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Preface 

As a rule, many practical problems are studied in the situation when 
the input data are incomplete. For example, this is the case for a parabolic 
partial differential equation describing the non-stationary physical process 
of heat and mass transfer if it contains the unknown thermal conductiv-
ity coefficient. Such situations arising in physical problems motivated the 
appearance of the present work. 

Coefficient inverse problems for parabolic equation are formulated as 
the problems of determining the unknown vector-function (Lavrent'ev, Ro-
manov, and Shishatskii, 1980). Its components are represented by the func-
tion for which a given equation is written and the unknown coefficients of 
the elliptic differential operator entering this equation. Hereafter we shall 
assume that the unknown coefficients depend only on the space variables 
and do not depend on time. 

Coefficient inverse problems were studied in Alifanov and 
Klibanov (1985), Vabishchevich and Denisenko (1990), and other works. 
Numerical methods of solution of coefficient inverse problems associated 
with their applications were developed in Abasov, Azimov, and Ibragi-
mov (1991), Evdokimov (1995), Iskenderov (1971), Khairullin (1986, 1988), 
Tsirel'man (1984), Banks and Lamm (1985), Cahen (1963), Chavent (1970, 
1971), Chavent, Dupuy, and Lemonnier (1975), Douglas and Jones (1962), 
Kravaris and Sienfeld (1982, 1985, 1986), etc. 

Coefficient inverse problems are conditionally well-posed and require spe-
cial methods of investigation. For example, these are the regularization 
method (Tikhonov and Arsenin, 1979; Tikhonov, Goncharskii, Stepanov, 
and Yagola, 1983; Morozov, 1987a,b), the quasi-solution method (Ivanov, 
Vasin, and Tanana, 1978), and the quasi-inversion method (as a version of 
the regularization method) (Lattes and Lions, 1967). Numerous works de-
voted to the method of solution of conditionally well-posed problems are well 
known today (see, for example, Bukhgeim, 2000; Lavrent'ev, Romanov, and 
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Shishatskii, 1980; Lavrent'ev, Reznitskaya, and Yakhno, 1982; Lavrent'ev, 
Vasil'ev, and Romanov, 1969; Lavrent'ev, 1981; Liskovets, 1981). 

Although the regularization methods allow obtaining a stable solution 
according to the definition of well-posedness in the sense of A. N. Tihonov, 
this does not guarantee its uniqueness. The uniqueness of solution of con-
ditionally well-posed problems was studied by Μ. M. Lavrent'ev, V. G. Ro-
manov, and others. A wide variety of conditionally well-posed problems 
of mathematical physics that have practical applications axe considered 
in Lavrent'ev, Romanov, and Shishatskii (1980), Romanov (1984), Ro-
manov, Kabanikhin, and Pukhnacheva (1984), Romanov (1969), Belov and 
Lavrent'ev (1996). The specific feature of the present book is that it is 
based on the results obtained by Μ. V. Klibanov in the proofs of the corre-
sponding uniqueness theorems (see Klibanov, 1984a,b, 1986; Klibanov and 
Danilaev, 1990). The main idea of these results consists consideration of the 
studied equation together with the overdetermined set of boundary condi-
tions. 

The quasi-inversion method developed by Μ. M. Lavrent'ev and 
J.-L. Lions was chosen as the method of solution. The developed al-
gorithm allows reducing coefficient inverse problems to the problems 
on the continuation of a solution of a parabolic equation considered 
in Lattes and Lions, 1967. The quasi-inversion method was sub-
stantiated and developed further in Tamme (1972), Muzylev (1977), 
Popov and Samarskii, (1988), Vabishchevich (1991a,b,c), Samarskii and 
Vabishchevich (1997). M. Kh. Khairullin and Μ. N. Shamsiev used the quasi-
inversion method to solve practical problems (see Shamsiev, 1997). 

