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Preface

Following an initiative of the late Professor Hans Zassenhaus in 1965, the Depart-
ments of Mathematics at the The Ohio State University and Denison University have
been holding conferences in Combinatorics, Group Theory, and Ring Theory. Ini-
tially, these meetings have been held annually, and later biannually; in the year 2000,
the 25th meeting of this series was conducted. These conferences have primarily
attracted mathematicians from institutions in Ohio and nearby states, but there have
been many participants from other parts of the country, as well as from abroad. There
are usually twenty to thirty invited 20-minute talks given in each of the three main
areas. However, at the last conference, held during May 18–21, 2000 on the Ohio
State main campus in Columbus, there was a special addition to the Combinatorics
program in tribute to the 65th birthday of Dijen Ray-Chaudhuri. The Dijen 65 part
of the conference consisted of fourteen 40-minute lectures by either former students
of Dijen or other mathematicians with strong personal and professional ties with him.
The topics ranged from Coding Theory, Design Theory, Geometry and Optimization
to Graph Theory, reflecting the wide range of areas to which Professor Ray-Chaudhuri
has made substantial contributions during his exemplary career.

The banquet to celebrate his 65th birthday included remarks made by Professors
R.M. Wilson, Jeff Kahn, Thomas Dowling, and Dr. John F. Dillon. The highlight of
this party was the presentation of the Euler medal to Professor Ray-Chaudhuri for his
life-long achievements and contributions to Combinatorics. This medal was presented
to him by Professor Ralph Stanton on behalf of the Institute of Combinatorics and
Applications.

We are indebted to Professor Thomas Dowling for his invaluable help with the
organization of the combinatorics part of the conference, and to the referees of this
volume for their conscientious work. We are very grateful for the generous support
of the Mathematical Research Institute of The Ohio State University and the National
Security Agency.

K. T. Arasu
Ákos Seress
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Highlights of Dijen Ray-Chaudhuri’s research

Ákos Seress

Dijen Ray-Chaudhuri, in over 80 published papers, books, and monographs, has
worked on a broad range of problems in combinatorics that arose in the theory of error-
correcting codes, graph theory, design theory, difference sets, geometry, information
retrieval, and combinatorial optimization. His first major contribution appeared in
his Ph.D. thesis [1], where he constructed the 2-error-correcting version of the codes
which later became known as BCH codes. The name BCH stands for Bose and Chaud-
huri, since Dijen constructed the d-error-correcting version of these codes with his
advisor R. Bose [2], and for Hocquenguem, who independently discovered the same
codes. BCH codes are the first major application of algebra in coding theory, and are
considered of fundamental importance in the subject. Books in the area (for example,
Algebraic Theory of Coding by Berlekamp, and Theory of Error-Correcting Codes by
MacWilliams and Sloane) devote at least a chapter to BCH codes.

Another fundamental result is Dijen’s joint work with R. Wilson [18], on a theory of
recursive construction of designs. These constructions led to the solution of a century-
old problem on the existence of Steiner systems, known also as the Kirkman School
Girl Problem. Later, Dijen extended the scope of these investigations. He proved
(with N. Singhi) [47] the λ-large existence theorem for designs in projective spaces
and affine spaces, and (with E. Schram) [54] he constructed designs and large sets of
designs in vector spaces, using the theory of quadratic forms. Popular scientific articles
about BCH codes and the Kirkman School Girl Problem appeared in the Scientific
American and in the Encyclopedia Britannica.

Besides these fundamental results, Dijen’s work opened up new areas of research in
other branches of combinatorics. His early paper [4] on minimally redundant systems
of Boolean functions has a significant follow-up in the Russian electrical engineering
community, while another early paper [9] on the connection of association schemes
with finite projective spaces and designs is the basis of research on association schemes
in China.

Another highlight is Dijen’s work with A. Sprague [33] and E. Brickel [42], on
the characterization of graphs and association schemes arising from the intersection
properties of flats of finite projective spaces, affine spaces, and attenuated spaces.
These results are deep, and they attracted the attention of finite geometers.

In [39], Dijen with R. Roth developed a theory of nonassociative commutative
Moufang loops of exponent 3 and nilpotence class 2, arising from Hall triple systems.
This theory was used to construct new Hall triple systems, which are also perfect
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matroid designs. The seminal paper [41], with S. B. Rao and N. M. Singhi, develops
a structure theory for imprimitive association schemes. The paper [57], with N. M.
Singhi and G. R. Vijayakumar is a continuation of Dijen’s interest in the spectral
characterization of line graphs [12], and uses root lattices and root systems for the
classification of signed graphs with least eigenvalue at least −2. Earlier work with
A. J. Hoffman [10], [11] gives spectral characterization of line graphs of symmetric
designs and affine planes.

Dijen also contributed to extremal set theory. His most important results are an
algorithm for the computation of the covering number of a hypergraph [6], a bound for
the size of set systems with pairwise intersections of prescribed sizes (with R. Wilson)
[24], and the generalization of this result to polynomial semilattices (with T. Zhu and
J. Qian) [58], [69].

Dijen gave over hundred invited lectures at various institutions. The most important
ones are a 45-minute address at the International Congress of Mathematics in 1970,
and an hour-long invited talk at the Combined Winter Meeting of the AMS and MAA
in 1973. He received a Senior US Scientist Award of the Alexander von Humboldt
Foundation, the Distinguished Senior Research Award of The Ohio State University,
and the Euler Medal of the Institute for Combinatorics and its Applications [76].

