Anorganische Chemie Prinzipien von Struktur und Reaktivität

3., durchgesehene Auflage

James E. Huheey Ellen A. Keiter Richard L. Keiter

Anorganische Chemie

Prinzipien von Struktur und Reaktivität

3., durchgesehene Auflage übersetzt und erweitert von Ralf Steudel

Titel der Originalausgabe Inorganic Chemistry Principles of Structure and Reactivity Fourth Edition

James E. Huheey, University of Maryland Ellen A. Keiter, Eastern Illinois University Richard L. Keiter, Eastern Illinois University

Copyright © 1993 by HarperCollins College Publishers 10 East 53rd Street, New York, NY 10022, USA Übersetzer der deutschsprachigen Ausgabe Professor Dr. Ralf Steudel Institut für Chemie der Technischen Universität Berlin Straße des 17. Juni 135 10623 Berlin

Abbildungen aus den folgenden Zeitschriften © American Chemical Society: Accounts of Chemical Research, Chemical and Engineering News, Chemical Reviews, Inorganic Chemistry, Journal of the American Chemical Society, Journal of Chemical Education, Journal of Physical Chemistry and Organometallics. Wir bedanken uns auch bei Acta Chemica Scandinavica, The American Association for the Advancement of Science, The American Institute of Physics, Angewandte Chemie, The Chemical Society, The International Union of Crystallography, The Mineralogical Society of America, The National Academy of Sciences, U.S.A., Nature, The Nobel Foundation of the Royal Academy of Science, Schweden, Zeitschrift für anorganische und allgemeine Chemie und Zeitschrift für Naturforschung für die freundlichen Abdruckgenehmigungen.

Einbandabbildung: Die Kristallstruktur von Boggsit, ein vor kurzem in der Antarktis entdeckter Zeolith, ein Aluminiumsilikat der Zusammensetzung NaCa₂[Al₅Si₁₉O₄₈] · 17 H₂O. Seine einzigartige dreidimensionale Struktur wurde von J. J. Pluth und J. V. Smith aufgeklärt. Sie besteht aus einem komplexen Kanalsystem, in dem erstmalig das gleichzeitige Vorkommen von Zehner- und Zwölferringen nachgewiesen wurde.

Pluth, J.J., Smith, J.V., Am. Mineral., 1990, 75, 501-507.

Die Computergraphik der Kristallstruktur wurde uns freundlicherweise zur Verfügung gestellt von Professor P. Luger und Frau M. Weber, Freie Universität Berlin.

Das Buch enthält 536 Abbildungen und 148 Tabellen.

Sedruckt auf säurefreiem Papier, das die US-ANSI-Norm über Haltbarkeit erfüllt.

ISBN 3-11-017903-2

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über < http://dnb.ddb.de > abrufbar.

© Copyright 2003 by Walter de Gruyter & Co.KG, D-10785 Berlin.

Dieses Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Printed in Germany.

Satz und Druck: Tutte Druckerei GmbH, Salzweg-Passau. Bindearbeiten: Lüderitz & Bauer GmbH, Berlin. Einbandentwurf: + malsy, Kommunikation und Gestaltung, Bremen.

Aus dem Vorwort zur 4. amerikanischen Auflage

Es ist jetzt zwanzig Jahre her, daß der Senior unter den Autoren mit dem Verlag Harper & Row die erste Auflage von Anorganische Chemie – Prinzipien von Struktur und Reaktivität produziert hat. Seitdem ist der Senior Autor 20 Jahre älter geworden, haben sich zwei neue Autoren dem Projekt angeschlossen, hat der Verlag Harper & Row seinen Namen in Harper Collins geändert und – bei weitem am wichtigsten – ist die anorganische Chemie weiter gewachsen. Es wird für einen einzelnen Autor zunehmend schwieriger, wenn nicht gar unmöglich, alle Bereiche der anorganischen Chemie zu verfolgen. Die beiden neuen Autoren bringen in das Buch ihre Kenntnisse in Koordinationschemie, in metallorganischer Chemie und in physikalischen Methoden ein, sowie frische Ansichten zu einer Reihe von anderen Themen. Trotzdem wurde die Philiosophie des Buches beibehalten: dem Leser die wichtigsten Aspekte der anorganischen Chemie in einer leicht lesbaren Form zu vermitteln und dabei klarzustellen, daß die anorganische Chemie ein faszinierendes Forschungsgebiet ist und nicht ein abgeschlossenes Wissensfeld.

Wir drei Autoren bringen völlig verschiedene Studienerfahrungen in dieses Buch ein. Einer von uns erwarb den Bachelor of Science (B.Sc.) an einer Hochschule mit Promotionsrecht, einer an einem privaten College (ohne Promotionsrecht) und einer an einem staatlichen College. Wir haben anorganische Chemie im Grund- und Hauptstudium an verschiedenen Orten unterrichtet. Als wir uns zusammensetzten, um die Revision dieses Buches zu besprechen, waren wir uns in folgenden Punkten einig: (1) Das Buch sollte inhaltlich auf den neuesten Stand gebracht werden. (2) Der Inhalt sollte weiterhin durch Literaturangaben untermauert werden; diese sollten auf der jeweiligen Seite erscheinen, zu der sie gehören und relevante Zitate sollten nicht einfach deswegen entfallen, weil sie bereits in der vorigen Auflage erschienen waren. (3) Neue Abbildungen, oftmals aus der Originalliteratur, sollten aufgenommen werden. (4) Eine größere Anzahl von Aufgaben, viele davon neu, sollten am Ende der Kapitel erscheinen. Die Lösung mancher Aufgaben sollte die Benutzung einer Bibliothek erfordern, während andere die grundlegenden Fragestellungen zu den entsprechenden Themen ansprechen sollten. (5) Ein Kapitel über Symmetrie sollte eingefügt werden. (6) Die Festkörperchemie sollte einen größeren Umfang erhalten. (7) Der Abschnitt zur Kinetik sollte ausgebaut werden. (8) Die Beschreibung der Lanthanoide und Actinoide sollte in die Kapitel der entsprechenden Übergangsmetalle integriert werden.

Ein allgemeiner Konsens sowohl zwischen Autoren als auch Benutzern ist einfacher zu erreichen als eine Einigung auf spezifische Details. Unsere Diskussionen über das Kapitel zur Symmetrie sind dafür ein gutes Beispiel. Wir waren uns einig, daß die Lehre über Symmetrie an den meisten Hochschulen Aufgabe der anorganischen Chemie geworden ist. Aber wie viel sollte gebracht werden und in welchem Ausmaß sollte der Rest des Buches von diesem Symmetriekapitel abhängen? Als Minimum hielten wir eine gute Einführung in das Thema Punktgruppen für unerläßlich. Auch wollten wir einige Anwendungen für Charaktertafeln einbauen, aber wiederum nicht so weit gehen, daß die anorganische Chemie in diesem Buch nicht mehr ohne Charaktertafeln unterrichtet werden kann. Diese Anwendungen finden sich verstreut im Text und können gegebenenfalls auch übergangen werden. Das Symmetriekapitel, wie es nun vorliegt,

VI Aus dem Vorwort zur 4. amerikanischen Auflage

konzentriert sich darauf, den Leser mit möglichst vielen Anwendungen der Symmetrie vertraut zu machen, unter anderem in der Spektroskopie und Kristallographie, ohne jedoch den Anspruch zu erheben, eine umfassende Darstellung dieses Themas zu sein.

Studierende, die dieses Buch benutzen, haben vermutlich völlig unterschiedliche Vorkenntnisse. Einige werden bereits Kenntnisse in anorganischer, physikalischer und organischer Chemie besitzen, für andere mag es der erste Kontakt mit der anorganischen Chemie sein. Andere wieder haben vielleicht nur wenig Vorkenntnisse in Bindungstheorie. Aus diesem Grunde bringen die ersten Kapitel die Grundlagen des Atombaues und der Molekülstruktur aus der Perspektive eines Anorganikers. Leser mit entsprechenden Kenntnissen mögen diese Kapitel zur Wiederholung benutzen oder als Mörtel, um die Lücken in ihrem Wissen zu kitten. Die mittleren Kapitel dieses Buches stellen das "Herz der anorganischen Chemie" dar: die Festkörperchemie jenseits der einfachen Salze, die Säure-Base-Chemie in verschiedenen Lösungsmitteln und in der Gasphase sowie die Koordinationschemie mit ihren verschiedenen Aspekten Bindung, Spektren, Magnetismus, Struktur und Reaktionen.

In Übereinstimmung mit der Philosophie einer themenorientierten Gliederung dieses Buches sind die letzten sechs Kapitel im wesentlichen voneinander unabhängig. Insgesamt sind wir davon ausgegangen, daß es am besten ist, eine große Zahl von Gebieten zu besprechen, aus der jeder seine Lieblingsthemen auswählen kann.

Wir möchten unseren Kollegen an der University of Maryland at College Park (UMCP) und an der Eastern Illinois University (EIU) danken, die uns in vielfältiger Weise geholfen haben. Außerdem danken wir Bryan Eichhorn (UMCP), William Harwood (UMCP), Mark McGuire (EIU), Robert Pilato (UMCP) und Rinaldo Poli (UMCP) für ihre spezielle Hilfe bei der Anfertigung dieser Auflage. Auch möchten wir den Kollegen danken, die wir während unserer Forschungssemester in anderen Departements besucht haben: Fred Hawthorne, Herb Kaesz, Charles Strouse, Joan Selverstone Valentine und Jeff Zink (University of California at Los Angeles), sowie Oren Anderson, Gary Maciel, Jack Norton, Tony Rappé und Steve Straus (Colorado State University). Wir möchten auch den Chemistry Departements von UCLA und CSU, dem Zoology Departement der Southern Illinois University sowie unseren eigenen Departements dafür danken, daß sie die Forschungsaufenthalte an deren Universitäten ermöglicht haben.

Für Ihre Hilfe bei der Übernahme von Abbildungen aus ihren Veröffentlichungen danken wir Michael W. Anderson (University of Cambridge), Anthony Arduengo (E. I. du Pont de Nemours), B. Dubost (Pechiney Institute), Jacek Klinowski (University of Cambridge), John Newsam (BIOSYM Technologies), Joseph J. Pluth (University of Chicago), Arnold L. Rheingold (University of Delaware), P. Saintford (Pechiney Institute), Carlotte L. Stern (University of Illinois, Urbana-Champaign), Sir John Meurig Thomas (The Royal Institution of Great Britain) und Scott Wilson (University of Illinois, Urbana-Champaign).

Die Abfassung dieses Textes hat von den hilfreichen Ratschlägen vieler Begutachter profitiert. Zu ihnen gehören Ivan Bernal, Donals H. Berry, Patricia A. Bianconi, Andrew B. Bocarsly, P. Michael Boorman, Jeremy Burdett, Ben DeGraff, Russel S. Drago, Daniel C. Harris, Roald Hoffmann, Joel F. Liebman, John Milne, Terrance Murphy, Jack Pladziewicz, Philip Power, Arnold L. Rheingold, Richard Thompson, Glen Vogel, Marc Walters, James H. Weber und Jeff Zink.

Schließlich gibt es viele Kollegen und Studenten, die bei der Niederschrift des ersten

Textes sowie seiner weiteren Vervollkommnung geholfen haben. Sie wissen selbst, wer sie sind, und wir hoffen, daß sie unseren aufrichtigsten Dank für alles das, was sie getan haben, anzunehmen bereit sind.

> James E. Huheey Ellen A. Keiter Richard L. Keiter

Bemerkungen zur 3. deutschen Auflage

Die vorliegende Übersetzung beruht auf der 1993 erschienenen vierten amerikanischen Auflage von *Inorganic Chemistry – Principles of Structure and Reactivity*. Verglichen mit der dritten amerikanischen (ersten deutschen) Auflage ist zwar der Umfang annähernd gleich geblieben, jedoch wurden über zwei Drittel des Buches neu geschrieben und auch das restliche Drittel wurde inhaltlich und sprachlich überarbeitet. So ist praktisch ein völlig neues, modernes Lehrbuch entstanden, das jedoch weiterhin die lebendige und anschauliche Darstellung der anorganischen Chemie enthält, die die früheren Auflagen zu Bestsellern gemacht haben.

Die thematische Gliederung entspricht der vorherigen Auflage, erweitert wurden jedoch die Kapitel Festkörperchemie und Organometallchemie, und gänzlich neu ist das 50seitige Kapitel über Symmetrie und Gruppentheorie. Gegenüber der zweiten deutschen Auflage wurde eine Reihe von Druckfehlern korrigiert, auf die mich Leser dankenswerterweise aufmerksam gemacht haben.

Im Rahmen der Übersetzung wurden einige neueste Ergebnisse eingearbeitet, und zwar bei den Themen Fullerene, Edelgasverbindungen, homoatomare Ringe und Ketten sowie Stickstoff-Fixierung. Darüber hinaus wurden zahlreiche neuere Literaturhinweise aufgenommen, insbesondere auch von deutschen Autoren.

Die Themen Wasserstoffatom-Spektrum und Elektron im eindimensionalen Kasten fehlen in der 4. amerikanischen Auflage; wegen ihrer großen Bedeutung wurden sie jedoch in dieser Auflage beibehalten. Andererseits wurden einige sehr spezielle Übungsaufgaben weggelassen. Die Namen der Elemente 104–109 entsprechen der IUPAC-Empfehlung von 1994.

James Huheey, der Hauptautor und Begründer dieses Lehrbuches, schreibt in seinem "An die Studenten", das Schreiben dieses Buches habe ihm Freude bereitet. Der Übersetzer schließt sich dem an: auch die Übertragung ins Deutsche hat Spaß gemacht, da es sich beim "Huheey" nicht um ein traditionelles oder gar enzyklopädisches Lehrbuch handelt, sondern um einen Text, in dem sozusagen Zwiesprache zwischen Autoren und Lesern gehalten wird. Dabei sind die in vielen Jahren Lehrtätigkeit gesammelten Erfahrungen eingeflossen.

Berlin, im Juli 2003

Ralf Steudel

An die Studenten

Eines Tages, nach einem Seminar, hörte man einen älteren Professor mit der Bemerkung, daß ihm ganz bange würde von all den neuen Theorien und spektroskopischen Methoden, die die jungen Doktoranden heutzutage beherrschen. Eine junge Mitarbeiterin war darüber erstaunt: sie war überzeugt, daß es sie Jahre kosten würde, um genug von der Chemie zu lernen, die er bereits kannte, um ihren Doktorgrad zu erwerben. Währenddessen diskutierten zwei andere Professoren hitzig über die relative Bedeutung von Stoffwissen einerseits und Theorien andererseits. Einer meinte, die beschreibende Chemie sei das wichtigste, "da sich Tatsachen nicht ändern"!

"Nun, einige "Tatsachen" scheinen sich doch zu ändern", wurde ihm erwidert, "gestern las ich, daß Iridium das dichteste aller Elemente ist; vor 10 Jahren, als ich Student war, habe ich gelernt, daß Osmium die höchste Dichte hat".

"Fakten ändern sich nicht so rasch wie Theorien; letztere kommen und gehen. Außerdem: warum soll man nicht ein Experiment wiederholen und es besser machen, um einen genaueren Wert zu erhalten?"

"Das ist genau der Punkt: neue Theorien sind notwendig, um neue experimentelle Beobachtungen zu erklären und außerdem führen Theorien dazu, daß wir etwas zum Testen haben, ein Gerüst, um das herum unsere Träume kreisen können". "Träume! Wir brauchen weniger Inspirationen sondern einfach mehr Anstrengungen ..."

Und so weiter und so weiter. Diese Chemiker und ihre Argumente spiegeln die andauernden Debatten in der Chemie wider und die Schwierigkeiten, denen man sich beim Verfassen eines Lehrbuches für Fortgeschrittene gegenübersieht. Das Gebiet der anorganischen Chemie ist riesengroß und jede Woche erscheint eine Vielzahl von neuen Publikationen. Neue Synthesemethoden gestatten die Isolierung und Identifizierung einer großen Zahl hochreaktiver Verbindungen. Die theoretischen Interpretationen sind immer anspruchsvoller geworden und das gleiche gilt für die spektroskopischen Methoden. Die anorganische Chemie hat viele Verbindungen zur organischen und physikalischen Chemie und selbst zur Biochemie. Die Grenzen zwischen der Molekülchemie und der Festkörperchemie verschwinden immer mehr. Altere Chemiker, die viele Einzelheiten und Theorien kennen, stellen fest, daß diese nur ein kleiner Teil des Ganzen sind. Frisch diplomierte Chemiker, mit Wissen und experimentellen Fertigkeiten ausgestattet, haben oftmals auch das Gefühl des "Nichts-Wissens". Noch stärker müssen Studierende, die am Anfang ihrer anorganischen Fortgeschrittenen-Ausbildung stehen, diesen Eindruck haben. Ein zu einer bestimmten Vorlesung empfohlenes Lehrbuch spiegelt die Ansichten des Hochschullehrers wider, welche Mischung aus Fakten und Theorien und welches Pensum an anorganischer Chemie gelernt werden sollte. Lehrbuchautoren müssen ebenfalls ihre Wahl treffen und die kann verschieden ausfallen, wie man an den zahlreichen Lehrbüchern sieht, die sich auf dem Markt befinden. Einige sind vollständig Tatsachen-orientiert, normalerweise umfangreich und sehr nützlich, wenn man etwas über die wichtigsten Verbindungen eines bestimmten Elements herausfinden möchte. Andere bieten eine Mischung aus Fakten und Theorien und vermeiden einen zu großen Umfang dadurch, daß sie jedem Thema nur ein paar Seiten widmen. Das hat den Vorteil, daß viele Themen angesprochen werden können, aber den Nachteil, daß man die Details anderswo suchen muß. Zu einem gewissen Grade trifft dies auf jedes Buch zu, daher ergibt sich die Notwendigkeit für möglichst viele Literaturhinweise. Unser Buch Anorganische Chemie: Prinzipien von Struktur und Re-

X An die Studenten

aktivität bietet ebenfalls eine Mischung aus Fakten und Theorien, aber wir glauben, daß es umfangreich genug ist für eine üppige Mahlzeit. Es gibt im übrigen keinen Grund anzunehmen, ein Buch, das die Chemie von 109 Elementen behandelt, sollte dünner sein als ein Standard-Lehrbuch der organischen Chemie!

Uns hat es Spaß gemacht, dieses Buch zu schreiben; wir hoffen, daß es Ihnen Spaß macht, es zu lesen.

James E. Huheey Ellen A. Keiter Richard L. Keiter

Inhalt

Vorwort	V VIII IX XXIII XVII
Kapitel 1 Was ist Anorganische Chemie	1
Die Anfänge der anorganischen Chemie Ein Beispiel für anorganische Chemie Die chemische Struktur der Zeolithe und anderer chemischer Systeme Chemische Reaktivität Schlußfolgerung	1 2 4 6 10
Kapitel 2 Die Struktur der Atome	11
Spektroskopie Die Wellengleichung Die Teilchen im Kasten Das Wasserstoffatom Die radiale Wellenfunktion R Winkelabhängige Wellenfunktionen Die Symmetrie der Orbitale Die Energie der Orbitale Die Elektronenspin und das Pauli-Prinzip Das Aufbauprinzip Atomzustände, Termsymbole und (erste) Hundsche Regel Periodizität der Elementeigenschaften Abschirmung Die Größe der Atome Ionisierungsenergie Ionisierung Elektronenaffinität	11 14 15 18 23 25 28 30 32 34 36 37 40 43 45 49 50
Kapitel 3 Symmetrie und Gruppentheorie	57
SymmetrieSymmetrieSymmetrieDie Spiegelebene (σ)	57 59

XII Inhalt

Das Inversionszentrum (i)	59
Drehachsen (C_n)	60
Identität (<i>E</i>)	63
Drehspiegelung (S_n)	63
Punktgruppen und Molekülsymmetrie	65
Punktgruppen sehr hoher Symmetrie	66
Punktgruppen geringer Symmetrie	66
Punktgruppen mit einer <i>n</i> -zähligen Drehachse C,	66
Diedergruppen	69
Ein Fließschema zur Ermittlung der Punktsymmetrie	69
Irreduzible Darstellung und Charaktertafeln	72
Reduzible Darstellungen	76
Anwendungen der Punktgruppensymmetrie/Optische Aktivität	77
Dipolmomente	78
Infrarot- und Ramanspektroskopie	79
Kovalente Bindungen	86
Kristallographie	90
Fehlordnung	97
1 omoronang	,,
Kapitel 4 Bindungsmodelle in der Anorganischen Chemie, Teil 1:	111
Die Ionenbindung	111
Eigenschaften von Ionenverbindungen	111
Voraussetzungen für das Auftreten von Ionenbindungen	113
Strukturen von Kristallgittern	113
Die Gitterenergie	119
Der Born-Haber-Kreisprozeß	125
Berechnungen nach dem Born-Haber-Kreisprozeß	126
Größeneffekte/Ionenradien	132
Faktoren, die die Radien von Ionen beeinflussen	133
Radien mehratomer Ionen	137
Packungsdichte und Kristallstruktur	139
Radienverhältnis (Radienquotient)	144
Varhersoge der Stabilität janischer Verhindungen durch thermachemische	
vornersage der Stabilität fornscher verönliddigen durch thermochemische	
Berechnungen	149
Berechnungen	149 151
Berechnungen	149 151 154
Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung	149 151 154 157
Koralenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung	149 151 154 157
Workersage der Stabilität föllicher Veröfildungen durch thermöchennische Berechnungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung	149 151 154 157
Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung	149 151 154 157 162
Kovalenter Charakter vorwiegend ionischer Bindungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung Kapitel 5 Bindungsmodelle der Anorganischen Chemie, Teil 2:	149 151 154 157 162
Vorhersage der Stabilität follischer Veröfildungen durch thermöchennische Berechnungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung Kapitel 5 Bindungsmodelle der Anorganischen Chemie, Teil 2: Die kovalente Bindung Die Lewie Strukture	149 151 154 157 162 162
Vorhersage der Stabilität föllicher Veröfildungen durch thermöchennische Berechnungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung Kapitel 5 Bindungsmodelle der Anorganischen Chemie, Teil 2: Die kovalente Bindung Die Lewis-Struktur	149 151 154 157 162 162 162
Vorhersage der Stabilität föllicher Veröfildungen durch thermöchennische Berechnungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung Kapitel 5 Bindungsmodelle der Anorganischen Chemie, Teil 2: Die kovalente Bindung Die Lewis-Struktur Bindungstheorien	149 151 154 157 162 162 162 163
Vorhersage der Stabilität föllicher Veröfildungen durch thermöchennische Berechnungen Kovalenter Charakter vorwiegend ionischer Bindungen Folgen der Polarisierung Schlußfolgerung Kapitel 5 Bindungsmodelle der Anorganischen Chemie, Teil 2: Die kovalente Bindung Die Lewis-Struktur Bindungstheorien Die Valenzstruktur-Theorie (Valence Bond-Theorie)	149 151 154 157 162 162 162 163 164

Hybridisierung	174
Hybridisierung und Überlappung	179
Die Molekülorbital-Theorie	180
Symmetrie und Überlappung	184
Die Symmetrie von Molekülorbitalen	186
Molekülorbitale in homonuclearen zweiatomigen Molekülen	187
Molekülorbitale in heteronuclearen zweiatomigen Molekülen	196
Molekülorbitale in dreiatomigen Molekülen und Ionen	202
Elektronegativität	209
Elektronegativitäten nach Mulliken und Jaffé	210
Neuere Entwicklungen in der Theorie der Elektronegativität	218
Veränderlichkeit der Elektronegativität	220
Andere Methoden zur Ermittlung der Elektronegativitäten	223
Wahl des Elektronegativitätssystems	224
Wahl der Hybridisierung bei den Nichtmetallen	224
Gruppenelektronegativitäten	225
Methoden zur Ermittlung von Ladungen: Elektronegativitätsausgleich	227
	•••
Kapitel 6 Struktur und Reaktivität von Molekülen	233
Die Struktur von Molekülen Die Theorie der Abstoßung zwischen Elektronenpaaren der Valenzschale	233
(VSEPR-Theorie)	233
Strukturen von Molekülen mit einsamen Elektronenpaaren	237
Zusammenfassung der VSEPR-Regeln	249
Molekülorbitale und Molekülstruktur	250
Molekülstruktur und Hybridisierung	252
Bents Regel und die Hybridisierungsenergien	257
Beeinflussung der Struktur durch Abstoßung zwischen den	
gebundenen Gruppen ("nichtbindende Wechselwirkungen")	262
Gebogene Bindungen	264
Kernabstände und Bindungsgrade	264
Experimentelle Bestimmung von Molekülstrukturen	267
Röntgenbeugung	267
Methoden, die auf der Molekülsymmetrie beruhen	269
Einige einfache Reaktionen kovalent gebundener Moleküle	271
Molekülinversion	274
Berry-Pseudorotation	275
Nucleophile Substitution	278
Mechanismen mit freien Radikalen	279
Kapitel 7 Der feste Zustand	288
Die Strukturen komplever Festkörner	280
Ein zweiter Blick auf den Übergang von Ionenbindung zur kovalenten Bindung	209
Dindand	274

XIV Inhalt

Schichtstrukturen	296
Ein zweiter Blick auf die Madelung-Faktoren	299
Kristallfehler	300
Leitfähigkeit von Ionenkristallen/Leitfähigkeit durch Ionenwanderung	303
Festkörper mit kovalenter Bindung/Klassifizierung von Festkörpern	308
Bändertheorie	308
Figenhalbleiter und Photohalbleiter	311
Datierungshalbleiter und Fehlstellenhalbleiter	314
Eastkörnar mit nalaran Dindungan	216
Den Th Ca Si Standaren bindungen	210
Der InCr ₂ Si ₂ -Strukturtyp	310
Hochtemperatur-Supraleiter	326
Kapitel 8 Chemische Kräfte	333
Kernabstände und Atomradien	333
van der Waals-Radien	333
Ionenradien	334
Kovalenzradien	337
Die verschiedenen Arten chemischer Kräfte/Kovalente Bindung	3/1
Longnhindung	244
Keite mission a Lange and Director	341
Kratte zwischen Ionen und Dipolen	342
Dipol-Dipol-wechselwirkungen	343
Wechselwirkungen mit induzierten Dipolen	344
Wechselwirkungen zwischen momentan auftretenden und induzierten	
Dipolen	344
Abstoßungskräfte	345
Zusammenfassung	345
Die Wasserstoffbrückenbindung	346
Hydrate und Clathrate	351
Auswirkungen chemischer Kräfte / Schmelz und Siedenunkte	353
Löglighkeit	257
	331
Karital 0 Sime Data Chamia	2/7
Rapiter 9 Saure-Dase-Chemie	307
Sinn Deer Kennete	2/7
Saure-Base-Konzepte	367
Definition von Brønstedt und Lowry	367
Definition von Lux und Flood	368
Lösungsmittel als Säure-Base-Systeme	370
Definition von Lewis	374
Definition von Usanovich	375
Ein verallgemeinertes Säure-Base-Konzept	376
Die Stärke von Säuren und Basen / Gasnhasen-Basizitäten	2.0
Protonenaffinitäten	380
Gasnhasan Asiditätan: Drotonanahasha	202
Coophosen Aciditäten. Elektronene für itäter	203
Gasphasen-Aciunaten: Elektronenaninitäten	<i>3</i> 84

Lewis-Wechselwirkungen in unpolaren Lösungsmitteln	384
Systematik der Lewis-Säure-Base-Wechselwirkungen	387
Bindungsenergien	391
Sterische Einflüsse	393
"Protonenschwämme"	395
Solvatationseffekte und Säure-Base-"Annomalien"	395
Harte und weiche Säuren und Basen	397
Die Klassifizierung von Säuren und Basen als "hart" oder "weich"	399
Beziehung zwischen der Stärke von Säuren und Basen und ihrer Härte	
bzw. Weichheit	399
"Symbiose"	403
Theoretische Grundlagen für die Begriffe "hart" und "weich"	404
Zusammenhang zwischen Elektronegativität und hartem und	
weichem Verhalten	404
Kapitel 10 Chemie in wäßrigen und nichtwäßrigen Lösungen	415
Wasser	416
Nichtwäßrige Lösungsmittel/Ammoniak	416
Lösungen von Metallen in Ammoniak	419
Schwefelsäure	421
Zusammenfassender Überblick über Protonen-haltige Lösungsmittel	424
Protonen-freie (aprotische) Lösungsmittel	427
Salzschmelzen	433
Solvenseigenschaften	433
Salzschmelzen bei Raumtemperatur	434
Lösungen von Metallen	437
Komplexbildung	438
Feste saure und basische Katalysatoren	438
Elektrodenpotentiale und elektromotorische Krafte	439
Elektrochemie in nichtwäßrigen Losungen	443
Hydrometallurgie	444
Kapitel 11 Koordinationsverbindungen: Bindungstheorie, Spektren	
und Magnetismus	449
Bindungsverhältnisse in Koordinationsverbindungen	453
Valenzstruktur-Theorie	454
Elektroneutralitätsprinzip und Rückbindung	456
Kristallfeld-Theorie	458
Ligandenfeld-Effekte: Oktaedersymmetrie	461
Ligandenfeld-Stabilisierungsenergie	464
Tetragonale Symmetrie und planar-quadratische Komplexe	468
Orbitalaufspaltung in Feldern anderer Symmetrie	470
Faktoren, die die Größe von Δ beeinflussen	470

XVI Inhalt

Anwendung der Kristallfeld-Theorie	474
Molekülorbitale-Theorie	480
Oktaedrische Komplexe	481
Tetraedrische und quadratische Komplexe	486
π -Bindungen und Molekülorbital-Theorie	488
Experimentelle Beweise für π -Bindungen	494
Elektronenspektren von Komplexen	504
Tanabe-Sugano-Diagramme	515
Tetragonale Abweichungen von der Oktaedersymmetrie	521
Charge-transfer-Spektren	531
Magnetische Eigenschaften von Komplexen	534
The second second the second sec	001
Kapitel 12 Koordinationsverbindungen: Struktur	551
Koordinationszahl 1	551
Koordinationszahl 2	552
Koordinationszahl 3	553
Koordinationszahl 4	555
Tetraedrische Komplexe	555
Quadratisch-planare Komplexe	557
Koordinationszahl 5	560
Bevorzugung bestimmter Positionen in trigonal-bipyramidalen	
Komplexen	563
Bevorzugung bestimmter Positionen in quadratisch-pyramidalen	202
Komplexen	566
Magnetische und snektroskonische Eigenschaften	566
Isomerie fünffach koordinierter Komplexe	568
Koordinationszahl 6	571
Verzerrungen des idealen Oktaeders	571
Trigonales Prisma	572
Geometrische Isomerie bei oktaedrischen Komplexen	575
Optische Isomerie bei oktaedrischen Komplexen	576
Trennung optisch aktiver Komplexe (Racemattrennung)	578
Die absolute Konfiguration von Komplexen	579
Spektroskopische Methoden	582
Steroselektivität und die Konformation von Chelatringen	584
Katalyse asymmetrischer Synthesen durch Koordinationsverbindungen	588
Koordinationszahl 7	589
Koordinationszahl 8	594
Höhere Koordinationszahlen	598
Allgemeines über Koordinationszahlen	599
Bindungsisomerie	600
Elektronische Effekte	603
Sterische Effekte	605
Symbiose	607
Berliner Blau und verwandte Strukturen	608
A REAL AND A	000

688

688 689

Andere Isomerie-Arten	610
Ligandenisomerie	610
Ionisationsisomerie	611
Hydratations-(Solvatations)-isomerie	611
Koordinationsisomerie	612
Der Chelat-Effekt	612
Makrocyclen	615

Kapitel 13 Koordinationsverbindungen: Reaktionen, Kinetik und Mechanismen 629

Substitutionsreaktionen bei quadratisch-planaren Komplexen
Das Geschwindigkeitsgesetz für nucleophile Substitutionen bei quadratisch-
planaren Komplexen
Der trans-Effekt
Mechanismus der nucleophilen Substitution bei quadratisch-planaren
Komplexen
Thermodynamische und kinetische Stabilität
Kinetik der Substitutionsreaktionen bei oktaedrischen Komplexen
Ligandenfeldeffekte und Reaktionsgeschwindigkeiten
Mechanismen der Substitutionsreaktionen bei oktaedrischen Komplexen 64
Einfluß von Säuren und Basen auf die Reaktionsgeschwindigkeiten 65
Racemisierung und Isomerisierung
Mechanismen und Redoxreaktionen
Elektronenübergang über die äußere Sphäre: "outer-sphere"-Mechanismus 65
"outer-sphere"-Elektronenübergänge unter Beteiligung elektronisch
angeregter Komplexe
Elektronenübertragung in der inneren Sphäre: "inner-sphere"-Mechanismus 66
Gemischtvalenzkomplexe
Anwendungen in der bioanorganischen Chemie
Kapitel 14 Chemie der Übergangsmetalle
Allgemeine Tendenzen innerhalb der Perioden
Die verschiedenen Oxidationsstufen der Übergangsmetalle/Niedrige positive
und negative Oxidationsstufen
Bereich der Oxidationsstufen
Vergleich von Eigenschaften anhand der Oxidationsstufen
Die Elemente Kalium bis Zink: Vergleich der Eigenschaften anhand der
Elektronenkonfiguration
Die Konfiguration $3d^0$
Die Konfiguration $3d^1$
Die Konfiguration $3d^2$

