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Preface 

In this monograph, problems of dynamical reconstruction of unknown vari-
able characteristics (distributed or boundary disturbances, coefficients of 
operators etc.) for various classes of systems with distributed parameters 
(parabolic and hyperbolic equations, evolutionary variational inequalities 
etc.) are discussed. The procedures for solving the problems axe estab-
lished. They are based on the methods of the theory of feedback control 
in combination with the methods of the theory of ill-posed problems and 
nonlinear analysis. These procedures are oriented to the work in real time 
and may be realized in computers. The general constructions are illustrated 
on numerical examples. 

The book is destined for students, post-graduate students of physical-
mathematical education, and specialists in optimization theory. 

Investigations, which results were included in the monograph, were par-
tially supported by Russian Foundation of Basic Research (projects 01-01-
00566 and 98-01-00046), INTAS (project 96-0816), International Science and 
Technology Center (project 1293-99). 
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Introduction 

Problems of reconstructing unknown parameters of objects and processes 
using available information are well-known in engineering and scientific re-
search. Many problems of the kind axe posed as static ones and solved by 
static algorithms. In such problems, data allowed to be used in numerical 
solution algorithms are given a prion, the solution algorithms do not take 
into account changes in data, which might occur during the solution process, 
and the latter process is not viewed as the unique one; it can be repeated. 
Numerous examples of problems of the kind can be found among inverse 
problems in mathematical physics, problems of approximations of functions, 
problems of open-loop (program) control and observation, etc. However, it 
is often necessary to reconstruct unknown parameters dynamically, i.e., syn-
chronically with an on-going physical process, or, as engineers say, "in real 
time". Data used in the reconstruction process may vary, "float" in time, 
and be, moreover, strongly past-dependent. 

A general problem of dynamical reconstruction of unknown parameters 
can be described as follows. A dynamical system operating on a time in-
terval Τ = [ίο,0] is given. At each point in time, t, the system's state is 
represented as an element x(t) of a finite- or infinite-dimensional space X. 
A system's motion, i.e., the evolution of its state x(t), develops under some 
input disturbance u(·) starting from a given initial state XQ. It is required 
to reconstruct the input u(·) using observations of the motion x(-). 

Let us identify the system under consideration with an operator A trans-
forming every admissible initial state XQ and every admissible realization of 
the input disturbance u(·) into a system's motion x(-) being a function of 
time; we assume that the operator A is single-valued. We stress that we 
deal with dynamical systems, i.e., the systems whose state histories do not 
depend on future evolutions of input disturbances. Formally, this prop-
erty is reflected in the requirement that A is a Volterra operator. A well-
known class of systems of the kind is the class of systems described by linear 
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parabolic equations with boundary conditions of the Dirichlet type (for ex-
ample). For such systems, time-varying inputs u(-) are traditionally viewed 
as controls. However, it(·) can represent noncontrollable external actions, 
i.e., act as noises, or dynamical disturbances, or inner variable parameters 
of the system, or have other physical interpretations. 

At any moment i, the observation result can, generally, be a function 
of the current state x(t), z(t) = C(x(t)), which is called the output of the 
dynamical system. In this monograph, we study the situation where the 
output values z(·) are given not precisely, i.e., the actual observation results 
£(') = £h{·) are connected with z(-) by the relation 

κ(£Λ(·), *(•)) < h. 

Here к is a nonnegative functional, and h is a level of an observation error. 
In this situation, the problem of constructing the operator B~l inverse to 
the "input-output" operator В : (XQ,U(·)) -4 Z(-) is not solvable precisely; 
it belongs to the class of ill-posed problems. The role of B~l is played by 
a certain operator Dh whose set of definition is wider than that of В - 1 ; 
namely, Dh is defined on the set of all functions £(·) representing admissible 
observation results (the set of measurements). The value Vh(·) of the oper-
ator Dfι at a function £(·) no longer equals the sought input u(-). However, 
we view Dh as a suitable approximation to the operator B~l if Vh(·) lies 
sufficiently close to u(·) for small h. The closedness of Vh(·) to it(·) is un-
derstood in the sense that the value p(u(·), Vh(·)) of a chosen nonnegative 
functional (the closedness criterion) is close to zero. 

For generality, we do not require that the original problem has the unique 
solution, i.e., we admit that the inverse operator B~l may not exist. In other 
words, we assume that every output z(·) can be generated by a set of inputs. 
We denote this set by U(z(·)). Let us suppose that we are not interested 
in finding all the inputs u(·) from U(z(·)) but interested in finding only 
those ones that are selected by a certain selection principle. In the theory 
of ill-posed problems, the minimization of a certain functional acts often as 
a selection principle. Following this approach, we assume that we have a 
functional ω(·) defined on the set of all inputs and reaching its minimum 
value on every set U(z(·)). Then the subset 

UM·)) = {«(•) G U(z(·)) : «(«(·)) = «,(.,} 
is selected in every U(z(·)). We are interested in shifting Vh{·) closer to 
U*(z(•))·, more accurately, our desire is to make the value 

ß(vh, U,{z(·))) =inf{p(u(·), vh(·)) : u(-)eUM-))} 
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small for small h. Finally, we require that the operator Dh possesses the 
Volterra property that allows us to compute Vh(t) not later than at time 
t: if £i(r) = £2(1") for τ < t, then Vh,i{r) = ν/ι,2(ΐ") for τ < t, where 
VhA·) = тл·), vh,2(·) = Dhb(·). 