Last, but not least, we have to mention Dijen’s enormous contribution to the de-
velopment of young researchers. So far, he has been the advisor of 31 Ph.D. students.
In the order of graduation, they are R. M. Wilson, B. T. Datta, A. P. Sprague, K. S.
Vijayan, A. H. Chan, K. Chang, D. Nemzer, J. LeFever, H.-P. Ko, J. Kahn, R. Roth,
R. Games, E. Brickell, A. Moon, K. T. Arasu, Á. Seress, D. Miklós, E. J. Schram, J.
J. Kim, L. Narayani, H.-M. Shaw, T. Zhu, X. Wu, Q. Xiang, H. Mohácsy, K. Liu, T.
Blackford, J. Qian, I. Siap, G. Yeh, and A. Nabavi. Among these, there are two Pólya
Prize winners, an Associate Director of the Rényi Institute of the Hungarian Academy
of Sciences, over ten professors at universities all over the world, and several hold
leadership positions in industry.
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On the p-ranks of GMW difference sets

K. T. Arasu, Henk D. L. Hollmann, Kevin Player, and Qing Xiang ∗

Abstract. We determine the p-ranks of the classical GMW difference sets (p even or
odd). In the p odd case, this solves an open problem mentioned in [4], p. 461 and [15],
p. 84. We also compute the 2-ranks of some non-classical GMW difference sets arising
from monomial hyperovals.

2000 Mathematics Subject Classification: primary 05B10; secondary 11L05.

1. Introduction

Let G be a finite (multiplicative) group of order v. A k-element subset D of G is called
a (v, k, λ) difference set in G if the list of “differences” d1d

−1
2 , d1, d2 ∈ D, d1 �= d2,

represents each nonidentity element in G exactly λ times.
We say that two (v, k, λ) difference sets D1 and D2 in an abelian group G are

equivalent if there exists an automorphism α of G and an element g ∈ G such that
α(D1) = D2g. In particular, if G is cyclic, then D1 and D2 are equivalent if there
exists an integer t , gcd(t, v) = 1, such that D(t)

1 = D2g for some g ∈ G, where

D
(t)
1 = {dt | d ∈ D1}.

Singer [17] discovered a large class of difference sets which are related to finite
projective geometry. These difference sets have parameters

v = qd − 1

q − 1
, k = qd−1 − 1

q − 1
, λ = qd−2 − 1

q − 1
(1)

where d ≥ 3, and they exist whenever q is a prime power.
In this paper, difference sets with parameters (1), or the complementary parameters

v = (qd − 1)/(q − 1), k = qd−1, λ = qd−2(q − 1) are called difference sets with
classical parameters. In ([2], p. 143), it is mentioned that on one hand, Singer [17]
conjectured that there is only one equivalence class of difference sets with parameters
(1) if d = 3 (i.e., λ = 1); on the other hand, the largest known class of multiple
inequivalent difference sets also have classical parameters. While little progress has

∗K. T. Arasu’s research is supported by NSF grant CCR-9814106 and by NSA grant 904-01-1-0041.
Kevin Player was partially supported by an REU grant from the NSF. Q. Xiang was supported by NSA
grant 904-01-1-006.
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been made on the Singer conjecture above, there has been a great deal of research on
constructing inequivalent difference sets with classical parameters, especially when
q = 2. For a survey of recent work in this area, we refer the reader to [20].

The first infinite series of examples of mutually inequivalent difference sets with
parameters

( qm−1
q−1 , qm−1, qm−2(q−1)

)
is due to Gordon, Mills and Welch [8]. These

difference sets will be called GMW difference sets, and the symmetric designs devel-
oped from these difference sets are called GMW designs. When q = 2, the 2-ranks
of the so-called classical GMW difference sets (see Section 2 for definition) were
computed by Scholtz and Welch [16] in terms of the linear spans of their characteristic
sequences. However, the p-ranks of the classical GMW difference sets in the case
q �= 2 are not known (cf. [4], p. 461, [15], p. 84). In this paper, we compute the
p-ranks of the classical GMW difference sets. We also compute the 2-ranks of some
non-classical GMW difference sets from monomial hyperovals. The methods used
here to compute the p-ranks are essentially the same as those in [7], but the details are
more complicated because of the recursive nature of GMW difference sets. We first
show that the character sums of the GMW difference sets under consideration are re-
lated to Gauss or Jacobi sums, then we use Stickelberger’s theorem on the prime ideal
factorization of Gauss sums to reduce the problem of computing the p-ranks to certain
counting problems. The counting problems are then solved either in a straightforward
manner or with the help of the so-called transfer matrix method.

It should be noted that the p-ranks of GMW difference sets usually cannot dis-
tinguish GMW designs because very often inequivalent GMW difference sets have
the same p-ranks (see, for example, Corollary 3.7). The difficult problem whether
inequivalent GMW difference sets lead to nonisomorphic GMW designs is recently
solved by Kantor [11] using group theory.

2. Preliminaries

We first recall a construction of Singer difference sets. Let Fqd be the finite field with
qd elements, where q = ps , p is a prime, d ≥ 3, and let Tr be the trace from Fqd to
Fq . We may take a system L of coset representatives of F

∗
q in F

∗
qd such that Tr maps

L into {0, 1}. Write L = L0 ∪ L1, where

L0 = {x ∈ L | Tr(x) = 0}, L1 = {x ∈ L | Tr(x) = 1}. (2)

Theorem 2.1. With the above notation, L0 is a
( qd−1

q−1 ,
qd−1−1
q−1 ,

qd−2−1
q−1

)
difference set

in the quotient group F
∗
qd /F

∗
q , and L1 is a

( qd−1
q−1 , qd−1, qd−2(q − 1)

)
difference set

in F
∗
qd /F

∗
q .