Die Konfiguration $3d^3$

Die Konfiguration $3d^4$ Die Konfiguration $3d^5$

Die Konfiguration $3d^6$	689
Die Konfiguration $3d^7$	690
Die Konfiguration $3d^8$	690
Die Konfiguration $3d^9$	691
Die Konfiguration $3d^{10}$	692
Die 4 <i>d</i> - und 5 <i>d</i> -Metalle	692
Oxidationsstufen und Standard-Reduktionspotentiale der Übergangsmetalle .	694
Stabilität von Oxidationsstufen	694
Der Einfluß der Konzentration auf die Stabilität	696
Erste Hauptgruppe	700
Zweite Hauptgruppe	700
Dritte Nebengruppe	701
Vierte Nebengruppe	701
Fünfte Nebengruppe	701
Sechste Nebengruppe	702
Siebente Nebengruppe	703
Achte Nebengruppe	703
Erste Nebengruppe	705
Zweite Nebengruppe	706
Die Lanthanoide, Actinoide und Transactinoid-Elemente	707
Stabile Oxidationsstufen	708
Die Lanthanoiden- und Actinoiden-Kontraktion	711
Die f-Orbitale	712
Unterschiede zwischen 4f- und 5f-Orbitalen	712
Absorptionsspektren der Lanthanoid- und Actinoid-Ionen	715
Magnetische Eigenschaften der Lanthanoide und Actinoide	715
Koordinationsverbindungen/Vergleich zwischen inneren	
Übergangselementen und Übergangsmetallen	717
Trennung der Seltenerd-Metalle und der Actinoide	719
Lanthanoid-Chelate	721
Die Transactinoid-Elemente	724
Periodizität bei den Translawrencium-Elementen	725
Kapitel 15 Organometall-Verbindungen	735
Die 18-Elektronen-Regel	736
Molekülorbital-Theorie und 18-Elektronen-Regel	736
Abzählung der Elektronen in Komplexen	738
Metallcarbonyle	743
Darstellung und Eigenschaften von Metallcarbonylen	745
Mehrkernige Carbonylkomplexe	747
Carbonylat-Anionen	753
Carbonylhydrid-Komplexe	755
Parallelen zur Nichtmetallchemie: Isolobale Fragmente	761
Nitrosylkomplexe	765
Distickstoff-Komplexe	768

Alkyl-, Carben-, Carbin- und Carbid-Komplexe	771
Alkylkomplexe	771
Carben-, Carbin- und Carbid-Komplexe	773
Nichtaromatische Alken- und Alkinkomplexe	778
Alkenkomplexe	778
Alkinkomplexe	781
Allyl- und Pentadienylkomplexe	783
Metallocene	787
Die Molekülorbitale der Metallocene	788
Strukturen von Cyclopentadienyl-Komplexen	792
Kovalente oder ionische Bindung	798
Darstellung von Cyclopentadienylverbindungen	800
Aromaten-(Aren)-Komplexe	800
Cycloheptatrien- und Tropylium-Komplexe	802
Cyclobutadien und Cyclooktatetraen als Komplexliganden	803
Reaktionen von Organometall-Komplexen/Substitutionsreaktionen bei	
Carbonylkomplexen	806
Kegelwinkel von Liganden	808
Oxidative Addition und Reduktive Eliminierung	811
Einschiebungs- und Eliminierungsreaktionen	817
Nucleophiler und elektrophiler Ängriff auf Liganden	821
Carbonylat-Anionen als Nucleophile	825
Katalyse durch metallorganische Verbindungen	827
Hydrierung von Alkenen	828
Tolmans katalytische Kreisprozesse	831
Synthesegas	831
Die Hydroformylierung	833
Das Monsanto-Essigsäureverfahren	835
Das Wacker-Verfahren	837
Synthetisches Benzin	839
Ziegler-Natta-Katalyse	842
Immobilisierte homogene Katalysatoren	843
Ein Katalysator für die Photodehydrierung	843
Stereochemisch nicht-starre Moleküle	847
Schlußbemerkungen	856

Kapitel 16 Anorganische Ketten, Ringe, Käfige und Cluster	864
Ketten/Homoatomare Ketten	864
Silikat-Mineralien	869
Einlagerungsverbindungen	878
Eindimensionale elektrische Leiter	881
Isopolyanionen	884
Heteropolyanionen	889
Ringe	894
Borazine	894

XX Inhalt

Phosphazene	900
Phosphazen-Polymere	903
Andere anorganische Heterocyclen	905
Homocyclische Verbindungen	912
Käfig-Verbindungen	918
Bor-Verbindungen mit Käfigstruktur/Borane	923
Carborane	935
Metallacarborane	936
Strukturvorhersagen bei Heteroboranen und metallorganischen Clustern	938
Metallatomcluster	943
Zweikernige Verbindungen	945
Dreikernige Cluster	951
Vierkernige Cluster	952
Sechskernige Cluster	953
Polvatomare Zintl-Anionen und -Kationen	954
Chevrel-Phasen	955
Unendliche Ketten von Metallatomen	956
Darstellung von Metallclustern	957
Abschließende Bemerkungen	959
\mathbf{c}	

Kapitel 17 Die Chemie der Halogene und der Edelgase 964

Die Chemie der Edelgase/Die Entdeckung der Edelgase	965
Erste Kenntnisse von einer Chemie der Edelgase	965
Entdeckung stabiler, isolierbarer Edelgas-Verbindungen	968
Die Fluoride der Edelgase	969
Die Bindungsverhältnisse in Edelgasfluoriden	970
Strukturen isoelektronischer Halogenide mit 14 Valenzelektronen	973
Andere Verbindungen von Xenon	974
Stärke der Bindungen in Edelgas-Verbindungen	978
Die Chemie von Radon	978
Halogene in positiven Oxidationsstufen	979
Interhalogenverbindungen	979
Polyhalogenid-Ionen	981
Fluor-Sauerstoff-Verbindungen	985
Oxosäuren der schwereren Halogene	986
Halogenoxide und Halogenfluoridoxide	989
Halogen-Kationen	989
Halogenide	991
Physikalische Eigenschaften anorganischer Halogen-Verbindungen	991
Die Anomalie des Fluors	992
Astat	995
Pseudohalogene	996
Elektrochemie der Halogene	997

Kapitel 18 Periodizität	1002
Grundsätzliche Tendenzen	1002
Anomalien der ersten beiden Perioden	1003
Einfluß der Atomgröße bei Nichtmetallen	1004
Schrägbeziehungen	1005
Die Verwendung von <i>p</i> -Orbitalen für π -Bindungen	1006
Ähnlichkeiten und Unterschiede zwischen Kohlenstoff und Silicium	1007
Analogien und Gegensätze zwischen Stickstoff und Phosphor	1009
Abschließende Bemerkungen über $p_{\pi} - p_{\pi}$ -Bindungen bei schweren	
Nichtmetallen	1011
Verwenden Nichtmetalle ihre <i>d</i> -Orbitale?/Theoretische Einwände gegen die	
Beteiligung von <i>d</i> -Orbitalen bei Nichtmetallen	1012
Experimentelle Hinweise auf $d_{\pi} - d_{\pi}$ -Bindungen: die Phosphor-Sauerstoff-	
Bindung in Phosphorylverbindungen	1014
Hinweise auf d-Orbital-Beteiligung aus Bindungswinkeln	1019
π -Bindungen bei den höheren Homologen	1020
Theoretische Argumente für eine Beteiligung von d-Orbitalen	1020
Experimentelle Hinweise auf die Kontraktion von d-Orbitalen und ihre	
Mitwirkung an Bindungen	1021
Reaktivität und <i>d</i> -Orbital-Beteiligung	1023
Annomale Änderungen von Eigenschaften bei homologen Nichtmetallen und	
auf die d-Elemente folgenden Metalle	1025
Das Widerstreben gegen die Ausbildung der höchsten Oxidationsstufen bei	
den Nichtmetallen der vierten Periode	1025
Anomalien in der dritten und vierten Hauptgruppe	1025
Der Einfluß des "inerten" Elektronenpaares	1026
Relativistische Effekte	1028
"Anomale" Ionisierungsenergien und Elektronenaffinitäten	1029
Alternierende Elektronegativitäten bei den schwereren Nichtmetallen	1033
Abschließende Bemerkungen	1035
	1020
Kapitel 19 Anorganische Chemie biologischer Systeme	1039
Energiequellen für das Leben/Von der Photosynthese unabhängige	
Lebensprozesse	1039
Metall-Porphyrin-Komplexe und Atmung	1041
Cytochrome	1041
Bindung, Transport und Nutzung von Disauerstoff	1046
Die Wechselwirkung zwischen Häm und Disauerstoff	1046
Die Bindung von Disauerstoff an Myoglobin	1049
Die Physiologie von Myoglobin und Hämoglobin	1052
Struktur und Funktion von Hämoglobin	1054

Andere biologische Disauerstoff-Überträger1061Elektronentransfer, Atmung und Photosynthese1964Ferredoxine und Rubredoxine1064

Blaue Kupferproteine	1064
Photosynthese	1071
Chlorophyll und die photosynthetischen Reaktionszentren	1072
Enzyme	1076
Zusammenhang zwischen Struktur und Funktion	1076
Inhibierung und Vergiftung	1080
Vitamin B_{12} und die B_{12} -Coenzyme	1085
Metallothioneine	1088
Stickstoff-Fixierung	1090
Stickstoff-Fixierung in vitro	1090
Stickstoff-Fixierung in vivo	1091
Die Biochemie des Eisens	1096
Verfugbarkeit von Eisen	1096
Konkurrenz um Eisen	1099
Essentielle Elemente und Spurenelemente in biologischen Systemen	1102
Uberblick über essentielle und Spurenelemente anhand des	4440
Periodensystems	1112
Appassing on die netürliche Höufgkeit der Elemente	1112
Ringassung an die naturnene fraungkeit der Elemente	1110
Gerüstsubstanzen	1110
Medizinische Chemie/Antibiotika	1110
Chelat-Theranie	1121
Metallkomplexe als Sonden für Nucleinsäuren	1121
Postscript	1126
Anhang A Literatur zur Anorganischen Chemie	1132
Ashana D. Malaishaidan and Humashamaafaldanan	1124
Amang D Madelmetten und Omrechnungsfaktoren	1154
Anhang C. Atomara Zustända und Tarmsymbola	1130
Amang C Atomate Zustande und ternisymbole	1139
Anhang D. Charaktertafeln	1146
	1140
Anhang E Bindungsenergien und Kernabstände	1155
Anhang F Standardreduktionspotentiale der Elemente	1168
Anhang G. Tan'abe-Sugano-Diagramme	1170
	11/0
Anhang H Modelle, Sterochemie und der Gebrauch von Sterobildern	1173
Anhang I. Nomenklatur-Regeln der Anorganischen Chemie	1190
	1100
Tabelle der Elemente	1223
Inday	1005
IIIUVA	1223

Häufig gebrauchte Abkürzungen

A Liganden und Verbindungen

Ac	Acetyl, CH ₃ CO		
acac	Acetylacetonat; 2,4-Pentandionat, CH ₃ COCHCOCH ₃ ⁻		
acacH	Acetylaceton; 2,4-Pentandion		
AcO	Acetat		
ADP	Adenosindiphosphat		
ala	Alaninat(1-), CH ₃ CH(NH ₂)COO ⁻		
An	Actinoide (Elemente 90–103)		
Ar	Aryl		
ArH	Aren		
ATP	Adenosintriphosphat		
BAL	Britisches Antilewisit; 2,3-Dimercaptopropanol		
benzac	Benzoylacetat(1-)		
bgH	Biguanid, H ₂ NC(NH)NHC(NH)NH ₂		
bpy	2.2'-Bipyridyl		
Bu	Butyl [n-(normal); i-(iso); s-(sekundär); t-(tertiär)]		
Chl	Chlorophyll		
CoA	Coenzym A		
cod	1,5-Cyclooctadien, C ₈ H ₁₂		
cot	Cyclooctatetraen, C ₈ H ₈		
ср	Cyclopentadienyl-Radikal; Cyclopentadienyl-Anion		
crypt	Cryptand		
cv	Cyclohexyl		
Čys	Cystein		
Cvt	Cytochrom		
deta	trans-1,2-Diaminocyclohexantetraacetat(4-)		
DDT	1,1,1-Trichlor-2,2-bis(p-chlorphenyl)ethan		
depe	1,2-Bis(diethylphosphano)ethan; Ethylenbis(diethylphosphan)		
depm	1,2-Bis(diethylphosphano)methan; Methylenbis(diethylphosphan)		
diars	o-Phenylenbis(dimethylarsan), $o-C_6H_4(AsMe_2)_2$		
dien	Diethylentriamin, (NH ₂ CH ₂ CH ₂) ₂ NH		
diglyme	Diethylenglykoldimethylether, H ₃ CO(CH ₂ CH ₂ O) ₂ CH ₃		
diphos	Chelat-bildendes Bisphosphan (meist dppe)		
dlm	Diallylamin, $(CH_2 = CH - CH_2)_2 NH$		
dma	Dimethylacetamid; (als Lsgm. meist DMA)		
dme	Dimethoxyethan; Ethylenglykoldimethylether (glyme)		
dmf	Dimethylformamid, HC(O)N(CH ₃) ₂ ; (als Lsgm. meist DMF)		
dmg	2,3-Butandion-dioximat-Dianion		
dmgH	2,3-Butandion-dioximat-Monoanion		
dmgH ₂	2,3-Butandion-dioxim (Dimethylglyoxim; Biacetyldioxim)		
dmpe	1,2-Bis(dimethylphosphano)ethan; Ethylenbis(dimethylphosphan)		
dmso	Dimethylsulfoxid; (als Lsgm. meist DMSO)		
DNA	Desoxyribonucleinsäure		
dppe	1,2-Bis(diphenylphosphano)ethan; Ethylenbis(diphenylphosphan)		
dppm	Bis(diphenylphosphano)methan; Methylenbis(diphenylphosphan)		
dsep	Diethyldiselenophosphat(1-)		
dtc	Diethyldithiocarbamat(1-)		
dtp	Diethyldithiophosphat(1-)		
dtpa	Diethylentriaminpentaacetat(5-)		
Е	Element (i.a. Nichtmetall)		

edta	Ethylendiamintetraacetat(4-)
edtaH ⁿ ₄ -,	Anionen v. edtaH ₄
edtaH₄	Ethylendiamintetraessigsäure
en	Ethylendiamin, H ₂ NCH ₂ CH ₂ NH ₂
Et	Ethyl
FAD	Flavinadenindinucleotid
fc	Ferrocenyl
fod	1,1,1,2,2,3,3-Heptafluor-7,7-dimethyl-4,6-octandionat(1-)
fodH	1,1,1,2,2,3,3-Heptafluor-7,7-dimethyl-4,6-octandion
FolH₄	Tetrahydrofolsäure
glu	Glutaminat(2-)
gly	Glycinat(1-)
glyme	Ethylenglykoldimethylether; Dimethoxyethan (dme)
Hb	Hämoglobin
Hb · O ₂	Oxyhämoglobin
hedta	N-Hydroxyethylethylendiamintriacetat(3-)
hfacac	Hexafluoracetylacetonat (manchmal auch hfa)
hmpa	Hexamethylphosphorsäuretriamid
imda	Iminodiacetat(2-)
Krone-n	makrocycl. Ether (CH ₂ CH ₂ O) : $(4 \le n \le 6)$
I.	Ligand
Ln	Lanthanoide (Elemente $58-71$)
M	Metall
Mb	Myoglobin
Mb · O.	Oxymyoglobin
Me 02	Methyl
Me_tren	Tris(2-dimethylaminoethyl)amin N/CH_CH_N(CH_).
NAD	Nicotinamidadenindinucleotid
NADH	Nicotinamidadenindinucleotid (reduzierte Form)
NADP	Nicotinamidadenindinucleotid (reduziette i ofini)
NADPH	Nicotinamidadenindinucleotidphosphat (reduzierte Form)
nhd	Norbornadien
nbe	N-Bromsuccinimid
nn	Bis(2-dinhenvlnhosnhanoethyl)amin (- PNP) HN(CH CH PPh)
np ₂	Tris(2-diphenylphosphanoethyl)amin (- TPN) N(CH CH PPh)
np ₃	Nitrilotriacetat(3_{-})
Πa	Anionen y ntaH
n_{13-n}	Nitrilatriassigsäura $N(CH, COOH)$
ampa	Octamathuldinhosnhorsöuretetraamid
ompa	$O_{\text{relat}(2)}$
02	$O_{Aa}(2^{-})$ Determinat(2_)
рс	Phillalocyalillat(2-) Dhanul
r II nhon	1 10 Dhenenthrolin
Phen	Pheenhutin
rlieu	A Mothul 2.6.7 triore 1 nhombabiquale[2.2.2]octon
phosph	4-Methyl-2,0,7-moxa-1-phosphabicyclo[2.2.2]octain
pn DND	Rie(2 dinhanylnhoenhonoothyl)omin (- nn) UN(CH CH DDh)
PNP	$Bis(2-dipinentylphosphanoethyl)ahnin (= lip_2), HIV(CH_2CH_2FFH_2)_2$ Tris(2 diphenylphosphanoethyl)ahosphan D(CH_CH_DDh_)
pp ₃	$P_2(2-\alpha)$
Pr	Propyl (<i>n</i> - oder <i>i</i> -)
ру	rynun Duran-lai
pz	Tris(2, distant descent and the set of (-2, M, A, D))
qas	ITIS(2-diptempirisanopnenyi)arsan, $As(o-C_6H_4AsPh_2)_3$
ЧР	$1 \operatorname{Tis}(2-\operatorname{cupnenylpnospnanopnenylpnospnan}, P(0-U_6H_4PPh_2)_3$
<u>q</u> ру	2,2:0,2:0,2:0 Quaterpyridy
ĸ	
K _f	Pernuoralkyl-Gruppe
5	Solvens-Molekul

XXIV

Häufig gebrauchte Abkürzungen

tan	Tris(2-diphenylarsanoethyl)amin, $N(CH_2CH_2AsPh_2)_3$
tap	Tris(3-dimethylarsanopropyl)phosphan, $P(CH_2CH_2CH_2AsMe_2)_3$
tas	Methylbis(3-dimethylarsanopropyl)arsan, MeAs(CH ₂ CH ₂ CH ₂ AsMe ₂) ₂
TCNE	Tetracyanoethylen
terpy	2,2':6',2"-Terpyridyl
tfa	Trifluoracetat
thd	2,2,6,6-Tetramethyl-3,5-heptandionat(1-)
thdH	2,2,6,6-Tetramethyl-3,5-heptandion
thf	Tetrahydrofuran; (als Lsgm. meist THF)
tmed	Tetramethylethylendiamin
tn	1,3-Diaminopropan; Trimethylendiamin
TNP	Tris(2-diphenylphosphanoethyl)amin (= np_3), N(CH ₂ CH ₂ PPh ₂) ₃
tren	Tris(2-aminoethyl)amin, N(CH ₂ CH ₂ NH ₂) ₃
trenpy	Tris[2-(4-pyridinomethylen)aminoethyl]amin, N(CH ₂ CH ₂ N=CHC ₅ H ₄ N) ₃
trien	Triethylentetraamin, $(H_2NCH_2CH_2NHCH_2)_2$
triphos	1,1,1-Tris(diphenylphosphanomethyl)ethan; Neopentantriyl- tris(diphenylphosphan)
tsep	Tris(2-methylselenophenyl)phosphan, P(o-C ₆ H ₄ SeCH ₂) ₂
tsn	Tris(2-methylthioethyl)amin, N(CH ₂ CH ₂ SCH ₂) ₂
tsp	Tris(2-methylthiophenyl)phosphan, $P(o-C_6H_4SCH_3)_3$
tta	Thenoyltrifluoraceton, C ₄ H ₃ SCOCH ₂ COCF ₃
tu	Thioharnstoff (thiourea)
ur	Harnstoff (urea)
х	Halogenatom, Pseudohalogen-Gruppe
Y	Chalkogenatom
	-

B Allgemeines

AZ	Acceptorzahl
B.M.	Bohrsche Magnetonen
СВ	korrespondierende Base (conjugate base)
CD	Zirkulardichroismus
CNO	complete neglect of overlap
CT	charge transfer
Dq	Maß f. Orbitalenergie-Aufspaltung im gerichteten Ligandenfeld
DŻ	Donatorzahl
EA	Elektronenaffinität
EAN	effektive Elektronenzahl (effective atomic number)
EMK	Elektromotorische Kraft &
ESCA	Elektronen-Spektroskopie zur chemischen Analyse
ESR	Elektronenspin-Resonanz
eu	entropy units
eV	Elektronvolt
EXAFS	extended X-rav absorption fine structure
F. P.	Fließpunkt (Schmelzpunkt)
hdp	hexagonal dichteste Kugelpackung
HŜAB	harte und weiche Säuren und Basen (hard and soft acids and bases)
IE	Ionisierungsenergie
IP	Ionenpaar
IR	Infrarot
IUPAC	Internationale Union für Reine und Angewandte Chemie (International Union of
	Pure and Applied Chemistry)

XXVI Häufig gebrauchte Abkürzungen

kdp	kubisch dichteste Kugelpackung
<i>K</i> ₁	Löslichkeitsprodukt
KĨP.	Kochpunkt (Siedepunkt)
КТЕ	kinetischer trans-Effekt
KZ	Koordinationszahl
LCAO	Linearkombination von Atomorbitalen
LF	Ligandenfeld
LFSE	Ligandenfeld-Stabilisierungsenergie
LGO	Ligandengruppen-Orbital
MO	Molekülorbital
MOSE	Molek ülorbital-Stabilisier ung senergie
NMR	Kernmagnetische Resonanz
NQR	Kernquadrupol-Resonanz
OPSE	Oktaederplatz-Stabilisierungsenergie
ORD	Optische Rotationsdispersion
PES	Photoelektronen-Spektroskopie
PS	Periodensystem
QP	quadratische Pyramide
qp	quadratisch-pyramidal
SCF	self consistent field
Sdp.	Siedepunkt
Smp.	Schmelzpunkt
SI	Système International d'Unités
STE	statischer trans-Effekt
TBP	trigonale Bipyramide
tbp	trigonal-bipyramidal
UPS	Ultraviolett-Photoelektronen-Spektroskopie, (manchmal auch UVPES)
UV	Ultraviolett
VB	Valenzstruktur (valence bond)
VSEPR	valence shell electron pair repulsion
XPS	Röntgen-Photoelektronen-Spektroskopie, (manchmal auch XPES)

Häufig verwendete Symbole

A	Madelung-Faktor	ΔG	f
A _r	relative Atommasse	ΔG^{\pm}	f
a	Aktivität	g	8
	Ionenladungszahl		(
	Strecke		N
a _o	Bohrscher Radius		
В	Base		-
B	Faktor d. Abstoßungsenergie n.	ΔH	J
	Born		
	Racah-Parameter f. freies Metall-		
	Ion		
B'	Racah-Parameter f. komplexiertes	h	r
	Metall-Ion		
b	Ladungskoeffizient		F
b	Ionenladungszahl		
	Strecke	ħ)
С	Kovalenz-Parameter	Ĵ	1
-	Base- C _n	-	Ċ
	Säure- $C_{\rm c}$		
	Racah-Parameter f. freies Metall-	i	(
	Ion	ĸ	Ŧ
	Wärmekanazität	ĸ	Ō
<i>C'</i>	Racah-Parameter f. komplexiertes		
C	Metall-Ion		
c	Konzentration		
L.	Lichtgeschwindigkeit		
	Strecke	<i>K</i>	I
п	Debye (alte Finheit f. Dipol-		ī
D	moment)	ñ	1 7
п	Konfigurationskennzeichnung		1
מ	Atomzustand: Termsymbol	т	ī
D	(I - 2)		ī
d	(L-2) Abstand Durchmesser		-
u	Atomorbital $(l-2)$	L	6
	$\frac{1}{1}$		
F	eintretende (antaring) Gruppe	,	r
Ľ	elektrostatischer Parameter	ı	1
	Base F		
	E_{B}		
	Energie	м	(
•	Basis des natürlichen Logarithmus	M	(
C	Elementarladung	MI r	
e 0 ⁻	Elektron	m	
e F	Atomzustand: Termsymbol		1
Г	Atomizustanu, termsymbol $(L-2)$		-
	(L=3)	m_l	1
	Γ and Δy -Nonstante	m_s	I
£	farozentrum (F-Zentrum)	IN	1
J	$ \begin{array}{l} \text{Alomorphial} \ (l=3) \\ \text{Foldfolton} \ f \ \text{Ligged} \end{array} $	3.7	4
	(ala Index) fast	IV _A	1
	(als HIGEX) lest Verteilungsfakto-	n	1
	ventenungstaktof		1

	freie Reaktionsenthalpie
	freie Aktivierungsenthalpie
	gerade
	(als Index) gasförmig
	Metall-Faktor d. spektrochemi-
	schen Reihe
	 Faktor der Elektronen
	Enthalpie
	Atomisierungs- $\Delta H_{\rm A}$
	Bildungs- $\Delta H_{\rm B}$
	Reaktions- $\Delta H_{\rm R}$
	nephelauxetischer Parameter für
	Liganden
	Planck-Konstante ("Wirkungs-
	quantum")
	$h/2\pi$
	NMR-Kopplungskonstante
	Gesamtdrehimpulsquantenzahl
	(L+S)
	Quantenzahl $(l + s)$
	Elektronenschale mit $n = 1$
	Gleichgewichtskonstante
	Basereaktionen K _B
	Reaktionen i. Lsg. K _c
	Gasreaktionen K_p
	Säurereaktionen K _s
в	Ionenprodukt d. Verbindung AB
-	Konstante
	nephelauxetischer Parameter für
	Metall-Ionen
	Elektronenschale mit $n = 2$
	Konfigurationskennzeichnung
	austretende (leaving) Gruppe
	Quantenzahl f. Mehrelektronen-
	atom
	Länge
	linksdrehend
	Quantenzahl (Bahndrehimpuls-,
	Neben-)
	(Spin-)Multiplizität
	relative Molekülmasse
	(Elektronen-)Masse
	Molalität
	Anzahl
	magnetische Quantenzahl
	magnetische Spinquantenzahl
	Normierungsfaktor
	Zahl
	Avogadro-Zahl
	Anzahl
	Born-Exponent

XXVIII Häufig gebrauchte Symbole

n	Brechungsindex	Zeichen	\simeq etwa gleich
	Hauptquantenzahl		≙ entsprechend
Р	Atomzustand; Termsymbol		(+), (-) formale Ladungen
	(L=1)		\equiv identisch
	Paarbildungsenergie		\sim proportional
	prozentualer p-Charakter eines		≈ ungefähr
	Orbitals		C C
p	negativer dekadischer Loga-		
1	rithmus	α	Kraftkonstante d. Streckschwin-
D	Atomorbital $(l = 1)$		gung
ίο	Kernquadrupolmoment		Polarisierbarkeit
Ł	Wärmemenge	[α]	spezifische Drehung
a	elektrischer Feldgradient	β	Kraftkonstante d. Knickschwin-
1	Ladung		gung
R	Konfigurationsbezeichnung		MOSE-Konstante
R	Güte-Faktor		B'
	Radiale Wellenfunktion		$\frac{1}{R}$
	allgemeine Gaskonstante	٨	Differenz
r	Polarkoordinate	-	Enantiomerenkennzeichnung
•	Radius		Energieaufsnaltung im Liganden-
S	Konfigurationsbezeichnung		feld $(= 10 Da)$
5	Säure		Wärmeenergie
S	Abschirmungskonstante	δ	chemische Verschiebung
5	Atomzustand [.] Termsymbol	U	Konformationskennzeichnung
	(L=0)		Molekülorbital
	Gesamtsnin (Σ_s)		Partialladung
	prozentualer s-Charakter eines	δ.	Aufspaltung des e -Niveaus
	Orbitals	δ_1	Aufspaltung des t_g Niveaus
	Quantenzahl f. Mehrelektronen-	С ₂ Е	Dielektrizitätskonstante
	atom	U	molarer Extinktionskoeffizient
	Überlannungsintegral		Substituenteneinflußfaktor
AS	Entropie	8	elektrische Feldkonstante (Dielek-
S	Atomorbital $(l = 0)$	-0 -0	trizitätskonstante d. Vakuums)
0	Elektronenspin	E	elektromotorische Kraft
Т	absolute Temperatur	n	hanto
-	trans-dirigierende Gruppe	Θ	9-abhängige Wellenfunktion
t	transfer-Parameter	9	Polarkoordinate
·	Base- $t_{\rm p}$	Å	Enantiomerenkennzeichnung
	Säure- to	2	Konformationskennzeichnung
U	Gitterenergie		Wellenlänge
u v	atomare Masseeinheit	ш	Dipolmoment
u	ungerade	r	magnetisches Moment
v	Potential	11-	Brücke(n-Ligand)
,	potentielle Energie	ν. ν	Frequenz
	Valenzzustand	-	Teilchenzahl
	Volumen	v	Wellenzahl (= $1/\lambda$)
ΔV^{\dagger}	Aktivierungsvolumen	π	Molekülorbital
x	Molenbruch	Σ	Summe
	Raumkoordinate	σ	Molekülorbital
v	Raumkoordinate	Φ	<i>a</i> -abhängige Wellenfunktion
ź	Kernladungszahl, Ordnungszahl	ф	Ionenpotential
—	(Atomnummer)	ΓφΊ	molekulare Drehung
Zass	effektive Kernladungszahl	() ()	Polarkoordinate
— ej j Z	Ionenladungszahl	γ	Elektronegativität
=	Raumkoordinate	Ψ	Wellenfunktion
		-	

1 Was ist Anorganische Chemie?

Es ist üblich, Chemiebücher mit Fragen dieser Art zu beginnen – Fragen, die gewöhnlich nicht mit wenigen Worten zu beantworten sind. Einfache Darstellungen, entweder mit Worten oder Zeichnungen, können nicht alle Aspekte eines Gegenstandes beleuchten. Dies haben wir kürzlich selbst erfahren, als uns der Verleger bat, für den Einband dieses Buches einige Aspekte der anorganischen Chemie vorzuschlagen. Die Natur eines Bucheinbandes bedingt notwendigerweise einen relativ einfachen einzelnen Gegenstand, zum Beispiel ein Molekül, eine Struktur, eine Reaktion oder eine Eigenschaft (oder vielleicht auch eine einfache Kombination von diesen). Hätten wir die Struktur der neuen Hochtemperatur-Supraleiter wählen sollen, die ihren Entdeckern den Nobelpreis eingebracht haben? Wahrscheinlich haben Sie davon in der Zeitung gelesen und sich gewundert, warum die "hohen Temperaturen" kälter als ein Sibirischer Winter sind.

Oder hätten wir eine Metallcluster-Verbindung wählen sollen, die auf der molekularen Ebene wie ein mikroskopisches Fragment eines Metalls agiert? Oder wie wäre es mit einer anorganischen Verbindung, die optisch aktiv ist (dies ist keine nur auf organische Verbindungen beschränkte Eigenschaft), oder hätten wir vielleicht Carboxypeptidase A abbilden sollen (ein Enzym, an dem nicht nur Biochemiker interessiert sind)? Vielleicht wäre ein symmetrischer Kristall einer Verbindung wie Natriumthiosulfat das Richtige gewesen oder eine mehrfarbige Polarisationsaufnahme einer anorganischen Verbindung. Auf dieselbe Weise wäre irgendeine kurze und einfache Definition eines komplexen Gegenstandes wahrscheinlich enttäuschend, wenn nicht sogar irreführend. So lassen Sie uns einfach versuchen zu sehen, woher die anorganische Chemie kam, was ein Anorganiker tut und wohin sich dieses Gebiet vielleicht entwickeln wird.