Thus, the basis problem of dynamical modeling of unknown parame-
ters, which is analyzed in this book, consists in the following: construct a 
Volterra operator Dh, more precisely, a family of such operators depend-
ing on the accuracy parameter h, such that for any admissible output z(·) 
and any admissible results £(·) = ξ/Д·) of measurement of this output, the 
convergence 

0 Ы - ) , ад·)))0 as Л 0 
is ensured. 

The above problem of constructing a family Dh falls into the scope of 
inverse problems of the dynamics of controlled systems. These problems con-
sist in finding unknown inputs to the systems using observations of systems' 
outputs. Every input determines the unique motion of a system; usually, 
the inputs are either time-varying controls regulating the system, or sys-
tem's initial states, or, in the general case, pairs composed of controls and 
initial states. The output may represent any available information on the 
controlled process, often such information is provided by signals on the sys-
tem's trajectory (this situation is typical for practical problems). We note 
here that inverse problems of dynamics axe used for the design of controls 
realizing prescribed motions. 

The first publications on this subject, which dealt with systems described 
by ordinary differential equations, provided criteria for unique solvability of 
inverse problems under the assumption that controls are sufficiently smooth, 
and studied the issue of the continuity of controls with respect to the ob-
served outputs (signals on trajectories). If outputs are observed with er-
rors, the inverse problems of dynamics become ill-posed, and the question 
of constructing their approximate solutions becomes equivalent to finding 
appropriate regularizing operators (algorithms). 

Most researches on regularization address the "open-loop" setting of the 
problem: the regularizing algorithms process the entire history of the obser-
vation results (in this sense they axe a posteriory algorithms). The question 
of constructing dynamical (Volterra-type) regularizing algorithms for finite-
dimensional controlled systems was raised in Osipov, Yu.S. and Kryazhim-
skii, A.V., (1983). In this paper, a stable closed-loop (positional) algorithm 
reconstructing a minimum-norm control for a system affine in control with 
fully observable states was suggested. 
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For systems with distributed parameters, inverse problems treated within 
the framework of the "open-loop" setting were studied by many authors. 
Therefore, we do not overview this research axea in detail; we only point out 
several important lines of research. Many publications are devoted to the 
issues of existence, uniqueness and stability of solutions of inverse problems 
for systems with distributed parameters and to development of numerical 
solution methods. Rather often the linearization method as well as the 
scheme of Newton-Kantorovich are applied for solving inverse problems. It 
should be noted that the methods of optimization theory are also widely used 
in the theory of inverse problems. This approach goes back to Tikhonov, 
A.N. and Marchuk, G.I. To determine unknown parameters, the least square 
method is also actively applied. 

In the present monograph, we use the "closed-loop" (positional) ap-
proach for construction of dynamical regularizing algorithms for some classes 
of distributed systems. We illustrate general methods by examples and dis-
cuss problems of reconstructing distributed and boundary controls as well 
as coefficients in parabolic and hyperbolic (linear and nonlinear) equations 
and in parabolic variational inequalities. 

It should be noted that the method of positional control with a model 
lies, as a rule, in the basis of constructions we suggest. This is one of the 
most effective methods of the theory of positional control; its characteris-
tic property is robustness to informational and computational errors. This 
method originally suggested by Krasovskii, N.N. and developed by Ekater-
inburg's scientific school is used to construct stable procedures of dynami-
cal modeling (reconstructing) of input disturbances uniquely determining a 
motion of a dynamical system with distributed parameters on the basis of 
measurements of current system's states. 

This monograph presents results of those studies only, in which the au-
thor's contribution is essential. Other algorithms and analytic methods for 
inverse problems of dynamics of distributed systems, which were developed 
within the framework of the above approach, can be found in the bibliogra-
phy. 

The author thanks Yuri S. Osipov and Arkadii V. Kryazhimskii for their 
advise and recommendations, which essentially influenced the results of re-
search presented in this monograph, and his colleagues in the Department of 
Differential Equations of the Institute of Mathematics and Mechanics (the 
Ural Branch of the Russian Academy of Sciences) for their help in preparing 
the monograph. 



Chapter 1. 

Problems of dynamical modeling 
in abstract systems 

In this chapter we describe an approach of construction of regularizing 
algorithms for solving of inverse problems of dynamics for systems with 
distributed parameters. This approach is based on the combination of the 
Lyapunov function method and the principle of positional control with a 
model. It was suggested by Kryazhimskii A.V. and Osipov Yu.S. (1983) 
and further developed by many authors (see Bibliography). In this chapter, 
we suggest conditions sufficiently general for the case when it is convenient 
to take the copies of real systems as models for solving inverse problems. 
These are the problems of modeling unknown inputs given approximate 
measurements of outputs. The conditions we obtain in this chapter axe 
clarified for some classes of evolutionary systems. 