Proofs of Theorem 2.1 of course can be found in many places. For our later use,
we mention a proof by Yamamoto [22] (see also [7]), in which it is shown that the
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character values of L0 and L1 are related to Gauss sums. More precisely, let χ be a
nontrivial multiplicative character of Fqd whose restriction to F

∗
q is trivial. Then

χ(L0) = g(χ)/q, and χ(L1) = −g(χ)/q, (3)

where g(χ) is the Gauss sum defined over Fqd , i.e.,

g(χ) =
∑

a∈F
∗
qd

χ(a)ξ
Tr

qd /p
(a)

p ,

here ξp is a fixed complex primitive pth root of unity and Trqd/p is the absolute trace
from Fqd to Fp, the field of p elements.

Now we proceed to discuss the GMW construction. Let m = d · e, where d > 2,
e > 1 are integers, and let q be a prime power. We define

R′ = {x ∈ Fqm | Trqm/qd (x) = 1},
where Trqm/qd is the trace from Fqm to Fqd . Let μ : F∗qm → F

∗
qm/F

∗
q be the canonical

epimorphism, and let R = μ(R′). Using the terminology of relative difference sets
(see, for example [15], p. 13), the set R′ is a

( qm−1
qd−1

, qd − 1, qd(e−1), qd(e−2)
)

relative

difference set in F
∗
qm relative to F

∗
qd , and R is a(qm − 1

qd − 1
,
qd − 1

q − 1
, qd(e−1), qd(e−2)(q − 1)

)
relative difference set in F

∗
qm/F

∗
q relative to F

∗
qd /F

∗
q . We state the following theorem

of Gordon, Mills and Welch.

Theorem 2.2 ([8]). If � is any
( qd−1

q−1 , qd−1, qd−2(q − 1)
)

difference set in F
∗
qd /F

∗
q ,

thenD = �R is a
( qm−1

q−1 , qm−1, qm−2(q−1)
)

difference set in F
∗
qm/F

∗
q , with the above

definition of R. Moreover, if �′ is another
( qd−1

q−1 , qd−1, qd−2(q − 1)
)

difference set

in F
∗
qd /F

∗
q , then the two cyclic difference sets D = �R and D′ = �′R are equivalent

if and only if �′ is a translate of �.

In Theorem 2.2, if one uses the difference sets L
(r)
1 = {xr | x ∈ L1} as �, where

gcd(r, qd−1
q−1 ) = 1, and L1 is the same as in Theorem 2.1, then the resulting difference

sets D = L
(r)
1 R are called classical GMW difference sets. If we assume furthermore

that q = 2 so that R = R′ = {x ∈ F2m | Tr2m/2d (x) = 1}, then the characteristic

sequence of D = L
(r)
1 R in F2m is given by {Tr2d/2

([Tr2m/2d (α
i)]1/r)}0≤i≤2m−2.

This sequence is called a binary GMW sequence in [16]. The linear spans of GMW
sequences (i.e., the 2-ranks of classical GMW difference sets withq = 2) are computed
in [16]. Antweiler and Bömer [1] consider sequences defined over Fp in a way
analogous to the definition of GMW sequences, and computed their linear spans. We
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note that the sequences they considered apparently are different from the characteristic
sequences of the GMW difference sets when q �= 2 (cf. [15], p. 84). It therefore
remains a problem to compute the p-ranks of GMW difference sets for general p. We
will solve this problem in Section 3.

We emphasize that in Theorem 2.2, the choice of the
( qd−1

q−1 , qd−1, qd−2(q − 1)
)

difference set � in F
∗
qd /F

∗
q is completely arbitrary. When q = 2, and � is not of

the form L
(r)
1 for any r relatively prime to 2d − 1, the characteristic sequences of the

GMW difference sets �R are studied in [14] and [6].
We now define the p-rank of a difference set. Let G be a (multiplicative) abelian

group of order v, and let D be a (v, k, λ) difference set in G. Then D = (P ,B) is a
(v, k, λ) symmetric design with a regular automorphism group G, where the set P of
points of D is G, and where the set B of blocks of D is {gD | g ∈ G}. This design
is usually called the development of D. The incidence matrix of D is the matrix A

whose rows are indexed by the blocks B of D and whose columns are indexed by
the points g of D , where the entry AB,g in row B and column g is 1 if g ∈ B, and 0
otherwise.

The p-ary code of D, denoted Cp(D), is defined to be the row space of A over Fp,
the field of p elements. This code is also the p-ary code of D , denoted by Cp(D).
The Fp-dimension of Cp(D) is usually called the p-rank of the difference set D. It is
well known that Cp(D) is of interest only if p | (k − λ) (see [5]). So from now on,
we always assume that p | (k − λ).

In our computation of p-ranks of the GMW difference sets, we will take the well
known approach described by the following lemma.

Lemma 2.3. Let G be an Abelian group of order v and exponent v∗, let p be a prime
not dividing v∗, and let p be a prime ideal above p in Z[ξv∗ ]. Let D be a (v, k, λ)

difference set in G. Then the p-rank of D is equal to the number of complex characters
χ of G with χ(D) �≡ 0 (mod p)

For a proof of this lemma, we refer the reader to [12], and ([4], p. 465).
We will also need Stickelberger’s result (Theorem 2.4 below) on the prime ideal

factorization of Gauss sums. We first introduce some notation.
Let p be a prime, q = ps , and let ξq−1 be a complex primitive (q − 1)th root of

unity. Fix any prime ideal p in Z[ξq−1] lying over p. Then Z[ξq−1]/p is a finite field
of order q, which we identify with Fq . Let ωp be the Teichmüller character on Fq ,
i.e., an isomorphism

ωp : F∗q →
{
1, ξq−1, ξ

2
q−1, . . . , ξ

q−2
q−1

}
satisfying

ωp(α) (mod p) = α, (4)

for all α in F
∗
q . The Teichmüller character ωp has order q − 1; hence it generates all

multiplicative characters of Fq .
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Let P be the prime ideal of Z[ξq−1, ξp] lying above p. For an integer a, let

s(a) = vP(g(ω−ap )),

where vP is the P-adic valuation. Thus Ps(a) || g(ω−ap ). The following evaluation of
s(a) is due to Stickelberger (see [3], p. 344, [19], p. 96).