In this book we consider numerical solutions of the quasi-inversion prob-
lems, to which the solution of the original coefficient inverse problems 
are reduced. Numerical methods of solution of conditionally well-posed 
problems were developed by Bukhgeim (1986), Bakushinskii and Gon-
charskii (1989), Samarskii and Vabishchevich (1990), and others. The classic 
results obtained by A. A. Samarskii and his pupils were used to construct 
the algorithms of numerical solution of the quasi-inversion problems (see 
Samarskii, 1977; Samarskii and Nikolaev, 1978). Some studies presented 
in this book are associated with the numerical experiment as it was deter-
mined by A.A. Samarskii (Samarskii, 1979; Popov and Samarskii, 1988). 
The monographs of Alifanov (1979, 1988), Alifanov, Artyukhin, and 
Rumyantsev (1988), Beck, Blackwell, and Saint Clair (1989), Kozdoba and 
Krukovskii (1982), Kozdoba (1992), Kurpisz and Novak (1995) are devoted 
to applications of the methods of study of conditionally well-posed prob-
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lems of mathematical physics. A wide range of practical applications of 
conditionally well-posed problems can be found in the papers of AU-Union 
Seminars on Inverse problems conducted by Acad. A. N. Tihonov and Acad. 
V. P. Mishin, and in the proceedings of international conferences ("Identifi-
cation of Dynamic Systems and Inverse Problems"), which are regularly held 
in the Aerospace Department of Moscow Institute of Aircraft Engineering 
under the direction of Prof. Ο. M. Alifanov. 

Parabolic equations describe the processes of heat and mass trans-
fer and are widely used in the mathematical modelling of physical pro-
cesses ( for example, Bolgarskii, Muhachev, and Shchyukin, 1975; Buzinov 
and Umrikhin, 1984; Bulygin, 1974; Charnyi, 1997; Golubev and Tuma-
shev, 1972; Development of Research in Filtration Theory in the USSR 
(1917-1967), 1969; Kozdoba, 1975; Dmitriev, 1982; Sedov, 1967). In the 
present book, underground fluid dynamics is taken as a field of practical 
use of coefficient inverse problems. The significance of these problems for 
this application domain consists in the possibility to determine the physical 
fields of parameters that characterize the filtration properties of porous me-
dia (oil strata). This provides the possibility of predicting the conditions of 
oil-field development and the effects of the exploitation. Many authors pro-
posed the algorithms of determining the fields of filtration parameters. In 
Bulygin (1958), Golubev, Danilaev, and Tumashev (1978), Khairullin (1986, 
1988), Chavent (1970, 1971), Chavent, Dupuy, and Lemonnier (1975), 
Kravaris and Sienfeld (1982, 1985, 1986), this problem was solved using 
the methods of parametric identification with regularization. The role and 
specific character of the approach considered here as compared to the men-
tioned works are analyzed in Chapter 6. In the present book we gener-
alized and developed the author's results (see Bulygin and Danilaev, 1971; 
Golubev, Danilaev, and Tumashev, 1978; Golubev 1992; Golubev and Dani-
laev, 1981, 1983, 1987,1990, 1991a,b, 1992a,b, 1996a,b; Danilaev 1978, 1980, 
1981, 1986, 1987a,b, 1988, 1989a,b, 1993, 1996, 1997, 1998a,b,; Danilaev and 
Golubev, 1994a,b; Danilaev, Gortyshov, and Kuz'min, 1988). 





Chapter 1. 

On the ill-posedness of coefficient 
inverse problems and the general 
approach to the study of them 

We show the ill-posedness of coefficient inverse problems for parabolic equa-
tions following Lavrent'ev, Romanov, and Shishatskii (1980). Consider the 
equation 

du 

— — Lgu = f(x,t), (1.1) 

where Lq is a uniformly elliptic operator 
, s du du , . . du . . 

Lqu= ^aij{x) — — + }^bi(x)— + c{x)u, 
i,j=1 1 3 i=l 1 

2 2 

a,ij(x) = üji(x), 0 < μο < aij(x)aiOtj < MQ < oo, ^ a f = 1. 
i,j=1 i=l 

Here q = (öh, ai2,<^225 c) denotes the ordered set of the coefficients 
of the differential operator. Thus, defining the operator Lq is equivalent to 
specifying a vector q. 