1.1. RECONSTRUCTION OF INPUTS IN DYNAMICAL 
SYSTEMS. THE METHOD OF AUXILIARY 
CONTROLLED MODELS 

In this section, a general scheme for solving the problems of dynamical 
reconstruction of inputs through results of approximate measurements of 
outputs is described. The scheme is based on the method of auxiliary posi-
tionally controlled models well-known in the theory of guaranteed control. 

Further we fix ал interval Τ = where ίο < θ. The definition 
below is the modified Tikhonov definition (Tikhonov, A.N., 1939; see, also, 
Tikhonov, A.N. and Arsenin, V.Ya., 1978). 
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Definition 1.1.1. An operator 

A: XW χ.,.ΧΧΜ ->X(°\ 

where к Ε {1,2,.. . }, . . . , X^k\ and are nonempty sets of func-
tions from T, is called Volterra if for any 

*(1)(·), y{1)(-)ex(1\ . . · , x{k4·), y{k4-)ex{k\ and teT, 

such that 

XCD(5) = y ( 1 ) ( s ) i xW(s) = yW(s) for all sG[t0,t], 

we have 

Α(χΜ(·), . . . , *<*>(•))(«) = A(yV(·), . . . , for all se[t0,t]. 

Suppose X, U, XQ С X are nonempty sets of elements and XT0}E, UT0,E 
are nonempty sets of functions from Τ into X and U, respectively. Let 

A: X0 Χ UTOF -> XT0TE 

be an operator such that for any XQ G Xo the operator u(·) —>• A(Xo, U(·)) : 
Ut0,e Xt0,e is a Volterra operator; then for any u(·) € Ut0,e we have 

(Л(ж0,и(-)))(*о) = xo· 

The operator A is called a controlled dynamical system. 
Elements of the sets XQ and UT0LE are an initial state and a control (for 

the system A), respectively. 
The set of elements of the product Xo x Щ0 в is an input (of the system 

A). 
The value A(XQ,U(·)) is a motion (of the system A) generated by an 

input (xo, «('))· 
The sets X and U are called a phase space and a space of controlled 

parameters (for the system A), respectively. 
Let Ζ be a nonempty set and 

С: X-+Z 

be an operator. We introduce an operator 

В : X0 χ Utofi -»· Ztо,* 
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where Zt(Sie is the set of all functions Τ Ζ such that 

В(х0,и(Ш = С(А(х0, и(Ш), <6T. 

Let 
Zt0,e = B{X0, Ut<h$). 

The following terminology is used below: 

The operator В is on input-output operator (for the system A); 

the value B(XQ,U(·)) is an output generated by an input (xo> u('))i 

elements of the set ZTO<G are outputs; 

the set Ζ is the set of signals; 

the operator С is on information operator. 

For each output z(·) we introduce the set 

U(z(·)) = {<) € Uto,e : z(-) = B(x0, „(·))}. 

We fix a functional 

Suppose that for any output z{·) the extremal problem 

w(u(·)) -4 inf, «(.) e U{z{·)) 

has a solution. By U*(z(·)) we denote the set of all solutions, by ω2(.) denote 
the optimal value. 

Definition 1.1.2. We call the sets U(z(·)) and U*(z(·)) the set of con-
trols and the set of ω(·) - normal controls compatible with an output z(·), 
respectively. The functional ω(·) is the choice criterion. 

Suppose that Ξ is a nonempty set and E t 0 j is a nonempty set of functions 
from Τ into Ξ. Introduce some notation. If Gt0,e is a set of functions defined 
on T, then 

GtUb = {gtubi·)'· gtfeG^e} (tut2eT, i i < t 2 ) . 
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For functions g(-) defined in (α, b] CT от [α, 6] С Τ we use, for convenience, 
the same symbol да,ь(')· Below it is clear which interval is considered: (a, 6] 
or [0,6]. If 

Α: Ξ(θι0 χ Gto,e Eto>e 

is a Volterra operator {Gt0ie and Et0tg are nonempty sets of functions defined 
on T), then, for each t e T, we denote by At an operator acting from 
Sto.t x Gto,t into EtQtt so that 

Λ(60,ί(·)ι5ίο,ί(·)) = Λ(&ο,ί(·)»0Μ(·))Ι[Μ· 

Here 60,β(·) € ^to,θ and gto,e(·) 6 Gto,e are arbitrary elements: 

6ο,β(·)Ι[Μ = &o,t(-)j 3to,e(-)l[to,t] = 0to,t(·)· 
Since At is a Volterra operator, it is well defined. 

A finite family of points of Τ 

Δ = 

such that TO — TQ <...< rm = θ is called α partition (of the interval T). A 
partition Δ of the interval Τ is uniform if 

Ti+l -Ti- Tj+1 - Tj 

for all i,j € [0 : m — 1]. The value 

5(Δ) — max{Tj+i — т<| г G [0 : τη — 1]} 

is the step of the partition Δ. Further we consider only uniform partitions 
of the interval T. By the symbol (Δ/,) we denote a fixed family of partitions 
dependent on a parameter h 

ΔΛ = {τί, mh = m(S(h)) = (0 - r0)/6(h) (1.1.1) 

of the interval Τ so that 

6(h) = S(Ah) -4 0 as ft-+ 0. 

