paper the case of complex and real Lie groupsG1
and G2 of low dimensions is studied in detail. In particular, a complete classification
of the corresponding locally compact quantum groups with two or three generators
is obtained, and all the ingredients of their structure are computed, as well as their
infinitesimal objects (Hopf ∗-algebras and Lie bialgebras).
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2 From quantum groups to quantum groupoids

2.1 Actions of locally compact quantum groups and subfactors

Classical groups are interesting first of all as groups of transformations, acting on
certain spaces. Similarly, one can define a (left) action of a locally compact quantum
group (A,�) on a von Neumann algebra N (which plays the role of a “quantum
space”) as a normal monomorphism α : N → A⊗N of von Neumann algebras such
that (id⊗α)α = (�⊗ id)α. Now the fixed point subalgebra can be defined as

Nα := {x ∈ N : α(x) = 1⊗ x},
and the crossed product A� N as the von Neumann algebra generated by α(N) and
Â ⊗ C, where Â is the von Neumann algebra of the dual. An action is said to be
outer if (Nα)′ ∩ N = C. For the motivations and details see [77], [79], [80] and
Preliminaries of the article by S. Vaes and L. Vainerman in this volume. There is a
series of nice results on such actions that extend classical results on actions of locally
compact groups on von Neumann algebras [77], [79], but here we focus our attention
on the links with subfactors.

Starting with a given inclusionN0 ⊂ N1 of von Neumann algebras and performing
step by step the well known basic construction of V. Jones, one can obtain the Jones’
tower of von Neumann algebras [32]:

N0 ⊂ N1 ⊂ N2 ⊂ N3 ⊂ · · · .
Recall that the initial inclusion is said to be irreducible, if N ′0 ∩N1 = C (in this case
all the Ni (i = 0, 1, 2, . . . ) are factors, i.e., have trivial centers), and of depth 2, if the
triple of relative commutants

N ′0 ∩N1 ⊂ N ′0 ∩N2 ⊂ N ′0 ∩N3

is again the basic construction.

Example 2.1. Given an outer action α of a locally compact group G on a factor N1,
the inclusion N0 = Nα

1 ⊂ N1 is irreducible and of depth 2, and N2 is isomorphic to
G�N1.

M. Enock and R. Nest [20], [17] showed that, conversely, for any irreducible depth 2
subfactorN0 ⊂ N1 satisfying a natural regularity condition, the von Neumann algebra
A = N ′1 ∩N3 can be given the structure of a locally compact quantum group (A,�)
with an outer action α of the commutant (A,�)′ on N1, such that N0 = Nα

1 and the
triples N0 ⊂ N1 ⊂ N2 and C⊗Nα

1 ⊂ α(N1) ⊂ A′ �N1 are isomorphic (in fact, this
result was precised by S. Vaes [77]).

Remark 2.2. The idea that outer actions of Kac algebras are closely related to the
structure of irreducible depth 2 subfactors, is due to A. Ocneanu (see, for example,
Postface in [22]). Finite index irreducible depth 2 subfactors of type II1 were charac-
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terized in terms of outer actions of finite-dimensional Kac algebras by R. Longo [48],
W. Szymanski [71] and M. C. David [12].

This beautiful result motivates the following natural hypothesis: if we drop the
irreducibility condition keeping however the depth 2 condition for a subfactor, this
situation should be characterized in terms of an outer action of some more general
structure than a locally compact quantum group. And this is a way to approach the
notion of a locally compact quantum groupoid.

Indeed, already finite index depth 2 subfactors of type II1 reveal the purely algebraic
aspect of the story. It is shown in [59] that in this case the above mentioned result is
still true, up to notations, if one gives the finite-dimensional algebra A = N ′0 ∩ N2 a
structure of a weakC∗-Hopf algebra (introduced in [7], [6]) acting outerly onN1. Like
a finite-dimensional Kac algebra, a weak C∗-Hopf algebra is a finite-dimensional C∗-
algebra A equipped with a co-associative comultiplication, an antipode and a counit.
The main difference between them is that this comultiplication is not necessarily a
unital map and the counit is not necessarily a homomorphism of algebras A → C.
This implies the existence of a canonicalC∗-subalgebraR ofA, called counital or base
subalgebra, playing a fundamental role within this structure. For a weak C∗-Hopf
algebra coming from subfactors we have R = N ′0 ∩ N1; clearly, R = C if and only
if the subfactor is irreducible. One can show that the dual vector space for a weak
C∗-Hopf algebra carries the structure of the same type, i.e., this notion is self-dual.