Theorem 2.4. Let p be a prime, and q = ps . For an integer a not divisible by q − 1,
let a0 + a1p + a2p

2 + · · · + as−1p
s−1, 0 ≤ ai ≤ p − 1, be the p-adic expansion of

the reduction of a modulo q − 1. Then

s(a) = a0 + a1 + · · · + as−1,

that is, s(a) is the sum of the p-adic digits of the reduction of a modulo q − 1.

As an easy application of Stickelberger’s theorem, we prove the following lemma.

Lemma 2.5. Let q = ps , and let d > 2 be an integer. For any integer a not divisible
by qd − 1, let s(a) be the sum of p-adic digits of the reduction of a modulo qd − 1.
Then s((q − 1)b) ≥ (p − 1)s, for all integers b, 0 < b < (qd − 1)/(q − 1).

Proof. For p a prime ideal in Z[ξqd−1] lying overp, letωp be the Teichmüller character

on Fqd and let χ = ω
−(q−1)
p . Then χ is a generator of the character group of F

∗
qd /F

∗
q .

By (3), we know that for each b, 0 < b <
qd−1
q−1 ,

q · χb(L0) = g(χb), (5)

where L0 is defined as in (2).
Let P be the prime ideal of Z[ξqd−1, ξp] lying above p. By Theorem 2.4, we have

Ps((q−1)b) || g(χb).

Also it is clear that P(p−1)s || q. Since χb(L0) is an algebraic integer, we see from (5)
that s((q − 1)b) ≥ (p − 1)s. This completes the proof.

Remark. This lemma can of course be proven in an elementary way. We give the
above proof to show application of Theorem 2.4. We will later prove a strengthening
of Lemma 2.5 in a completely elementary manner in Section 3.

As a final preparation, we calculate the character value of the set R defined before
the statement of Theorem 2.2. We note that this calculation is essentially an Eisenstein
sum computation ([3], p. 389, 400) (see also [22], [21]).

We first recall the definition of R. Let m = d · e, where d > 2, e > 1 are
integers, R′ = {x ∈ Fqm | Trqm/qd (x) = 1}, here Trqm/qd is the trace from Fqm to
Fqd . Let μ : F

∗
qm → F

∗
qm/F

∗
q be the canonical epimorphism. As before, we define

R = μ(R′). Let χ be a nontrivial character of F
∗
qm/F

∗
q . Our goal here is to compute

χ(R) :=∑x∈R χ(x).
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Since R = μ(R′), we see that χ(R) = χ ◦ μ(R′). Let η = χ ◦ μ. Then η is a
multiplicative character of F

∗
qm , whose restriction to F

∗
q is trivial.

By the definition of Gauss sums over Fqm , we have

g(η) =
∑

y∈F
∗
qm

η(y) ξ
Trqm/p(y)
p .

Let L′ be a system of coset representatives of F
∗
qd in F

∗
qm such that {Trqm/qd (x) |

x ∈ L′} = {0, 1}. Define L′0 = {x ∈ L′ | Trqm/qd (x) = 0}, and L′1 = {x ∈ L′ |
Trqm/qd (x) = 1}. Then

g(η) =
∑
x∈L′

η(x)
∑

a∈F
∗
qd

η(a) ξ
Tr

qd /p

(
aTr

qm/qd
(x)
)

p

=
∑
x∈L′0

η(x)
∑

a∈F
∗
qd

η(a)+
∑
x∈L′1

η(x)
∑

a∈F
∗
qd

η(a) ξ
Tr

qd /p
(a)

p

Therefore, if η
∣∣
F
∗
qd
= 1, then

g(η) = −qd η(L′1) ;
and if η

∣∣
F
∗
qd
�= 1, then

∑
a∈F

∗
qd

η(a) = 0, hence

g(η) = η(L′1) · g1(η1),

where η1 = η
∣∣
F
∗
qd

(the restriction of η to Fqd ), and g1(η1) is the Gauss sum over Fqd

with respect to the character η1.
Noting that L′1 = R′, we have

η(R′) = χ(R) =
⎧⎨⎩
− 1

qd g(η) , if η
∣∣
F
∗
qd
= 1 ,

g(η)
g1(η1)

, if η
∣∣
F
∗
qd
�= 1 .

(6)

We will use this evaluation of χ(R) in later sections.

3. The p-ranks of the classical GMW difference sets

Let m = d · e, where d > 2, e > 1 are integers. Let R be defined as in Section 2.

Let L1 be defined as in (2.1), and let r be an integer such that gcd
(
r,

qd−1
q−1

) = 1.

Then Theorem 2.2 tells us that the set D := L
(r)
1 R is a

( qm−1
q−1 , qm−1, qm−2(q − 1)

)
difference set in F

∗
qm/F

∗
q , and such a difference set is called a classical GMW difference
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set. In this section, we compute the p-ranks of the classical GMW difference sets.
We will maintain the notation in Section 2.

We begin with a lemma which reduces the computation of p-ranks of the classical
GMW difference sets to a combinatorial counting problem.