Die Anfänge der Anorganischen Chemie

Der Begriff anorganische Chemie bedeutete ursprünglich "unbelebte Chemie"; das war der Zweig der Chemie, der sich aus der Beschäftigung mit Mineralien und Erzen entwickelt hatte. Es hatte alles damit angefangen, daß man natürlich vorkommende Stoffe mit nützlichen Eigenschaften fand, zum Beispiel Feuerstein, den man zu Werkzeugen verarbeiten konnte (Mittleres Pleistozän, vor ca. $5 \cdot 10^5$ oder weniger Jahren). Dieses Gebiet entwickelte sich schließlich zur Mineralogie bzw. Geologie. Die Chemie beschäftigt sich mehr mit den Umwandlungen, die man in Stoffen hervorrufen kann. Eine der wichtigsten frühen Reaktionen war die Reduktion von Metalloxiden, -carbonaten

2 1 Was ist Anorganische Chemie

und -sulfiden zu den freien Metallen¹:

$$2Cu_2(OH)_2CO_3 + 2C \longrightarrow 4Cu + 4CO_2 + 2H_2O$$
(Kupfer/Bronzezeit, vor ca. 4500-7500 Jahren)
(1.1)

$$Fe_3O_4 + 2C \longrightarrow 3Fe + 2CO_2$$
 (1.2)

(Eisenzeit, vor ca. 4500-3500 Jahren bis heute)

Dies waren die ersten Beispiele angewandter Redoxchemie, und bis zum heutigen Tage sind Abgabe und Aufnahme von Elektronen von zentraler Bedeutung für die anorganische Chemie. Die Begriffe Oxidation, Reduktion und Base (von "basischem Metalloxid") hängen alle eng mit diesen ersten metallurgischen Prozessen zusammen. [Der Begriff Säure (lat. acidum) ist von Weinessig (lat. L. acetum) abgeleitet].

Der größte Teil dieser frühen Arbeiten war rein experimentell und pragmatisch und ohne viel Theorie wie wir sie heute verstehen. Man mußte die besten und reichsten Erze identifizieren und von scheinbar ähnlichen Stoffen unterscheiden, wie z.B. "Narrengold" (Eisenpyrit, FeS₂) vom Element Gold.

Einige Mineralien wie die Zeolithe waren nur schwer zu verstehen. Der Name leitet sich von den griechischen Wörtern für Kochen ($\zeta \epsilon i v$) und Stein ($\lambda i \theta o \varsigma$) ab, da diese Mineralien beim Erhitzen Wasserdampf abgeben. Daß ein fester Stein gleichzeitig flüssiges Wasser enthalten konnte, war verständlicherweise verblüffend. Da diese Frage aber nicht von praktischer Bedeutung zu sein schien, wurde das Problem der "reinen" oder "Grundlagen-Chemie" zugewiesen.

Ein Beispiel für Anorganische Chemie

In der Absicht, ein irgendwie repräsentatives chemisches System für unseren Einband zu finden, haben wir einen Zeolith ausgewählt. Dieser Begriff mag Ihnen nicht vertraut sein, aber mit Sicherheit findet man ein oder mehrere Zeolithe in jedem chemischen Labor, in Ihrem Heim, und in vielen wichtigen industriellen Prozessen. Zeolithe sind selbst Gegenstand chemischer Forschung, von der Strukturbestimmung über die Katalyse bis zu anorganischen Aspekten der Ernährung.

Der auf dem Umschlag dargestellte Zeolith ist $Boggsit^2$, eine Verbindung aus Natrium, Calcium, Aluminium, Silicium, Wasserstoff und Sauerstoff, die erst vor kurzem als Mineral entdeckt wurde. Aber zwischen den ersten Beobachtungen an "kochenden Steinen" (1756) und der Entdeckung von Boggsit haben andere Zeolithe enorme Bedeutung erlangt. Falls Sie zu Hause eine Wasserenthärtungsanlage besitzen, so enthält

¹ Die allerersten chemischen Reaktionen, wie die Entdeckung des Feuers, wurden nicht bewußt nach "Tricks und Vorschriften" durchgeführt, die schließlich zur Entwicklung der Chemie führten. Die möglicherweise älteste bewußte Anwendung der Chemie durch Menschen war die Einwirkung von Hefe auf Zucker beim Backen und Brauen, oder auch der weniger gut definierte Prozeß des Kochens von Speisen.

² Boggsit wurde von Amateurmineralogen am Ufer des Columbia Rivers im Staate Washington (USA) entdeckt [A. Moffat, Science 1990, 247, 1413; D.G. Howard, R.W. Tschernich, J.V. Smith, G.L. Klein, Am. Mineral. 1990, 75, 1200] und die Struktur wurde an der University of Chicago aufgeklärt [J.J. Pluth, J.V. Smith, Am. Mineral. 1990, 75, 501].

sie Zeolith oder eine verwandte Verbindung. Hartes Wasser enthält Metallkationen, die die Wirkung von Seife oder synthetischen Waschmitteln beeinträchtigen. Das Material im Wasserenthärter tauscht die Ca²⁺- und Mg²⁺-Ionen des Wassers gegen Na⁺-Ionen aus³:

$$Mg^{2+} + Ca^{2+} + Na_{4}Z \longrightarrow CaMgZ + 4Na^{+}$$
(1.3)

Diese Entdeckung wurde bereits um 1850 gemacht und obige Reaktion war die Grundlage des ersten Ionenaustausch-Wasserenthärtungs-Prozesses. Die heute in Wasserenthärtungsanlagen verwendeten Austauscher haben eine ähnliche Struktur, sind aber von höherer Langzeitstabilität.

In neuerer Zeit haben sich die Zeolithe eine verwandte, aber dennoch verschiedene Anwendung erobert. Nicht jeder, der in einem Gebiet mit hartem Wasser wohnt, hat einen Wasserenthärter. In dem Bemühen, den negativen Einfluß von hartem Wasser auf den Waschvorgang zu mildern, haben die Hersteller von Waschmitteln schon früher ihren Seifen und Detergentien sogenannte Builder zugesetzt. Zuerst waren dies Carbonate (Waschsoda) und Borate (z.B. Borax). In neuerer Zeit wurden stattdessen Polyphosphate $[O_3PO(PO_3)_n]^{m-}$ (m = n + 3) eingesetzt, die die Kationen des harten Wassers komplexieren, d.h. sie so binden, daß sie den Waschprozess nicht mehr beeinträchtigen. Die Synthese der Polyphosphate und das Studium ihrer Komplexbildungseigenschaften mit Mg^{2+} , Ca^{2+} und anderen Kationen sind ein weiterer Aspekt der anorganischen Chemie. Andererseits ist Phosphat einer der drei Hauptbestandteile von Düngemitteln⁴ und zu viel Phosphat führt zur *Eutrophierung* von Seen und Flüssen. Um den Verbrauch von Phosphaten zu reduzieren, haben die Waschmittelhersteller daher ihren Detergentien Zeolithe als mikroskopisch feines Pulver zugesetzt, um die unerwünschten Kationen zu binden. Heute ist dies der größte Anwendungsbereich für Zeolithe.

Damit Sie jetzt nicht murren: "Phosphatverschmutzung raus, Zeolithverschmutzung rein", sei gesagt, daß Zeolithe anscheinend zu den ganz wenigen Stoffen gehören, die man dem Ökosystem ohne negative Folgen zusetzen kann. Durch ihre besondere Struktur sind die Zeolithe thermodynamisch instabil; sie zersetzen sich leicht zu den stabileren Alumosilikaten, die in der Natur als Tone vorkommen. Daraus ergeben sich aber neue interessante Fragen: wenn die Zeolithe instabil sind, warum bilden sie sich anstelle der stabileren Zersetzungprodukte? Wie kann man Zeolithe synthetisieren?

Molekularsiebe sind eine weitere Anwendung für Zeolithe. Dieser sehr anschauliche, aber etwas irreführende Begriff beruht auf einer bemerkenswerten Eigenschaft der Zeolithe: ihrer Fähigkeit, Moleküle selektiv nach ihrer Größe zu adsorbieren. Man kann daher eine Mischung von Gasen entsprechend der Molmasse (Größe) der Moleküle trennen, genauso wie man ein festes Gemenge mit einem mechanischen Sieb trennt. Einige Laboratorien sind heutzutage mit speziellen Abzügen ausgestattet, in denen selektiv größere, schädliche Moleküle adsorbiert werden, während kleine, häufige Teilchen wie H₂O, N₂ und O₂ nicht gebunden werden. Andererseits besitzen im Vakuum durch Erwärmen entwässerte Zeolithe eine hohe Affinität zu Wassermolekülen und eignen sich daher hervorragend als Trockenmittel für organische Lösungsmittel.

³ Das Symbol Z steht für die gesamte Zeolithstruktur mit Ausnahme der austauschbaren Na⁺-Ionen.

⁴ Wenn man einen gewöhnlichen "5-10-5"-Dünger kauft, erhält man Stickstoff (5%, berechnet als N), Phosphat (10%, berechnet als P₂O₅) und Kalium (5%, berechnet als K₂O).

4 1 Was ist Anorganische Chemie

Die chemische Struktur der Zeolithe und anderer chemischer Systeme

Bevor wir die oben beschriebenen molekularen Wechselwirkungen verstehen können, müssen wir versuchen, die Strukturen der Zeolithe zu verstehen. Strukturelle Informationen sind heute in der Chemie wichtiger als je zuvor. Chemische Strukturen werden durch eine Kombination sorgfältig ausgeführter Experimente und abstrakter Überlegungen bestimmt. Da wir während unseres gesamten Lebens immer wieder Bilder von "Spielzeug-Molekülen" (z.B. im Fernsehen) gesehen haben, ist es schwer vorstellbar, daß es noch gar nicht lange her ist, daß man die Bestimmung solcher Strukturen für unmöglich hielt mit dem Argument, daß man Atome nicht sehen kann (falls sie überhaupt existieren). Die heutige Fähigkeit der Kristallographen, einen Kristall zu nehmen und die darin vorhandene Anordnung der unsichtbaren Atome zu bestimmen, ist ein Triumph für das abstrakte Denken (Abb. 1.1). Die Bestimmung von Kristall- und Molekülstrukturen ist für das Verständnis der anorganischen Chemie heute von fundamentaler Bedeutung. Die moderne anorganische Chemie kann nicht einfach in simplen Reaktionsgleichungen ausgedrückt werden; vielmehr braucht man eine genaue Vorstellung von der dreidimensionalen Anordnung der Atome. Bei der Bestimmung chemischer Strukturen hat sich die Verwendung der Symmetrie und der Gruppentheorie als vereinheitlichendes Prinzip bewährt. Man braucht sich nur die Struktur von Boggsit anzusehen um festzustellen, daß sie hochsymmetrisch ist. Aber Symmetrie ist noch viel wichtiger: das Symmetriekonzept hilft dem Chemiker bei der Anwendung einer Reihe von Methoden zur Bestimmung chemischer Strukturen. Symmetrie als solche ist sogar

Abb. 1.1 Struktur des synthetischen Zeoliths ZSM-5. (a) Mikroskopaufnahmen der Kristalle; (b) elektronenmikroskopische Aufnahme der in (a) markierten Region; (c) Kristallstruktur ZSM-5, wie sie auch in (b) bereits erkennbar ist. [Nach J. M. Thomas, Royal Institute of Chemistry.]

Abb. 1.2 Rastertunnelmikroskopische Aufnahme der Bewegung von Xenonatomen, die an einer Nikkeloberfläche adsorbiert sind. Die Nickelatome sind nicht sichtbar. Die Größe der Buchstaben von oben bis unten beträgt 5 nm. [Nach D. M. Eigler, IBM.]

noch fundamentaler: das gesamte Universum scheint vom Symmetriekonzept abzuhängen.

Festkörperchemiker und -physiker haben spezielle Techniken für die Handhabung und Untersuchung von festen Stoffen und von Oberflächen entwickelt. Eine davon ist das *Rastertunnelmikroskop* oder *Kraftmikroskop*, das es erlaubt, einzelne Atome zu sehen und sogar zu bewegen⁵. Dies geschieht auf elektrostatische Weise⁶ (Abb. 1.2). Obwohl man die Chemie also in Gestalt einzelner Atome oder Atomgruppen darstellen kann, hat man es in der Praxis mit größeren Mengen zu tun, nämlich einem Mol ($6 \cdot 10^{23}$ Atome), einem Millimol ($6 \cdot 10^{20}$) oder wenigstens einem Nanomol ($6 \cdot 10^{14}$). Möglicherweise liegt aber eine Chemie unter Verwendung einzelner Atome in nicht mehr allzuferner Zukunft.

⁵ Einige Leute wenden sich gegen die Verwendung des Verbs "sehen" in diesem Zusammenhang, indem sie richtig darauf hinweisen, daß die Wellenlänge des sichtbaren Lichtes viel größer ist als die Größenordnung der Moleküle und letztere daher nicht direkt gesehen, sondern nur elektronisch abgebildet werden können. Das ist zwar wahr, aber jedes Jahr "sehen" Millionen Menschen im Fernsehen die verschiedenen Tennismeisterschaften – wo liegt da der Unterschied?

⁶ D.M. Eigler, E.K. Schweizer, Nature 1990, 344, 524.

6 1 Was ist Anorganische Chemie

Chemische Reaktivität

Obwohl Chemiker nicht in der Lage sind, die Bewegungen einzelner Atome oder Moleküle in einer Zeolithstruktur genau zu steuern, weist die Struktur doch Kanäle auf, die die molekularen Bewegungen dirigieren (Abb. 1.3). Die Größe und Gestalt dieser Kanäle sind maßgeblich dafür, welche Moleküle darin am leichtesten gebildet werden und welche die Struktur am leichtesten verlassen können. Ein Molekül, das wegen seiner Größe nicht aus der Struktur herausdiffundieren kann (Abb. 1.4), wird wahrscheinlich weiterreagieren. Das hat wichtige Konsequenzen: der mit Boggsit strukturell verwandte Katalysator ZSM-5 wird für die Alkylierung von Toluol durch Methanol zu *para*-Xylol verwendet. Das Methanol liefert die Methylgruppen, mit denen alle drei Xylolisomere (*ortho, meta* und *para*) entstehen können. Das mehr längliche *para*-Isomer kann die Käfigstruktur aber am einfachsten verlassen (Abb. 1.5), während die mehr sperrigen *ortho*- und *meta*-Isomere eingesperrt bleiben. Sie können dann weiterreagieren, sich z.B. in das *para*-Isomer umwandeln, das anschließend entweicht⁷.

In einem ähnlichen Verfahren wird ZSM-5 verwandt, um Methanol in Benzin von hoher Oktanzahl umzuwandeln. Dieser Prozeß wird gegenwärtig in Ländern wie Neuseeland und Südafrika angewandt, die nicht über eigene Erdölvorkommen verfügen. Falls die Herstellung von *para*-Xylol und Benzin für die Einleitung eines anorganischen Lehrbuches zu "organisch" klingt, sei daran erinnert, daß es einen wichtigen Zweig der Chemie gibt, der *Organometallchemie* heißt und der ein Gebiet zwischen der anorganischen und der organischen Chemie behandelt. Die Organometallchemie wird sowohl von Organikern als auch von Anorganikern bearbeitet, wobei man allgemein feststellen kann, daß die Produkte meist "organisch" und die Katalysatoren und Zwischenprodukte eher "anorganisch" sind. Diese Beispiele zeigen, daß die Einteilung der Chemie in "organisch" und "anorganisch" rein willkürlich und heutzutage überholt ist.

Abb. 1.3 Stereodarstellung der Struktur von Boggsit. Man beachte die Kanäle in Richtung der a-Achse. Bezüglich einer steroskopischen Sicht vgl. Anhang H. [Nach J. J. Pluth, J. V. Smith, *Am. Mineral.* 1990, 75, 501.]

⁷ Wir behaupten, daß spezielle stereochemische Synthesen durch Verwendung speziell aufgebauter Zeolithe möglich sein müssen. Aber es muß eingeräumt werden, daß zunächst diese speziell aufgebauten Zeolithe synthetisiert werden müssen. Wie könnte das geschehen? Die Antwort ist nicht so schwierig, wie es scheint.

Abb. 1.5 Schematische Darstellung der Formselektivität. [Nach S.M. Csicsery, Chem. Brit. 1985, 21, 473.]

Dennoch gibt es Anwendungen für Zeolithe, die man als rein anorganisch bezeichnen kann. Um die Verunreinigung der Luft durch verschiedene Stickstoffoxide (NO_x) z.B. bei der industriellen Herstellung von Salpetersäure zu vermindern, kann man eine Reaktion ausnutzen, bei der die N-Oxide mit Ammoniak an einem Zeolithkatalysator reduziert werden:

$$6NO_x + 4x NH_3 \rightarrow (3 + 2x) N_2 + 6x H_2O$$
 (1.4)

Aus den hochgiftigen Stickoxiden werden auf diese Weise zwei harmlose Verbindungen. Die hohen Bindungsenergien im Distickstoffmolekül und im Wassermolekül liefern die "Triebkraft" dieser Reaktion. Der Zeolithkatalysator beschleunigt und dirigiert die Reaktion und bleibt im Idealfall selbst unverändert.

Auf ähnliche Weise kann NO aus Autoabgasen katalytisch entfernt werden, wobei ein mit Cu⁺ und Cu²⁺ beladener Zeolith als Redoxkatalysator dient⁸:

$$2 \text{ NO} \xrightarrow{\text{Cu(I)/Cu(II)}} \text{N}_2 + \text{O}_2$$
(1.5)

Kehren wir zurück zum Problem der Unsichtbarkeit von Atomen. Wie kann ein Chemiker eine Reaktion verfolgen, wenn Moleküle im allgemeinen nicht sichtbar sind? Eine Möglichkeit ist die Verwendung der *Spektroskopie*. Beispielsweise kann die Umwandlung von Methanol über Dimethylether in höhere aliphatische und aromatische Kohlenwasserstoffe (Benzin) mit Hilfe der Kernresonanzspektroskopie (NMR, von *nuclear magnetic resonance*) verfolgt werden (Abb. 1.6). Während die Reaktion voranschreitet, nimmt die Konzentration von Methanol ab, wie man an der Intensität des NMR-Peaks bei $\delta = 50$ ppm sieht. Das Primärprodukt Dimethylether ($\delta = 60$ ppm) nimmt erst zu, um dann wieder abzunehmen, wenn sich daraus die aliphatischen und aromatischen Kohlenwasserstoffe bilden, die am Ende dominieren.

⁸ M. Iwamoto, H. Yahiro, K. Tonda, N. Mitzuno, Y. Mine, S. Kagawa, J. Phys. Chem, 1991, 95, 3727.

Abb. 1.6 Festkörper-¹³C-NMR-Spektren, die die schrittweise Umwandlung von Methanol in Benzin an einem Zeolith ZSM-5 zeigen. Das Methanol (Signal bei 50 ppm) wird zunächst zu Dimethylether (60 ppm) dehydratisiert. Die anschließende Bildung von C—C-Bindungen führt zu einem Gemisch von aliphatischen (-10 bis +30 ppm) und aromatischen Verbindungen (nicht dargestellt). [Nach M. W. Anderson, J. Klinowski, J. Am. Chem. Soc. 1990, 112, 10.]

10 1 Was ist AnorganischeChemie

Schlußfolgerung

Warum haben wir also Boggsit für unseren Einband gewählt? Ist es die "wichtigste anorganische Verbindung", die man kennt? Sicherlich nicht! Von Boggsit kennt man gegenwärtig nur einen Fundort und von dort nur extrem kleine Kristallfragmente⁹. Es ist unwahrscheinlich, daß dieses Mineral anderswo auf der Erde in genügenden Mengen vorkommt, um kommerzielle Bedeutung zu erlangen. Dennoch hat seine Entdeckung zu unserer Kenntnis der möglichen Zeolithstrukturen und den Bedingungen ihrer Bildung beigetragen. Und wenn wir die Struktur eines Materials gut genug kennen, dann können wir es normalerweise auch synthetisieren, wenn wir uns genügend Mühe geben. Die Synthese von Zeolithen hat große Fortschritte gemacht, aber man muß zugeben, daß man dabei noch nicht alles versteht. Boggsit ähnelt dem Katalysator ZSM-5 so stark, daß das Mineral erhebliche Aufmerksamkeit gefunden hat und in der chemischen Industrie massive Anstrengungen unternommen werden, diese Substanz zu synthetisieren¹⁰. Vielleicht wird es eines Tages ein wichtiger industrieller Katalysator oder auch nicht – nur die Zeit kann diese Frage beantworten.

Wie wir am Anfang dieses Kapitels ausgeführt haben, hätte man viele andere Verbindungen für den Einband wählen können: die neuen Hochtemperatursupraleiter, Metallclusterverbindungen, ein optisch aktives anorganisches Molekül oder ein bioanorganisches Enzym (das zeigt, wie weit sich die anorganische Chemie entwickelt hat seit den Tagen, da sie "unbelebte" Chemie bedeutete). Alle diese Stoffe sind in der Tat auf den Einbänden neuerer anorganischer Lehrbücher abgebildet worden (ein Grund, weswegen wir etwas anderes gewählt haben), und alle sind einerseits genauso angemessen, aber andererseits auch genauso begrenzt in ihrer Bedeutung wie Boggsit. Sie alle werden in den folgenden Kapiteln diskutiert werden. Wenn es einen Gedanken gibt, den Sie nach der Lektüre dieses Kapitels und schließlich dieses ganzen Buches mitnehmen sollten, dann den, daß die anorganische Chemie eine erstaunliche Vielfalt bietet. Sie beschäftigt sich mit 109 Elementen, von denen jedes einmalig ist.

In diesem einleitenden Kapitel konnten wir die Oberfläche der anorganischen Chemie nur leicht ankratzen: Struktur, Reaktivität, Katalyse, thermodynamische Stabilität, Symmetrie, experimentelle Techniken; Gasphasen-, Lösungs- und Festkörperchemie – sie alle gehören dazu. Die folgenden Kapitel dieses Buches versuchen, dem Leser genügend Grundlagenwissen über die Struktur und Reaktivität anorganischer Systeme zu vermitteln, um ein umfassenderes Verständnis zu ermöglichen¹¹.

⁹ Ein Teil der Schwierigkeiten bei der Kristallstrukturbestimmung war die Auswahl eines geeigneten Kristallfragmentes aus der Matrix, in der Boggsit eingebettet war. Nur ein Kristallit wurde gefunden, mit den Dimensionen 0.07 × 0.08 × 0.16 mm! Siehe Fußnote 2.

¹⁰ J. Alper, Science, 1990, 248, 1198.

¹¹ Eine Übersicht über Zeolithe findet man bei J.M. Thomas, Sci. Amer. 1992, 266 (4), 112.

An der Wende des vorigen Jahrhunderts war die Chemie in der Lage, eine Fülle von Daten mit Hilfe der Gasgesetze, der Valenzvorstellungen und ähnlicher empirischer Beziehungen miteinander in Einklang zu bringen. Die anorganische Chemie hatte sich mehrere Jahrzehnte in dem durch das Periodensystem geschaffenen Rahmen weiterentwickelt, doch wußte man noch nichts über die wirkliche Struktur der beteiligten Atome oder über die Grundlage des Periodensystems. Das änderte sich erst 1911, als Rutherford aus Versuchen, die Geiger und sein junger Assistent Marsden in seinem Laboratorium ausgeführt hatten, folgerte, daß Atome einen Kern mit fast der gesamten Masse, konzentriert in einem relativ kleinen Volumen enthalten. Zu jener Zeit befand sich die Physik in Gärung. Die klassische (d.h. Newtonsche) Mechanik, die bei der Beschreibung der Bewegung von Planeten und von Billardbällen so gute Dienste geleistet hatte, geriet zunehmend in Schwierigkeiten durch Probleme im mikroskopischen Bereich, die unlösbar schienen. Dadurch, daß sie diese Probleme in der Physik lösten, machten Männer wie Planck, Einstein und Bohr den Weg frei zu einem wenigstens im Prinzip vollständigen Verständnis der Struktur der Atome und der chemischen Bindung. Obwohl ihre Arbeit die Grundlage für die Entwicklung von Theorien der Atom- und Molekülstruktur gewesen ist, besitzt sie heute im wesentlichen nur noch historisches Interesse. Trotzdem hat die erste Entdeckung der Wechselwirkung zwischen Energie und Materie ihre Bedeutung behalten. Die Entwicklung der modernen anorganischen Chemie beruht auf der ständig zunehmenden Verwendung spektroskopischer Verfahren.

Spektroskopie

Wenn Wasserstoffatome angeregt werden, senden sie Licht bestimmter Frequenzen (Spektrallinien) aus, die sich zu Gruppen ("Serien") zusammenfassen lassen. Die Serien des Spektrums sind nach den Männern benannt worden, die sie entdeckt haben: Lymann-Serie (im ultravioletten), Balmer-Serie (im sichtbaren) sowie Paschen-, Brackettund Pfund-Serie (im infraroten Bereich). 1885 hat Balmer mit Hilfe einer einzigen veränderlichen ganzen Zahl einen Zusammenhang zwischen den Wellenzahlen¹ der Spektrallinien der dann nach ihm benannten Serie gefunden.

Fußnote s. S. 12

Z	Element	Elektronen- konfiguration	z	Element	Elektronen- konfiguration
1	H	1s	31	Ga	$[Ar]3d^{10}4s^{2}4p$
2	He	1s ²	32	Ge	$Ar_{3}d^{10}4s^{2}4p^{2}$
3	Li	[He]2s	33	As	$[Ar]3d^{10}4s^24p^3$
4	Be	$[He]2s^2$	34	Se	$[Ar]3d^{10}4s^{2}4p^{4}$
5	В	$[He]2s^22p$	35	Br	$[Ar]3d^{10}4s^24p^5$
6	С	$[He]2s^22p^2$	36	Kr	$[Ar] 3d^{10}4s^2 4p^6$
7	N	$[He]2s^22p^3$	37	Rb	[Kr]5s
8	0	$[He]2s^22p^4$	38	Sr	$[Kr]5s^2$
9	F	$[He]2s^2\hat{2p}^5$	39	Y	$[Kr]4d5s^2$
10	Ne	$[He]2s^22p^6$	40	Zr	$[Kr]4d^25s^2$
11	Na	[Ne]3s	41	Nb	$[Kr]4d^45s$
12	Mg	$[Ne]3s^2$	42	Мо	$[Kr]4d^55s$
13	Aľ	$[Ne]3s^23p$	43	Tc	$[Kr]4d^55s^2$
14	Si	$[Ne]3s^23p^2$	44	Ru	$[Kr]4d^75s$
15	Р	$[Ne]3s^23p^3$	45	Rh	[Kr]4d ⁸ 5s
16	S	$[Ne]3s^23p^4$	46	Pd	$[Kr]4d^{10}$
17	Cl	$[Ne]3s^23p^5$	47	Ag	$[Kr]4d^{10}5s$
18	Ar	$[Ne]3s^23p^6$	48	Cď	$[Kr]4d^{10}5s^2$
19	K	\overline{Ar}	49	In	$[Kr]4d^{10}5s^25p$
20	Ca	\overline{Ar}	50	Sn	$[Kr]4d^{10}5s^25p^2$
21	Sc	$\left[Ar \right] 3d4s^2$	51	Sb	$[K_{I}]4d^{10}5s^{2}5p^{3}$
22	Ti	$\left[Ar \right] 3d^2 4s^2$	52	Te	$[Kr]4d^{10}5s^25p^4$
23	v	\overline{Ar}	53	I	$[Kr]4d^{10}5s^25p^5$
24	Cr	$\overline{Ar}_{3}^{5}d^{5}4s$	54	Xe	$[Kr]4d^{10}5s^25p^6$
25	Mn	$\left[\operatorname{Ar}\right] 3d^{5}4s^{2}$	55	Cs	[Xe]6s
26	Fe	\overline{Ar} $\overline{3}d^64s^2$	56	Ba	TXeJ6s ²
27	Co	$[Ar]3d^{7}4s^{2}$	57	La	$[Xe]5d6s^2$
28	Ni	$\left[\operatorname{Ar}\right] 3d^{8}4s^{2}$	58	Ce	$[Xe]4f5d6s^2$
29	Cu	$\left[Ar \right] 3d^{10}4s$	59	Pr	$\overline{[Xe]}4f^{3}6s^{2}$
30	Zn	[Ar]3d ¹⁰ 4s ²	60	Nd	$\overline{[Xe]4}f^{4}6s^{2}$

Tab. 2.1 Elektronenkonfiguration der Elemente"

Rydberg hat dann gezeigt, daß die Formel von Balmer nur ein Spezialfall einer allgemeineren Gleichung ist, die auf alle Linien des Wasserstoff-Spektrums angewendet werden kann:

$$\tilde{v} = 109\,677\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \quad \text{mit} \quad n_2 > n_1.$$

¹ Die Charakterisierung von Strahlung kann auf verschiedene Weise erfolgen, was für die Arbeit des Spektroskopikers bequem ist, den Studenten aber oft verwirrt. Die Frequenz v des Lichtes ist mit dem Kehrwert seiner Wellenlänge λ durch die Lichtgeschwindigkeit c (3.00 · 10⁸ ms⁻¹) verknüpft: v = c/λ. Die Einheit der Frequenz ist (Schwingungen) pro Sekunde oder Hertz (s⁻¹ ≡ Hz). Die Wellenlänge wird häufig in Zentimetern (cm), Ångström-Einheiten (1 Å = 10⁻¹⁰ m) oder Nanometern (1 m = 10⁻⁹ m) ausgedrückt. Da die Frequenzen von der Lichtgeschwindigkeit abgeleitet sind und diese eine sehr große Zahl ist, sind die Frequenzwerte recht unhandlich. Deshalb wird an ihrer Stelle oft der reziproke Wert der Wellenlänge benutzt, der als Wellenzahl v bezeichnet und im cm⁻¹ [oder Kilokayser (1 kK = 10³ cm⁻¹)] gemessen wird. Leider gibt es keine allgemein angenommene Regel über die Verwendung dieser Einheiten; Spektren im sichtbaren und ultravioletten Bereich werden üblicherweise in Wellenlängen dargestellt, Infrarotspektren dagegen im allgemeinen in Wellenzahlen. Da die Wellenlängen der Vorzug zu geben.

Tab. 2.1 (Fortsetzung	6
------------------------------	---

z	Element	Elektronen- konfiguration	z	Element	Elektronen konfiguration
61	Pm	$[Xe]4f^{5}6s^{2}$	83	Bi	$[Xe]4f^{14}5d^{10}6s^{2}6p^{3}$
62	Sm	$[Xe]4f^{6}6s^{2}$	84	Ро	$[Xe]4f^{14}5d^{10}6s^{2}6p^{4}$
63	Eu	$[Xe]4f^{7}6s^{2}$	85	At	$[Xe]4f^{14}5d^{10}6s^{2}6p^{5}$
64	Gd	$[Xe]4f^{7}5d6s^{2}$	86	Rn	$[Xe]4f^{14}5d^{10}6s^{2}6p^{6}$
65	ТЬ	$[Xe]4f^{9}6s^{2}$	87	Fr	[Rn]7 <i>s</i>
66	Dy	$[Xe]4f^{10}6s^2$	88	Ra	[Rn]7s ²
67	Ho	$[Xe]4f^{11}6s^2$	89	Ac	[Rn]6d7s ²
68	Er	$[Xe]4f^{12}6s^2$	90	Th	$[Rn]6d^27s^2$
69	Tm	$[Xe]4f^{13}6s^2$	91	Pa	$[Rn]5f^26d7s^2$
70	Yb	$[Xe]4f^{14}6s^2$	92	U	$[Rn]5f^{3}6d7s^{2}$
71	Lu	$[Xe]4f^{14}5d6s^2$	93	Np	$[Rn]5f^{4}6d7s^{2}$
72	Hf	$[Xe]4f^{14}5d^26s^2$	94	Pu	$[Rn]5f^{6}7s^{2}$
73	Ta	$[Xe]4f^{14}5d^{3}6s^{2}$	95	Am	$[Rn]5f^{7}7s^{2}$
74	W	$[Xe]4f^{14}5d^{4}6s^{2}$	96	Cm	$[Rn]5f^{7}6d7s^{2}$
75	Re	$[Xe]4f^{14}5d^{5}6s^{2}$	97	Bk	$[Rn]5f^{9}7s^{2}$
76	Os	$[Xe]4f^{14}5d^{6}6s^{2}$	98	Cf	$[Rn]5f^{10}7s^2$
77	Ir	$[Xe]4f^{14}5d^{7}6s^{2}$	99	Es	$[Rn]5f^{11}7s^2$
78	Pt	$[Xe]4f^{14}5d^{9}6s$	100	Fm	$[Rn]5f^{12}7s^2$
79	Au	$[Xe]4f^{14}5d^{10}6s$	101	Md ^d	$[Rn]5f^{13}7s^2$
80	Hg	$[Xe]4f^{14}5d^{10}6s^2$	102	No ^b	$[Rn]5f^{14}7s^2$
81	Tl	$[Xe]4f^{14}5d^{10}6s^{2}6p$	103	Lr ^b	$[Rn]5f^{14}6d7s^2$
82	Pb	$[Xe]4f^{14}5d^{10}6s^{2}6p^{2}$	104	Rf ^b	$[Rn]5f^{14}6d^27s^2$

^a C. E. Moore, *Ionization Potentials and Ionization Limits from the Analyses of Optical Spectra*, NSRDS-NBS 34, National Bureau of Standards, Washington D. C. 1970; die Daten für Actinoide stammen aus *The Chemistry of the Actinide Elements* (J. J. Katz, G. T. Seaborg, L. R. Morss, Herausg.), Chapmann and Hall, New York 1986, Bd. 2.