Further, let us set for simplicity 

h G (0,1), ί(Λ)€(0,1). 

Let 

«(·, ·, 0 : nth χ Et0iT.Λ χ Zto,n,h = [0, +00) 

be a functional. 
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We use the following terms: 

elements of the set щ0>в are measurements·, 

the set Ξ is the space of instantaneous results of measurements; 

the functional 

к(£Л(0> *(')) = . rnmax «Kfc. ä,r4h(·)» * W ( · ) ) 

t£|0: m.h—1J ' 

is the criterion of measurement error. 
We say that a family (£л(-))ле(о,1) of measurements κ-approximates on 

output z{·), if 

«(£*(·)»*(•)) < h f o r апУ h 6 (0,1)· 

The set of all such measurements is denoted by 
3(ζ(.),Λ). 

By (o/i) we briefly denote a family (o/i)fte(o,i) °f elements 
dependent on a positive parameter h € (0,1) . For simplicity, instead of 
Κ(Τ»,Λ> zto,Ti,h('))i w e w r i t e «i· 

Finally, let us fix a functional 

P ( v ) : Ut0iexUt0>e^R+, 

and, for a control υ(·) and an output z(·), we set 

ß(v(-),U(z(·))) = inf{p(«(0.«(·)) : «(·) 6 ff.(*(·))}. (1-1.2) 

Further, the value β{ν(·), U„(z(·))) is called the p-error of control v(·) 
for output z(-) and the functional /£>(·,·) is called the criterion of error of 
approximation. 

The following basic definition follows from the theory of ill-posed prob-
lems (Ivanov et al., 1978; Tikhonov A.N. and Arsenin V.Ya., 1978). 

Definition 1.1.3. A family (D^) of Volterra operators acting from Ξίθι# 
into Ut0ie is called regularizing if for any output z(-) we have 

Umeup{j0(Z>Affc(·), U M ' ) ) ) · ξΛ€Ξ(*(·),/ι)} = 0. 
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R e m a r k 1.1.1. Without loss of generality, we assume that the func-
tional p(·, ·) is defined in the widen set U^g x U^e(Ut0ig С and the 
operator family (Dh) acts from Et0ie into U^g. However, mostly, it suffices 
to assume that Ut0te — ^t^fi· 

The problem in question is to construct a regularizing family of Volterra 
operators. If Ζ = X\ С = I (the identity operator), then the operators 
Д - 1 and A" 1 : Xtofi Utoj, Л - 1 ^ · ) ) = U(x(·)), A'1 = U.(x(·)) are 
Volterra operators for a sufficiently wide class of systems (this is proved 
below). Therefore, we should seek for a solution of the problem in the class 
of Volterra operators. 

The approach described below is based on the well-known principle of 
positional control: the principle of auxiliary controlled models. Its essence 
is as follows. We choose an auxiliary dynamical system (we call it a model). 
The initial state of the system WQ is given. The set of motions w(-) is given 
by a Volterra operator defined on pairs (£(·), u(·)), where £(·) is a result of 
measuring an output z(-) generated by a real input of the system A; and 
V(·) G Ut0ig is a control in the model. The initial state WQ of the model 
is given by the value ξ (to) of measuring at the initial moment to following 
a rule W fixed α priori (this rule is called a to-algorithm). The laws of 
forming a model control v(-) axe called strategies following the terminology 
of positional control theory (Krasovskii, N.N., and Subbotin, A.I., 1984). 
These strategies are identified with Volterra operators У, which, following 
the feedback principle, assign v(·) to a pair (£(•), w(·)) (measurement-motion 
of the model). A process (w(-),v(·)) (motion-control of the model), for the 
given pair (W, У), depends on a measurement £(·). Thus, the pair (W,3^) 
defines ал operator D acting on measurements £(·). Note that the operator 
Dh is a Volterra operator under some special conditions. We construct the 
regularizing family from such operators. The pairs (W, У) which define 
these operators are called modeling algorithms. 

Suppose that 

W is a nonempty set; 

Wo is a subset of W; 

Wto,e is a set of functions from Τ into W (W0 φ 0 , Wto,e φ 0 ) , 

Ξ0 = {({to) • £(·)<ΞΞίθι0}, Μ : Wo χ Ξί0>β χ Uto<e -> Wto,e 

is an operator such that for any wo € Wo the operator (£(·)>v(")) 
M ( ι ν ο , ξ ( · ) , ν ( · ) ) is Volterra, and, for any £(·) G Eto>e and u(-) G Uto,e, we 
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have 

(M(w0, £(·), «(•)))(*<>)= «Χ>· (1.1.3) 

Definition 1.1.4. The operator Μ is called α model; the set W is 
called the phase space of the model, Wo is called the set of initial states of 

the model; the function 

u»(t) = Μ(ωο,£(·),«( · ) ) (*) = w{t;to,wo,(to,t{-),vto,t{·)) eW, teT 
(1.1.4) 

is called a motion (phase trajectory) of the model. 