Like in Examples 1.1 and 1.2, the algebra of functions and the groupoid algebra
of a usual finite groupoid give respectively standard examples of a commutative and
cocommutative weak C∗-Hopf algebra [58], [61] which justifies the usage of the term
“quantum groupoid”. Moreover, the notion of the base subalgebra naturally extends
the function algebra on the set of units of a usual groupoid. For examples of non-
trivial (i.e., non-commutative and non-cocommutative) quantum groupoids see [7],
[57], [58], [59], [61], [26].

Initially, weak C∗-Hopf algebras were introduced in [7] as symmetries of cer-
tain models in algebraic quantum field theory. Another source of interest in them is
their representation category, which is flexible enough to describe all rigid monoidal
C∗-categories with finitely many classes of simple objects (in general, in this repre-
sentation category a unit object is not a counit because the latter is not a representation,
and the tensor product differs from the usual tensor product of vector spaces) [8], [57],
[60], [61]. So, quantum dimensions of irreducible representations need not to be in-
teger, and these categories have interesting applications in low-dimensional topology
[57], [61]. A survey of the theory of finite quantum groupoids and their applications
can be found in [61].
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2.2 Multiplicative partial isometries and pseudo-multiplicative
unitaries

As noted above, multiplicative unitaries are of fundamental importance in the theory of
locally compact quantum group. So, it would be natural to define and to study similar
objects also for quantum groupoids. Since for any weak C∗-Hopf algebra there exists
a positive linear form on its C∗-algebra A playing the role of a Haar measure [6], one
can define an operator W by (3). Now W is not in general a unitary, but just a partial
isometry verifying the Pentagonal equation (4) [9], [86].

Like in the case of quantum groups, the inverse problem is more subtle, and in order
to resolve it one should impose some regularity conditions on a given partial isometry.
Namely, J. M. Vallin showed in [86] that any regular multiplicative partial isometry
generates two quantum groupoids in duality, which extends the above mentioned result
of S. Baaj and G. Skandalis on multiplicative unitaries. In the paper published in this
book, J. M. Vallin continues the study of the structure of regular multiplicative partial
isometries acting on a finite-dimensional Hilbert space, in the spirit of [4], where
finite-dimensional multiplicative unitaries were studied in detail.

First, it is shown that, after an amplification and reduction, any regular multiplica-
tive partial isometry is isomorphic to an irreducible one, i.e., verifying a certain quite
strong condition. The latter condition allows to prove quantum Markov properties;
for instance, the existence of a faithful positive linear form on the involutive algebra
generated by the two quantum groupoids associated to the partial isometry (the Weyl
algebra) that extends both normalized Haar measures of these quantum groupoids. In
its turn, this implies that any regular multiplicative partial isometry is a composition
of two very simple partial isometries. Finally, it is shown that a regular multiplicative
partial isometry is completely determined by the two quantum groupoids associated
and by the spaces of its fixed and cofixed vectors, and a complete characterization
of quantum groupoids in duality acting on the same Hilbert space in the irreducible
situation is obtained.

The notion of a locally compact quantum groupoid is much less transparent in the
infinite-dimensional case, which corresponds to the infinite index depth 2 inclusions
of von Neumann algebras (in fact, the development of this theory is still in progress).
The reason is that in this case complicated analytical aspects play a significant role,
as well as the presence of nontrivial base von Neumann algebra. In particular, instead
of usual tensor products of Hilbert spaces and von Neumann algebras one should
inevitably use the relative tensor product of Hilbert spaces and the “fiber” product of
von Neumann algebras over a base algebra. In the finite-dimensional case these new
notions reduce respectively to a subspace of the usual tensor product of Hilbert spaces
and to a reduced subalgebra of the usual tensor product of von Neumann algebras. For
the definitions and explanations see the paper by M. Enock on infinite-dimensional
locally compact quantum groupoids published in this volume, which also outlines the
nearest prospects for this field.
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To approach the notion of a locally compact quantum groupoid, it is necessary first
to figure out, what kind of objects can be associated with an ordinary locally compact
groupoid in the spirit of Examples 1.1 and 1.2 and the formula (2). It was explained
in [84], [86] that one gets this way two Hopf bimodules in duality – commutative
and co-commutative, and a pseudo-multiplicative unitary. The same objects were
associated with depth 2 inclusions of von Neumann algebras in [25], [18]; moreover,
in both cases one can even equip the Hopf bimodules with antipodes having polar
decompositions. For the definitions and explanations see the survey by M. Enock. We
only remark that both these structures are defined over a base von Neumann algebra,
and that in the finite-dimensional case they reduce respectively to a weak C∗-Hopf
algebra and to a multiplicative partial isometry.