^b Vorhergesagte Konfiguration

Beispiel:

Für $n_2 = 3$ und $n_1 = 2$ ist

$$\tilde{v} = 109\,677\left(\frac{1}{4} - \frac{1}{9}\right) = 15\,240\,\mathrm{cm}^{-1},$$

oder:

für $n_2 = 4$ und $n_1 = 2$ ist

$$\tilde{v} = 109\,677\left(\frac{1}{4} - \frac{1}{16}\right) = 20\,570\,\mathrm{cm}^{-1}.$$

Es läßt sich zeigen, daß die Wellenzahlen der Lymann-Serie durch $n_1 = 1$ und $n_2 = n_1 + 1$, $n_1 + 2$,... gekennzeichnet sind. Entsprechend gilt für die Balmer Serie $n_1 = 2$; für die Paschen-Serie $n_1 = 3$; für die Brackett-Serie $n_1 = 4$ und für die Pfund-Serie $n_1 = 5$. Die in dem obigen Beispiel berechneten Wellenzahlen gehören zur Balmer-Serie, die im sichtbaren Spektrum der Sonne (in Absorption) unter den Fraunhofer-Linien zu beobachten ist. Diese entstehen, wenn Atome in der kühlen äußeren Atmo-

sphäre der Sonne Photonen absorbieren, deren Energie derjenigen dieser Elektronenübergänge entspricht. Helium wurde durch die zufällige Beobachtung einer entsprechenden Emissionslinie in der Chromosphäre der Sonne entdeckt².

Die Wellengleichung

Ausgehend von den spektroskopischen Beobachtungen seiner Vorgänger, versuchte Niels Bohr 1913, das Verhalten der Atome mit Hilfe eines einfachen dynamischen Modells zu erklären. Obwohl sein Modell das Spektrum des Wasserstoffatoms in Abwesenheit eines Magnetfeldes richtig wiederzugeben gestattete, erwiesen sich andere Fälle als schwierig. So wird ein komplizierteres Spektrum beobachtet, wenn man das Spektrum des Wasserstoffs in einem Magnetfeld untersucht (Zeeman-Effekt).

Sommerfeld erweiterte das ursprüngliche Modell von Bohr, um diese Schwierigkeit zu überwinden. Zur Beschreibung größerer Mehrelektronenatome waren zusätzliche Änderungen notwendig, durch die die Anwendung des Modells umständlich, wenn nicht überhaupt unmöglich wurde.

Inzwischen hatte Louis de Broglie einen Welle-Teilchen-Dualismus für das Elektron postuliert, der durch die Beugung von Elektronenstrahlen an einem Kristall experimentell bestätigt wurde. Weiterhin sagt die Unschärferelation von Heisenberg aus, daß ein Elektron auch als Teilchen niemals so genau beschrieben werden kann, wie das Modell von Bohr es tut. Die Zeit war reif für eine völlig andere Vorstellung von den Atomen³.

1926 stellte Schrödinger die Wellengleichung auf, die jetzt seinen Namen trägt. Ihr Zweck war, das Verhalten eines subatomaren Teilchens in derselben Weise zu beschreiben, wie dies bei makroskopischen Teilchen durch die klassische Mechanik geschieht. Die dreidimensionale Wellengleichung lautet:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$
(2.1)

mit

 Ψ = Wellenfunktion

x, y, z =Raumkoordinaten

m = Masse des Teilchens

h = Plancksches Wirkungsquantum

E = Gesamtenergie

V = potentielle Energie.

Die Lösung der Wellengleichung ist die Wellenfunktion Ψ . Für reale Wellen entspricht Ψ der Amplitude der Welle und besitzt demgemäß bei der vorliegenden Anwendung

² Vgl. M.E. Weeks, H.M. Leicester, *Discovery of the Elements*, 7. Aufl., Chemical Education Publ. Co., Easton, PA, 1968.

³ Die Arbeiten vor Schrödinger werden nur kurz behandelt, damit für die anorganische Chemie mehr Platz zur Verfügung steht. Jedoch lassen sich in den meisten Lehrbüchern der physikalischen Chemie gute Abhandlungen darüber finden.

keine physikalische Realität. Jedoch so, wie beispielsweise die Intensität einer Lichtwelle durch das Quadrat ihrer Amplitude dargestellt wird, ist die Aufenthaltswahrscheinlichkeit eines Teilchens proportional dem Quadrat seiner Wellenfunktion.

Das Teilchen im Kasten

Allgemein gesehen kann die Lösung der Wellengleichung für ein Atom schwierig oder sogar unmöglich sein. Jedoch kann man eine solche Lösung durch Behandlung eines ähnlichen Problems, nämlich eines Teilchens in einem eindimensionalen Kasten, veranschaulichen. Ein Teilchen, das in einem derartigen Kasten eingeschlossen ist, verhält sich in gewisser Weise ähnlich wie ein Elektron, das in einem dreidimensionalen Atom gebunden ist. Eine noch stärkere Analogie besteht etwa zu einem linearen Molekül mit konjugierten Doppelbindungen, in dem sich ein Elektron über die gesamte Länge des Moleküls bewegen kann. So liefert uns das Teilchen im Kasten nicht nur eine einfache Anwendung der quantenmechanischen Methoden, sondern auch immer wieder ein wertvolles Modell für das Verhalten von Elektronen in Molekülen.

Betrachten wir ein Teilchen in einem Kasten, wie es in Abb. 2.1 dargestellt ist. In den Bereichen I und III (außerhalb des Kastens) soll die potentielle Energie unendlich groß sein (das Teilchen kann den Kasten nicht verlassen), und innerhalb des Kastens soll sie null sein. Unter diesen Bedingungen sagt die Newtonsche Mechanik voraus, daß die Aufenthaltswahrscheinlichkeit für das Teilchen an jeder Stelle des Kastens gleich

Abb. 2.1 Das Teilchen im Kasten, eindimensionaler Fall. Das Teilchen kann sich im Bereich II (von x = 0 bis x = a) frei bewegen, nicht jedoch in den Bereichen I und III.

groß ist und daß die kinetische Energie des Teilchens beliebige Werte annehmen kann. Im Gegensatz dazu führt die Wellenmechanik, wie wir sie sehen werden, zu ganz anderen Ergebnissen.

Wir benutzen dabei die Wellengleichung für den eindimensionalen Fall und setzen die vorgegebenen Werte für die potentielle Energie V ein:

I, III:
$$V = \infty$$
; $\frac{d^2 \Psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - \infty) \Psi = 0$, (2.2)

II:
$$V = 0;$$
 $\frac{d^2 \Psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - 0) \Psi = 0.$ (2.3)

Wir legen die folgenden Randbedingungen für die Wellenfunktion Ψ fest:

- 1. Ψ muß *eindeutig* sein. Das ergibt sich aus der Tatsache, daß die Aufenthaltswahrscheinlichkeit für das Teilchen proportional Ψ^2 ist. Wäre Ψ nicht eindeutig, gäbe es zwei oder mehr unterschiedliche Wahrscheinlichkeiten, das Teilchen an einem bestimmten Punkt im Raum zu finden, was offensichtlich unmöglich ist.
- 2. Ψ muß *endlich* sein. Der Wert von Ψ^2 muß endlich sein, da er eine Wahrscheinlichkeit darstellt.
- 3. Ψ muß stetig sein. Da alle realen Wellen stetig sind, machen wir dies zur Voraussetzung für unser System.

In den Bereichen I und III ist der einzige Wert für Ψ , der die Gl. 2.2 erfüllt, $\Psi = 0$, da für jeden endlichen Wert von Ψ die linke Seite der Gl. 2.2 unendlich und nicht null ist.

Für den Bereich II müssen wir eine Lösung finden, die Gl. 2.3 erfüllt und gleichzeitig für x = 0 und x = a den Wert $\Psi = 0$ liefert.

Man nimmt nun probeweise eine Lösung an und versucht, mathematisch zu beweisen, daß sie die drei oben gestellten Bedingungen erfüllt. Eine solche Lösung könnte zum Beispiel lauten:

$$\Psi = A\cos\beta x + B\sin\beta x. \tag{2.4}$$

Wenn wir so verfahren, finden wir, daß wir A = 0 setzen können. Wir erhalten damit die folgende Lösung⁴:

$$\Psi = B\left(\frac{\sin n\pi x}{a}\right),\tag{2.5}$$

in der n eine ganze Zahl ist. Diese Lösung, kombiniert mit den ursprünglichen Gleichungen für die Energie des Teilchens (Gl. 2.2 und 2.3), liefert die erlaubten Energiewerte für das Teilchen in dem Kasten:

$$\beta^2 = \frac{n^2 \pi^2}{a^2} = \frac{8\pi^2 mE}{h^2},\tag{2.6}$$

$$E = \frac{n^2 h^2}{8ma^2}.$$
 (2.7)

⁴ Die Behandlung des Teilchens im Kasten von F.L. Pilar, *Elementary Quantum Mechanics*, McGraw-Hill, New York 1968, sei empfohlen.

Für den allgemeineren Fall eines dreidimensionalen Kastens ist die Energie gegeben durch

$$E = \frac{h^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right).$$
(2.8)

Die Ergebnisse der Rechnung für das Teilchen im Kasten sind vor allem im Hinblick auf die folgenden beiden Punkte von Interesse:

- 1. Entgegen der klassischen Voraussage ist die Aufenthaltswahrscheinlichkeit für das Teilchen nicht konstant, sondern eine Funktion von x. Außerdem hängt die Wahrscheinlichkeit, das Teilchen in einem bestimmten Bereich des Kastens zu finden, von der Energie des Teilchens ab (vgl. Abb. 2.2).
- 2. Ein weiterer Unterschied gegenüber den klassischen Voraussagen ist die Tatsache, daß nur bestimmte Energie-Werte erlaubt sind, die mit der Quantenzahl *n* (hier für einen eindimensionalen Kasten) verknüpft sind. Die Energie null (n = 0) ist nicht erlaubt, anderenfalls wäre $\Psi = 0$, und die Lösung wäre trivial – die Wahrscheinlichkeit, das Teilchen zu finden, wäre null ($\Psi^2 = 0$); es gäbe also gar kein Teilchen! Außerdem wächst die Energie mit n^2 .

Abb. 2.2 Das Teilchen im Kasten: (a) Wellenfunktionen (beachten Sie, daß die Energie tatsächlich unabhängig von x ist; sie wird für jeden Wert von n durch eine gestrichelte Linie dargestellt.); (b) Wahrscheinlichkeitsfunktionen. [Nach F.L. Pilar, *Elementary Quantum Chemistry*, McGraw-Hill, New York, 1968].

Ferner ist die Tatsache interessant, daß für jeden erlaubten Freiheitsgrad (jede "Dimension") des Teilchens eine Quantenzahl erforderlich ist (vgl. Gl. 2.7 und 2.8).

Das Wasserstoffatom

Um die Schrödinger-Gleichung für das Wasserstoffatom zu lösen, braucht man drei charakteristische Quantenzahlen n, l und m_l (wie für ein dreidimensionales System zu erwarten war). Die Werte, die diese Quantenzahlen annehmen können, und ihre physikalische Bedeutung werden weiter unten erläutert. Im Augenblick betrachten wir sie als einen Satz von *drei ganzen Zahlen*, die eine bestimmte Situation beschreiben. Jede Lösung, die sich für eine bestimmte Kombination von n, l und m_l ergibt, wird *Eigenfunktion* genannt und stellt ein Orbital des H-Atoms dar.

Um die vollständigen Wellenfunktionen graphisch darstellen zu können, würde man einen vierdimensionalen Raum brauchen mit einer Koordinate für die Wellenfunktion Ψ und drei weiteren Koordinaten für die räumlichen Dimensionen x, y, z (kartesische Koordinaten) oder r, θ , ϕ (Polarkoordinaten).

Um dieses Problem zu umgehen und auch um die wirkliche Verteilung der Elektronen innerhalb des Atoms besser anschaulich zu machen, separiert man die Wellenfunktion Ψ im allgemeinen in drei Teile, von denen jeder nur von einer Variablen abhängt. Es ist am bequemsten, Polarkoordinaten zu verwenden. Man erhält dann:

$$\Psi(r,\theta,\phi) = R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)$$
(2.9)

worin R (r) die Abhängigkeit von Ψ vom Kernabstand und Θ und Φ die Winkelabhängigkeit angeben.

Die radiale Wellenfunktion R

Die Radialfunktionen für die ersten drei Orbitale⁵ im Wasserstoffatom sind:

$$n = 1, \ l = 0, \ m_l = 0$$
 $R = 2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$ 1s-Orbital

$$n = 2, l = 0, m_l = 0$$
 $R = \left(\frac{1}{2\sqrt{2}}\right) \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$ 2s-Orbital

$$n = 2, \ l = 1, \ m_l = 0$$
 $R = \left(\frac{1}{2\sqrt{6}}\right) \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0}$ 2p-Orbital

Darin bedeuten Z die Kernladungszahl, e die Basis der natürlichen Logarithmen und a_0 den Radius der ersten Bohrschen Bahn. Nach der Theorie von Bohr sollte dieser

⁵ Die vollständigen Wellenfunktionen in Abhängigkeit von den Quantenzahlen n und l findet man bei L. Pauling, Die Natur der chemischen Bindung, Cornell University, Ithaca, NY, 1960 (n = 1-6); und W.W. Porterfied, Inorganic Chemistry: A Unified Approach, Addison-Wesley Reading, 1984 (n = 1-3).

Radius unveränderlich sein; in der Wellenmechanik dagegen ist er einfach der "wahrscheinlichste" Radius für den Aufenthalt des Elektrons. Sein Wert, 52.9 pm, ist durch die Beziehung $a_0 = h^2/4\pi me^2$ gegeben. Darin sind *h* die Plancksche Konstante sowie *m* und *e* die Masse und die Ladung des Elektrons. Bei Wasserstoff ist Z = 1. Mit Z > 1kann man entsprechende Orbitale auch für andere Kerne mit einem Elektron konstruieren. Dagegen ist es nicht möglich, für Atome mit mehr als einem Elektron exakte Lösungen der Wellengleichung zu erhalten, deshalb benutzt man diese "wasserstoffähnlichen" Orbitale häufig als erste Näherung⁶.

Zwar sehen die Radialfunktionen sehr kompliziert aus, doch lassen sich die wesentlichen Eigenschaften dadurch sichtbar machen, daß man die Konstanten zu Gruppen zusammenfaßt. Für ein gegebenes Atom ist Z konstant und kann daher mit den anderen Konstanten kombiniert werden, was zu einer erheblichen Vereinfachung führt:

$$n = 1; \ l = 0; \ m_l = 0 \quad R = K_{1s} e^{-Zr/a_0} \qquad 1 \text{ s-Orbital}$$

$$n = 2; \ l = 0; \ m_l = 0 \quad R = K_{2s} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0} \qquad 2 \text{ s-Orbital}$$

$$n = 2; \ l = 1; \ m_l = 0 \quad R = K_{2p} r e^{-Zr/2a_0} \qquad 2 p \text{-Orbital}.$$

Abb. 2.3 Radialer Anteil der Eigenfunktionen des Wasserstoffatoms für n = 1,2,3 [nach G. Herzberg, Atomic Spectra and Atomic Structure, Dover Publ., New York, 1944].

⁶ Die Verwendung von wasserstoffähnlichen Orbitalen für Mehrelektronenatome vernachlässigt die gegenseitige Abstoßung der Elektronen, was oftmals eine unzulässige Vereinfachung ist (s. S. 30-32).

Das auffälligste Merkmal der radialen Wellenfunktionen ist, daß sie alle eine exponentielle Abnahme zeigen und daß die Abnahme für n = 2 langsamer ist als für n = 1. Das läßt sich für alle Radialfunktionen verallgemeinern: sie nehmen mit e^{-Zr/na_0} ab. Aus diesem Grunde nimmt der Radius der verschiedenen Orbitale (richtiger der *wahr-scheinlichste* Radius) mit wachsendem n zu. Ein zweites Charakteristikum ist das Vorhandensein eines *Knotens* in der 2s-Radialfunktion. Bei $r = 2a_0/Z$ wird R = 0, und das Vorzeichen der Radialfunktion wechselt von plus zu minus. Auch das läßt sich wieder verallgemeinern: s-Orbitale haben n - 1 Knoten, p-Orbitale haben n - 2 Knoten außerhalb des Atomkerns usw. Die Radialfunktionen für die 1s-, 2s-, 2p-, 3s-, 3p-, und 3d-Orbitale des Wasserstoffs sind in Abb. 2.3 dargestellt.

Da wir in erster Linie an der Wahrscheinlichkeit interessiert sind, mit der das Elektron an verschiedenen Punkten im Raum angetroffen wird, werden wir uns mehr mit dem Quadrat der Radialfunktionen als mit den Funktionen selbst beschäftigen. Das Quadrat der Wellenfunktion gibt die *Elektronendichte* bzw. die *Aufenthaltswahrscheinlichkeit* eines Elektrons an einem bestimmten Punkt im Raum an. Es gibt zwei Wege, dieses Problem zu lösen. Am einfachsten ist es, die in Abb. 2.3 dargestellten Funktionen zu quadrieren. Dazu werden also alle Ordinatenwerte quadriert, wobei negative Werte positiv werden (s. Abb. 2.4). Auf diese Weise erhält man die relative Elektronendichte als Funktion des Abstandes vom Kern. Man erkennt aus Abb. 2.4, daß *bei den s-Orbi*-

Abb. 2.4 Radiale Elektronendichteverteilung für n = 2 für das H-Atom. Diese Funktionen geben die relative Elektronendichte (e pm⁻³) als Funktion des Abstandes vom Kern an. Sie werden erhalten durch Quadrierung der Wellenfunktionen in Abb. 2.3.

Abb. 2.5 Volumen dV einer Kugelschale der Dicke dr.

talen die maximale Elektronendichte im Atomkern auftritt, während bei allen anderen Orbitalen die Elektronendichte im Kern Null ist.

Ein zweiter Weg, das Problem anzugehen, ist, sich das Atom ähnlich wie eine Zwiebel aus "Schalen" aufgebaut vorzustellen und die Aufenthaltswahrscheinlichkeit für das Elektron in einer Schale der Dicke dr (vgl. Abb. 2.5) zu untersuchen. Das Volumen dieser dünnen Schale sei dV.

Das Volumen einer Kugel ist:

$$V = \frac{4\pi r^3}{3},$$
 (2.10)

damit ist

$$\mathrm{d}V = 4\pi r^2 \,\mathrm{d}r \tag{2.11}$$

und

$$R^2 dV = 4\pi r^2 R^2 dr (2.12)$$

Betrachten wir den in Abb. 2.3 dargestellten Radial-Anteil der Wellenfunktion für das 1*s*-Orbital. Wenn wir ihn quadrieren und mit $4\pi r^2$ multiplizieren, erhalten wir die in Abb. 2.6 wiedergegebene *Wahrscheinlichkeitsfunktion*⁷. Als wesentliche Merkmale dieser Funktion können wir qualitativ folgendes feststellen:

- 1. Bei r = 0 ist $4\pi r^2 R^2 = 0$, das heißt, am Kern muß der Wert null sein.
- 2. Bei großen Werten von r nähert sich R rasch dem Wert null, deshalb muß auch $4\pi r^2 R^2$ gegen null gehen.
- 3. In dem Bereich dazwischen haben sowohl r als auch R endliche Werte. Daher hat die Darstellung der Wahrscheinlichkeit $(4\pi r^2 R^2)$ in Abhängigkeit von r ein Maximum. Dieses Maximum liegt bei $r = a_0$, dem Wert für den Bohrschen Radius.

Ähnliche Wahrscheinlichkeitsfunktionen (unter Einschluß des Faktors $4\pi r^2$) sind in Abb. 2.6 auch für die 2s-, 2p-, 3s-, 3p- und 3d-Orbitale dargestellt. Beachten Sie: Obwohl die Radialfunktion für das 2s-Orbital sowohl positiv (für $r < 2a_0/Z$) als auch negativ (für $r > 2a_0/Z$) sein kann, ist die Wahrscheinlichkeitsfunktion als Folge der

⁷ Man beachte, daß die mathematische Funktion gegen null geht, weil das Volumenelement der Schale, dV, für r = 0 null wird. Wie wir jedoch bereits gesehen haben, ist die Elektronendichte im Kern für s-Orbitale nicht null.

Abb. 2.6 Radiale Wahrscheinlichkeitsfunktionen des Wasserstoffatoms für n = 1,2,3. Die Funktionen geben die Aufenthaltswahrscheinlichkeit für das Elektron in einer Kugelschale der Dicke dr im Abstand r vom Kern an [nach G. Herzberg, Atomic Spectra and Atomic Structure, Dover Publ., New York, 1944].

Quadrierung überall positiv, was sie auch sein muß, wenn sie einen physikalischen Sinn haben soll.

Das Vorhandensein eines Knotens in der Wellenfunktion markiert einen Punkt im Raum, an dem die Aufenthaltswahrscheinlichkeit für das Elektron null ist. Daraus ergibt sich die interessante Frage: "Wie gelangt das Elektron von der einen Seite des Knotens auf die andere, wenn es niemals genau im Knoten sein kann?" Diese Frage ist so, wie wir sie gestellt haben, nicht zu vertreten, weil sie unsere makroskopisch geprägte Ansicht voraussetzt, das Elektron sei ein Teilchen. Wenn wir dagegen das Elektron als eine stehende Welle betrachten, gibt es kein Problem, weil diese gleichzeitig auf beiden Seiten eines Knotens existiert. Denken wir an eine schwingende Saite auf einem Instrument, etwa einer Gitarre. Wird die Saite am zwölften Bund gegriffen, wird der Ton eine Oktave höher, weil die Wellenlänge auf die Hälfte verkürzt ist. Wenn auch experimentell schwierig (ein Finger ist kein unendlich kleiner Punkt!), ist es möglich, mit Oktavgriffen denselben Ton auf jeder der beiden Hälften der Saite erklingen zu lassen. Diese Schwingung kann sich kontinuierlich durch den Knoten an dem Griff fortsetzen. In der Tat entstehen auf der leeren Saite Obertöne bei den höheren Harmonischen, so daß an verschiedenen Punkten längs der Saite Knoten auftreten. Knoten sind bei einer Welle ganz normal. Begriffsprobleme treten nur auf, wenn wir versuchen, uns das Elektron als ein "hartes" Teilchen mit einer definierten Lage vorzustellen.

Haben die Knoten und Maxima der Elektronendichte irgendeine chemische Auswirkung? Die Antwort hängt davon ab, an welchem Detail der chemischen Bindung wir interessiert sind. Wir werden später sehen, daß kovalente Bindungen entscheidend von der Überlappung von Orbitalen abhängen. Man kann sich vorstellen, daß die Überlappung⁸ schlecht ist, wenn zwei Orbitale benachbarter Atome überlappen, von denen zwar das eine ein Maximum der Radialfunktion aufweist, das zweite Orbital aber in der Überlappungsregion einen Knoten besitzt. Es hat sich jedoch durch sorgfältige Berechnungen gezeigt, daß die Knoten praktisch immer zu dicht am Kern liegen, als daß sie die chemische Bindung merklich beeinflussen könnten.

Die Knoten der Wellenfunktion zwischen den kleinen Maxima haben jedoch einen starken Einfluß auf die *Energie* der Elektronen in den verschiedenen Orbitalen. Man sagt, ein Elektron sei *durchdringend*, wenn es sich in einem Orbital mit kleinen Maxima zwischen den Kernen befindet (speziell *s*-Orbitale mit höheren Werden von n), da die Elektronendichte in einem solchen Falle auch in Kernnähe erhebliche Werte hat. Das ist der Hauptgrund, daß die Energieniveaus bei Mehrelektronenatomen in der Reihenfolge 1*s*, 2*s*, 2*p*, 3*s*, 3*p*, usw. zunehmen (siehe unten).

Winkelabhängige Wellenfunktionen

Der winkelabhängige Teil der Wellenfunktion bestimmt die Gestalt der Elektronenwolke. Er ändert sich in Abhängigkeit vom Typ des betreffenden Orbitals (s, p, d oder f) und seiner Orientierung im Raum. Für einen gegebenen Orbitaltyp, z.B. s oder p_z , ist die winkelabhängige Wellenfuktion jedoch unabhängig von der Hauptquantenzahl oder dem Energieniveau. Einige typische winkelabhängige Funktionen sind:

l = 0;	$m_l = 0$	$\Theta \Phi = (1/4\pi)^{1/2}$	s-Orbital
l = 1;	$m_l = 0$	$\Theta\Phi = (3/4\pi)^{1/2}\cos\theta$	p_z -Orbital
l = 2;	$m_l = 0$	$\Theta \Phi = (5/16\pi)^{1/2} (3\cos^2\theta - 1)$	d_{z^2} -Orbital.

Die winkelabhängigen Funktionen für das s- und das p_z -Orbital sind in Abb. 2.7 dargestellt. Für ein s-Orbital ist $\Theta \cdot \Phi$ winkelunabhängig und hat einen konstanten Wert. Daher ist die Darstellung kreisförmig oder richtiger, dreidimensional, kugelförmig. Für das p_z -Orbital erhalten wir zwei sich berührende Kugeln. Die p_x - und p_y -Orbitale haben die gleiche Gestalt, erstrecken sich jedoch entlang der x- bzw. y-Achse. Die ausführliche Behandlung der d-Orbitale (Kapitel 11) und der f-Orbitale (Kapitel 14) wollen wir zurückstellen, bis die Bindungen in Koordinations-Verbindungen besprochen werden, und hier nur einfach feststellen, daß die Grundform der winkelabhängigen Funktion für d-Orbitale vier Keulen und für f-Orbitale sechs Keulen ergibt (Abb. 2.11).

Viel stärker interessiert uns die Aufenthaltswahrscheinlichkeit für ein Elektron. Deshalb wollen wir die Funktion $\Theta^2 \cdot \Phi^2$ untersuchen, da sie den winkelabhängigen Teil von Ψ^2 darstellt. Beim Quadrieren ändert sich die Gestalt der winkelabhängigen Funk-

⁸ Für die Stärke einer Bindung ist das Überlappungsintegral $\int \Psi_A \Psi_B d\tau$ der beiden Wellenfunktionen maßgeblich, wobei d τ ein Raumelement bezeichnet. An Knotenstellen ist das Produkt $\Psi_A \Psi_B$ null und in deren Nähe hat es nur kleine Werte.

Abb. 2.7 Winkelabhängiger Teil der Wellenfunktion für wasserstoffähnliche *s*-Orbitale (links) und *p*-Orbitale (rechts). Von den dreidimensionalen Funktionen, die man durch Rotation um die vertikale Achse erhält, sind nur zwei Dimensionen dargestellt.

Abb. 2.8 Winkelabhängige Wahrscheinlichkeitsfunktion für wasserstoffähnliche *p*-Orbitale. Von der dreidimensionalen Funktion, die man durch Rotation um die senkrechte Achse erhält, sind nur zwei Dimensionen dargestellt.

tionen für die einzelnen Orbitale in unterschiedlicher Weise. Bei einem s-Orbital verursacht Quadrieren keine Änderung der Gestalt, da die Funktion in allen Richtungen gleich ist; daher ergibt sich wieder eine Kugel. Dagegen wird sowohl bei p- als auch bei d-Orbitalen die graphische Darstellung in die Länge gezogen (vgl. Abb. 2.8).

Die Abbildungen 2.7 und 2.8 werden häufig falsch verstanden. Keine hat irgendeine unmittelbare physikalische Bedeutung. Beide sind, ebenso wie die Abbildungen 2.3 und 2.6, Darstellungen mathematischer Funktionen. Wir können beide benutzen, um Informationen über die wahrscheinliche Verteilung von Elektronen zu erhalten, keine aber kann in irgendeiner Weise als ein "Abbild" eines Orbitals gelten. Unglücklicherweise werden flüchtige Skizzen der Abb. 2.7 und 2.8 häufig als "Orbitale" ausgegeben. Nun kann man ein Orbital ganz nach Wunsch definieren – als Ψ , Ψ^2 , R, R^2 , $\Theta \cdot \Psi$ oder $\Theta^2 \cdot \Phi^2$ –, man muß sich aber klarmachen: die Abbildungen 2.3, 2.6, 2.7 und 2.8 stellen mathematische Funktionen dar, und auch durch eine verschwommene Zeichnung wird daraus *kein Atom*! Chemiker neigen dazu, sich Elektronenwolken vorzustellen, und daher gibt Ψ^2 wahrscheinlich das beste anschauliche "Bild" für ein Elektron. Möglichkeiten, die gesamte Aufenthaltswahrscheinlichkeit für ein Elektron, *so*-

Abb. 2.9 Bildliche Darstellung der Elektronendichte in einem wasserstoffähnlichen $2p_z$ -Orbital (links) und Elektronendichtekonturlinien für das wasserstoffähnliche $2p_z$ -Orbital von Kohlenstoff (rechts). Die Zahlen geben die Elektronendichte relativ zum Maximum an. Die xy-Ebene ist eine Knotenfläche, und die Vorzeichen (+ und -) beziehen sich auf die zugrundeliegende Wellenfunktion Ψ [nach E.A. Ogryzlo, G.B. Porter, J. Chem. Educ. **1963**, 40, 258]

wohl die radiale als auch die winkelabhängige, darzustellen, werden in den Abbildungen 2.8 und 2.9 angegeben. Zwar kann man die Elektronendichte sowohl durch Schattierung (Abb. 2.8) als auch durch Kurven gleicher Elektronendichte (Abb. 2.8 und 2.9) darstellen, jedoch ist nur die zweite Methode quantitativ exakt.

Da die Funktion $\Theta^2 \cdot \Phi^2$ als winkelabhängige Wahrscheinlichkeit bezeichnet wird, ist die Frage berechtigt, was ihre wahre Bedeutung ist, wenn nicht die eines "Bildes" der Elektronenverteilung. Sie bezeichnet, wie jede andere graphische Darstellung auch, einfach den Wert einer Funktion ($\Theta^2 \cdot \Phi^2$) in Abhängigkeit von einer Variablen (θ oder θ , ϕ). Wenn man einen bestimmten Winkel θ wählt, ist die Aufenthaltswahrscheinlichkeit für das Elektron in dieser Richtung, summiert über alle Abstände, proportional der Größe des Vektors, der den Ursprung mit dem Wert der Funktion bei diesem Winkel verbindet.

Die Symmetrie der Orbitale

In Abb. 2.11 ist der winkelabhängige Teil der Wellenfunktion für s-, p-, d- und f-Orbitale dargestellt. Die Vorzeichen in den Keulen geben das Vorzeichen der Wellenfunktion in den betreffenden Richtungen an. Im p_z -Orbital ist zum Beispiel für $\theta = 90^{\circ} \cos \theta = 0$, und für $90^{\circ} < \theta < 270^{\circ}$ ist $\cos \theta$ negativ. Die Vorzeichen der Wellenfunktionen haben

große Bedeutung für die Überlappung von zwei bindenden Orbitalen. Es ist üblich, die Symmetrie von Orbitalen als gerade oder ungerade zu bezeichnen. Diese Begriffe beziehen sich auf die in den Zeichnungen dargestellte Symmetrieoperation – die Spiegelung am Zentrum. Geht man von einem beliebigen Punkt A zu dem äquivalenten Punkt B auf der entgegengesetzten Seite des Zentrums und ändert sich dabei das Vorzeichen der Wellenfunktion nicht, so wird das Orbital als gerade bezeichnet. Das s-Orbital ist ein triviales Beispiel dafür, weil bei ihm das Vorzeichen der winkelabhängigen Wellenfunktion überall gleich ist. Die d-Orbitale (von denen hier nur zwei dargestellt sind) sind ebenfalls gerade. Dagegen sind die p-Orbitale antisymmetrisch in bezug auf die Inversion, das Vorzeichen ändert sich beim Übergang von A nach B, und deshalb ist die Symmetrie ungerade. Ebenso sind f-Orbitale ungerade. Diese Bezeichnungen werden mit g und u abgekürzt.