Definition 1.1.5. Any function W which may depend on h 

W = Wh: wo = wh{to)=Wh(t{t0))eW0 (1.1.5) 

is called an algorithm of choice of the initial state of the model. 

Definition 1.1.6. Let w0 e Wo, У : Et0ie x Wtoj Uto,e be a 
Volterra operator, t ET, and a measurement £t0,t(·) 6 ^t0,t· Then any pair 
(™toA-)'vto,t{·)) e Wt0,t x Uto,t such that 

wto,t(·) = Mt(wQ^to>t(-),vto>t{·)), vto,t(·) = yt(&0,t(-)>wto,t(·)) 

is called a (Y,(tQ,t('))~PROCESS with the initial state WQ. 

Definition 1.1.7. A Volterra operator У : Ξ(θι# χ Wt0ß —>· Ut0,e is 
called an admissible strategy if for any WQ € WQ, t ET, and £t0,ö(·) e 

there exists a unique (^,6o,t("))_P rocess with the initial state WQ. 

Definition 1.1.8. Any pair (W, where W is a io~alg°rithm and У 

is an admissible strategy is called an algorithm of modeling. 

For any algorithm of modeling (W, t G T, and £t0,t(·) £ Ξ(θιί, we 
denote by 

M · ; W, y, 6o,t(·)), v(; W, У, &,*(· ) ) ) 

a unique (У, £t0jt(-))~Process with the initial state W(£(io))· Let 

be an operator which maps each measurement £(·) into the function 

v(; W, У, £(·))· 
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Definition 1.1.9. An operator D[W, is called realizing for a mod-
eling algorithm (W, У); and a pair (w{-, W, У, £(•)),«(·, W, У, €(•))» 
where ξ(·) 6 Et0t$ is called a (W, У, £(·))-process. 

Remark 1.1.2. Further, we meet the situation when a model depends 
on a parameter h € (0,1): Μ = M(wο, ξ(·), v(·), h). However, we show 
later that the essential role in solving the problems is played by values of Μ 
only on elements dependent on h: wq = гуо.л, £(·) = 6ι(·)> ν(·) = vh(·). 
Therefore, introducing an operator M, we omit the argument h mentioning 
that Μ depends on h, i.e., Μ = M(wo^, 6(·)> vh(·), h). 

Lemma 1.1.1. For any modeling algorithm (W, У), the operator 
D\W, realizing this algorithm is a Volterra operator. 

Proof. We suppose that W is a ίο-algorithm and У is an admissible 
strategy. We take an arbitrary t ET, ξι(·), 6 ( 0 6 Ξ(θι# such that 

6(e) = 6(e) for sG[t0,t}. (1.1.6) 

We need to show that 

t»i(e)=V2(e) for se[t0,t]. (1.1.7) 

Here 

vj(·) = D[W, У\, («,(•) = t»(·; W, У, &(•)))• 

Suppose that 

Wj(-) = 4 ; Wo, У, (,•(•)), 3 = 1. 2. 6 = 6(ίο) = 6(ίο) 

and set 
*&(·) = Ш м . з = i , 2 . 

Since (Wj(·), Vj(·)) is а (У, 6(0)-process with the initial state wo = VV(£o), 
we have 

wj(-) = Mt(w0, ξ}(·), vj(·)), vj(-) = yt(6(·), «»i(·)), 3 = 1, 2. 

Hence 

^(•)![<о,<] = Mt{wo, 6o,t(·), Vj(-)|[to,t]), 
« j ( - ) l [ M = И « $ ( · ) , ^ ( . ) | [ М ) , 3 = 1 , 2 , ( 1 . 1 . 8 ) 
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i.e., 
Pj = K'(-)l[t0lt], ^(·)Ι[ί0,ί]) 

is the (У, £^t(-))-process with the initial state WQ, j = 1, 2. It follows from 
(1.1.6) and from the Volterra property of M(wo, ·) that the operators 

%,*(·)-> ί $ ( · ) , t^>t(·)): Ut0,t -> Wt0,t for j = 1 ,2 

coincide. The operators 

ЩоЛ·) уМОА-)> wt0,t(·)) •• Wt0,t utQ,t 

have the similar property. Therefore, in (1.1.8), for j = 1, we can replace the 
function ^ S O by tlo!t(·)· T h i s m e a n s t h a t t h e Pi i s t h e (У>(£!*('))' 
process with the initial state WQ. AS this process is unique, it coincides with 
P2· Therefore, (1.1.7) holds. The lemma is proved. • 

Now, we seek for a solution of the problem in question in the class of 
families (D[Wa, [Уд]) of Volterra operators which axe realizing for certain 
modeling algorithms (Wft, Уи)· 

Definition 1.1.10. A family (Wft, Ун) of modeling algorithms is called 
regularizing if the family of operators (£)[W/,, 3^]) is regularizing. 