Let the elements q form some set Q associated with a set of operators Lq. 
From this set of operators we have to choose the one, which corresponds to 
the given information on the solution of equation (1.1). Let all components 
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of the vector q be unknown. Then for their definition it is necessary to pro-
vide the data of dimension not less then that of the vector q. Consider, for 
example, the case where the number of solution of equation (1.1) is equal 
to the number of components of the vector q. Let these solutions be con-
structed as the solutions of initial boundary value problem corresponding to 
the different initial data. Introduce the vector function U = (ui,u2,· • •,ue) 
whose components consist of the solutions of equation (1.1) which conform 
to different initial data. For the function U we have the splitting system of 
Cauchy problems 

Ut — LqU = F(x,t), U\t=Q = Uo(x), (1.2) 

where the vector function U is given on some manifold M: 

U\M=<p(x,t). (1.3) 

It is required to find Lq, q € Q, by φ. 
Such statement of the problem is initial when we investigate the unique-

ness and stability of solutions of coefficient inverse problems. 
Let (q, U), (it, U) be two solutions of the problem (1.2) corresponding to 

the same functions F, UQ, but to the different data φ, φ in (1.3). Denote 
q = q — q, U = u — U, φ = φ — φ. Then we obtain 

^-LqÜ = q{x)R9(x,t)t (1.4) 

Ü\t=Q = 0, (1.5) 

ϋ\Μ = φ(χ,ί), (1.6) 

where we use the notation 

LqÜ = q(x)Rq(x, t). 

Lemma (Lavrent'ev, Romanov, and Shishatskii, 1980). The study of 
uniqueness and stability in the inverse problem (1.2) with respect to the 
data (1.3) is reduced to the study of analogous problems for determination 
of the function q(x) from relations (1.4)-(1.6), where Lq is a given operator 
(q G Q); φ(χ, t) and Rq(x, t) are given functions; R is a matrix. 

If we know the stability estimate for q in terms of φ which is uniform 
in Q, then this estimate is also a stability estimate for the solution of the 
problem (1.2), (1.3). 
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Thus, the problem of determining the differential operator Lq is reduced 
to the problem of determining the special right-hand side of the differential 
equation, as far as the study of uniqueness and stability is concerned. It is 
also an inverse problem, but it is linear in this case. 

The questions of solution stability of the obtained problem depend on 
the function Rg(x,t). The requirement det Rq(x, t) ^ 0 is intrinsic and 
minimal. The condition that det Rq(x, t) is not equal to zero at all points of 
some smooth surface t — t(x). 

The linear problem (1.4)-(1.6) can be reduced to the Fredholm equa-
tion of the first kind using the fundamental solution Ης(χ,ί,ξ,τ) of equa-
tion (1.1): 

[ m)Rq<i(t,x,t) άξ = φ{χ,ί), (x,t) G M, (1.7) 
JR3 

where 
Rqijti,x,t)= [ Rq(£, r)Hq(x, t, ξ, τ) dr. 

Jo 
Thus, the inverse problem (1.2), (1.3) is reduced to the integral Fredholm 

equation of the first kind (1.7). 
The uniqueness theorems for solution of coefficient inverse problems for 

the parabolic equation (1.1) were proved by Μ. V. Klibanov. Now, we con-
sider these theorems. Let I > 0 be a non-integer number (designations of 
Banach spaces conform to Ladyzenskaja, Solonnikov, and Ural'ceva (1967)), 
Ω be a bounded domain in Rn, dü € C°°, Τ = const > 0, QT = Ω χ (0, Τ), 
GT = Ω χ ( -Γ , Γ), GcT = Ω χ (-σ, Τ), σ = const e (0, Τ), ST = dÜ χ (0, Τ), 
Νχ = dü χ (—Τ,Τ), Lq be a uniform elliptic operator with smooth coeffi-
cients in QT or GT- The conditions of coordination of necessary order are 
assumed to hold in the further problems (Ladyzenskaja, Solonnikov, and 
Ural'ceva, 1967). Consider the linearized statements of inverse problems. 

Problem 1.1. Determine the vector function (u,q) E HL>L!2{QT) x 
Hl~2(Q), I > 2, from the following conditions: 

du 
— = Lu + q{x)F(x,t), {x,t)eQT, 

du 
m|i=0 = 0, = ψ{χ, t), — = φ{χ, t), 

where L is the uniformly elliptic operator with smooth coefficients in Qt or 
Gt, L = Σιαι<2 D« = D?... Dj = d/dxj. 