Man kann die Symmetrieeigenschaften dieser Orbitale auch dadurch charakterisieren, daß man sagt, daß s- und d-Orbitale ein Symmetriezentrum (Inversionszentrum) aufweisen und p- und f-Orbitale nicht. Zusätzlich haben die Orbitale unterschiedliche Symmetrieeigenschaften bezüglich anderer Symmetrieoperationen. Diese werden in Kapitel 3 behandelt.

Abb. 2.10 Elektronendichtekonturlinien für das wasserstoffähnliche $3p_x$ -Orbital von Chlor. Die Zahlen geben die Elektronendichte relativ zum Maximum an. Die xy-Ebene und eine Kugeloberfläche mit dem Radius 52 pm (gestrichelte Linie) sind Knotenflächen. Die Vorzeichen (+ und –) beziehen sich auf die zugrundeliegende Wellenfunktion Ψ (nach E.A. Ogryzlo, G.B. Porter, J. Chem. Educ. **1963**, 40, 258).

Es sei darauf hingewiesen, daß die Symmetrie der Orbitale in vielen Lehrbüchern, einschließlich des vorliegenden, so wie in Abb. 2.11 a-e dargestellt wird, indem die Wellenfunktionen mit Vorzeichen abgebildet werden. In der anorganischen und organischen Literatur ist es jedoch eine häufig beobachtete Praxis, die Vorzeichen der Wellenfunktionen durch die Schattierung der stilisierten Orbitale anzugeben. In Abb. 2.11c ist auf diese Weise die Symmetrie eines *p*-Orbitals und in Abb. 2.11e die eines *d*-Orbitals angegeben.

Besondere Aufmerksamkeit sollte man einer ziemlich verwirrenden Angewohnheit der Chemiker schenken. In den Abbildungen 2.9 und 2.10 fallen kleine Plus- und Minus-Zeichen auf. Die Abbildungen beziehen sich zwar auf die Aufenthaltswahrscheinlichkeit für das Elektron, die natürlich überall positiv sein muß, die Zeichen + und – jedoch auf das Vorzeichen der zugrundeliegenden Wellenfunktion Ψ in den betreffenden Bereichen des Raumes. In Abb. 2.10 beispielsweise erkennt man zusätzlich zu der Vorzeichenumkehr, die durch die ungerade Symmetrie des p-Orbitals bedingt ist, einen zweiten Knoten - tatsächlich eine kugelförmige Knotenfläche - in einem Abstand von $6a_0/Z$, der von der radialen Wellenfunktion stammt. Obwohl dieses Verfahren verwirrend erscheint, ist es nützlich und wird daher allgemein angewandt. Die Ψ^2 -Darstellung ist nützlich, wenn man das physikalische "Bild" des Atoms sichtbar machen will, das Vorzeichen von Ψ dagegen ist wichtig im Hinblick auf Bindungen⁹.

Die Energie der Orbitale

Die Energieniveaus des Wasserstoffatoms werden ausschließlich durch die Hauptquantenzahl bestimmt, und ihr Verhältnis zueinander ist ebenso wie bei einem Bohrschen Atom gegeben durch die Formel

$$E_n = -\frac{2\pi^2 m Z^2 e^4}{n^2 h^2},$$
(2.13)

worin m die Masse des Elektrons, Z die Kernladungszahl, e die Elementarladung, n die Hauptquantenzahl und h das Plancksche Wirkungsquantum sind. Die Quantelung der Energie und des Bahndrehimpulses wurde von Bohr als Postulat eingeführt, aus der Wellentheorie ergeben sie sich jedoch ganz zwanglos. Die Quantenzahl n kann jeden beliebigen positiven ganzzahligen Wert von eins bis unendlich annehmen:

$$n = 1, 2, 3, 4, \ldots, \infty$$
.

Die niedrigste (am stärksten negative) Energie entspricht dem kleinsten Wert von n (n = 1). Mit wachsendem n wächst auch die Energie (sie wird weniger negativ), bis das Kontinuum erreicht ist $(n = \infty)$. An diesem Punkt ist das Elektron nicht mehr an das Atom gebunden. Seine Energie ist daher nicht mehr gequantelt, vielmehr kann es jede beliebige kinetische Energie besitzen.

Die erlaubten Werte für *l* liegen zwischen null und n-1:

$$l = 0, 1, 2, 3, \ldots, n-1$$
.

⁹ Eine empfehlenswerte Diskussion dieser Frage findet man bei M. Orchin, H.H. Jaffé, *The Importance of Antibonding Orbitals*, Houghton Mifflin, Boston, **1967**. S. 5-9.

Die Quantenzahl l ist ein Maß für den Bahndrehimpuls des Elektrons und bestimmt die "Gestalt" des Orbitals. Die verschiedenen Typen von Orbitalen werden mit den Buchstaben s, p, d, f, g ... bezeichnet; sie entsprechen den l-Werten 0,1,2,3,4 ... Die ersten vier Buchstaben entstammen der spektroskopischen Kennzeichnung (vgl. S. 36), die übrigen folgen alphabetisch. Im vorigen Abschnitt haben wir die verschiedenen winkelabhängigen Wellenfunktionen und die daraus resultierende Gestalt der Ladungswolke kennengelernt. Die Art der Winkelabhängigkeit ist durch den Wert der Quantenzahl l bestimmt.

Für Orbitale mit l > 0 gibt es 2l + 1 äquivalente Möglichkeiten der Orientierung im Raum. In Abwesenheit eines magnetischen oder elektrischen Feldes sind diese Orientierungen *entartet*, d. h. *energiegleich*. Betrachten wir z. B. die *p*-Orbitale. Es gibt ein *p*-Orbital, in dem die maximale Elektronendichte auf der *z*-Achse liegt und für das die *xy*-Ebene eine Knotenfläche ist. Bei den beiden äquivalenten Orientierungen erstreckt sich die maximale Elektronendichte entlang der *x*- bzw. der *y*-Achse. Beim Anlegen eines Magnetfeldes wird die Entartung für die drei *p*-Orbitale aufgehoben. Die magnetische Quantenzahl m_i ist verknüpft mit der Komponente des Drehimpulses in Richtung einer gewählten Achse, zum Beispiel der *z*-Achse, und bestimmt die Orientierung des Orbitals im Raum. m_i kann Werte zwischen -l und +l annehmen:

$$m_l = -l, -l+1, \ldots, -1, 0, +1, +2, \ldots, +l.$$

So kann m_l bei l = 1 die Werte -1, 0, +1 haben; daher sind drei p-Orbitale, p_x , p_y und p_z , möglich. Entsprechend sind die m_l -Werte für l = 2 (d-Orbitale): -2, -1, 0, +1, +2 und für l = 3 (f-Orbitale): -3, -2, -1, 0, +1, +2, $+3^{10}$.

Es ist eine interessante Tatsache, daß ebenso, wie ein einzelnes s-Orbital sphärische Symmetrie hat, auch die Summen der drei p-Orbitale, der fünf d-Orbitale oder der sieben f-Orbitale kugelsymmetrisch sind (Unsölds Theorem). Das erklärt, daß bei einem Atom wie Neon mit gefüllten s- und p-Orbitalen, bei denen man eigentlich eine "klumpige" Elektronenwolke erwartet, die gesamte Wahrscheinlichkeit exakt kugelsymmetrisch verteilt ist.

Aus den angegebenen Regeln können wir die möglichen Werte von n, l und m_l erhalten. Wir haben früher (S. 18) gesehen, daß ein Satz spezieller Werte dieser drei Quantenzahlen eine Eigenfunktion oder ein Orbital des Wasserstoffatoms bestimmt. Daraus ergeben sich die möglichen Orbitale:

<i>n</i> = 1	l = 0	$m_l = 0$	1 <i>s</i> -Orbital
<i>n</i> = 2	l = 0	$m_l = 0$	2s-Orbital
n = 2	l = 1	$m_l = -1, 0, +1$	$2p_{(x, y, z)}$ -Orbitale
n = 3	l = 0	$m_l = 0$	3 <i>s</i> -Orbital
<i>n</i> = 3	l = 1	$m_l = -1, 0, +1$	$3p_{(x, y, z)}$ -Orbitale

¹⁰ Obwohl die Orbitale p_z und d_{z^2} der Quantenzahl m = 2 entsprechen, gibt es bei den anderen Orbitalen keine einfache Korrelation mit den Werten von m. Die Funktionen für $m_i = \pm 1, \pm 2$ sind komplex und müssen für reelle p- und d-Orbitale zunächst in neue Linearkombinationen überführt werden. Siehe W.J. Moore, *Physical Chemistry*, Prentice-Hall, Englewood Cliffs, 1970, S. 640; P.W. Atkins, *Physical Chemistry*, 4th ed., Freeman, San Francisco, 1990, S. 362; B.N. Figgis, *Introduction to Ligand Fields*, Wiley, New York, 1966, S. 9-15.

<i>n</i> = 3	l = 2	$m_l = -2, -1, 0, +1, +2$	3 <i>d</i> -Orbitale ¹¹
n = 4	l = 0	$m_l = 0$	4s-Orbital.

Wir können nun die Beziehung zwischen den Quantenzahlen n, l und m_l und die physikalischen Bilder der Elektronenverteilung in Orbitalen in ein paar einfachen Regeln zusammenfassen. Doch sei nachdrücklich betont, daß diese Regeln ein gründliches Verständnis der vorstehenden Diskussion nicht ersetzen, sondern lediglich als bequemer Leitfaden dazu dienen sollen, einige dieser Beziehungen ins Gedächtnis zurückzurufen.

- 1. Beim Wasserstoffatom gilt, daß ein Orbital umso stabiler ist, je niedriger der Wert von n ist. Die Energie des H-Atoms hängt überhaupt nur von n ab. Bei Mehrelektronenatomen ist auch die Nebenquantenzahl l für die Energie wichtig (siehe S. 31):
- 2. Der Orbitaltyp wird von der Nebenquantenzahl *l* bestimmt:
 - l = 0: s-Orbitale
 - l = 1 : p-Orbitale
 - l = 2: *d*-Orbitale
 - l = 3: *f*-Orbitale
 - l = 4: g-Orbitale, usw.
- 3. Es gibt 2l+1 Orbitale von jedem Typ, d.h. ein s-, drei p-, fünf d- und sieben f-Orbitale. Dies ergibt sich aus den 2l+1 Werten, die die Magnetquantenzahl m_l annehmen kann. m_l bestimmt die Orientierung der Orbitale im Koordinatensystem.
- 4. Es gibt *n* Typen von Orbitalen auf dem *n*-ten Energieniveau. Beispielsweise hat das dritte Energieniveau *s*-, *p* und *d*-Orbitale.
- 5. In den *radialen* Verteilungsfunktionen aller Orbitale treten n l 1 Knoten auf, z. B. im 3s-Orbital zwei, in den 4*d*-Orbitalen je ein Knoten.
- 6. In den *winkelabhängigen* Verteilungsfunktionen aller Orbitale gibt es *l* Knotenflächen. Zum Beispiel haben *s*-Orbitale keine und *d*-Orbitale zwei Knotenflächen.

Atome mit mehr als einem Elektron

Mit Ausnahme von Unsölds Theorem, bezieht sich alles, was bisher besprochen worden ist, ausschließlich auf das Wasserstoffatom, das einzige Atom, für das die Schrödinger-Gleichung exakt gelöst werden kann. Wenn der richtige Wert für die Kernladungszahl Z eingesetzt wird, können diese Ergebnisse ohne weiteres auf Ionen mit einem Elektron wie He⁺, Li²⁺, Be³⁺ usw. ausgedehnt werden, die ja isoelektronisch mit dem Wasserstoffatom sind. Das nach dem Wasserstoffatom einfachste Atom Helium besteht aus einem Kern und zwei Elektronen. Daher haben wir drei Wechselwirkungen, die Anziehung zwischen Elektron 1 und dem Kern und die zwischen Elektron 2 und dem Kern sowie die Abstoßung zwischen den Elektronen 1 und 2. Dies ist ein Beispiel für das klassische Dreikörper-Problem in der Physik, das nicht exakt gelöst werden kann. Wir können jedoch durch eine Folge von Näherungen der Lösung bis zu einem hohen

¹¹ Diese Orbitale werden in Kapitel 11 diskutiert und abgebildet.

Genauigkeitsgrad nahekommen. Für einfache Atome wie Helium ist das nicht allzu schwierig, aber für schwerere Atome nimmt die Zahl der Wechselwirkungen, die berücksichtigt werden müssen, in einem beängstigenden Maße zu, und die Rechnungen werden außerordentlich mühsam.

Man hat verschiedene Näherungsverfahren angewandt, die wir hier nicht näher untersuchen wollen. Wir wollen nur eine der genaueren Methoden auf leicht faßbare Weise beschreiben. Man bezeichnet sie als *Hartree-Fock*-Methode nach den Forschern, die sie entwickelt haben, oder als *self-consistent-field* (SCF)Methode (Methode des selbstkonsistenten Feldes). Sie besteht in folgendem Vorgehen:

(1) Man nimmt für jedes der in einem Atom vorhandenen Elektronen bis auf eines eine plausible Wellenfunktion an. (2) Man berechnet den Einfluß, den das Feld des Kerns und der übrigen Elektronen auf das gewählte Elektron ausübt. (3) Man berechnet unter Berücksichtigung der Feldwirkung der übrigen Elektronen für dieses Elektron eine Wellenfunktion. Dann wird ein anderes Elektron herausgenommen und für dieses eine verbesserte Wellenfunktion berechnet. Dabei wird neben dem Feld der übrigen Elektronen auch der Beitrag der berechneten Wellenfunktion für das zuerst gewählte Elektron berücksichtigt. Dieses Vorgehen wird fortgesetzt, bis die Wellenfunktionen für alle Elektronen verbessert worden sind. Der Zyklus beginnt dann erneut. Mit Hilfe des Feldes, das sich aus den in erster Näherung berechneten Wellenfunktionen für die übrigen Elektronen ergibt, wird die Wellenfunktion für das erste Elektron in zweiter Näherung verfeinert usw. Der Zyklus wird so oft wiederholt, bis bei der weiteren Verfeinerung der Wellenfunktion praktisch keine Änderung mehr eintritt. An diesem Punkt kann man die Wellenfunktion als selbstkonsistent bezeichnen und als eine ziemlich genaue Beschreibung des Atoms ansehen.

Berechnungen wie diese lassen erkennen, daß die Orbitale in anderen als in Wasserstoffatomen sich nicht grundlegend von den zuvor besprochenen Wasserstoff-Orbitalen unterscheiden. Der wesentliche Unterschied liegt in der Auswirkung der höheren Kernladung – alle Orbitale sind etwas geschrumpft. Es ist üblich, solche Orbitale, die durch die betreffende Kernladungszahl angeglichen worden sind, als wasserstoffähnliche Orbitale zu bezeichnen. Die Energie dieser Orbitale wächst bei einer gegebenen Hauptquantenzahl in der Reihenfolge s . Bei den höheren Hauptquantenzahlen kanneine Änderung der Orbitalfolge eintreten, zum Beispiel $6s < 5d \approx 4f < 6p$ usw. Die Energie eines gegebenen Orbitals hängt von der Kernladung (Ordnungszahl) ab, durch die die verschiedenen Orbitale in unterschiedlichem Maße beeinflußt werden. Daher gibt es keine eindeutige Reihenfolge der Orbitalenergien, die für alle Elemente ohne Ausnahme gültig ist¹². Dennoch hat sich die folgende Ordnung als außerordentlich $5d \approx 4f < 6p < 7s < 6d \approx 5f$. Zwar wird von keinem Element bei dem Einbau seiner Elektronen die gesamte Ordnung befolgt, jedoch ist diese in bezug auf die Anordnung der Außen- oder Valenzelektronen für alle Elemente bemerkenswert genau. Zum Beispiel muß das Valenzelektron des Kaliums zwischen dem 3d- und dem 4s-Orbital wählen, und es wird, wie aus dieser Reihe abgeleitet, im 4s-Orbital gefunden. Man sollte die obige Ordnung nur als grobe Richtschnur für die Besetzung von Energieniveaus ansehen (vgl. "Aufbau-Prinzip", S. 34). In vielen Fällen haben die Orbitale sehr ähnliche Ener-

¹² F.L. Pilar, J. Chem. Educ. 1978, 55, 2; E.R. Scerri, ibid. 1989, 66, 481; L.G. Vanquickenborne, K. Pierloot, D. Devoghel, Inorg. Chem. 1989, 28, 1805.

Abb. 2.12 Gedächtnishilfe zur näherungsweisen Bestimmung der Reihenfolge, in der die Orbitale mit Elektronen besetzt werden [nach T. Moeller, *Inorganic Chemistry*, Wiley, New York, 1952]

gien, so daß geringfügige Änderungen in der Atomstruktur zwei Niveaus vertauschen und die Reihenfolge der Besetzung umkehren können. Trotzdem ist die obige Reihe ein nützlicher Führer in den Aufbau der Elektronenhülle, wenn man beachtet, daß Ausnahmen vorkommen können. Ein praktisches mnemotechnisches Diagramm (Abb. 2.12) ist von Moeller¹³ aufgestellt worden. Um sich die Reihenfolge der Besetzung ins Gedächtnis zuzrückzurufen, braucht man nur den Pfeilen und Symbolen von einem Orbital zum nächsten zu folgen.

Der Elektronenspin und das Pauli-Prinzip

Um die räumliche Verteilung von Elektronen in Atomen zu beschreiben, sind, wie wir nach unseren Erfahrungen mit den Teilchen im Kasten wissen, drei Quantenzahlen nötig. Wollen wir aber ein Elektron in einem Atom *vollständig* charakterisieren, brau-

¹³ T. Moeller, Inorganic Chemistry, Wiley, New York, 1952, S. 97.

chen wir noch eine vierte Quantenzahl, die Spinquantenzahl m_s . Sie ist erforderlich, weil jedes Elektron ein magnetisches Moment besitzt, das gequantelt ist und in einem angelegten Magnetfeld zwei Orientierungen einnehmen kann: parallel oder entgegengesetzt zum Feldstärkevektor des angelegten Feldes. Die Größe dieses magnetischen Momentes ist durch den Ausdruck

$$\mu = 2.00 \left| s(s+1) \right| \tag{2.14}$$

gegeben, wobei das Moment (μ) in der Einheit Bohrsches Magneton (B. M.)¹⁴ ausgedrückt wird und s = m_s .

Die Spinquantenzahl m_s kann nur die Werte $+\frac{1}{2}$ und $-\frac{1}{2}$ annehmen. Bei einem Atom mit zwei Elektronen können die Spins entweder parallel (Gesamtspinquantenzahl $S = \frac{1}{2} + \frac{1}{2} = 1$) oder entgegengesetzt $S = \frac{1}{2} - \frac{1}{2} = 0$) sein. Im zweiten Fall nennt man die Elektronen gepaart. Atome, die nur gepaarte Elektronen aufweisen (S = 0) werden von einem inhomogenen Magnetfeld schwach abgestoßen; man bezeichnet sie als diamagnetisch. Atome mit einem oder mehreren ungepaarten Elektronen (S > 0) werden von einem inhomogenen Magnetfeld stark angezogen; man bezeichnet sie als paramagnetisch.

Elektronen mit gleichem Spin stoßen sich gegenseitig stark ab und versuchen, verschiedene Bereiche im Raum einzunehmen. Das ist die Folge eines grundlegenden Gesetzes, das als das Ausschließungsprinzip von Pauli bekannt ist. Es sagt aus, daß die Gesamtwellenfunktionen (einschließlich Spin) ihr Vorzeichen ändern müssen, wenn zwei Elektronen in dem System vertauscht werden (die Wellenfunktionen müssen antisymmetrisch sein). Dies bedeutet, kurz gesagt, daß zwei Elektronen, wenn sie im Spin übereinstimmen, unterschiedliche räumliche Wellenfunktionen haben, d. h. verschiedene Orbitale einnehmen müssen oder daß, wenn sie dasselbe Orbital besetzen, ihre Spins gepaart sein müssen. Das Pauli-Prinzip und die sogenannten Paulischen Abstoßungskräfte¹⁵ haben weitreichende Konsequenzen in der Chemie. Für unsere Behandlung soll hier jedoch nur folgendes festgehalten werden: *in einem Atom dürfen niemals zwei* Elektronen *in allen vier Quantenzahlen übereinstimmen*. Das bedeutet, daß in einem gegebenen Orbital, das durch *n*, *l*, und *m_l* gekennzeichnet ist, maximal zwei Elektronen (mit $m_s = +1/2$ und $m_s = -1/2$) enthalten sein können.

Damit können wir jetzt den auf S. 30 angegebenen 6 Regeln noch eine hinzufügen:

7. Ein Orbital kann nur zwei Elektronen enthalten, entsprechend den beiden erlaubten Zuständen $m_s = \pm \frac{1}{2}$.

¹⁴ Das Bohrsche Magneton entspricht dem Faktor $e \cdot h/4\pi m$ und hat in SI-Einheiten den Wert 9.27 $\cdot 10^{-24}$ A m² oder JT⁻¹. Weitere Einzelheiten zur Frage des Elektronenspins und des magnetischen Verhaltens von Atomen findet man bei A. Weiss, H. Witte, *Magnetochemie, Grundlagen und Anwendungen*, VCH, Weinheim, 1973, S. 110 und 122.

¹⁵ Die Pauli-, Kraft" entspricht nicht einer klassischen Wechselwirkung, sondern ergibt sich aus der Quantenmechanik. Zwar ist es in der Chemie üblich, von "Abstoßung" und "Stabilisierungsenergien" zu sprechen, die aus dem Pauli-Prinzip folgen, jedoch gehen diese nicht direkt aus den Spin-Spin-Wechselwirkungen hervor, sondern resultieren aus den elektrostatischen Energien, die sich aus der räumlichen Verteilung der Elektronen als Folge des Paulischen Ausschließungsprinzips ergeben. Vgl. W.J. Kauzman, Quantum Chemistry, Academic Press, New York, 1957, S. 319-320; F.A. Matsen, J. Am. Chem. Soc., 1970, 92, 3525.

Das Aufbauprinzip

Die Verteilung der Elektronen auf die Orbitale, das heißt die *Elektronenkonfiguration*, kann durch Anwendung des Pauli-Prinzips und der oben angegebenen Reihenfolge der Energieniveaus erhalten werden. Die Methode zur Bestimmung des *Grundzustandes* eines Atoms (der Elektronenkonfiguration, die die geringste Energie besitzt) benutzt das *Aufbauprinzip* oder den schrittweisen "Aufbau" der Atome. Dabei werden dem Kern Protonen hinzugefügt und Elektronen in die Orbitale eingebaut, bis das gewünschte Atom erreicht ist. Dies ist zwar nur ein Formalismus, um zu der gewünschten Elektronenkonfiguration zu gelangen, jedoch ein außerordentlich nützlicher.

Durch die Quantenzahlen n, l und m_i werden die möglichen Orbitale eines Atoms beschrieben. Diese können nach ihren Energien geordnet werden. Der Grundzustand des Wasserstoffatoms ist der, bei dem sich das Elektron in dem niedrigsten, dem 1s-Orbital befindet. Der Spin des Elektrons kann eine der beiden möglichen Orientierungen haben, von denen keine bevorzugt ist. Wir sollten daher eine statistische Verteilung der Spins erwarten. Und tatsächlich wird, wenn man einen Strom von Wasserstoffatomen durch ein Magnetfeld leitet, eine Hälfte in die eine und die andere Hälfte in die andere Richtung abgelenkt. Die vier Quantenzahlen $(n, l, m_l und m_s)$ für das Elektron eines Wasserstoffatoms sind also 1, 0, 0 und $\pm 1/2$. Für das Heliumatom können wir mit einem Wasserstoffatom anfangen und ihm ein Proton zum Kern sowie ein zweites Elektron hinzufügen. Die ersten drei Quantenzahlen für dieses zweite Elektron stimmen mit denen für ein Wasserstoff-Elektron überein, d.h., das Elektron besetzt ebenfalls den niedrigst möglichen Energiezustand, das 1s-Orbital. Der Spin muß jedoch dem des ersten Elektrons entgegengesetzt sein. So sind die Quantenzahlen für die beiden Elektronen in einem Heliumatom 1, 0, 0, +1/2 und 1, 0, 0, -1/2. Das 1s-Orbital ist nun voll besetzt, und beim Lithiumatom muß der Einbau des dritten Elektrons in das energetisch nächstliegende 2s-Orbital erfolgen. Im folgenden sind die Elektronenkonfigurationen der ersten fünf Elemente sowie die Quantenzahlen für das jeweils letzte Elektron angegeben¹⁶:

$_{1}H = 1s^{1}$	1, 0, 0, $\pm \frac{1}{2}$
$_{2}$ He = 1 s^{2}	1, 0, 0, $\pm \frac{1}{2}$
$_{3}\text{Li} = 1s^2 2s^1$	2, 0, 0, $\pm \frac{1}{2}$
$_4\text{Be} = 1s^2 2s^2$	2, 0, 0, $\pm \frac{1}{2}$
$_{5}B = 1s^{2}2s^{2}2p^{1}$	2, 1, 1, $\pm \frac{1}{2}$

Das Verfahren kann, Elektron für Elektron, fortgesetzt werden, bis alle Elemente behandelt sind. Tab. 2.1 (Seite 12) gibt eine vollständige Aufstellung der Elektronenkonfigurationen der Elemente. Man kann erkennen, daß zwischen diesen experimentell ermittelten Konfigurationen und einer entsprechenden Tabelle, die nach dem Aufbauprinzip konstruiert wäre, nur wenige Unterschiede bestehen. Bei allen Abweichungen

¹⁶ Die m_y -Werte für das ungepaarte Elektron von H, Li und B sind natürlich nicht festgelegt und können + 1/2 oder - 1/2 sein. Zwingend ist lediglich, daß das Vorzeichen von m_y für das bei He oder Be hinzukommende Elektron dem für das bei H und Li bereits vorhandene Elektron entgegengesetzt ist. Ebenso kann das letzte Elektron von Bor entweder das p_x -, das p_y - oder das p_z -Orbital besetzen – die energetisch alle gleich sind – und daher den m_r -Wert – 1, 0 oder + 1 haben.

liegen die betreffenden Energieniveaus außerordentlich dicht beieinander. Faktoren, die hier nicht besprochen worden sind, können ihre Reihenfolge umkehren. Zum Beispiel liegen die (n-1)d- und die ns-Niveaus, wenn sie aufgefüllt werden, sehr dicht beieinander. Dabei haben die ns-Niveaus eine etwas niedrigere Energie. Wenn sich eine besondere Stabilisierung ergibt, wie bei einer halb oder voll besetzten Unterschale (Kap. 11), kann es sein, daß $(n-1) d^x ns^2$ nicht mehr die stabilste Anordnung ist. Bei Cr und Cu ist die zusätzliche Stabilisierung durch eine halb besetzte bzw. eine gefüllte Unterschale offensichtlich so groß, daß $3d^5 4s^1$ bzw. $3d^{10} 4s^1$ und nicht $3d^4 4s^2$ bzw. $3d^9 4s^2$ zur Konfiguration des Grundzustandes der isolierten Atome wird. Trotzdem sollte man solchen Abweichungen keine allzu große Bedeutung beimessen. Ihr Einfluß auf die Chemie dieser beiden Elemente ist gering. Es ist zwar richtig, daß Kupfer in der Oxidationsstufe + 1 (entsprechend $3d^{10} 4s^0$) ziemlich stabil ist, jedoch ist die Stufe +2 in den meisten Medien noch stabiler. Beim Chrom ist in wässriger Lösung Cr^{3+} das beständigste Ion, wenn auch das Cr²⁺-Ion (in stark saurer Lösung) und die Oxidationsstufe +6 (wie in CrO_4^{2-}) einigermaßen stabil sind; die Oxidationsstufe +1 ist in wässriger Lösung praktisch unbekannt. Sowohl bei Cu²⁺ als auch bei Cr³⁺ (des gleichen bei vielen anderen Übergangsmetall-Ionen) sind in Komplexen die Ligandenfeldeinflüsse (vgl. Kap. 11) für die Stabilität der Oxidationsstufen wichtiger als die Elektronenkonfiguration des freien Ions.

Bei den Lanthanoiden (Elemente 58–71) und den unmittelbar auf sie folgenden Elementen liegen die 5*d*- und die 4*f*-Niveaus außerordentlich dicht beieinander. Im Lanthanatom scheint das 57. Elektron eher das 5*d*- als das 4*f*-Niveau zu besetzen. Danach beginnt der Elektroneneinbau in das 4*f*-Niveau, und einige Lanthanoide scheinen überhaupt keine 5*d*-Elektronen zu haben. Vom Standpunkt des Chemikers aus lohnt es sich auch hier wieder nicht, den Feinheiten der Elektronenkonfiguration zu viel Aufmerksamkeit zu schenken – sie kann durchaus irreführend sein. Die Energiedifferenz zwischen einer 4*f*^m 5*d*ⁿ⁺¹- und einer 4*f*^{m+1} 5*d*ⁿ-Konfiguration ist sehr gering. Man merkt sich am besten, daß sich alle Lanthanoid-Elemente so verhalten, als hätten sie eine Elektronenkonfiguration 4*f*ⁿ 5*d*¹ 6*s*², d. h. die stabilste Oxidationsstufe ist in allen Fällen +3, entsprechend der Abgabe von drei Elektronen (5*d*¹ und 6*s*²). Es gibt noch weitere "Anomalien" bei den Elektronenkonfigurationen verschiedener Elemente, doch sind sie vom chemischen Standpunkt aus von geringer Bedeutung.

Wenn auch das Aufbauprinzip und die angegebene Reihenfolge der Orbitale ohne weiteres zur Bestimmung von Elektronenkonfigurationen benutzt werden können, muß hier wieder betont werden, daß es sich nur um einen Formalismus handelt, der zu schwerwiegenden Irrtümern führen kann, wenn er kritiklos angewandt wird. So ist zum Beispiel in den Atomen der Elemente Kalium, Calcium und Scandium das 4s-Niveau energieärmer als das 3d-Niveau. Das trifft aber nicht für schwere Elemente oder geladene Ionen zu. Die Energien der verschiedenen Orbitale werden stark beeinflußt durch die Änderung der Kernladung und die Besetzung anderer Orbitale mit Elektronen (vgl. "Abschirmung", S. 40). Das macht die Aufstellung einer absoluten Reihenfolge der Orbitalenergien unmöglich. Die in Abb. 2.11 angegebene Folge beschreibt die Verhältnisse jedoch recht gut, soweit es sich um die Orbitale der Valenzschale eines Atoms handelt, d. h., die Energieangaben 3d < 4s und 5p < 4d stimmen beispielsweise für die Elemente Kalium und Yttrium, nicht aber unbedingt für andere.

Atomzustände, Termsymbole und (erste) Hundsche Regel

Es ist zweckmäßig, die Energie, den Drehimpuls und die Spinmultiplizität eines Atoms durch Symbole wiedergeben zu können. Für das Wasserstoffatom beispielsweise können wir S-, P-, D- und F-Zustände definieren, je nachdem, ob das einzelne Elektron ein s-, p-, d- oder f-Orbital besetzt. Der Grundzustand des Wasserstoffs, $1s^1$, ist ein S-Zustand; ein Wasserstoffatom, das bis zur $2p^1$ -Konfiguration angeregt ist, befindet sich in einem P-Zustand usw. Ein Atom mit mehreren Elektronen befindet sich dann in einem P-Zustand, wenn es den gleichen Gesamtdrehimpuls (summiert über alle Elektronen) hat wie ein Wasserstoffatom in einem P-Zustand. Zu den Zuständen S, P, D, F, ... gehören Quantenzahlen L = 0, 1, 2, 3, ..., die den l-Werten für s-, p-, d- und f-Orbitale entsprechen¹⁷. Des gleichen gibt es eine Quantenzahl S (nicht zu verwechseln mit dem eben erwähnten S-Zustand), die die Summe aller Elektronenspins ist (vgl. S. 33). Für eine abgeschlossene Schale oder Unterschale ist verständlicherweise S = 0, weil alle Elektronen gepaart sind. Etwas weniger offensichtlich ist, daß unter diesen Bedingungen L = 0 ist, da sich alle Bahnmomente gegenseitig aufheben. Das vereinfacht das Arbeiten mit Zuständen und Termsymbolen erheblich.