Lemma 3.1. Let D = L
(r)
1 R be the difference set in F

∗
qm/F

∗
q defined above. Let

q = ps , where p is a prime. Then the p-rank of D is equal to the cardinality of the
set

B =
{
a | 0 < a <

qm − 1

q − 1
, (qd − 1) � (q − 1)a ,

s1(a(q − 1)r)+ s((q − 1)a)− s1((q − 1)a) = (p − 1)s
}
,

where s(x) is the sum of the p-adic digits of the reduction of x modulo qm − 1, and
s1(x) is the sum of the p-adic digits of the reduction of x modulo qd − 1.

Proof. For P a prime ideal in Z[ξqm−1] lying over p, let ωP be the Teichmüller

character on Fqm . Then ω
−(q−1)
P is a generator of the character group of F

∗
qm/F

∗
q ,

hence any nontrivial character of F
∗
qm/F

∗
q takes the form ω

−a(q−1)
P , 0 < a <

qm−1
q−1 .

So let χ = ω
−a(q−1)
P be an arbitrary nontrivial character of F

∗
qm/F

∗
q , where 0 <

a <
qm−1
q−1 . Let η = χ ◦ μ, where μ : F

∗
qm → F

∗
qm/F

∗
q is the natural epimorphism.

Since χ is trivial on F
∗
q , we have

η(x) = χ ◦ μ(x) = χ(x̄) = χ(x) ,

for any x ∈ F
∗
qm .

We now compute the character value χ(D) := ∑x∈D χ(x). The computations
are naturally divided into two cases.
Case 1. χ

∣∣
F
∗
qd
= 1. By (6), we have

χ(D) = χ
∣∣
F
∗
qd
(L

(r)
1 ) · χ(R)

= − 1

q
g(χ)

Case 2. χ
∣∣
F
∗
qd
�= 1. Using the character value of L1 and (6), we see that

χ(D) = χ
∣∣
F
∗
qd

(
L
(r)
1

) · χ(R)

= − 1

q
g1
(
ω
−a(q−1)r
p

) · g
(
ω
−(q−1)a
P

)
g1
(
ω
−(q−1)a
p

) ,
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where g1(φ) is the Gauss sum over Fqd with respect to the multiplicative character φ
of Fqd . Note that here we have used the fact that ωP

∣∣
F
∗
qd
= ωp, where p is a prime

ideal in Z[ξqd−1] lying above p. To simplify notation, in what follows, we will omit
the index P in the character ωP if there is no confusion.

By Lemma 2.3, the p-rank of D is equal to the number of χ , where χ = ω−a(q−1),
0 < a < (qm − 1)/(q − 1), such that χ(D) (mod P) �= 0. Let P̃ be the prime of
Z[ξqm−1, ξp] lying above P. Since P̃ | χ(D) if and only if P | χ(D), the p-rank of
D is equal to the number of χ such that P̃ � χ(D).

Corresponding to the above two cases, we have the following.

Case 1′. ω−a(q−1)
∣∣
F
∗
qd
= 1 (i.e., (qd − 1) | (q − 1)a). By the computation in Case 1,

we have

ω−a(q−1)(D) = − 1

ps
g(ω−(q−1)a).

By Theorem 2.4, we have

νP̃(g(ω−(q−1)a)) = s((q − 1)a),

where s(x) is the p-ary weight of x (mod qm − 1).
Also it is clear that

νP̃(ps) = (p − 1)s.

Therefore in this case, the number of a, 0 < a <
qm−1
q−1 , such that

ω−a(q−1)(D) �≡ 0 (mod P̃),

is equal to

#
{
a | 0 < a <

qm − 1

q − 1
, (qd − 1) | (q − 1)a, s((q − 1)a) = (p − 1)s

}
.

Let us denote this cardinality by A. We will show that A = 0 later on.

Case 2′. ω−a(q−1)
∣∣
F
∗
qd
�= 1 (i.e., (qd − 1) � (q − 1)a). By our computation in Case 2,

we have

ω−a(q−1)(D) = − 1

q
g1
(
ω
−a(q−1)r
p

) g
(
ω
−(q−1)a
P

)
g1
(
ω
−(q−1)a
p

) .
So in this case the number of a, 0 < a <

qm−1
q−1 , such that

ω−a(q−1)(D) �≡ 0 (mod P̃),
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is equal to

#
{
a | 0 < a <

qm − 1

q − 1
, (qd − 1) � (q − 1)a ,

s1(a(q − 1)r)+ s((q − 1)a)− s1((q − 1)a) = (p − 1)s
}

where s1(x) is the p-ary weight of x (mod qd − 1). Let us denote this cardinality
by B.

We now prove that A = 0. Set x = (q − 1)a, we need to count the number of x,
0 < x < qm − 1, (qd − 1) | x, s(x) = (p − 1)s. Since (qd − 1) | x, q = ps , we may
write x = (psd − 1)b for some integer b. Since d > 2, by Lemma 2.5, we have

s((psd − 1)b) ≥ (p − 1)sd > (p − 1)s.

So it is impossible to have s(x) = (p − 1)s. Hence A = 0. This shows that Case 1′
does not contribute to the p-rank of D at all, therefore the p-rank of D is equal to
B, the cardinality of the set defined in the statement of the lemma. The proof is now
complete.

We now proceed to solve the counting problem. First we prove two lemmas.

Lemma 3.2. Let q = ps be a prime power, m = de, where d > 2, and e > 1 are
integers. Let X be an integer not divisible by qd − 1, 0 < X < qm − 1, and let s(X),
s1(X) be the p-weight of the reduction of X modulo qm − 1 and qd − 1 respectively.
Then

s(X)− s1(X) = (p − 1)α,

for some integer α ≥ 0.