The problem that we discuss consists in finding a regularizing family of 
modeling algorithms (and in the choice of a model Μ). 

Problem 1.1.1. It is necessary to find a model Μ and construct mod-
eling algorithms (W/,, Ун) such that the correspondent family of realizing 
operators DH = (D[WH, !Ул]) is regularizing. 

In the end of this section, we describe a class of modeling algorithms 
which is used below. The following condition plays an important role. 

Condition 1.1.1. For any U, t* € T, U < t*, ut0ji.(•) e U^u, and 
щ,(·) G uu,t* the function ut0,t. (·): [to,t*] U of the form 

t*\ <.(*)> t € [ίο,ί.], 
«to.t'W = S . _ F. 

belongs to Ut,,f· 
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Definition 1.1.11. (Krasovskii, N.N. and Subbotin, A.I., 1984). Any 
pair 

У = (Δ, w), 
where Δ is a partition (1.1.1), U is the function mapping each triple 
(тг,6о,гД-).^о,гД-))> * e [0 : m - 1], бо.тЛ·) € Ξ<0,η, ti^,lTi(·) G WtQyTi, 
(6o,to(·) = £(fo)) into an element 

Щ п Л ь М ^ М ) € Ι/τ,.τ,+χ (1.1.9) 

is called о positional strategy. 

If Condition 1.1.1 holds, then an arbitrary positional strategy У = 
(Δ, U) is identified with the operator acting from Ξ ^ ж Wt0j into Ut0le 
whose value υ(·) on an arbitrary element (£(·)> u>(·)) € ^t0ie x Wto,0 is defined 
from the condition 

«*(•) =W(r<, ξ(·)\\[ί0,Τ{], 4 ) 1 ^ ] ) , i € [0: m — 1]. (1.1.10) 

Here do = [ίο, τι], di = (rj, Tj+i] for i > 0. This operator is also denoted 
by У. A positional strategy У = (Δ, U) represents the convenient and 
feasible way of control of the model. At each moment τ*, on the basis of the 
history £t0,Ti(·) of measurement and the history Wt0,Ti(·) of motion, following 
rule (1.1.9), we construct a control fed onto the model on the half-interval 
(T»> Ti+1]· The process of forming a model control is subdivided into the 
finite number of steps (m — 1). 

So, the quadruple (M, Vl^, Ah, Uh), for each h € (0,1), defines 
a certain algorithm D/, in the space of measurements ξ(·) G Ξ(^(·), h), 
(Oh, : Ξτ Uτ) which forms the output vh(·) = Dh£(·) following the feed-
back principle (1.1.4), (1.1.5), (1.1.9), (1.1.10). Note that the algorithm Dh 

is a Volterra algorithm. We construct the regularizing family Dh, h Ε (0,1) 
from such algorithms; we identify each algorithm Dh with the quadruple 
(M, Wh·, Δ/,, Uh)· So, we consider the problem of construction of regular-
izing families of algorithms Dh = (M, VV̂ , Ah, Uh), h e (0,1) of the form 
(1.1.4), (1.1.5), (1.1.9), (1.1.10). 

The algorithm Dh (if h is fixed) has the following work scheme. Before 
the moment to, we choose and fix a partition 

A = Ah = { Τ < }£ 0 , (τ,· = Tiih, m - mh) 

of the interval T. The next г-th step of the algorithm is carried out in the 
interval [τ», 7ϊ+ι). We measure (with an error) the output 2t0)Ti(·), i.e., an 
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element &0,п(·) = &0,тД·) G E(z(-),h)to,Ti with the property 

«Kfc, &ο,ΤΪ,Λ(·), zt0,Ti,h(·)) < h 
is calculated. Then, following rule (1.1.9), (1.1.10), we define the control in 
the model. After that, we make the correction of the memory: the part of 
the model trajectory w(t), t € (τ*, τ ί+ι], is formed instead of w(ri) following 
(1.1.5). The procedure stops at the moment Θ. The quadruple 

Dh = (M, Wft, ΔΛ, Uh) 

defined by relations (1.1.4), (1.1.5), (1.1.9), (1.1.10) is called further the po-
sitional algorithm of modeling (РАМ). We seek for solutions of the problems 
under consideration in the class of such algorithms. 

Note that in some cases we cannot use the history of motion of the system 
A. In this connection it is convenient to set 

v? =Uh(Ti, ξ(η), win)), (1.1.11) 

u;(r i+i) = ΐϋ(ξ(τ<), win), (1.1.12) 

The first function defines the law of approximation of the control, and the 
second function is the law of memory correction. The result of the work of 
the algorithm in the interval Τ is a piecewise-constant control vh(·) of the 
form 

< r 4 + 1 (*) = «?, t e f a , n+i). (1.1.13) 
Relation (1.1.12) may be interpreted as a controlled discrete dynamical sys-
tem (a model) with the control v^. Its initial state го (ίο) is given a priori by 
(1.1.5). Thus, the modeling algorithm in this case is given by the quadruple 
(M, Wh, Δ/j, Щ): discrete model (1.1.12), the mapping W/j, the family of 
partitions Δ/,, and the strategy Uh of the form (1.1.11), (1.1.13). We call 
this algorithm finite-step dynamic modeling algorithm (FSDAM). 