Der Chemiker verwendet oft einen Begriff, der als Multiplizität M bekannt ist und ursprünglich aus der Aufspaltung (Feinstruktur) von Spektrallinien abgeleitet worden ist. Die Multiplizität hängt von der Zahl der ungepaarten Elektronen ab und wird durch den Ausdruck M = 2S + 1 wiedergegeben. Das bedeutet: für S = 0 ist die Multiplizität eins, und der Zustand wird Singulett (anglisiert häufig Singlett) genannt. Für S = 1/2 ist die Multiplizität zwei, und es handelt sich um einen Dublett-Zustand. S = 1entspricht einem Triplett-Zustand usw. Die Regel der maximalen Multiplizität von Friedrich Hund (erste Hundsche Regel) besagt, daß der Grundzustand eines Atoms stets derjenige mit der größten Multiplizität (d.h. mit dem größten Wert von S) ist. Betrachten wir ein Kohlenstoffatom $(1s^1 2s^2 2p^2)$: die gefüllten Orbitale 1s und 2s können wir außer Betracht lassen. Die beiden 2p-Elektronen können sich gepaart in demselben Orbital (S = 0) oder mit parallelen Spins in verschiedenen Orbitalen aufhalten (S = 1). Die Hundsche Regel sagt aus, daß die zweite Anordnung, also ein Triplett-Zustand, der Grundzustand ist. Für diesen Zustand ist L = 1. Daher können wir sagen, der Grundzustand von Kohlenstoff ist ein ³P-(ausgesprochen "Triplett- $P^{"}$ Zustand. Das Symbol "³ $P^{"}$ wird als *Termsymbol* bezeichnet.

Für viele Zwecke ist es praktisch, "Kästchendiagramme" von Elektronenkonfigurationen zu zeichnen, in denen Kästchen die einzelnen Orbitale symbolisieren und die Elektronen und ihre Spinrichtung durch Pfeile angegeben werden, zum Beispiel für das C-Atom:

↑↓	Ĵ↓	1	1	
1 <i>s</i> ²	$2s^2$		$2p^2$!

¹⁷ Diese Darstellung ist dem historischen Verlauf entgegengesetzt: die S-, P-, D- und F-Zustände sind spektroskopisch beobachtet und nach den Charakteristika der Serien [scharf, prinzipal ("Hauptserie"), diffus und fundamental] benannt worden. Später wurden die Symbole s, p, d und f auf Orbitale angewandt. Methoden zur Ermittlung der verschiedenen möglichen Werte von L und zur Bestimmung der Termsymbole werden im Anhang C angegeben. Dort wird auch die Frage der Kopplung zwischen Bahndrehimpuls und Spindrehimpuls allgemein behandelt.

Solche Zeichnungen sind nützlich, um Elektronenkonfigurationen anzugeben, da sie Fächer für die Unterbringung der Elektronen vorsehen. Doch sei der Leser gewarnt: sie können bei falscher Benutzung zu Irrtümern führen, speziell im Hinblick auf Termsymbole!

Üblicherweise wird die 1. Hundsche Regel mit der Annahme erklärt, daß die Elektronenabstoßung bei einem "high-spin"-Zustand geringer ist. In Wirklichkeit haben wir aber gesehen (S. 33), daß Elektronen gleichen Spins hochgradig korreliert sind und sich mehr abstoßen als solche entgegengesetzten Spins. Da Elektronen gleichen Spins sich aber gegenseitig ausweichen, schirmen sie die Kernladung füreinander jeweils weniger ab und die Anziehung zwischen Kern und Elektronen ist stärker und dominiert: dadurch wird die Gesamtenergie geringer¹⁸.

Die zusätzliche Stabilität von Konfigurationen mit parallelen Spins ist durch die Austauschenergie E_{ex} gegeben:

$$E_{\rm ex} = \sum \frac{N(N-1)}{2} K$$
 (2.15)

wobei N die Zahl der Elektronen parallelen Spins und K die Austauschenergie für 2 Elektronen ist. Da die Austauschenergie eine quadratische Funktion von N ist, nimmt sie mit der Zahl der parallelen Spins rasch zu. Die maximale Zahl paralleler Spins findet man bei den gefüllten und halbgefüllten Unterschalen, und die Austauschenergie ist für die sogenannte "besondere Stabilität" derartiger Konfigurationen verantwortlich¹⁹.

Periodizität der Elementeigenschaften

Für Chemiker, die mit vielen verschiedenen Elementen arbeiten, ist das Periodensystem der Elemente so unentbehrlich, daß man leicht vergißt, daß es durchaus nicht einer göttlichen Eingebung entsprungen, sondern das Ergebnis harter Arbeit von zahllosen Chemikern ist. Es ist richtig, daß es eine quantenmechanische Grundlage für die Periodizität der Elemente gibt, wie wir bald sehen werden. Aber die Inspiration von Wissenschaftlern wie Mendelejeff und die harte Arbeit einer Anzahl von Chemikern des neunzehnten Jahrhunderts bescherte dem Chemiker die Vorteile des Periodensystems etwa ein halbes Jahrhundert, bevor die Existenz des Elektrons bewiesen wurde! Das Vertrauen, das Mendelejeff zu seiner Tabelle hatte, und seine aus ihr entwickelten Voraussagen²⁰ sollten für jeden Chemiker eine faszinierende Lektüre sein.

Die übliche lange Form des Periodensystems (Abb. 2.13) kann als eine graphische Wiedergabe der vorher besprochenen Regeln der Atomstruktur angesehen werden. Die Anordnung der Atome folgt natürlich aus dem Aufbauprinzip. Im Periodensystem werden die Senkrechten als Gruppen, die Waagerechten als Perioden bezeichnet. Die verschiedenen Gruppen der Tabelle können in folgender Weise eingeteilt werden:

¹⁸ R. Boyd, Nature, 1984, 310, 480.

¹⁹ A.B. Blake, J. Chem. Educ., 1981, 58, 393.

²⁰ Siehe M.E. Weeks, H.M. Leicester, Discovery of the Elements, 7th ed., Chemical Education Publ., Easton, 1968.

- 38 2 Die Struktur der Atome
- 1. Die erste und zweite Hauptgruppe²¹ mit den Alkali- und den Erdalkalimetallen: Diese Elemente sind durch die Valenzelektronenkonfiguration ns¹ und ns² charakterisiert; sie heißen daher auch s-Block-Elemente.
- 2. Der Block der Nebengruppen²¹: Hier werden die d-Orbitale aufgefüllt (d-Block-Elemente). Die erste Periode der Nebengruppen-Elemente zum Beispiel geht von Sc $(3d^1 4s^2)$ bis Zn $(3d^{10} 4s^2)$. Jedes dieser zehn Elemente steht am Kopf einer Familie verwandter Elemente (z. B. Chrom-Familie, sechste Nebengruppe). Alle Elemente in den Nebengruppen sind Metalle. Soweit die Atome im Grundzustand unvollständig gefüllte d-Orbitale haben, d. h. von d^1 bis d^9 , werden sie als Übergangsmetalle bezeichnet.
- 3. Die Lanthanoide und die Actinoide: Bei ihnen werden die f-Elektronen eingebaut (f-Block). Die beiden Reihen beginnen, wie vorausgesagt, mit Ce $(4f^1 \ 5d^1 \ 6s^2)$ bzw. Th $(5f^1 \ 6d^1 \ 7s^2)^{22}$ und enden mit Lu $(4f^{14} \ 5d^1 \ 6s^2)$ und Lr $(5f^{14} \ 6d^1 \ 7s^2)$. Aufgrund der Konfiguration $(n-1)d^1 \ ns^2$ in den äußersten Schalen kann man diese Elemente formal zur dritten Nebengruppe rechnen. Wegen ihrer bemerkenswerten Elektronenkonfiguration und chemischen Eigenschaften werden sie jedoch meist gesondert aufgeführt.
- 4. Die dritte bis achte Hauptgruppe mit den Nichtmetallen und den auf die Übergangsmetalle folgenden Metallen: Gemeinsam ist allen diesen Elementen (mit Ausnahme von He), daß bei ihnen die p-Orbitale aufgefüllt werden, die bei den Edelgasen dann vollständig besetzt sind (p-Elemente). Dem Fassungsvermögen von drei p-Orbitalen für sechs Elektronen entsprechend, umfaßt dieser Block sechs Gruppen. Die Charakterisierung dieser Elemente als Metalle oder Nichtmetalle ist schwierig, weil keine scharfe Unterscheidung zwischen Metall und Nichtmetall getroffen werden kann. Die Abgrenzung wird meist durch eine stufenförmige Trennungslinie vorgenommen, die vom Bor zum Astat verläuft (Abb. 2.13).

Nach einem Vorschlag der IUPAC sollen die Gruppen des Langperioden-Systems (Abb. 2.13) von 1 bis 18 durchnumeriert werden, wodurch die Bezeichnungen Hauptgruppen und Nebengruppen überflüssig werden. Die Alkali- und Erdalkalimetalle bilden danach die Gruppen 1 und 2, die *d*-Elemente die Gruppen 3 bis 12 und die Hauptgruppenelemente die Gruppen 13 (Borgruppe) bis 18 (Edelgase). Da diese Numerierung im internationalen Schrifttum häufig verwendet wird, ist sie in Abbildung 2.13 zusätzlich eingetragen worden.

²¹ Anmerk. d. Übers.: Häufig wird zwischen "A"-Gruppen und "B"-Gruppen im Periodensystem unterschieden, jedoch nicht in einheitlicher Form. Das amerikanische Original dieses Buches benutzt "A" für die Hauptgruppen und "B" für die Nebengruppen. Diese Bezeichnungsweise hat den Vorteil, daß aus ihr auf die Orbitale geschlossen werden kann, in die das jeweils neu hinzukommende Elektron eingebaut wird. Die Regelungen der IUPAC stehen dem jedoch entgegen. Nach ihnen reichen z. B. in der vierten Periode die "A-"Gruppen von K bis Ni, die "B"-Gruppen von Cu bis Kr (Internationale Union für Reine und Angewandte Chemie: Regeln für die Nomenklatur der Anorganischen Chemie, Regel 2.21, in: Deutscher Zentralausschuß für Chemie, Internationale Regeln für die chemische Nomenklatur und Terminologie, deutsche Ausgabe, Band 2, Verlag Chemie, Weinheim, 1976). Um Mißverständnisse durch die uneinheitliche "A"-"B"-Kennzeichnung zu vermeiden, ist in der deutschen Übersetzung dieses Buches vollständig darauf verzichtet worden. Stattdessen werden ausschließlich die Begriffe Hauptgruppe (Einbau von s- und p-Elektronen) und Nebengruppe (Einbau von d- und f-Elektronen) verwandt.

²² Thorium "sollte" wiederum die Konfiguration 5f¹ 6d¹ 7s² haben. Tab. 2.1 zeigt jedoch, daß man experimentell etwas anderes findet. Dies ist, soweit es den Chemiker betrifft, wieder nur eine lästige "Störung" in dem regelmäßigen Aufbau des Periodensystems - die charakteristische Oxidationsstufe ist in jedem Falle Th^{IV}.

		r	1	•	$\boldsymbol{\mathcal{C}}$	—			<u> </u>	r		r	ר				
					VIII (18)		4 He	°, Se	18 Ar	36 Kr	S4 Xe	86 Rn					
							VII (17)	9 F	<u>ت</u>	Br 35	53	85 At					
	Þ			netalle			VI (16)	80	16 S	34 Se	52 Te	84 Po				Lu -	103 Lr
	E.			Nichtn			V (15)	۲Z	P IS	33 As	S ⁵ 1	8 ia				70 Yb	No 102
				ļ			IV (14)	c c	5. 14 Si	6 33 6	Sn S0	Pb 82				69 T	101 PM
							111 (13)	5 B	AI 13	31 Ga	49 In	≅F				68 Er	8 E
				•					п (12)	30 Zn	Cd 48	80 Hg				67 Ho	59 Es
den								ſ	I (11)	Cn 39	47 Ag	79 Au			ente	06 Dy	3 %
füllt wer									٤	28 Ni	Pd 46	78 Pt			ngselemo	55 T5	97 Bk
ie aufge								ų	₽́(–́®	27 Co	Rh 45	11	109	alle	Überga (n-2	2 B	% E
halen, d	p		nbhen			ruppen		selement	$\int^{\mathfrak{S}}$	26 Fe	8u Ru	76 0s		Meta	imere	63 Eu	95 Am
Untersc	(<i>n</i> -1)	Hauntan	17 nhrfi			Nebeng		bergang	ПУЄ	25 Mn	43 Tc	75 Re	107			62 Sm	25
								Û	(9)	24 Cr	42 Mo	74 W	106			Pm Pm	93 Np
									v (5)	23 V	14 N 0 0	73 Ta	105 Ha			99 P2	23 0
									IV (4)	22 Ti	40 Zr	72 Hf	104 Rf			8 F	91 Pa
									III (3)	21 Sc	39 Y	57* La	89* Ac*			د % د	84
			ſ	~ H		:	-0	4 g	12 Mg	20 Ca	38 Sr	56 Ba	88 Ra		·	noide	oide
	52 (*	- 1	=	۰	- E	3 Li	11 Na	19 K	37 Rb	SS Cs	87 Fr	}		Lantha	Actine
		<i>ر</i>	ahl	L			L						L			*	**
		Haunt	quantenz	ب ۲	-			2	ю	4	Ś	9	٢				

Wenn man dem Periodensystem folgt, kann man das Aufbauprinzip erkennen. Betrachten wir die Elemente von Cs (Z = 55) bis Rn (Z = 86). Bei den Elementen Cs und Ba besetzen die Elektronen das 6s-Niveau und füllen es. Das nächste Elektron geht auf das 5d-Niveau; La (Z = 57) kann daher als ein Übergangselement angesehen werden. Bei den Elementen Ce bis Lu werden die Elektronen in die weiter innen liegenden 4f-Orbitale eingebaut. Deshalb werden diese Elemente, die Lanthanoide, auch als innere Übergangselemente bezeichnet. Nachdem das 4f-Niveau beim Lu gefüllt ist, fahren die folgenden Elektronen bei den Elementen Hf bis Hg fort, die 5d-Orbitale aufzufüllen, und schließlich wird, in Übereinstimmung mit Tab. 2.1, bei den Elementen Tl bis Rn das 6p-Niveau aufgefüllt. Das Periodensystem kann daher ebenso einfach wie die oben angegebenen Regeln dazu benutzt werden, die Elektronenkonfiguration eines Elementes abzuleiten. Es sollte jedoch klargestellt werden, daß das Periodensystem nur die chemischen Kenntnisse wiedergeben kann, die wir zu seiner Aufstellung benutzt haben, und daß es nicht von sich aus eine Quelle der Erkenntnis ist. Es ist nützlich, um die Informationen, die wir in Bezug auf Elektronenkonfigurationen und andere atomare Eigenschaften besitzen, wiederzugeben und zueinander in Beziehung zu setzen.

Abschirmung

Die Energie eines Elektrons in einem Atom ist eine Funktion von Z^2/n^2 . Da die Kernladung Z (Ordnungszahl) schneller wächst als die Hauptquantenzahl n, könnte man erwarten, daß die Energie, die erforderlich ist, um ein Elektron aus einem Atom zu entfernen, mit wachsender Ordnungszahl kontinuierlich ansteigt. Dies ist jedoch nicht so, wie ein Vergleich von Wasserstoff (Z = 1) mit Lithium (Z = 3) zeigt. Die Ionisierungsenergien betragen für H 1312 kJ mol⁻¹ und für Li 520 kJ mol⁻¹. Aus zwei Gründen ist die Ionisierungsenergie von Lithium niedriger: (1) Der mittlere Kernabstand eines 2s-Elektrons ist größer als der eines 1s-Elektrons (vgl. Abb. 2.6). (2) Das 2s-Elektron im Lithium wird von den beiden 1s-Elektronen der inneren Schale abgestoßen. Dadurch kann das 2s-Elektron leichter entfernt werden, als wenn die innere Schale nicht existierte. Man kann diese Abstoßung durch die innere Schale auch als "Abschirmung" des Kerns durch die inneren Elektronen beschreiben, so daß das Valenzelektron nur einen Teil der Kernladung "fühlt". Daher wird die Ionisierungsenergie des Lithiums von einer effektiven Kernladungszahl bestimmt, die zwischen eins und zwei liegt. Die radialen Wahrscheinlichkeitsfunktionen für wasserstoffähnliche Orbitale sind früher besprochen worden (Abb. 2.6). Der größte Teil der Elektronendichte im 1s-Orbital liegt zwischen dem Kern und dem Hauptteil der Elektronendichte im 2s-Orbital. Die Gesetze der Elektrostatik sagen folgendes: wenn sich eine bestimmte Ladung (2s-Elektron) außerhalb eines Ladungs-, Käfigs" befindet, wie er durch die 1s-Elektronen dargestellt wird, ist das Potential so groß, als wenn diese 1s-Elektronen im Zentrum (Kern) lokalisiert wären. In diesem Falle wäre das Valenzelektron im 2s-Orbital einem Potential ausgesetzt, das einer effektiven Kernladungszahl von eins $(Z_{eff} = 1.0)$ entspräche. Für eine Ladung, die ganz in den Käfig eindringt, wäre die Abschirmung nicht wirksam, so daß sie einem Potential ausgesetzt wäre, das der vollen Kernladungszahl Z = 3.0 entspräche. Das heißt nicht, daß sich die Energie des 2s-Elektrons durch das teilweise Eindringen in das 1s-Orbital ändert, sondern daß sie durch eine effektive Kernladungszahl Zeff bestimmt wird, die etwas kleiner ist als die tatsächliche Kernladungszahl Z:

$$Z_{eff} = Z - S. \tag{2.16}$$

Dabei ist S die sogenannte Abschirmungskonstante.

Da s-Elektronen ein oder mehrere Maxima nahe beim Kern haben, durchdringen sie stark die inneren Elektronenschalen und werden daher durch diese etwas weniger abgeschirmt als Elektronen in Orbitalen mit größeren *l*-Werten. Andererseits schirmen sie selber etwas besser ab als andere Elektronen. Orbitale mit hohen *l*-Werten wie *d*und *f*-Orbitale durchdringen die inneren Schalen weniger; Elektronen in solchen Orbitalen wirken daher viel weniger abschirmend.

In ähnlicher Weise kann man die radiale Verteilung von 3s-, 3p- und 3d-Orbitalen vergleichen (Abb. 2.6). Obwohl die d-Orbitale "kleiner" sind in dem Sinne, daß der wahrscheinlichste Radius in der Reihenfolge 3s > 3p > 3d abnimmt, bewirkt das Vorhandensein von einem Knoten und einem zwischen diesem und dem Kern liegenden Maximum beim 3p-Orbital und von zwei Knoten und zwei Maxima beim 3s-Orbital, daß diese beiden stärker durch den Kern beeinflußt werden. Daher wachsen die Energien dieser Orbitale in der Reihenfolge 3s < 3p < 3d, wie wir bereits früher bei der Auffüllung der verschiedenen Energieniveaus mit Elektronen gesehen haben.

Um das Ausmaß der Abschirmung abschätzen zu können, hat Slater²³ eine Reihe empirischer Regeln aufgestellt. Dabei sollte man sich vor Augen halten, daß diese Regeln vereinfachende Verallgemeinerungen sind, die auf dem *durchschnittlichen* Verhalten der verschiedenen Elektronen beruhen. Wenn auch die nach diesen Regeln erhaltenen Energien häufig nicht sehr genau sind, ermöglichen sie einfache Abschätzungen der Abschirmung und erweisen sich als nützlich für das Verständnis damit zusammenhängender Eigenschaften wie Atomgröße und Elektronegativität.

Wenn Sie die Abschirmungskonstante für ein Elektron in einem *np*- oder *ns*-Orbital berechnen wollen, beachten Sie folgendes:

1. Sie schreiben die Elektronenkonfiguration des Elementes in der angegebenen Reihenfolge und Gruppierung auf:

(1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) usw.

- 2. Elektronen, die sich in der obigen Reihe rechts von der (ns, np)-Gruppierung befinden, tragen nichts zur Abschirmungskonstanten bei.
- Durch alle übrigen Elektronen in der (ns, np)-Gruppe wird die Kernladungszahl f
 ür das Valenzelektron um je 0.35 abgeschirmt²⁴.
- 4. Alle Elektronen in der Schale n-1 schirmen um je 0.85 ab.
- 5. Alle Elektronen der Hauptquantenzahl n-2 oder niedriger schirmen vollständig ab, d. h. ihr Beitrag ist je 1.00. Wenn das Valenzelektron ein *nd*- oder *nf*-Elektron ist, bleiben die Regeln 2 und 3

unverändert, aber an die Stelle der Regeln 4 und 5 tritt Regel 6. 6. Alle Elektronen, die sich in Gruppierungen links von *nd* oder *nf* befinden, leisten

einen Beitrag von je 1.00.

²³ J.C. Slater, Phys. Rev., 1930, 36, 57.

²⁴ Mit Ausnahme des 1s-Orbitals, für das ein Wert von 0.30 bessser zu sein scheint.

Beispiele:

1. Betrachten wir ein Valenzelektron im Atom ₇N: $1s^2 2s^2 2p^3$. Als Eingruppierung der Orbitale ergibt sich $(1s)^2 (2s, 2p)^5$. Daraus folgt: $S = (2 \cdot 0.85) + (4 \cdot 0.35) = 3.10$.

 $Z_{eff} = Z - S = 7.0 - 3.1 = 3.9.$

- 2. Betrachten wir ein 4s-Valenzelektron im Atom $_{30}$ Zn. Die Gruppierung der Elektronen ist: $(1s)^2 (2s, 2p)^8 (3s, 3p)^8 (3d)^{10} (4s)^2$. Daraus ergibt sich $S = (10 \cdot 1.00) + (18 \cdot 0.85) + (1 \cdot 0.35) = 25.65$ und $Z_{eff} = 4.35$.
- 3. Betrachten wir ein 3*d*-Elektron im Zn-Atom. Die Gruppierung entspricht Beispiel 2, jedoch ergibt sich in diesem Fall $S = (18 \cdot 1.00) + (9 \cdot 0.35) = 21.15$; $Z_{eff} = 8.85$.

Wie man sieht, sind diese Regeln ein Versuch, die zuvor besprochenen Vorstellungen der radialen Verteilung zu verallgemeinern und in Zahlen zu fassen. Zum Beispiel werden *d*- und *f*-Elektronen durch die unmittelbar darunter liegenden Elektronen wirkungsvoller abgeschirmt (S = 1.00) als *s*- und *p*-Elektronen (S = 0.85). Andererseits gehen Slaters Regeln davon aus, daß alle Elektronen, *s*, *p*, *d* oder *f*, die weiter außen liegenden Elektronen gleich gut abschirmen (bei der Berechnung der Abschirmung wird der Typ des *abschirmenden* Elektrons nicht berücksichtigt). Das ist, wie wir oben gesehen haben, nicht ganz richtig und führt zu einem gewissen Fehler. Zum Beispiel bedeuten die Regeln, daß im Ga-Atom (... $3s^2 3p^6 3d^{10} 4s^2 4p^1$) das 4p-Elektron durch die 3d-Elektronen ebenso wirksam abgeschirmt wird wie durch die 3s- und 3p-Elektronen. Das steht im Widerspruch zu dem, was am Beginn dieses Abschnittes zu Abb. 2.6 gesagt worden ist.

Slater hat im Zusammenhang mit der Formulierung dieser Regeln einen Satz von Orbitalen für die Verwendung bei quantenmechanischen Berechnungen angegeben. Diese sogenannten Slater-Orbitale sind im Grundsatz wasserstoffähnliche Orbitale; sie weichen aber in zweierlei Hinsicht wesentlich von diesen ab:

- 1. Sie enthalten keine Knoten. Das vereinfacht sie erheblich, macht sie aber natürlich weniger genau.
- 2. Sie verwenden Z_{eff} statt Z, und für schwerere Atome wird n durch n_{eff} ersetzt; dabei wird n = 4 durch $n_{eff} = 3.7$, n = 5 durch $n_{eff} = 4.0$ und n = 6 durch $n_{eff} = 4.2$ ersetzt. Die Differenz zwischen n und n_{eff} wird als Quantendefekt bezeichnet.

Um die Schwierigkeiten und Ungenauigkeiten, die mit der vereinfachten Slater-Behandlung der Abschirmung verbunden sind, zu beheben, haben Clementi und Raimondi²⁵ effektive Kernladungen für die Atome von Wasserstoff bis Krypton aus self-consistent-field-Wellenfunktionen abgeleitet und sie zu einem Satz von Regeln zur Berechnung der Abschirmung für jedes beliebige Elektron zusammengefaßt. Die Abschirmung, die ein Elektron im Energieniveau *n* und einem Orbital $l(S_{nl})$ erfährt, ist gegeben durch:

$$S_{1s} = 0.3(N_{1s} - 1) + 0.0072(N_{2s} + N_{2p}) + 0.0158(N_{3s,p,d} + N_{4s,p})$$
(2.17)

$$S_{2s} = 1.7208 + 0.3601 \left(N_{2s} - 1 + N_{2p} \right) + 0.2062 \left(N_{3s, p, d} + N_{4s, p} \right)$$
(2.18)

²⁵ E. Clementi, D.L. Raimondi, J. Chem. Phys., 1963, 38, 2686.

$$S_{2p} = 2.5787 + 0.3326 (N_{2p} - 1) - 0.0773 N_{3s} - 0.0161 (N_{3p} + N_{4s}) - 0.0048 N_{3d} + 0.0085 N_{4p}$$
(2.19)

$$S_{3s} = 8.4927 + 0.2501 (N_{3s} - 1 + N_{3p}) + 0.0778 N_{4s} + 0.3382 N_{3d} + 0.1978 N_{4p}$$
(2.20)

$$S_{3p} = 9.3345 + 0.3803 (N_{3p} - 1) + 0.0526 N_{4s} + 0.3289 N_{3d} + 0.1558 N_{4p}$$
(2.21)

$$S_{4s} = 15.505 + 0.0971 (N_{4s} - 1) + 0.8433 N_{3d} + 0.0687 N_{4p}$$
(2.22)

$$S_{3d} = 13.5894 + 0.2693 (N_{3d} - 1) - 0.1065 N_{4p}$$
(2.23)

$$S_{4p} = 24.7782 + 0.2905 (N_{4p} - 1)$$
(2.24)

 N_{nl} bedeutet die Gesamtzahl der Elektronen im *nl*-Orbital und nicht, wie bei Slater, die um das betrachtete Elektron verminderte Zahl.

Für die oben gegebenen Beispiele werden folgende effektiven Kernladungen erhalten: $Z_{eff}(N) = 3.756, Z_{eff}(Zn, 4s) = 5.965$ und $Z_{eff}(Zn, 3d) = 13.987$. Die Abschirmungsregeln von Clementi und Raimondi berücksichtigen explizit das Eindringen von Elektronen äußerer Orbitale. Sie sind daher realistischer als die von Slater, jedoch um den Preis komplizierterer Berechnungen mit einer größeren Zahl von Parametern. Für den Fall, daß größere Genauigkeit erforderlich ist, als sich mit Slaters Regeln erreichen läßt, können aus SCF-Wellenfunktionen erhaltene effektive Kernladungen unmittelbar verwendet werden, was nicht nur einfach, sondern auch genau ist. Solche Z_{eff} -Werte sind in Tab. 2.2 aufgeführt. Nachdem diese genauen Werte zur Verfügung stehen, liegt die wesentliche Rechtfertigung für "Regeln", ob von Slater oder von Clementi und Raimondi, darin, daß sie einen Einblick in das Phänomen der Abschirmung vermitteln.

Die Größe der Atome

Die Atomgröße ist bestenfalls ein ziemlich nebulöser Begriff, weil ein Atom keine so wohl definierte Begrenzung haben kann wie etwa ein Billardkugel. Um die Frage "Wie groß ist ein Atom?' beantworten zu können, muß man zuerst die Fragen stellen "Wie können wir die Größe des Atoms messen?" und "Wie stark wollen wir es dabei zusammendrücken?" Wenn wir die Größe eines Xenonatoms in der relativ spannungsfreien Umgebung messen, in der es sich in festem Xenon befindet, können wir einen anderen Wert erwarten, als wenn die Messung mit Hilfe von heftigen Zusammenstößen durchgeführt wird. Ein Natrium-Ion sollte stärker komprimiert sein, wenn es in einem Kristallgitter (z. B. im NaF) fest gebunden vorliegt, als wenn es durch Moleküle geringer Polarität nur schwach solvatisiert ist. Die Frage, wie stark wir das Atom bei der Messung zusammendrücken, ist besonders wichtig, denn die Größe von Atomen zu bestimmen, gleicht der Aufgabe, eine überreife Apfelsine mit Hilfe einer Schublehre auszumessen - der Wert, den wir dabei erhalten, hängt davon ab, wie stark wie die Backen des Instrumentes zusammenpressen. Aus diesem Grunde ist es unmöglich, unter der Bezeichnung "Atomradien" einen einzigen Satz von Werten aufzustellen, den man unter allen Bedingungen anwenden kann. Es ist notwendig, sowohl die Bedingungen zu definieren, unter denen das Atom (oder Ion) existiert, wie auch die Meßmethode. Diese

Element	1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	3s	3 <i>p</i>	4 <i>s</i>	3 <i>d</i>	4 <i>p</i>
 Н	1.000							
He	1.688							
Li	2.691	1.279						
Be	3.685	1.912						
В	4.680	2.576	2.421					
С	5.673	3.217	3.136					
N	6.665	3.847	3.834					
0	7.658	4.492	4.453					
F	8.650	5.128	5.100					
Ne	9.642	5.758	5.758					
Na	10.626	6.571	6.802	2.507				
Mg	11.619	7.392	7.826	3.308				
Aľ	12.591	8.214	8.963	4.117	4.066			
Si	13.575	9.020	9.945	4.903	4.285			
Р	14.558	9.825	10.961	5.642	4.886			
S	15.541	10.629	11.977	6.367	5.482			
Cl	16.524	11.430	12.993	7.068	6.116			
Ar	17.508	12.230	14.008	7.757	6.764			
K	18.490	13.006	15.027	8.680	7.726	3.495		
Ca	19.473	13.776	16.041	9.602	8.658	4.398		
Sc	20.457	14.574	17.055	10.340	9.406	4.632	7.120	
Ti	21.441	15.377	18.065	11.033	10.104	4.817	8.141	
V	22.426	16.181	19.073	11.709	10.785	4.981	8.983	
Cr	23.414	16.984	20.075	12.368	11.466	5.133	9.757	
Mn	24.396	17.794	21.084	13.018	12.109	5.283	10.528	
Fe	25.381	18.599	22.089	13.676	12.778	5.434	11.180	
Со	26.367	19.405	23.092	14.322	13.435	5.576	11.855	
Ni	27.353	20.213	24.095	14.961	14.085	5.711	12.530	
Cu	28.339	21.020	25.097	15.594	14.731	5.858	13.201	
Zn	29.325	21.828	26.098	16.219	15.369	5.965	13.878	
Ga	30.309	22.599	27.091	16.996	16.204	7.067	15.093	6.222
Ge	31.294	23.365	28.082	17.760	17.014	8.044	16.251	6.780
As	32.278	24.127	29.074	18.596	17.850	8.944	17.378	7.449
Se	33.262	24.888	30.065	19.403	18.705	9.758	18.477	8.287
Br	34.247	25.643	31.056	20.218	19.571	10.553	19.559	9.028
Kr	35.232	26.398	32.047	21.033	20.434	11.316	20.626	9.769

 Tab. 2.2
 Effektive Kernladungen der Elemente 1–36

werden wir später in Kapitel 8 behandeln. Trotzdem ist es nützlich, bereits jetzt *Tendenzen* bei den Atomradien zu diskutieren, ohne dabei im Augenblick zu speziell auf die wirklichen Größen einzugehen.

Wie wir aus den radialen Verteilungsfunktionen gesehen haben, nimmt der wahrscheinlichste Radius mit wachsendem n zu. Dieser Tendenz wirkt der Einfluß der steigenden effektiven Kernladung entgegen, der zu einer Kontraktion der Orbitale führt. Aus diesen entgegengesetzt wirkenden Kräften erhalten wir folgende Ergebnisse:

1. Innerhalb einer Gruppe nimmt die Größe der Atome von einer Periode, d.h. einer horizontalen Reihe im Periodensystem, zur nächsten zu. Wegen der Abschirmung wächst Z_{eff} von einer Periode zur nächsten nur wenig. Zum Beispiel erhalten wir mit den Slater-Regeln in der ersten Hauptgruppe folgende Werte für Z_{eff} :

H 1.0 Li 1.3 Na 2.2 K 2.2 Rb 2.2 Cs 2.2
Die Auswirkung der entgegengesetzten Einflüsse von n und Z_{eff} ist, daß die Größe der Atome in dieser Gruppe von oben nach unten zunimmt. Das ist eine allgemeine Erscheinung im Periodensystem. Die wenigen unbedeutenden Ausnahmen werden später behandelt.