Proof. We write

X =
e−1∑
i=0

Xiq
di,

where

Xi =
ds−1∑
j=0

Xijp
j

with 0 ≤ Xij ≤ p − 1.
We will use x = ∑ds−1

j=0 xjp
j , 0 ≤ xj ≤ p − 1, to denote the reduction of X

(mod qd − 1). So 0 ≤ x ≤ qd − 1 and x ≡ X mod qd − 1. By add-with-carry
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algorithm, there are nonnegative carries cj , j = 0, 1, . . . , ds − 1 such that

pcj + xj =
e−1∑
i=0

Xij + cj−1,

holds for all j = 0, 1, . . . , ds − 1. Here c−1 = cds−1. This implies that

(p − 1)
∑
j

cj +
∑
j

xj =
∑
j

∑
i

Xij ,

that is, (p − 1)α + s1(X) = s(X), where α =∑j cj .

We now give a completely elementary proof of Lemma 2.5. In fact, we will prove
a strengthening of the lemma. We first introduce some notation.

Let b ≥ 2 be any integer. Define Z≥0 = {0, 1, . . . }. For any index set I ⊆ Z≥0,
let R(I ) be the collection of all sequences x = (xi)i∈I with xi nonnegative integer for
all i ∈ I and xi = 0 for all but finitely many i. For convenience, we define 0 ∈ R(I )

as the sequence x with xi = 0 for all i ∈ I . Also, we write R and Rm to denote
R(Z≥0) and R({0, 1, . . . , m− 1}), respectively. For each x ∈ R(I ), we associate its
numerical value

ν(x) =
∑
i∈I

xib
i

and its b-ary weight

sb(x) =
∑
i∈I

xi .

Note that if I = Z≥0 = {0, 1, . . . } and the xi are the b-ary digits of a number, then the
numerical value of the sequence is just the number itself and the weight of the sequence
is just the weight of the number. With these definitions, we have the following.

Lemma 3.3. Let x ∈ R \ {0} satisfy (bs − 1) | ν(x) for some integer s ≥ 1. Then

sb(x) ≥ (b − 1)s,

with equality if and only if ∑
i≡r ( mod s)

xi = b − 1 (7)

for r = 0, 1, . . . , s − 1. Conversely, if (7) holds, then (bs − 1) | ν(x) and sb(x) =
(b − 1)s.

Proof. Let x = (xi)i≥0 ∈ R \ {0} satisfy the assumptions in the lemma. For i =
0, . . . , s − 1, write

xi,j = xi+js
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for all j ≥ 0 and define

yi =
∑
j≥0

xi,j .

We consider y = (y0, . . . , ys−1) as a member of Rs . Note that

sb(x) =
s−1∑
i=0

yi = sb(y). (8)

Now modulo bs − 1 we have that

0 ≡ ν(x)

=
s−1∑
i=0

∑
j≥0

xi,j b
ibjs

≡
s−1∑
i=0

∑
j≥0

xi,j b
i

=
s−1∑
i=0

yib
i

= ν(y) (mod bs − 1).

For each i = 0, 1, . . . , s − 1 (considered modulo s), we define the transformation
τi on sequences z from Rs with zi ≥ b as follows. The image z′ = τi(z) will have
z′k = zk for k �= i, i + 1; z′i = zi − b, and z′i+1 = zi+1 + 1. Note that we have that
τi(z) ∈ Rs \ {0}, sb(τi(z)) = sb(z)− (b − 1) < sb(z), and

ν(τi(z)) =
{

ν(z), if i �= s − 1;
ν(z)− (bs − 1), if i = s − 1.

In particular, we have that ν(τi(z)) ≡ ν(z) mod bs − 1. Now, repeatedly apply
transformations τi to the sequence y = (yj )0≤j≤s−1 until we obtain a sequence y′ =
(y′0, y′1, . . . y′s−1), where y′i ≤ b−1 for all i = 0, 1, . . . , m−1. By the above remarks,
we have that ν(y′) ≡ ν(y) ≡ 0 (mod bs − 1), y′ �= 0, and

sb(y
′) ≤ sb(y)

with equality if and only if yi ≤ b−1 for all i. To finish the proof, it suffices to remark
that we may consider the sequence y′ as the b-ary representation of the number ν(y′);
so 0 < ν(y′) ≤ bs − 1 and hence ν(y′) ≡ 0 (mod bs − 1) implies that y′i = b− 1 for
all i.

The converse in the lemma is evident: indeed, if the condition in the lemma holds,
that is, if yi = b − 1 for each i = 0, . . . , s − 1, then ν(x) ≡ ν(y) = bs − 1 ≡
0 mod bs − 1 and sb(x) = sb(y) = (b − 1)s.
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Remarks. (1) In fact, from the proof of Lemma 3.3 we see the following: if 0 <

ν(x) ≡ ν(z) mod bs−1 with 0 �= z = (z0, z1, . . . , zs−1, 0, 0, . . . ) and 0 ≤ zi ≤ b−1
for all i, then we have that

sb(x) ≥ sb(z)

with equality if and only if ∑
i≡r (mod s)

xi = zi

for all i = 0, . . . , s − 1. (The lemma is simply the case where z = (b − 1, b −
1, . . . , b − 1, 0, 0, . . . ) so that ν(z) = bs − 1 ≡ 0 mod bs − 1.)

(2)As a consequence of this lemma, we see that if (bs−1) | x and sb(x) = (b−1)s,
then certainly (bt − 1) � x for t > s.

Using the notation introduced at the beginning of this section, we now have the
following.

Theorem 3.4. Let q = ps , p a prime, let m = de, where d > 2, e > 1 are integers.