Like in the theory of locally compact quantum groups, it is crucial to understand
exact relations between these two “faces” of a locally compact quantum groupoid. It
was shown in [25], [18] that, given a pseudo-multiplicative unitary, one can construct
in a natural way two Hopf bimodules in duality (as we mentioned above, in the cases
related to a usual locally compact groupoid and to depth 2 inclusions of von Neumann
algebras, one can even equip these objects with antipodes having polar decomposi-
tions). The work by F. Lesieur on a converse result is still in progress. Finally, in [19],
the theory of quantum groupoids of compact type is developed, following the strategy
of [2].

2.3 On purely algebraic quantum groupoids

Until now we have discussed quantum groups and groupoids only in the framework
of operator algebras. As for purely algebraic quantum groupoids, there are several
versions of them, designed from various motivations. Let us mention first the notion
of a weak Hopf algebra [6] extending substantially the one of a Hopf algebra. Like
in the C∗-case, the main difference between them is that the comultiplication of a
weak Hopf algebra A is not necessarily a unital map and the counit is not necessarily
a homomorphism of algebras A → k (k is the ground field), and this implies the
existence of a base subalgebra R of A, which is automatically separable (if R is
commutative, we get a notion of a face algebra [29]). The theory of these objects
in the finite-dimensional case nicely extends that of Hopf algebras [6], [56], [91],
[8], [57], [61]. Their representation categories cover all rigid monoidal categories
with finitely many classes of simple objects, even in the case of a commutative base
subalgebra [29], [62]. So, they can be used as an appropriate tool for the study of such
categories [27], [57]. Dropping the antipode in a weak Hopf algebra we get a weak
bialgebra whose representation category is monoidal, but not necessarily rigid.

The notion of a weak Hopf algebra (resp., weak bialgebra) is a partial case of that
of a Hopf algebroid (resp., bialgebroid ) in the sense of [49] and [99] – see [26] (resp.,
[66]). The definition of the latter two structures was motivated by the analogy with a
usual (semi)groupoid, their base algebra naturally extends the function algebra on the
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set of its units. On the other hand, the notion of a bialgebroid is equivalent to that of
a ×R-bialgebra introduced earlier by M. Takeuchi [74] (here also, R denotes a base
algebra) – see [10]. It was shown in [66] that a×R-bialgebra with a separable base is
a weak bialgebra. For all the above mentioned objects, their representation category
is monoidal.

Brief discussion of some other versions of quantum groupoids can be found in [61].
Now we are ready to present the two remaining papers of this volume. P. Schauen-

burg discusses a construction that allows to replace the base algebra R in any ×R-
bialgebraA with a Morita-equivalent algebra S (i.e., having equivalent representation
category) in order to obtain a ×S-bialgebra whose representation category is equiv-
alent to that of A as monoidal categories. He gives a spectacular illustration: for a
concrete example of a weak Hopf algebra from [60], [61] this Morita base change
reduces the dimension of A from 122 to 24 without affecting the monoidal category
of representations (the base algebra changes from C⊕M2(C) to C⊕ C).

The starting point for the paper by K. Szlachányi is a balanced depth 2 extension
of algebras N ⊂ M which is a purely algebraic generalization of the notion of finite
index depth 2 von Neumann subfactors – see the definition in the text. For such an
extension, the endomorphism ring A = EndN MN carries a bialgebroid structure (its
base R is the relative commutant of N in M) equipped with the canonical action on
M , whose subalgebra ofA-invariants isN [40]. This generalizes the above mentioned
result of [59] in the subfactor theory.