- 2. Innerhalb einer Periode ändert sich die Hauptquantenzahl nicht. (Auch in den langen Perioden, in denen die Besetzung in der Reihenfolge ns, (n-1)d, np erfolgt, befinden sich die äußeren Elektronen immer auf dem Niveau n). Die effektive Kernladung steigt jedoch stetig, da sich die Elektronen, die in die Valenzschale eingebaut werden, gegenseitig nur geringfügig abschirmen. Für die zweite Periode gelten die folgenden Z_{eff} -Werte:
 - Li 1.3 Be 1.95 B 2.60 C 3.25 N 3.90 O 4.55 F 5.20 Ne 5.85.

Als Folge ergibt sich eine stetige Kontraktion von links nach rechts. Aus der Abnahme der Größe von links nach rechts und der Zunahme von oben nach unten folgt, daß sich der Radius der Atome diskontinuierlich ändert. Es findet eine stetige Kontraktion mit wachsender Ordnungszahl statt, bis die Hauptquantenzahl zunimmt; dadurch wird ein plötzlicher Anstieg der Größe verursacht, dem eine erneute Abnahme folgt.

Ionisierungsenergie

Die Energie, die erforderlich ist, um ein Elektron von einem isolierten Atom in der Gasphase zu entfernen, nennt man die *Ionisierungsenergie* des betreffenden Atoms (oft auch als Ionisierungspotential bezeichnet). Sie ist die Energiedifferenz zwischen dem höchsten besetzten Energieniveau und dem Niveau, das $n = \infty$, also vollständiger Abspaltung des Elektrons, entspricht. Es ist möglich, mehr als ein Elektron zu entfernen; die entsprechenden Energien sind die zweite, dritte, vierte usw. Ionisierungsenergie. Der Ionisierungsvorgang ist *stets endotherm*. Ionisierungsenergien haben daher entsprechend der gebräuchlichen thermodynamischen Konvention immer ein positives Vorzeichen (vgl. Tab. 2.3). Die verschiedenen Ionisierungsenergien eines Atoms sind miteinander durch eine Polynomgleichung verknüpft, die später in desem Kapitel besprochen wird.

Für die Elemente der ersten und zweiten Hauptgruppe (Alkali- und Erdalkalimetalle) sowie die Nichtmetalle gibt es einen ziemlich einfachen Zusammenhang zwischen Ionisierungsenergie und Stellung im Periodensystem. Innerhalb einer Gruppe führt die Zunahme von n wegen der kombinierten Effekte von Größe und Abschirmung zu einer Abnahme der Ionisierungsenergie. Die Übergangsmetalle und die auf diese folgenden Hauptgruppenmetalle zeigen in dieser Hinsicht einige Anomalien, die später behandelt werden sollen (Kapitel 14 und 18). Innerhalb einer Periode besteht die allgemeine Tendenz, daß die Ionisierungsenergie mit wachsender Ordnungszahl ansteigt – eine Folge der Tatsache, daß Z_{eff} im Periodensystem von links nach rechts zunimmt. Zwei weitere Faktoren verhindern, daß dieser Anstieg monoton verläuft. Der eine besteht darin, daß sich der Typ des Orbitals ändert, aus dem das Elektron abgespalten wird: s-Orbital (2. Hauptgruppe); p-Orbital (3. Hauptgruppe). Der zweite ist die Austauschenergie von Elektronen mit gleichem Spin, die ein System von parallelen Elektronenspins stabilisiert, da Elektronen mit gleichem Spin als Folge des Pauli-Prinzips versuchen, einander

46 2 Die Struktur der Atome

Tab. 2.3 Ionisierungsenergien (MJ mol⁻¹; zur Umrechnung in Elektronenvolt multipliziert man mit 10.364)^{*a*}

z	Element	I	II	III	IV	v	VI	VII	VIII	IX	х
1	н	1.3120			·						
2	He	2.3723	5.2504								
3	Li	0.5203	7.2981	11.8149							
4	Be	0.8995	1.7571	14.8487	21.0065						
5	В	0.8006	2.4270	3.6589	25.0257	32.8266					
6	С	1.0864	2.3526	4.6205	6.2226	37.8306	47.2764				
7	N	1.4023	2.8561	4.5781	7.4751	9.4449	53.2664	64.3598			
8	0	1.3140	3.3882	5.3004	7.4693	10.9895	13.3264	71.3345	84.0777		
9	F	1.6810	3.3742	6.0504	8.4077	11.0227	15.1640	17.8677	92.0378	106.4340	
10	Ne	2.0807	3.9523	6.122	9.370	12.178	15.238	19.999	23.069	115.3791	131.4314
11	Na	0.4958	4.5624	6.912	9.544	13.353	16.610	20.115	25.490	28.934	141.3626
12	Mg	0.7377	1.4507	7.7328	10.540	13.628	17.995	21.704	25.656	31.643	35.462
13	Al	0.5776	1.8167	2.7448	11.578	14.831	18.378	23.295	27.459	31.861	38.457
14	Si D	0.7865	1.5771	3.2316	4.3555	16.091	19.785	23.786	29.252	33.877	38.733
15	P	1.0118	1.9032	2.912	4.95/	6.2739	21.269	25.397	29.854	35.867	40.959
10	3	0.9996	2.201	3.301	4.304	7.013	8.4930	27.100	31.670	30.378	43.138
1/		1.2011	2.291	3.822	5.138	0.34	9.302	11.0182	33.605	38.398	43.962
10	Ar V	1.5205	2.0038	3.931	5.1/1	7.238	8./810	11.9952	13.8417	40.700	40.18/
20	к Со	0.4109	1 1 4 5 4	4.411	5.011	9 1 1 1	9.049	11.343	14.942	10.904	40.370
20	Ca So	0.5696	1.1454	2 380	7 080	0.144 8 844	10.490	12.32	14.207	17 370	20.3649
21	Ti	0.658	1 310	2.565	4 1746	0.073	11 517	13.52	16.26	18 64	20.833
23	v	0.650	1 414	2.0525	4 5066	6 299	12 362	14 489	16 760	19.86	20.055
24	Ċr	0.6528	1 592	2 987	4 74	6 69	8 738	15.54	17.82	20.19	23.58
25	Mn	0.7174	1.5091	3.2484	4.94	6.99	9.2	11.508	18.956	21.40	23.96
26	Fe	0.7594	1.561	2.9574	5.29	7.24	9.6	12.1	14.575	22.678	25.29
27	Co	0.758	1.646	3.232	4.95	7.67	9.84	12.4	15.1	17.959	26.6
28	Ni	0.7367	1.7530	3.393	5.30	7.28	10.4	12.8	15.6	18.6	21.66
29	Cu	0.7455	1.9579	3.554	5.33	7.71	9.94	13.4	16.0	19.2	22.4
30	Zn	0.9064	1.7333	3.8327	5.73	7.97	10.4	12.9	16.8	19.6	23.0
31	Ga	0.5788	1.979	2.963	6.2						
32	Ge	0.7622	1.5372	3.302	4.410	9.02					
33	As	0.944	1.7978	2.7355	4.837	6.043	12.31				
34	Se	0.9409	2.045	2.9737	4.1435	6.59	7.883	14.99			
35	Br	1.1399	2.10	3.5	4.56	5.76	8.55	9.938	18.60		
36	Kr	1.3507	2.3503	3.565	5.07	6.24	7.57	10.71	12.2	22.28	
37	Rb	0.4030	2.633	3.9	5.08	6.85	8.14	9.57	13.1	14.5	26.74
38	Sr	0.5495	1.0643	4.21	5.5	6.91	8.76	10.2	11.80	15.6	17.1
39	Y	0.616	1.181	1.980	5.96	7.43	8.97	11.2	12.4	14.11	18.4
40	Zr	0.660	1.267	2.218	3.313	7.86					
41	Nb	0.664	1.382	2.416	3.69	4.877	9.900	12.1			
42	Mo	0.6850	1.558	2.621	4.477	5.91	6.6	12.23	14.8		
43	Te	0.702	1.472	2.850							
44	Ru	0./11	1.61/	2.747							
45	Kn D-1	0.720	1./44	2.997							
40	Pa A-	0.805	1.875	3.1//							
4/	Ag	0.7510	2.074	2.301							
40	Ca In	0.00//	1.0314	2,705	5 2						
47	111 S -	0.3363	1.0200	2.705	2 0202	6 074					
51	Sh	0.8316	1 595	2.2731	4 26	54	10.4				
52	Te	0.8693	1 79	2. 44 2.698	3 610	5 669	6 82	13.2			
52	ĩ	1 0084	1 8459	32	2.010	5.007	0.02	1.5.2			
54	Xe	1.1705	2.046	3.10							
55	Cs	0.3757	2.23								
56	Ba	0.5029	0.96526								
57	La	0.5381	1.067	1.8503	4.820						
58	Ce	0.528	1.047	1.949	3.543						
	· · · · ·-										

z	Element	I	II	III	IV	v	VI	VII	VIII	IX	x
59	Pr	0.523	1.018	2.086	3.761	5.552					
60	Nd	0.530	1.034	2.13	3.900	5.790					
61	Pm	0.536	1.052	2.15	3.97	5.953					
62	Sm En	0.543	1.068	2.26	4.00	6.046					
03 64	Eu Gd	0.547	1.085	2.40	4.11	6 240					
65	Th	0.592	1.17	2 11	3.84	6 41 3					
66	Dv	0.572	1.126	2.20	4.00	5.990					
67	Ho	0.581	1.139	2.20	4.10	6.169					
68	Er	0.589	1.151	2.19	4.11	6.282					
69	Tm	0.5967	1.163	2.284	4.12	6.313					
70	Yb	0.6034	1.175	2.415	4.22	6.328					
71	Lu	0.5235	1.34	2.022	4.36	6.445					
72	Hf	0.654	1.44	2.25	3.21	6.596					
73	la	0.761									
75	W Do	0.770									
76	Ce	0.700									
77	Us Ir	0.88									
78	Pt	0.87	1.7911								
79	Au	0.8901	1.98								
80	Hg	1.0070	1.8097	3.30							
81	ΤĬ	0.5893	1.9710	2.878							
82	Pb	0.7155	1.4504	3.0815	4.083	6.64					
83	Bi	0.7033	1.610	2.466	4.37	5.40	8.62				
84	Ро	0.812									
85	At										
86	Rn	1.0370									
8/	Fr De	0.5004	0.07006								
00 80	Ka Ac	0.3094	0.97900								
90	Th	0.49	1.17	1 93	2 78						
91	Pa	0.57		1.75	2.70						
92	U	0.59									
93	Np	0.60									
94	Pu	0.585									
95	Am	0.578									
96	Cm	0.581									
97	Bk	0.601									
98	Cf	0.608									
99	Es	0.619									
100	гm Md	0.027									
102	No	0.035									
102		0.042									

^a C. E. Moore, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, NSRDS-NBS 34, Washington D. C., 1970 und persönliche Mitteilung. Die Werte für Lanthanoide und Actinoide stammen von W. C. Martin, L. Hagan, J. Reader, J. Sugar, J. Phys. Chem. Ref. Data 1974, 3, 771 und J. Sugar, J. Opt. Soc. Am. 1975, 65, 1366.

auszuweichen. Die elektrostatische Abstoßung zwischen den Elektronen wird dadurch vermindert. Wir haben früher gesehen, daß dies zu einer Höchstzahl von ungepaarten Elektronen führt (Hundsche Regel der maximalen Multiplizität) und auch für die "anomale" Elektronenkonfiguration von Cr verantwortlich ist. Es führt auch dazu, daß die Abspaltung eines Elektrons aus einem Stickstoffatom schwieriger ist, als es sonst der Fall wäre. Als Folge dieser Stabilisierung ist die Ionisierungsenergie von Stickstoff größer als die von Sauerstoff (vgl. Abb. 2.14).

Abb. 2.14 Orbitalenergien der Elemente Wasserstoff bis Natrium. Durchgezogene Linien geben die *Einelektronenorbital-Energien* an. Die experimentellen Orbitalenergien (= negative Ionisierungsenergien) sind durch gestrichelte Linien gekennzeichnet; sie haben wegen der Wechselwirkung zwischen den Elektronen etwas andere Werte.

Auch für einige Atomgruppen (Moleküle und Molekülbruchstücke) sind die Ionisierungsenergien bekannt (Tab. 2.4). Wenn sie auch im allgemeinen nicht so gut sind wie die Werte für Atome, können sie für Berechnungen nach einem Born-Haber-Kreisprozeß (s. Kapitel 4), in dem mehratomige Kationen, zum Beispiel NO⁺ oder O_2^+ , auftreten, benutzt werden. Sie ermöglichen auch eine grobe Abschätzung der Tendenz von Atomgruppen, als Elektronendonatoren oder -akzeptoren zu wirken.

Molekül	$MJ mol^{-1}$	eV	Molekül	MJ mol ⁻¹	eV	
CH,	0.949	9.84	NH ₂	1.075	11.14	
C,H,	0.784	8.13	NO	0.893	9.26	
CH ₄ Ŏ	0.729	7.56	NO,	0.941	9.75	
CN	1.360	14.09	0, [†]	1.165	12.07	
CO	1.352	14.01	О́Н	1.254	13.00	
CF ₃	≤ 0.86	≤ 8.9	F,	1.5146	15.697	
N,	1.503	15.58	2			

Tab. 2.4 Ionisierungsenergien"

^a S.G. Lias, J.E. Bartmess, J.F. Liebmann, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data 1988, 17, Supplement 1, 1-86.

Ionisierung

Die Elektronen, die normalerweise bei der Ionisierung abgegeben werden, sind diejenigen, die sich auf den jeweils höchsten besetzten Energieniveaus befinden und daher die geringste Energie zur Abspaltung brauchen. Man sollte deshalb erwarten, daß die Elektronen bei der Ionisierung in einer Reihenfolge abgegeben werden, die der beim Einbau (vgl. "Aufbauprinzip") entgegengesetzt ist. Das trifft zwar im Grundsatz zu, doch gibt es einige sehr wesentliche Ausnahmen, vor allem bei den Übergangsmetallen, die für die charakteristische Chemie dieser Elemente verantwortlich sind. Allgemein reagieren Übergangselemente folgendermaßen:

$$1s^{2} 2s^{2} 2p^{6} 3s^{2} 3d^{n} 4s^{2} \xrightarrow{-2e^{-}} 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{n}$$

Atom zweifach positives Kation

Das gilt nicht nur für die erste Übergangsreihe, sondern auch für die schwereren Metalle; die ns^2 -Elektronen werden vor den (n-1)d- oder (n-2)f-Elektronen abgegeben. Dadurch ergibt sich für alle Übergangsmetalle gemeinsam die Oxidationsstufe +2, wenn auch in vielen Fällen eine stabilere höhere oder niedrigere Oxidationsstufe existiert.

Dieses Phänomen ist verwirrend, weil es einfachen energetischen Tatsachen zu widersprechen scheint: Wenn das 4s-Niveau niedriger liegt und zuerst aufgefüllt wird, sollten seine Elektronen stabiler sein und nach den 3d-Elektronen abgespalten werden. Man könnte sich fragen, ob sich innerhalb der Übergangsreihe etwa die Reihenfolge der Energieniveaus umkehren kann. Wenn man die relativen Energien der 3d- und 4s-Niveaus untersucht, stellt man fest, daß sie sehr dicht beieinander liegen und daß die Energie des 3d-Niveaus mit steigender Ordnungszahl abnimmt. Das wird oft als Erklärung für die Elektronenkonfiguration des Kupfers vorgebracht. Wenn das 3d-Niveau bei der Ordnungszahl 29 unter das 4s-Niveau gesunken ist, muß der Grundzustand $3d^{10} 4s^1$ sein. Trotzdem kann dies keinen Einfluß auf die Phänomene haben, die wir hier untersuchen, denn unsere Frage betrifft den Unterschied zwischen den Konfigurationen des Grundzustandes im neutralen Atom und den Ionenzuständen bei ein und demselben Element. Da alle Metalle der ersten Übergangsreihe (mit Ausnahme von Cr und Cu) einen $3d^n 4s^2$ -Grundzustand für das neutrale Atom und einen stabilen $3d^n 4s^0$ -Zustand für das zweifach positive Ion haben, muß die Ursache für unser Problem in dem Unterschied zwischen Atom und Ion gesucht werden und nicht in Veränderungen innerhalb der Periode.

Bevor wir diese Frage angemessen beantworten können, müssen wir definieren, was wir unter "Orbitalenergie" verstehen. In den meisten Fällen ist die Definition durch das Koopmanns-Theorem ausreichend: Die Energie des höchsten Orbitals, das zur Ermittlung der Wellenfunktion eines Atoms im Grundzustand gebraucht wird, entspricht annähernd der (negativen) Ionisierungsenergie des Atoms. Die Energien der Orbitale können nach der Methode des selbstkonsistenten Feldes, die früher beschrieben worden ist, berechnet werden. Solche Rechnungen wurden ausgeführt und viel ist über ihre Interpretation geschrieben worden¹². Der scheinbare Widerspruch zwischen dem Grundzustand der Atome und dem ihrer Ionen rührt daher, daß für die Stabilität eines Atoms oder Ions allein die Gesamtenergie verantwortlich ist und nicht die Energie eines einzelnen Elektrons, das in das 4*s*-Orbital eingebaut wird. Man erinnere sich daran, daß die Elektronen miteinander in Wechselwirkung stehen, die von der räum-

50 2 Die Struktur der Atome

lichen Verteilung abhängt. Wenn *alle Energien addiert* werden, einschließlich *aller Elektron-Elektron-Abstoßungsenergien*, findet man, daß die Konfiguration [Ar] $3d^n 4s^1$ stabiler ist als [Ar] $3d^{n-1} 4s^2$. Für das Dikation findet man: [Ar] $3d^n 4s^0$ ist stabiler als [Ar] $3d^{n-2} 4s^2$.

Leider beantwortet das nicht vollständig unsere ursprüngliche Frage, denn wir können nicht einfach sagen, daß 4*s*-Elektronen deshalb leichter als die 3*d*-Elektronen abgespalten werden, weil das 4*s*-Orbital energetisch höher liegt – wir haben schließlich gesehen, daß wir die Gesamtenergie betrachten müssen. Man könnte (fälschlicherweise) postulieren, daß die richtige Konfiguration für Ti²⁺ wegen der gegenseitigen Abstoßung der Elektronen [Ar]4*s*² wäre und nicht [Ar]3*d*², was dem experimentellen Befund widerspricht.

Um den offensichtlichen Unterschied der Stabilität bei Besetzung des 4s- oder des 3d-Orbitals zu erklären, müssen wir die beiden beteiligten Systeme Ti und Ti²⁺ oder allgemeiner M und M^{2+} miteinander vergleichen. Einen Anhaltspunkt kann man in der oben besprochenen Entwicklung innerhalb der 3d-Reihe zu finden versuchen. Wenn sie auch, wie bereits erwähnt, für den Effekt nicht verantwortlich ist, gibt sie doch einen Hinweis. Es zeigt sich, daß mit steigender Ordnungszahl und folglich wachsendem Z_{eff} die Energieniveaus denen in einem Wasserstoffatom, in dem alle Niveaus mit derselben Hauptquantenzahl entartet sind und tiefer liegen als die der nächsten Quantenzahl, immer ähnlicher werden. Im Kation ist nun die effektive Kernladung wegen der Ionenladung und der verringerten Abschirmung beträchtlich größer. Man kann also ohne weiteres annehmen, daß die Bildung eines zweifach positiven Ions mehr bewirkt, als die graduellen Änderungen in der gesamten Übergangsreihe erreichen können – daß sie demnach das 3d-Niveau so weit unter das 4s-Niveau sinken läßt, daß die Abstoßungsenergien überwunden werden und die Gesamtenergie ein Minimum erreicht, wenn das 3d-Niveau vor dem 4s-Niveau besetzt wird. Diese Tendenz zu wasserstoffähnlichen Orbitalen nimmt mit steigender effektiver Kernladung drastisch zu. So bestehen zum Beispiel für die Elektronen der inneren Schalen kaum Energieunterschiede zwischen den einzelnen Orbitaltypen - sie erreichen fast die Entartung, die im Wasserstoffatom vorliegt²⁶.

Elektronenaffinität

Die Elektronenaffinität wird von den Chemikern, in Übereinstimmung mit dem Sinn des Wortes, als die Energieänderung verstanden, die eintritt, wenn ein Atom ein Elektron in seine Valenzschale *aufnimmt*. Die Physiker dagegen haben die Elektronenaffinität definiert als die Ionisierungsenergie des Anions. Unglücklicherweise ist diese Definition als allgemeine Übereinkunft übernommen worden. Für die Chemiker und ihre Auffassung vom Begriff "Elektronenaffinität" widerspricht sie der internationalen Vereinbarung in der Thermodynamik, daß Enthalpien von exothermen Reaktionen ein negatives Vorzeichen erhalten. Da es nicht möglich erscheint, diese Verhältnisse jetzt noch zu ändern, bleiben nur zwei Verfahrensweisen: entweder man akzeptiert, daß die

²⁶ Eine detaillierte Diskussion der relativen Energien und ihrer Ursachen findet man bei R.N. Keller, J. Chem. Educ., 1969, 39, 289; R.M. Hochstrasser, ibid., 1965, 42, 154; M. Karplus, R.N. Porter, Atoms and Molecules, Benjamin, New York, 1970, S. 269.

Z	Element	Wert	Z	Element	Wert
1	Н	72.775	34	Se \longrightarrow Se ¹⁻	194.980
2	Не	0		$Se^{1-} \longrightarrow Se^{2-}$	-410 ^b
3	Li	59.63	35	Br	324.6
4	Be	0	36	Kr	0
5	В	26.7	37	Rb	46.887
6	С	153.89	38	Sr	0
7	$N \longrightarrow N^{1-}$	7	39	Y	29.6
	$N^{1-} \longrightarrow N^{2-}$	-673 ^b	40	Zr	41.1
	$N^{2-} \longrightarrow N^{3-}$	-1070 ^b	41	Nb	86.1
8	$O \longrightarrow O^{1-}$	140.986	42	Мо	71.9
	$O^{1-} \longrightarrow O^{2-}$	-744 ^b	43	Tc	53
9	F	328.0	44	Ru	101.3
10	Ne	0	45	Rh	109.7
11	Na	52.871	46	Pd	53.7
12	Mg	0	47	Ag	125.6
13	Al	42.5	48	Cď	0
14	Si	133.6	49	In	28.9
15	$P \longrightarrow P^{1-}$	72.02	50	Sn	107.3°
	$P^{1-} \longrightarrow P^{2-}$	-468 ^b	51	Sb	103.2
	$P^{2-} \longrightarrow P^{3-}$	-886 ^b	52	Te	190.16
16	$S \longrightarrow S^{1-}$	200.42	53	Ι	295.18
	$S^{1-} \longrightarrow S^{2-}$	-456 ^b	54	Xe	0
17	Cl	349.0	55	Cs	45.509
18	Ar	0	56	Ba	0
19	К	48.387	57	La	48
20	Ca	0	58-71	Ln	50
21	Sc	18.1	72	Hf	0
22	Ti	7.62	73	Ta	31.06
23	v	50.6	74	W	78.63
24	Cr	64.26	75	Re	14.47
25	Mn	0	76	Os	106.1
26	Fe	15,7	77	Ir	151.0
27	Co	63.7	78	Pt	205.3
28	Ni	111.5	79	Au	222.76
29	Cu	118.4	80	Hg	0
30	Zn	0	81	тĭ	19.2
31	Ga	28.9	82	РЬ	35.1
32	Ge	190.0°	83	Bi	91.2
33	$As \longrightarrow As^{1-}$	78	84	Ро	183.3
	$As^{1-} \longrightarrow As^{2-}$	-435 ^b	85	At	270.1
	$As^{2-} \longrightarrow As^{3-}$	-802 ^b	86	Rn	0

Tab. 2.5 Elektronenaffinitäten der Elemente $(kJ mol^{-1})^a$

^a Falls nicht anders angegeben, stammen alle Werte von H. Hotop, W.C. Lineberger, J. Phys. Chem. Ref. Data 1985, ¹⁴, 731.
 ^b R.G. Pearson, *Inorg. Chem.* 1991, 30, 2856.
 ^c T.M. Miller, A.E.S. Miller, W.C. Lineberger, *Phys. Rev. A* 1986, 33, 3558

Elektronenaffinität der reaktionsfähigsten Nichtmetalle als positiv angesehen wird, berücksichtigt aber in thermodynamischen Rechnungen die Enthalpie als negativ:

 $F + e^- \rightarrow F^- EA_F = +328 \text{ kJ mol}^{-1} \Delta H = -328 \text{ kJ mol}^{-1}$,

oder man sieht die Elektronenaffinität der Atome tatsächlich als die Ionisierungsener-

Abb. 2.15 Abhängigkeit der Ionisierungsenergien und Elektronenaffinitäten von Sauerstoff, Fluor, Neon und Chlor von der Oxidationsstufe.

gien der Anionen an. Dann entspricht die positive Elektronenaffinität einer endothermen Reaktion:

$$F^- \rightarrow F + e^-$$
 IE (= EA) = + 328 kJ mol⁻¹ ΔH = + 328 kJ mol⁻¹

Diese zweite Betrachtungsweise hat den zusätzlichen Vorteil, daß sie die Aufmerksamkeit auf die sehr enge Beziehung zwischen Elektronenaffinität und Ionisierungspotential lenkt. Wenn man die Ionisierungsenergien und Elektronenaffinitäten von Atomen in Abhängigkeit von der Oxidationszahl aufträgt, ergibt sich in der Tat für jedes Element eine glatte Kurve (vgl. Abb.2.15).

Die Funktion kann ziemlich genau durch die quadratische Gleichung

$$E = \alpha z + \beta z^2 \tag{2.25}$$

beschrieben werden, in der E die Gesamtenergieänderung beim Übergang vom Atom in das betreffende Ion (Σ_{IE} oder Σ_{EA}) und z die Zahl der Ionenladungen ist²⁷. Man kann ohne weiteres erkennen, daß zwar die Aufnahme von Elektronen durch reaktive Nichtmetalle zuerst *exotherm* verläuft, daß die Atome jedoch relativ schnell "gesättigt" sind, so daß die Energie ein Minimum erreicht und die weitere Anlagerung von Elek-

²⁷ Ein genauerer Ausdruck ist allerdings ein Polynom der Form $E = \alpha z + \beta z^2 + \gamma z^3 + \delta z^4$. Die Konstanten γ und δ sind jedoch klein, und Gl. 2.25 ist eine gute Näherung [Vgl. R.P. Iczkowski, J.L. Margrave, J. Am. Chem. Soc., **1961**, 83, 3547].

Molekül	kJ mol ¹⁻	Molekül	kJ mol ^{1 –}
CH ₃	752	OCN	340
$C \equiv CH$	285	SiH ₃	140
C,H,	165	PH_2	150
C ₆ H ₅	100	$Pt\bar{F_5}$	630
$C_{6}H_{5}CH_{7}$	85	PtF ₆	770
CN	365	SH	223
N ₃	266	SO ₂	107
NH,	74	SO ₃	160
NO	232	SCŇ	205
NO ₂	220	SF ₅	290
NO ₃	375	SF ₆	101
0,	42	Cl_2	230
0,	203	Br_2	240
О́Н	176	TeFs	430
OCH,	155	TeF ₆	320
O-t-C ₄ H ₉	184	I ₂	240
O-neo-C ₅ H ₁₁	183	$\overline{\mathbf{WF}}_{6}$	330
OC ₆ H,	220	UF ₂ O ₂	325
O₂Ĥ ́	104	UF_6	540

Tab. 2.6 Gemessene Elektronenaffinitäten von Molekülen^{*a*} (die Unsicherheit beträgt bei Werten > 100 etwa \pm 20)

^a S.G. Lias, J.E. Bartmess, J.F. Liebman, J. L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data 1988, 17, Supplement 1, 1-86.

tronen *endotherm* ist. So ist bei zweifach negativen Ionen wie O^{2^-} und S^{2^-} die Gesamtelektronenaffinität *negativ*, d.h. die Bildungsenthalpie ist für sie *positiv*. Solche Ionen können nicht existieren, wenn sie nicht durch ihre Umgebung stabilisiert werden, entweder in einem Kristallgitter oder durch Solvatisierung in Lösung.

Wie man sich denken kann, verläuft die Änderung der Elektronenaffinität im Periodensystem parallel zu der der Ionisierungsenergie (Tab. 2.5). Elemente mit großen Ionisierungsenergien haben im allgemeinen auch große Elektronenaffinitäten. Es gibt jedoch einige bemerkenswerte Ausnahmen. Fluor hat eine geringere Elektronenaffinität als Chlor, und diese scheinbare Anomalie ist bei den Paaren O/S und N/P sogar noch stärker ausgeprägt. Sie ist eine Folge der geringen Größe der Atome in der ersten Achterperiode und der daraus folgenden stärkeren Abstoßung zwischen ihren Elektronen. Auch wenn sie anfänglich eine größere Tendenz zur Aufnahme von Elektronen haben (vgl. in Abb. 2.15 die Neigung der Kurven beim Durchgang durch den Nullpunkt, d.h. beim neutralen Atom), werden sie sehr schnell "gesättigt", da die Elektron-Elektron-Abstoßung sehr rasch überwiegt (s. die flache Krümmung am Boden der Kurve)²⁸. Für neutrale Moleküle oder Atomgruppen stehen weniger Angaben zur Verfügung (Tab. 2.6). Freie Radikale aus elektronegativen Atomen wie CN, NO₂, NO₃, SF₅ usw. zeigen die erwarteten hohen Elektronenaffinitäten, und wir werden später sehen, daß sie zu den am stärksten elektronegativen Gruppen gehören. Die höchsten Elektronen-

²⁸ Eine weitere Behandlung der Elektronenaffinitäten findet man, zusammen mit nützlichen Tafeln und graphischen Darstellungen, bei E. C. M. Chen, W.E. Wentworth, J. Chem. Educ., 1975, 52, 486.

54 2 Die Struktur der Atome

affinitäten beobachtet man bei Metallhexafluoriden. Beispielsweise hat PtF_6 eine mehr als doppelt so große Elektronenaffinität als irgendein einzelnes Atom (siehe Aufgabe 2.25).

Aufgaben

- 2.1 Berechnen Sie für das 2s-Orbital des Wasserstoffatoms den Abstand r (in pm) der Knotenfläche vom Atomkern.
- 2.2 Welche Quantenzahlen liefern Informationen über die Gestalt, die Energie, die Orientierung bzw. die Größe von Orbitalen?
- **2.3** Wieviele Orbitale sind für n = 4 möglich? Welche von diesen sind gerade?
- 2.4 Wieviele kugelförmige Knoten weisen die Orbitale 3s, 4p, 3d und 5f auf? Wieviele weitere Knotenflächen gibt es in diesen Fällen?
- 2.5 Fertigen Sie eine Kopie von Abb. 2.10 an. Zeichnen Sie zwei Geraden durch den Ursprung, eine entlang der z-Achse und eine mit einem Winkel von 45° gegen die z-Achse. Messen Sie nun auf beiden Geraden den Abstand jeder Konturlinie vom Kern und tragen Sie den Wert der Konturlinie gegen den Abstand auf. Vergleichen Sie das Ergebnis mit Abb. 2.6.
- **2.6** Bestimmen Sie die maximale Zahl von Elektronen, die in der Schale mit n = 4 untergebracht werden können. Geben Sie vier mögliche Quantenzahlen für ein 4f-Elektron des H-Atoms an.
- 2.7 In graphischen Darstellungen der quadrierten Wellenfunktion werden oft die Vorzeichen der unquadrierten Funktion angegeben. Was könnte der Grund dafür sein?
- 2.8 Manchmal werden 2*p*-Orbitale wie folgt gezeichnet:

Was stellt diese Zeichnung dar? Hat die Wahrscheinlichkeit, das Elektron im Kern zu finden, danach einen endlichen Wert? Bekanntlich ist diese Wahrscheinlichkeit für ein 2*p*-Elektron gleich Null. Erklären Sie den scheinbaren Widerspruch.