Let r be an integer relatively prime to qd−1
q−1 . Then the p-rank of the difference set

D = L
(r)
1 R is equal to

∑
x

ds−1∏
j=0

(
xj + e − 1

e − 1

)
,

where the sum is over all x = ∑ds−1
j=0 xjp

j , 0 ≤ xj ≤ p − 1, such that the number

y ≡ rx (mod qd − 1) has the form

y =
s−1∑
i=0

d−1∑
j=0

yijp
iqj

with 0 ≤ yij ≤ p − 1 and

d−1∑
j=0

yij = p − 1

for i = 0, . . . , s − 1.

Proof. By Lemma 3.1, the p-rank of D is equal to B, the cardinality of the following
set

B = {X | 0 < X < qm − 1, (q − 1) |X, (qd − 1) � X,

s1(Xr)+ s(X)− s1(X) = (p − 1)s},
where s1(X) is the p-weight of X (mod qd − 1).
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LetX ∈B. By Lemma 3.2, we see that s(X)−s1(X)≥ 0, hence s1(Xr) ≤ (p−1)s.
Since (q − 1) |X and X |Xr , by Lemma 3.3, we have either Xr ≡ 0 mod qd − 1,
or s1(Xr) = (p − 1)s. In the latter case, Xr is of a special form as specified in
Lemma 3.3.

Let us first show that Xr ≡ 0 mod qd − 1 is impossible. Indeed, in that case
we have rX = c(qd − 1), for some integer c. So with X′ = X/(q − 1), which is
an integer by our assumption on X, we have that rX′ = c(qd − 1)/(q − 1), that
is, rX′ ≡ 0 mod (qd − 1)/(q − 1). So by our assumption on r , this implies
X′ ≡ 0 mod (qd − 1)/(q − 1), and that implies X ≡ 0 mod qd − 1, contradicting
the assumption that (qd − 1) � X.

So we must have s1(Xr) = (p − 1)s (with Xr of a special form). Hence s(X) =
s1(X). Let x denote the integer in the range [0, qd−1) such that x ≡ X mod qd−1.
Then s(X) = s1(x). Therefore in order compute the cardinality of B, we must count,
for each x, 0 < x < qd − 1, with s1(xr) = (p− 1)s, the number of X ∈ B such that
X ≡ x mod qd − 1 and s(X) = s1(x).

We will use the same notation as in Lemma 3.2, i.e., X = ∑e−1
i=0 Xiq

di , Xi =∑ds−1
j=0 Xijp

j , with 0 ≤ Xij ≤ p − 1. Given an x =∑ds−1
j=0 xjp

j , 0 ≤ xj ≤ p − 1,

since we want to count those X ∈ B such that X ≡ x mod qd−1, and s(X) = s1(x),
we require that

xj =
e−1∑
i=0

Xij ,

that is, the addition X0 + X1 + · · · + Xe−1 (mod qd − 1) has no carry. As before,
given an xj , there are precisely (

xj + e − 1

e − 1

)
ways to distribute the quantity xj over the Xij ’s. So for each x, 0 < x < qd − 1, with

s1(xr) = (p−1)s, the number of “liftings” X ∈ B of x is
∏ds−1

j=0

(xj+e−1
e−1

)
. Summing

over these x, we get the desired formula for the p-rank of D.

Example 3.5. We use a concrete example to illustrate the p-rank formula in The-
orem 3.4. Let us take p = 3, s = 1, d = 3, e = 2, so m = de = 6. Let
r ≡ 1/5 (mod 33 − 1). We have 6 choices for y ≡ x/5 (mod 33 − 1) such
that s1(y) = p − 1 = 2. Therefore we have 6 choices for x. These are x ≡
1+ 32, 1+ 3, 3+ 32, 2+ 2 · 3, 2 · 3+ 2 · 32, 2+ 2 · 32 (mod 33− 1). By Theorem 3.4,
the 3-rank of D = L

(1/5)
1 R is

3 ·
(

1+ e − 1

1

)
·
(

0+ e − 1

1

)
·
(

1+ e − 1

1

)
+ 3 ·

(
2+ e − 1

1

)
·
(

2+ e − 1

1

)
·
(

0+ e − 1

1

)
= 39.
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This agrees with the result in the table on page 86 of [15].

In some special cases, the p-rank formula in Theorem 3.4 can be made more
explicit.

Corollary 3.6. Let D = L
(r)
1 R, with r = 1 (or a power of p). Then the p-rank of D

is
(
p+de−2
de−1

)s
.

Proof. Since r = 1, we have rx = x. By Theorem 3.4, the p-rank of D is

∑
x

ds−1∏
j=0

(
xj + e − 1

e − 1

)
,

where the sum is over all x =∑ds−1
j=0 xjp

j , 0 ≤ xj ≤ p − 1, with

xi + xi+s + xi+2s + · · · + xi+(d−1)s = p − 1,

for i = 0, 1, . . . , s − 1.
The above sum is easily seen to be

[
∑

z0+···+zd−1=p−1
0≤zi<p

d−1∏
i=0

(
zi + e − 1

zi

)
]s =

(
p + de − 2

de − 1

)s

,

where the last equality is obtained by comparing coefficients of xp−1 in (1− x)−m =
((1− x)−e)d . This completes the proof.

Corollary 3.6 is of course well-known, since D = L1R is nothing but a Singer
difference set.

Corollary 3.7. Let q = p = 2, and D = L
(r)
1 R with gcd(r, 2d − 1) = 1. Then the

2-rank of D is d · es1(1/r).