In some cases (see, for example, Chapter 3) a model may be absent. 
Then, a positional strategy У is a pair 

(A,U), U: (TU £to,n(·))-> UTUTi+l·, 
an operator 

D = D[y]: Eto>e^Uto,o 
is identified with У; the value of D on an element £(·) G Ξ<Οι0 is defined from 
the condition 

«(•)k=W(r i li(.)| [ t0>T4])> i € [ 0 : m — 1]. 

In this case, Problem 1.1.1 is reduced to the following problem. 



16 V. I. Maksimov 

Problem 1.1.2. It is necessary to construct a family of positional strate-
gies Уь such that the correspondent family (D^) of Volterra operators is 
regularizing. 

Lemma 1.1.2. If Condition 1.1.1 holds, then any positional strategy is 
admissible. 

Proof. Suppose that У = (Δ,ΖΛ) is a positional strategy and Δ is 
a partition of T. From the definition of У we see that it is a Volterra 
operator. Let t € T, wo € Wo, and £t0,t(·) € Et0lt be arbitrary. We need 
to show (see Definition 1.1.7) that the process (3>, £t0,t(·)) with the initial 
state wo exists and is unique. For this purpose, we apply the method of 
induction. Consider the case t Ε [<o, Ti]. Let wt0it(·) £ Wt0lt be such that 
wt0it{to) = wo (as follows from (1.1.3), such element wto,t{·) exists). We 
introduce the functions 

Vto,t(·) =W(«0, £[to,t](-)l[to,to]> ^to,t(-)l[to,to])' (1.1.14) 

m0,t(·) = 6o,t(·), t*o,t(·))· (1-1-15) 

Following (1.1.3), wto,t(io) = therefore, in (1.1.14), wt0it(-)l[t0,to] c a n b e 

replaced by wto,t(")l[io,to]· By the definition of У, this means that 

tw( - ) = 3>t(ftolt(·), wto,t(·))· (1-1-16) 

Relations (1.1.15), (1.1.16) show that K 0 i t ( · ) , vto,t(·)) is a 0>,60,t(·))-
process with the initial state WQ (see Definition 1.1.6). We prove now that 
it is unique. Suppose that (u>to,t(·), t>t0jt(·)) and (wto,t(·), vto,t(·)) are two 
(;V,£t0it(-))-processes with the initial state wo- Since 

«t0>t(·) = X(60,t(·), üto,«(·)), 

we see that, by the definition of У, vt0tt{·) coincides with the right-hand side 
of equality (1.1.14). We show above that this equality holds true. Therefore, 
VtQ,t(·) = Vt0,t(')· Then wto,t(·) coincides with the right-hand side of (1.1.15), 
i.e., wt0,t(·) = ЩоА')· Uniqueness is proved. Now, if we assume that a 
(;y,£t0)t(-))-process with the initial state wo exists and is unique for each 
t e [t0,Ti], where i G [0 : m — 1], we can show that it exists and is unique 
for t € [rj, Tj+i]. We omit the detailed proof of this fact. So, the theorem is 
proved. • 
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Definition 1.1.12. If Condition 1.1.1 holds, a modeling algorithm 
(W, У), where У = (A,W) is a positional strategy, is called positional and 
is denoted by (W, Δ, U). 

1.2. METHOD OF STABILIZATION OF 
LYAPUNOV FUNCTIONALS 

We describe here sufficiently general method for constructing a regular-
izing family of modeling algorithms. This method consists in stabilizing an 
appropriate functional of Lyapunov type along the model motion. 

Suppose that for each /i G (0,1) we fix a functional 

AH : ZT0IE χ UTO,E x WTo,0 R. 

Definition 1.2.1. A family (AH) is called estimating if for any output 
z(·), family (wo,h) of elements from Wo, family (VH(·)) of controls and family 
(£Λ(·)) of measurements «-approximating z(·), from the convergence 

Λ(ζ(·), t»fc(·), M(w0,h, ξΛ(·), vh(·))) 0 as h-+Q (1.2.1) 

it follows that the convergence (see (1.1.2)) 

0 M - ) > - Ю as Л - Ю (1.2.2) 

takes place. 

Definition 1.2.2. A family (Wh, Уи) of modeling algorithms is 
A/i-stable if for any output z(-) and family (ξΛ(·)) of measurements 
«-approximating z(-) the convergence 

ΛΛ(*(·), t»(·; WA> Ун, ξΛ(·)), «;(·; WÄJ Ун, ξh(·))) 0 as h 0 
(1.2.3) 

holds. 

Lemma 1.2.1. Suppose that a family (AH) of functionals is estimating. 
Then аду (Л/,)-stable family of modeling algorithms is regularizing. 
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Proof. We suppose that (WH, Ун) is an arbitrary (Л^)-stable family of 
modeling algorithms. We take an arbitrary output z(·) and a family (ξΛ(·)) 
of measurements «-approximating z(·). We set 

vh(·) = v(-, Wh, Ун, ξh(·)), 

Ы-) = 4 ; Wfc) Ун, ξΗ(·)), v>o,h = Wh(th(to)). 