Finally, it is explained that balanced depth 2 extensions of algebras are the proper
analogues of the Galois extensions of fields (i.e., normal and separable field exten-
sions) because they have “finite quantum automorphism groups” with subalgebra of
invariants equal to N and which are characterized by a universal property, hence,
unique. The role of such a “finite quantum automorphism group” is played by a bial-
gebroid that is finitely generated projective over its base as a left and a right module
(the problem of the existence of the antipode in this bialgebroid is still open). If R is
separable, then A is a weak bialgebra; if, moreover, N ⊂ M is a Frobenius extension,
then A is a weak Hopf algebra. In the special case of a separable field extension, the
structure of such a universal weak Hopf algebra is written down explicitly.
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Abstract. To any groupoid, equipped with a Haar system, Jean-Michel Vallin had associated
several objects (pseudo-multiplicative unitary, Hopf bimodule) in order to generalize, up to the
groupoid case, the classical notions of a multiplicative unitary and a Hopf-von Neumann algebra,
which were intensively used in the quantum group theory, in the operator algebra setting. In
two recent articles (one of them in collaboration with Jean-Michel Vallin), starting with a depth
2 inclusion of von Neumann algebras, we have constructed the same objects, which allowed
us to study two “quantum groupoids” dual to each other. Here is a survey of these notions and
results, including the announcement of new results about pseudo-multiplicative unitaries.

1 Introduction

The quantum group theory in the operator algebra setting has recently reached a new
viewpoint from which the landscape is greater.

First of all, in their theory of “locally compact quantum groups”, Kustermans and
Vaes [KV] have obtained a beautiful and efficient axiomatisation of quantum groups.
Their axioms are simple, easy to verify and cover all known examples. Many results
in harmonic analysis seem now to be obtainable in that new setting and this article
seems to be the new keystone of the theory.

Secondly, the links between quantum group theory and subfactor theory are now
completely clarified ([EN], [E1], [V]): up to some regularity condition, every depth
2 irreducible inclusion of factors is given by an action of a locally compact quantum
group on a factor, and vice-versa.

This situation leads several mathematicians to face two new questions:
– How to modify Kustermans and Vaes axioms in order to catch also locally

compact groupoids? How does it correspond to what was done by several theoretical
physicists ([BSz1], [BSz2], [Sz])?
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– What is to be obtained if we deal with non-irreducible depth 2 inclusions of von
Neumann algebras?

Of course, the answers to these two questions are closely linked, and many results
were found in this direction. It turned out that the tools are completely different in
finite- and in infinite-dimensional situation.

In the finite-dimensional situation, after some early work by Yamanouchi [Y2],
the most important work is due to Böhm, Nill and Szlachányi [BNS] and Nikshych
and Vainerman [NV1], who gave there a general setting to “finite quantum groupoids”
and constructed several examples (see also earlier papers [BSz1], [BSz2], [Sz]). In
[NV2], the links of this theory with depth 2 non-irreducible inclusions of type II1
von Neumann factors are given. Another point of view, with multiplicative partial
isometries, is due to Vallin ([Val3], [Val 4]) and Böhm and Szlachányi [BSz3].

In the infinite-dimensional situation, Vallin had associated with any locally com-
pact groupoid, equipped with a left Haar system, two objects (Hopf bimodule structure,
pseudo-multiplicative unitary), which generalize the usual coproduct and multiplica-
tive unitary associated with a locally compact group ([Val1], [Val 2]). It appeared then
clear that, for going from locally compact groups to locally compact groupoids, it was
necessary to use the Hilbert space relative tensor product (Connes–Sauvageot tensor
product) instead of the usual Hilbert space tensor product, and the “fiber product” of
von Neumann algebras instead of the usual von Neumann algebra tensor product.

In [EV], [E2] the structures of the same kind have been obtained starting with
non-irreducible depth 2 inclusions of von Neumann algebras.

New results in that theory can be found in [E3] and in [L], the latter will appear
soon.

Here we give a survey on “quantum groupoids of infinite dimension”, and announce
some results, still unpublished. In Section 2 we recall all the preliminaries required,
in particular a description of the Connes–Sauvageot tensor product (2.4) and of the
fiber product of von Neumann algebras (2.5). In Section 3 we give the definitions of
Hopf bimodules (3.1) and of pseudo-multiplicative unitaries (3.2), as well as examples
coming from groupoids (3.1, 3.2) and from depth 2 inclusions (3.3). We also discuss
the first properties of these objects. In Section 4, inspired by [BS], we develop the
theory of quantum groupoids of compact type. Examples are given in Section 5.

For the sake of simplicity, all von Neumann algebras are supposed to be σ -finite.
This article is mostly inspired by the talk I gave at the conference on Quantum

groups, Hopf algebras and their applications, which held in Strasbourg on February
21–23, 2002. I would like to thank the organizers of this conference.