Proof. Since p = 2, a solution to s1(rx) = p − 1 = 1 must satisfy rx ≡ 2i (mod
2d − 1) for some i. Therefore x ≡ r−12i (mod 2d − 1). So the 2-adic expansion of
x =∑d−1

j=0 xj2j (mod 2d − 1) is just a shift of the 2-adic expansion of r−1. Note that
each xj is 0 or 1, and the number of xj = 1 is the binary weight s1(1/r) of 1/r (mod
2d − 1). Therefore the 2-rank of D is

∑
xj

d−1∏
i=0

(
xj + e − 1

xj

)
= d · es1(1/r).

This completes the proof.
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Corollary 3.7 was first proved by Scholtz and Welch [16] in terms of linear span
of GMW sequences. The method they used to obtain this rank formula is completely
different from ours.

Corollary 3.8. Let q = p be a prime, and D = L
(−1)
1 R (i.e., s = 1 and r = −1 in

Theorem 3.4). Then the p-rank of D is equal to the coefficient of x(p−1)(d−1) in the
expansion of

(∑p−1
t=0

(
t+e−1
e−1

)
xt
)d

.

Proof. We will use the same notation as in the statement of Theorem 3.4. Since
s = 1 and r = −1, we have x ≡ −y mod pd − 1, where y = ∑d−1

j=0 yjp
j , and∑

j yj = (p − 1), 0 ≤ yj ≤ (p − 1). So in proper p-adic expansion, we have

x =∑d−1
j=0 xjp

j , with xj = p − 1− yj . By Theorem 3.4, the p-rank of D is

∑
x0+x1+···+xd−1=(p−1)(d−1)

0≤xj <p

d−1∏
j=0

(
xj + e − 1

xj

)
,

which is the coefficient of x(p−1)(d−1) in the expansion of
(∑p−1

t=0

(
t+e−1
e−1

)
xt
)d . This

completes the proof.

4. The 2-ranks of some non-classical GMW difference sets

In this section, we will compute the 2-ranks of some non-classical GMW difference
sets. By non-classical GMW difference sets, we mean that in the GMW construction

(cf. Theorem 2.2), we choose � �= L
(r)
1 , for any r relatively prime to qd−1

q−1 , where L1
is defined in (2.1). In general, it is difficult to get explicit formulas for the p-ranks of
non-classical GMW difference sets. In this section, we consider the case in which �

is chosen to be equivalent to a difference set constructed from monomial hyperovals.
In [13], Maschietti constructed some (2d − 1, 2d−1− 1, 2d−2 − 1) difference sets

from monomial hyperovals. His construction can be stated as follows.

Theorem 4.1. Let q = 2d , and letf : Fq → Fq , f (x) = x+xh, be a two-to-one map,
where gcd(h, q−1) = 1. Then the setDd,h = Im(f )\{0} is a (q−1, q/2−1, q/4−1)
difference set in F

∗
q . Here Im(f ) stands for {f (x) | x ∈ Fq}.

The two-to-one map in the above theorem comes from monomial hyperovals

D(xh) = {(1, t, th) | t ∈ F2d } ∪ {(0, 0, 1), (0, 1, 0)},
where h necessarily satisfies gcd(h, q − 1) = gcd(h − 1, q − 1) = 1. (See Lemma
2.4 in [7].) The known monomial hyperovals include the regular, translation, Segre,
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Glynn type (I), and Glynn type (II) hyperovals (see [7]). It is easy to show that the
regular and translation hyperovals give rise to Singer difference sets via the Maschietti
construction. In [7], the 2-ranks of the difference sets from the Segre and Glynn
hyperovals are computed, and it is shown that these difference sets are inequivalent to
previously known ones.

Let Dd,h be the complement of Dd,h in F
∗
2d

. Then Dd,h is a difference set in F
∗
2d

with parameters

v = 2d − 1, k = 2d−1, λ = 2d−2.

In the GMW construction (see Theorem 2.2), if we choose � = Dd,h
(r)

, where
gcd(r, 2d − 1) = 1, what is the 2-rank of the resulting difference set D = � · R?
Questions like this were raised in [10] (see also [4], p. 461). We will investigate this
problem in this section.

We note that the character values of Dd,h were computed in [7], they are related
to Jacobi sums. So as we did in the previous section, we may reduce the 2-rank
computations of these difference sets to a counting problem also.

Lemma 4.2. Let D = Dd,h
(r)

R be the difference set in F
∗
2m defined above, where

gcd(r, 2d − 1) = 1. Then the 2-rank of D is equal to the cardinality of the set

{a | 0 < a < 2m − 1, (2d − 1) � a ,

s(a)− s1(a)+ s1(ar)+ s1(ar/(h− 1))− s1(har/(h− 1)) = 1},
where s(x) is the sum of the 2-adic digits of the reduction of x modulo 2m − 1, and
s1(x) is the sum of the 2-adic digits of the reduction of x modulo 2d − 1.

Proof. The proof is similar to that of Lemma 3.1. (Actually, it is easier because q = 2.)
For P a prime ideal in Z[ξ2m−1] lying over 2, let ωP be the Teichmüller character
on F2m . Then ω−1

P is a generator of the character group of F
∗
2m , hence any nontrivial

character of F
∗
2m takes the form ω−aP , 0 < a < 2m − 1.

So let χ = ω−aP be an arbitrary nontrivial character of F
∗
2m , where 0 < a < 2m−1.

We now compute the character value χ(D) of D. The computations are naturally
divided into two cases.
Case 1. χ

∣∣
F
∗
2d
= 1. By (6), we have

χ(D) = χ
∣∣
F
∗
2d
(Dd,h

(r)
) · χ(R)

= −1

2
g(χ)

Case 2. χ
∣∣
F
∗
2d
�= 1. Recalling the character value of Dd,h from [7], we have

χ(Dd,h) = 1

2
J
(
ω−ap , ω

−a/(h−1)
p

)
,