Then M{W0>H, £H{·), VH{·)) = WH(·)· Hence, it follows that convergence 
(1.2.3) (which holds since the family of modeling algorithms (Wh, Ун) is 
(A/,)-stable) can be written in the form (1.2.1). Since the family of func-
tional AH is estimating, convergence (1.2.1) yields convergence (1.2.2). By 
the definition of the operator D\WH, Ул], we have 

D[Wh, «Λ(·) = νΛ(·), 

so the last convergence can be written in the form 

ß(D[Wh, Λ]ξ"(·), E W ) ) ) 0 as h -> 0. 

The lemma is proved. • 

Further we consider, as a rule, only mean square criterions of approx-
imation error. Suppose that the space U of controlled parameters of the 
dynamical system A is a uniformly convex Banach space with a norm | • 
the set Utoft of all controls of the system A belongs to the space L2 (T; U) 
(the Lebesque measure in Τ is fixed); and the criterion of approximation 
error has the form 

p{u{.), »(.)) = |«(.) - v(-)|l2(T;£/) MO, t»(.) € Ut0,e). (1.2.4) 

Suppose also that the choice criterion has the form 

Ω(·) = I · \L2(T-,U)· 

Let the dynamical system A be such that for any XQ G XQ, «ι(·), «г(·) G 
Ut0,θ, 

A(XQ, ui(·)) = Λ(ζο, «2(·))> if UI(T)=U2{T) almost everywhere in T. 

Therefore, taking into account (1.2.4), we identify any two controls ui(i) 
and ii2(t) such that щ(t) = U2{t) almost everywhere in T. 

Below we use the following two conditions. 
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Condition 1.2.1. For any output z(·), the set U*{z{·)) of ω-normal 
controls compatible with z(·) is a singleton: 

UM·)) = Κ ( · ; *(·))}· 

Condition 1.2.2. The set Ut0le is weakly closed and weakly compact 
in L2(T; U). 

We show how to construct an estimating family of functionals. Suppose 
that for each h Ε (0,1) a functional 

Лл : Zt0!e χ Wt0,e К 

is fixed. 

Definition 1.2.3. A family Лд is called weakly estimating if for any 
output z(·), family (too,л) of elements from the family Wo, family of controls 
{vh(·)), family (£л(·)) of measurements «-approximating z(·), and sequence 
(Л*), hk 0 as к oo such that 

£fcfc(*(•), M(w0,hk, ξΗ), «Α»(·)))->0, 

vhk{·) ν(·) weakly in J) as к oo, 

the inclusion 
«(•) e U(z(·)) 

holds. 

Lemma 1.2.2. Suppose that 

a) Conditions 1.2.1 and 1.2.2 bold; 

b) a family (A^) is weakly estimating; 

c) 

Λλ(*(·), О, w(-)) = 9(h, Äh(z(·), «;(.)), |«(-)|La(rito.w*(o) 
(1.2.5) 

(ζ{·) e Ztθ!θ, ν(·) Ε ut0,e, u>(·) € Wt0i6), 
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where the function Φ : M+ χ Μ χ R+ χ Κ+ I is such thai for hk ->· 0 the 
condition 

$(hk, ak, bk, cfc) ->· 0 

yields 
ak ->· 0 and lim (6jt - c*) < 0. 

fc->o 

Thea the family (Λ/J is estimating. 

Proof . Assume the opposite: there exist an output z(·), a family of ele-
ments (ίϋο,/ί) from Wo, a family of controls (υ/ι(·))ι a family of measurements 
(£Λ(·)) «-approximating z(·), and a sequence {hk}, hk 0 as fc —)• oo such 
that 

(*(·), t»Äfc(·), M(w0,hk, ξΛ*(·). VAfc(-))) 0. 

However, 

ß{vhk (·), UM·))) = inf{|K(·) - vhk{-)\L2{T-m I «(•) G UM·))} =ε>0· 
(1.2.6) 

Without loss of generality, taking into account Condition 1.2.2, we can write 

vhk(·) v(·) weakly in L2{T\U) as к -»· oo, υ(·) 6 Ut0ie-

(1.2.7) 

Besides, taking into account c), we have 

Ahk(z(·), M(w0<hk, ξΛ*(·), 17Лл(·))) -> 0, as A oo, (1.2.8) 

^™ΙϋΛ»(·)Ιΐί(Γ;Ι0 — ω^(·)· ( L 2 · 9 ) 

Hence, taking (1.2.7), (1.2.8), and b) into account, we obtain 

«(•) e U(z(·)). (1.2.10) 

In turn, (1.2.10) and the properties of weak limit yield the inequalities: 

J™>fc»(-)lLa(r;£0 > IOIl 2(T;10 > ««>«(.)• (1.2.11) 
к->oo 

By Condition 1.2.1, the set U*(z(·)) is a singleton: 

ад·)) = {«.(•; *(•))}• 