2.9 Der winkelabhängige Teil der Wellenfunktion des d_{xy} -Orbitals lautet $\frac{\sqrt{15}/\pi}{4}$

 $\sin^2\theta \sin^2\phi$. Zeigen Sie, daß dieser Ausdruck tatsächlich einem d_{xy} -Orbital entspricht. d_{z^2} ist eine vereinfachte Darstellung des $d_{2z^2-x^2-y^2}$ -Orbitals. Zeigen Sie, daß dieses die Winkelfunktion $3\cos^2\theta - 1$ besitzt. **2.10** Betrachten Sie die folgenden Möglichkeiten für die Elektronenkonfiguration p^3 :

A 1	A	A A	A A	4	4	1
I I	l	1 I	ίI	I	I	I I
1 1			11			+ i

Welche ist der Grundzustand? Welche sind angeregte Zustände? Welche sind unerlaubte Anordnungen? Bei welcher Konfiguration wäre die Austauschenergie am größten? In welchem Falle wäre die Coulomb-Abstoßung am größten?

- 2.11 Die Stabilisierung eines halbbesetzten *d*-Niveaus ist größer als die eines halbgefüllten *p*-Niveaus. Warum?
- 2.12 Diskutieren Sie folgende Frage: existiert ein Orbital, in dem sich kein Elektron befindet?
- **2.13** Das Pauli-Prinzip verbietet gewisse Kombinationen von m_l und m_s . Betrachten Sie ein angeregtes Stickstoffatom mit der Elektronenkonfiguration $1s^2 2s^2 2p^3 3p^1$. Welche Zustände, beschrieben durch Termsymbole, sind in diesem Fall möglich?
- 2.14 Schreiben Sie die Elektronenkonfiguration der folgenden Atome auf und geben Sie die Zahl der ungepaarten Elektronen im Grundzustand an:
 - B N Mg V As Lu
- **2.15** Bestimmen Sie die Termsymbole für die Grundzustände der Atome von Aufgabe 2.14.
- 2.16 Schreiben Sie die Elektronenkonfiguration der folgenden Ionen auf und geben Sie die Zahl der ungepaarten Elektronen im Grundzustand an:

 Ti^{3+} Mn^{2+} Cu^{2+} Pd^{2+} Gd^{3+} .

- 2.17 Bestimmen Sie die Termsymbole für den jeweiligen Grundzustand der Ionen in Aufgabe 2.16.
- 2.18 Skizzieren Sie die folgenden Funktionen für die Orbitale 1s, 2s, 2p, 3s und 3p:
 - a. Radialfunktion
 - b. radiale Wahrscheinlichkeitsfunktion
 - c. Winkelfunktion
 - d. winkelabhängige Wahrscheinlichkeitsfunktion
- 2.19 Berechnen Sie nach den Regeln von Slater die effektive Kernladung für folgende Elektronen:
 - a. 3*p*-Elektron von P
 - b. 4s-Elektron von Co
 - c. 3*d*-Elektron von Mn
 - d. Valenzelektron von Mg

Vergleichen Sie die so erhaltenen Werte mit denen von Clementi und Raimondi.

2.20 Welches Atom hat die größere erste Ionisierungsenergie: Li oder Cs? F oder Br? Sc oder Cu? Cu oder Pt?

- 56 2 Die Struktur der Atome
- **2.21** Tragen Sie die Gesamtionisierungsenergie von Alⁿ⁺ als Funktion von n für n = 1 8 auf. Erklären Sie die Ursache der Diskontinuität in der Kurve.
- 2.22 a. Berechnen Sie die dritte Ionisierungsenergie von Lithium (hierzu sind weder Näherungen noch Annahmen erforderlich).
 b. Berechnen Sie unter Verwendung der Slater-Regeln die erste und die zweite Ionisierungsenergie von Lithium.
 c. Berechnen Sie die erste und die zweite Ionisierungsenergie unter Verwendung der Regeln von Clementi und Raimondi.
- 2.23 Welches Teilchen ist größer:

K⁺ oder Cs⁺? La³⁺ oder Lu³⁺? Cl₂ oder Br₂? Ca²⁺ oder Zn²⁺? Cs oder Fr?

2.24 Welches Atom hat die höhere Elektronenaffinität:

Li oder Cs? Li oder F? Cs oder F? F oder I? F oder Cl? Cl oder Br? O oder S? S oder Se?

- **2.25** In Tabelle 2.6 sind mehrere Moleküle aufgeführt, die eine wesentlich höhere Elektronenaffinität als Fluor (328.0 kJ mol⁻¹) oder Chlor (349.0 kJ mol⁻¹) aufweisen. Betrachten Sie beispielsweise PtF_6 (772 kJ mol⁻¹). Wie kann ein Molekül aus sechs Fluoratomen und einem nicht sehr elektropositiven Metall eine höhere Affinität für Elektronen haben als ein Fluoratom?
- **2.26** Die Elektronegativität von Gruppen wird außer von ihrer Elektronenaffinität noch von vielen anderen Faktoren bestimmt. Verwenden Sie trotzdem die Werte in Tab. 2.6 für eine Vorhersage, welches die elektronegativsten Gruppen sind.
- 2.27 Für welches Halogen X würden Sie am ehesten die Bildung eines Kations erwarten? Diskrete X⁺-Ionen sind in chemischen Verbindungen unbekannt, aber die Ionen X_2^+ , X_3^+ und X_5^+ sind bekannt. Warum sollten die Letztgenannten stabiler sein als X⁺?

3 Symmetrie und Gruppentheorie

In der uns umgebenden Welt ist die Symmetrie ein wohlvertautes Phänomen. Die Natur scheint die Symmetrie geradezu zu lieben. Für die Naturwissenschaft, nicht nur die Chemie, kann man die Bedeutung der Symmetrie nicht so leicht überschätzen. So wie bei dem als Occams Messer bekannten Prinzip, wonach die einfachste Erklärung für eine Beobachtung wissenschaftlich die beste ist, so gilt häufig auch, daß die höchstsymmetrische Molekülstruktur, wenn alle anderen Faktoren gleich sind, die bevorzugte ist. Wichtiger noch: komplexe Probleme, die mit der Molekülstruktur zusammenhängen, können durch eine Analyse der Symmetrieeigenschaften vereinfacht werden.

Symmetrieelemente und Symmetrieoperationen¹

Im mathematischen Sinne ist Symmetrie etwas restriktiver als bei der Verwendung dieses Wortes im täglichen Sprachgebrauch. Beispielsweise werden manche sagen, daß Blumen, Brillanten, Schmetterlinge, Schneckenhäuser und Paisley-Krawatten (Abb. 3.1) alle ziemlich symmetrisch sind, und zwar wegen der Harmonie und Attraktivität ihrer Formen und Proportionen. Aber das Muster einer Paisley-Krawatte ist nicht symmetrisch, oder, mathematisch ausgedrückt, ihm fehlen die Symmetrieelemente. Eine Blume, ein Kristall oder ein Molekül wird symmetrisch genannt, wenn es für diese Gegenstände zwei oder mehr Orientierungen im Raum gibt, die ununterscheidbar sind. Um dies zu beurteilen, verwendet man *Symmetrieelemente* und *Symmetrieoperationen*. Eine Symmetrieoperation überführt ein Molekül durch Drehung um eine Achse, Spiegelung an einem Punkt oder Spiegelung an einer Ebene (dem Symmetrieelement) in eine Lage, die von der ursprünglichen Lage ununterscheidbar ist. Wenn es in dem Molekül einen Punkt gibt, der bei allen Symmetrieoperationen räumlich unverändert (d.h. in Ruhe) bleibt, dann spricht man von *Punktsymmetrie*². Moleküle können Dreh-

¹ Drei sehr gute einführende Aufsätze findet man bei M. Orchin, H. H. Jaffé, J. Chem. Educ. 1970, 47, 246, 372, 510. Zu den besten Büchern auf diesem Gebiet gehören: F. A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wiley, New York 1990; B.E. Douglas, C.A. Hollingsworth, Symmetry in Bonding and Spectra: An Introduction, Academic Press, Orlando 1985; J. M. Hollas, Die Symmetrie von Molekülen, de Gruyter, Berlin 1975; I. Hargittai, M. Hargittai, Symmetry intrough the Eyes of a Chemist, VCH, New York 1987; D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover, New York 1989: M. Orchin, H.H. Jaffé, Symmetry, Orbitals, and Spectra, Wiley, New York 1971. Siehe auch A.F. Wells, Structural Inorganic Chemistry, Clarendon, Oxford 1984.

² Die Punktgruppensymmetrie von einzelnen Molekülen muß der Translationssymmetrie von Kristallen gegenübergestellt werden, die wir weiter unten besprechen werden.

(h)

Abb. 3.1 Ansichten in der Natur vorkommender oder von Menschen konstruierter Muster und Gestalten: (a) Blüte von *Rudbeckia hirta*; (b) Blüte, Stiel und Blätter von *Rudbeckia hirta*; (c) roter Salamander *Notophthalmus viridescens*; (d) geschliffener Diamant; (e) Paisley-Krawatte; (f) Schneckenhaus von *Cepea nemoralis*; (g) Monarch-Schmetterling *Danaus plexippus*; (h) Hängebrücke. Welche Bilder sind symmetrisch?

Abb. 3.2 Moleküle mit und ohne Spiegelebene: (a) Dichlorphosphanoxid hat eine einzelne Spiegelebene (die Zeichenebene), die die beiden Chloratome ineinander überführt; (b) das Wassermolekül hat zwei Spiegelebenen, eine teilt den Winkel H—O—H und die andere ist identisch mit der Molekülebene; (c) Borazin hat vier Spiegelebenen, die Molekülebene und drei dazu senkrecht, die jeweils eine NH- und eine BH-Gruppe enthalten; (d) Methylsulfinylchlorid hat keine Spiegelebene (das nichtbindende Elektronenpaar am Schwefelatom ist schematisch angedeutet).

achsen, Inversionszentren und Spiegelebenen als Symmetrieelemente besitzen. Wahrscheinlich ist der Leser bereits mit der Spiegelung vertraut, die man benutzt, um festzustellen, ob ein Molekül optisch aktiv ist³.

Die Spiegelebene (σ)

Die meisten Blumen, geschliffene Edelsteine, ein Paar Schuhe und einfache Moleküle weisen eine Spiegelebene auf. Eine einzelne Hand, ein Quarzkristall, und ein chirales (optisch aktives) Molekül weisen keine Spiegelebene auf⁴. Zu dem Symmetrieelement Spiegelebene gehört die Symmetrieoperation Spiegelung des Gegenstandes an der Spiegelebene. Einige Beispiele für Moleküle mit und ohne Spiegelebene sind in Abb. 3.2 gezeigt.

Das Inversionszentrum (i)

Ein Molekül weist ein Inversionszentrum auf, wenn es möglich ist, von irgendeinem Atom eine Gerade so durch einen Punkt zu legen, daß man bei Verlängerung der Geraden auf der anderen Seite um den gleichen Betrag ein identisches Atom antrifft (s. Abb. 3.3). Das Inversionszentrum wird auch Symmetriezentrum genannt.

³ Chiralität liegt vor, wenn ein Molekül mit seinem Spiegelbild nicht zur Deckung gebracht werden kann. Gleichwertig ist die Aussage, daß das Molekül keine Drehspiegelachse haben darf. Die Abwesenheit einer Spiegelebene ist dagegen kein ausreichendes Kriterium, da ein Molekül durchaus eine Drehspiegelachse aber keine Spiegelebene haben kann. Umgekehrt kann man sagen, daß ein Molekül mit Spiegelebene auf alle Fälle optisch inaktiv ist.

⁴ Vgl. auch J. E. Huheey, J. Chem. Educ. 1986, 63, 598.

60 3 Symmetrie und Gruppentheorie

Abb. 3.3 Das Inversionszentrum von 1,2-Dimethyl-1,2-diphenyldiphosphandisulfid (damit wirklich ein Inversionszentrum vorhanden ist, müssen die organischen Substituenten entweder als punktförmig angesehen werden oder sie müssen zufällig genau "richtig" orientiert sein, so daß die Spiegelung jedes H-Atoms an i wieder zu einer äquivalenten H-Atomposition führt).

Bei der Behandlung der Atomorbitale im vorhergehenden Kapitel haben wir die Inversion an einem Zentrum bereits benutzt, um die Orbitale in gerade (g) oder ungerade (u) einzuteilen. Die Symmetriespezies irreduzibler Darstellungen können ebenfalls goder u sein, wenn das Molekül ein Symmetriezentrum aufweist. Von den drei hochsymmetrischen geometrischen Anordnungen, die man in der anorganischen Chemie häufig antrifft (s. Abb. 3.4), hat nur eine ein Inversionszentrum.

Drehachsen (C_n)

Wenn die Drehung eines Moleküls um einen Winkel von $360^{\circ}/n$ zu einer ununterscheidbaren Konfiguration führt, sagt man, das Molekül habe eine *n*-zählige Drehachse. *n* kann die Werte 2 bis 6 annehmen. Betrachten wir dazu *trans*-Distickstoffdifluorid

Abb. 3.4 Beispiele für (a) tetraedrische, (b) trigonal-bipyramidale und (c) oktaedrische Symmetrie; nur bei (c) liegt ein Inversionszentrum vor.

Abb. 3.5 Die zweizählige Drehachse von *trans*-Distickstoffdifluorid. Die Achse steht senkrecht zur Zeichenebene und wird mit dem Symbol wie eine Linse gekennzeichnet.

(Abb. 3.5). Wenn wir das Molekül um eine Achse drehen, die in der Mitte zwischen den beiden N-Atomen senkrecht zur Papierebene steht, dann erhalten wir durch Drehung um 180° eine zur Ausgangssituation identische Konfiguration. Die Drehung um 180° ist daher eine Symmetrieoperation, und die zweizählige Drehachse (360° : $2 = 180^\circ$) ist das Symmetrieelement. Wenn diese Symmetrieoperation zweimal hintereinander ausgeführt wird, befinden sich alle Atome wieder in den Ausgangspositionen⁵.

Betrachten wir nun das Molekül des *cis*-Distickstoffdifluorids (Abb. 3.6). Wie man sieht, besitzt es senkrecht zur Molekülebene keine Drehachse (mit Ausnahme der trivialen Drehung um 360°). Man sieht aber leicht, daß eine Achse in der Molekülebene durch die Mitte der beiden N-Atome und durch die Mitte der beiden F-Atome als Symmetrieelement in Frage kommt. Dies ist ebenfalls eine zweizählige Drehachse.

Drehachsen werden mit dem Symbol C_n bezeichnet, das eine *n*-zählige Achse repräsentiert. *cis*- und *trans*-Distickstoffdifluorid besitzen jeweils eine C_2 -Achse. Abb. 3.4a zeigt, daß das Tetraedermolekül SiF₄ eine dreizählige Drehachse C_3 aufweist. Tatsächlich besitzt es vier davon, durch jede Si—F-Bindung eine. Die einzelne dreizählige Achse des Ammoniakmoleküls (Abb. 3.7a) ist etwas weniger offenkundig. Sie verläuft durch das N-Atom und den Schwerpunkt der drei H-Atome. Wenn man die Bindungswinkel des NH₃-Moleküls von 107° auf die 102° des NF₃-Moleküls verkleinert, ändert sich dann die Symmetrie?⁶

Man beachte, daß Eisenpentacarbonyl (Abb. 3.7b) ebenfalls eine C_3 -Achse aufweist. Gibt es weitere Moleküle in den Abb. 3.2 bis 3.7 mit C_3 -Achsen?⁷ Fe(CO)₅ hat außerdem drei C_2 -Achsen, und zwar je eine durch jede der drei equatorialen CO-Gruppen, die in einer Ebene liegen.

Abb. 3.6 Die zweizählige Drehachse von cis-Distickstoffdifluorid.

⁵ Man lasse sich nicht verwirren. Einerseits kann man Symmetrieoperationen nur ausführen, wenn die Atome unterscheidbar sind, andererseits müssen wir an den Atomen unsichtbare Markierungen anbringen, um feststellen zu können, wann sie wieder in ihrer ursprünglichen Lage zurück sind.

⁶ Antwort: Nein, sowohl NH₃ als auch \hat{NF}_3 besitzen die gleichen Symmetrieelemente. Anschlußfrage: Was wäre, wenn die Bindungswinkel 120° betragen würden? Antwort: Bei Bindungswinkeln von 120° wie beim BF₃ hat das Molekül eine horizontale Spiegelebene sowie drei neue C_2 -Achsen, die in dieser Ebene liegen.

⁷ Antwort: SiF₄, PF₅, $[CoF_6]^{3-}$, NH₃, B₃N₃H₆, Fe(CO)₅ und W(CO)₆ besitzen alle eine oder mehrere C₃-Achsen.

62 3 Symmetrie und Gruppentheorie

Abb. 3.7 Moleküle mit *n*-zähligen Drehachsen: (a) Ammoniak; (b) Eisenpentacarbonyl; (c) Wolframhexacarbonyl.

Im Gegensatz dazu weist Wolframhexacarbonyl (Abb. 3.7c) eine vierzählige Drehachse auf. Tatsächlich hat es sogar drei C_4 -Achsen: eine von oben nach unten, eine von links nach rechts und eine von vorn nach hinten. Außerdem gibt es bei diesem Molekül noch weitere Drehachsen. Können Sie sie nennen?⁸ Es gibt auch Moleküle mit noch höherzähligen Drehachsen. Betrachten Sie die ekliptische Form des Ferrocenmoleküls (Abb. 3.8a), das eine C_5 -Achse durch das Eisenatom und senkrecht zu den Cyclopentadienylringen aufweist. Bleibt die fünfzählige Drehachse erhalten, wenn die Cyclopentadienylringe auf Lücke stehen (Abb. 3.8b)?⁹ Betrachten wir als nächstes das Borazinmolekül (Abb. 3.2c). Hat es eine C_6 -Achse?¹⁰

Viele Moleküle weisen mehr als eine C_n -Achse auf. Beispielsweise hat Ferrocen in den beiden oben erwähnten Konformationen je fünf C_2 -Achsen (Abb. 3.8), die jedoch in beiden Fällen verschiedene Orientierung aufweisen. Wenn mehr als eine Drehachse vorliegt, wird die der höchsten Zähligkeit als Hauptachse bezeichnet und gewöhnlich als z-Achse angeschen. Spiegelebenen, die die Hauptachse enthalten, werden als vertikal (σ_v) und solche, die senkrecht zur Hauptachse stehen, als horizontal (σ_h) bezeichnet. Beispielsweise gibt es beim Borazin (Abb. 3.2c) drei σ_v (eine ist abgebildet) und eine σ_h (die Molekülebene).

⁸ Antwort: W(CO)₆ hat drei C₄-Achsen, vier C₃-Achsen (durch die Oktaederflächen) und sechs C₂-Achsen (durch die Mitte gegenüberliegender Kanten des Oktaeders).

⁹ Antwort: Gestaffeltes Ferrocen hat eine C_5 -Achse, da eine Drehung um 72° den oberen und den unteren Ring in Positionen bringt, die von der Ausgangslage ununterscheidbar sind, obwohl sie natürlich nach wie vor zueinander gestaffelt stehen. Ekliptisches Ferrocen hat dagegen zusätzlich eine horizontale Spiegelebene, die bei der gestaffelten Form abwesend ist. In Kap. 15 wird erläutert, welche Form am stabilsten ist.

¹⁰ Antwort: Nein, da eine Drehung um nur 60° ein Boratom an eine Position bringen würde, wo vorher ein Stickstoffatom war und umgekehrt. Borazin hat eine C_3 -Achse. Benzol dagegen hat eine C_6 -Achse.

Symmetrieelemente und Symmetrieoperationen 63

Abb. 3.8 Moleküle mit fünfzähligen Drehachsen: (a) ekliptisches Ferrocen, Seitenansicht und Draufsicht; (b) gestaffeltes Ferrocen. Jedes Molekül hat außerdem fünf C_2 -Achsen, von denen nur eine eingezeichnet ist. Bei Drehung um C_2 geht Atom 1 in 1' über usw.

Identität (E)

Wir haben oben gesehen, daß ein Molekül nach einer Drehung um 360° entsprechend der Symmetrieoperation C_1 mit sich selbst identisch ist. Diese Operation heißt daher Identität, symbolisiert durch E. Es mag scheinen, daß eine solche Operation unwichtig sei, da sie nichts verändert. Mit Hilfe der Identität kann man jedoch einige nützliche Beziehungen aufstellen. Beispielsweise haben wir gesehen, daß zwei aufeinanderfolgende C_2 -Operationen um die gleiche Achse ebenfalls zu einer Identität führen. Man kann daher schreiben: $C_2 \times C_2 = E$ und analog $C_3 \times C_3 \times C_3 = E$ oder kürzer: $C_2^2 = E$ und $C_3^3 = E$.

Drehspiegelung (S_n)

Bei dieser zusammengesetzten Symmetrieoperation handelt es sich um eine Drehung um $360^{\circ}/n$, gefolgt von einer Spiegelung an einer Ebene senkrecht zur Drehachse. Weder diese Achse noch die Spiegelebene brauchen dabei eigenständige Symmetrieelemente des Moleküls zu sein. Beispielsweise haben wir gesehen, daß das SiF₄-Molekül C₃-Achsen aber keine C₄-Achse aufweist. Trotzdem verfügt es über vier S₄-Achsen, nämlich senkrecht zu den vier Paaren paralleler Würfelflächen in der folgenden Abbildung:

64 3 Symmetrie und Gruppentheorie

Oder betrachten wir die trans-Konfiguration von N_2F_4 . Wenn wir eine Drehung C_2 gefolgt von einer Spiegelung an σ_h ausführen, haben wir insgesamt die Operation S_2 durchgeführt. Man beachte, daß das gleiche Ergebnis durch eine Inversion an i erhalten wird, d.h. $S_2 = i$:

Überzeugen Sie sich, daß trans- N_2F_2 , das ein Inversionszentrum aufweist, eine zweizählige Drehspiegelachse S_2 besitzen muß (Abb. 3.5). Das SiF₄-Molekül andererseits

Abb. 3.9 Koordinatensystem und Symmetrieelemente des Wassermoleküls.

hat zwar echte C_2 -Achsen aber kein Symmetriezentrum und kann daher keine S_2 -Achse aufweisen. Man erkennt weiterhin, daß S_1 äquivalent ist mit σ , da wir gesehen haben, daß $C_1 = E$ und daher der zweite Schritt, die Spiegelung, gleich σ sein muß¹¹.

Punktgruppen und Molekülsymmetrie

Wenn wir die Symmetrieelemente eines Moleküls wie H_2O analysieren (Abb. 3.9), finden wir, daß es eine C_2 -Achse, zwei σ_v -Ebenen und natürlich E hat. Die vier Symmetrieoperationen, die durch diesen Satz von Symmetrieelementen erzeugt werden, bilden eine Symmetriegruppe oder Punktgruppe. Im Falle des Wassermoleküls ist der Satz von vier Symmetrieelementen charakteristisch für die Punktgruppe C_{2v} . Die Zuordnung einer Punktgruppe zu einem Molekül dient nicht nur der einfachen Kurzbezeichnung seiner Symmetrie¹², sondern ist auch ein für die Eigenschaften des Moleküls wichtiges Charakteristikum.

Die Ermittlung der Punktgruppenzugehörigkeit von Molekülen kann in rein formaler, mathematischer Weise geschehen. Andererseits lernt man als Chemiker schnell, Moleküle nach kurzer Betrachtung ihrer Strukturformel entsprechend den häufigeren Punktgruppen zu klassifizieren. Die folgende Vorgehensweise kombiniert die beiden Methoden.

¹¹ Der Hauptgrund, weswegen diese Beziehungen hier erwähnt werden, ist die Systematik: alle Symmetrieelemente sind in C_a und S_a enthalten, da $\sigma = S_1$, $i = S_2$ und $E = C_1$. Wir können daher sagen, daß chirale Moleküle solche ohne Drehspiegelachse sind, da damit auch die Abwesenheit von σ und *i* eingeschlossen ist.

¹² Chemiker sprechen z.B. von der T_d -Symmetrie des [FeCl₄]⁻-Ions, von der D_{4k} -Symmetrie des [PtCl₄]²-Ions und von der C_{2v} -Symmetrie von SF₄ als alternative Beschreibung für das tetraedrische [FeCl₄]⁻-Ion, das planar-quadratische [PtCl₄]²-Ion und das SF₄-Molekül, das manchmal "Schmetterlingsmolekül" genannt wird.

66 3 Symmetrie und Gruppentheorie

1. Punktgruppen sehr hoher Symmetrie

Diese Punktgruppen sind durch ihre große Zahl von Symmetrieelementen charakterisiert. Zu ihnen gehören die Platonischen Körper hoher Symmetrie, die den meisten Lesern vertraut sein dürften.

a. Ikosaedrisch, I_h . Das Ikosaeder (Abb. 3.10a), wie es im Anion B₁₂H₁₂⁻ (Abb. 3.10b) vorliegt, hat sechs C_5 -Achsen, 10 C_3 -Achsen, 15 C_2 -Achsen, 15 Spiegelebenen, ein Inversionszentrum, sowie 6 S_{10} - und 10 S_6 -Achsen kolinear mit den C_5 - und C_3 -Achsen.

b. Oktaedrisch, O_h . Das Oktaeder (Abb. 3.10c) kommt sowohl bei Koordinationsverbindungen als auch bei hypervalenten Nichtmetallverbindungen vor (Abb. 3.10d, e). Ein Oktaeder hat vier C_3 -Achsen, drei C_4 -Achsen, sechs C_2 -Achsen, vier S_6 -Achsen, drei σ_h - und sechs σ_d -Spiegelebenen sowie ein Inversionszentrum. Außerdem gibt es drei C_2 - und drei S_4 -Achsen, die mit den C_4 -Achsen zusammenfallen.

c. Tetraedrisch, T_d . Das tetraedrisch koordinierte Kohlenstoffatom ist ein fundamentaler Baustein organischer Verbindungen, aber auch viele einfache anorganische Moleküle und Ionen besitzen Tetraedersymmetrie (s. Abb. 3.10g, h). Ein Tetraeder (Abb. 3.10f) ist charakterisiert durch vier C_3 -Achsen, drei C_2 -Achsen, sechs Spiegelebenen, und drei S_4 -Achsen.

2. Punktgruppen geringer Symmetrie

Es gibt drei Gruppen geringer Symmetrie, die jeweils nur ein oder zwei Symmetrieelemente besitzen.

a. C_1 . Moleküle dieser Symmetrie haben nur das Symmetrieelement E, das mit einer einzähligen Drehachse äquivalent ist. Zu dieser Punktgruppe gehören z. B. gewöhnliche chirale Moleküle mit einem Asymmetriezentrum (Abb. 3.11a), aber auch viele größere Moleküle.

b. C_s . Zusätzlich zum Symmetrieelement E, das bei allen Molekülen vorhanden ist, weisen Moleküle dieser Punktgruppe eine Spiegelebene auf. Sie sind daher zwar von geringer Symmetrie, aber nicht chiral (Abb. 3.11b).

c. C_i . Moleküle dieser Symmetrie besitzen ein Inversionszentrum zusätzlich zum Identitätselement. Beispiele sind die *anti*-Konformationen von (R,S)-1,2-Dichlor-1,2-difluorethan (Abb. 3.11c) und (R,S)-1,2-Dimethyl-1,2-diphenyldiphosphandisulfid (Abb. 3.3).

3. Punktgruppen mit einer *n*-zähligen Drehachse C_n

Nachdem man die Punktgruppen mit offensichtlich sehr hoher oder sehr niedriger Symmetrie durch Betrachtung des Moleküls ausgeschlossen hat, sollten die verbleibenden Punktgruppen dadurch zugeordnet werden, daß man nach charakteristischen Symmetrieelementen wie z. B. einer *n*-zähligen Drehachse C_n sucht. Moleküle, die nur eine derartige Achse aufweisen, wie z. B. gauche-H₂O₂ (Abb. 3.12a), Tris(2-aminoethoxo)cobalt(III) (Abb. 3.12b) oder Triphenylphosphan in seiner stabilen Konformation (Abb. 3.12c), sind von C_n -Symmetrie.

Punktgruppen und Molekülsymmetrie 67

Abb. 3.10 Punktgruppen und Moleküle hoher Symmetrie: (a) Ikosaeder; (b) das $B_{12}H_{12}^{2}$ -Ion; (c) Oktaeder; (d) Schwefelhexafluorid; (e) das Hexacyanocobaltat(III)-Kation; (f) Tetraeder; (g) das Ammoniumkation; (h) das Tetrafluoroboratanion.

Abb. 3.11 Moleküle niedriger Symmetrie: (a) Phosphorylbromidchloridfluorid, C_1 ; (b) Nitrosylchlorid, C_s ; (c) das *anti*-Konformer von (R,S)-1,2-Dichlor-1,2-difluorethan, C_i .

Abb. 3.12 Moleküle von C_n -Symmetrie: (a) Wasserstoffperoxid; (b) Tris(2-aminoethoxo)cobalt(III); (c) Triphenylphosphan. Bei (a) liegt die C_2 -Achse senkrecht zur O-O-Verbindungslinie und in der Zeichenebene, bei (b) und (c) liegen die C_3 -Achsen senkrecht zur Zeichenebene.

Abb. 3.13 Moleküle von C_{nh^-} , C_{nv^-} und $C_{\infty v}$ -Symmetrie: (a) *trans*-1,2-Dichlorethan; (b) Wasser; (c) Ammoniak; (d) das Pentamminchlorocobalt(III)-Kation; (e) Iodmonochlorid; (f) Hydrogencyanid.

Wenn zusätzlich zu einer C_n -Achse noch eine *horizontale* Spiegelebene (senkrecht zu C_n) vorhanden ist, gehört das Molekül zur Punktgruppe C_{nh} . Ein Beispiel für diese relativ unwichtige Gruppe ist das *trans*-Dichlorethen (Abb. 3.13a). Wenn ein Molekül *n* Spiegelebenen aufweist, die die Drehachse C_n enthalten (sich in ihr schneiden), nennt man die Spiegelebenen *vertikal*, und das Molekül ist dann von C_{nv} -Symmetrie. Viele

einfache anorganische Moleküle wie H_2O (Abb. 3.13b), NH_3 (Abb. 3.13c) und das Pentaamminchlorocobalt(III)-Kation (Abb. 3.13d)¹³ sind von C_{nv} -Symmetrie.

Frage: Wie wäre die Punktgruppensymmetrie von Triphenylphosphan, wenn die Ebenen der Phenylringe (Abb. 3.12a) parallel zur dreizähligen Achse wären, d.h. wenn sie sich in dieser Achse schneiden würden?¹⁴

Die Punktgruppe $C_{\infty v}$ ist ein spezieller Fall für lineare Moleküle wie ICl und HCN (Abb. 3.13e, f), da man das Molekül um einen beliebigen Winkel um seine Hauptachse drehen und eine unendlich große Zahl von vertikalen Spiegelebenen durch das Molekül legen kann.

4. Diedergruppen

Moleküle, die senkrecht zur Hauptdrehachse C_n genau nC_2 -Achsen aufweisen, gehören zu den Diedergruppen D_n . Wenn wie beim Tris(ethylendiamin)cobalt(III)-Kation (Abb. 3.14a) keine Spiegelebene vorhanden ist, liegt die Punktgruppe D_n vor. Wenn senkrecht zur Hauptachse eine Spiegelebene vorhanden ist, liegt D_{nh} -Symmetrie vor. Beispiele dafür sind Phosphorpentafluorid (Abb. 3.14b), das Tetrachloroplatinat(II)-Anion (Abb. 3.14c), das *trans*-Tetraammindichlorocobalt(III)-Kation (Abb. 3.14d) und das ekliptische Ferrocen (Abb. 3.8a).

Lineare Moleküle mit einem Inversionszentrum, wie BeF₂, XeF₂ und alle homoatomaren zweiatomigen Moleküle X₂ (Abb. 3.14e), weisen eine horizontale Spiegelebene und unendlich viele C₂-Achsen senkrecht zur Hauptdrehachse auf und sind daher von D_{∞h}-Symmetrie. Wenn die Spiegelebenen die Hauptachse C_n enthalten und den Winkel zwischen den C₂-Achsen halbieren, werden sie Diederebenen (σ_d) genannt. Beispiele sind die gestaffelte Konformation von Ferrocen (Abb. 3.8b), die gestaffelte Form von Ethan (Abb. 3.15a), das quadratisch-antiprismatische Oktafluorozirkonat(IV)-Anion (Abb. 3.15b), Bis[dimethylzinnbis(µ-tetracarbonyleisen)]zinn (Abb. 3.15c), cyclo-Oktaschwefel (Abb. 3.15d) und das gestaffelte Konformer von Dibenzolchrom (Abb. 3.15e), die alle zu den Punktgruppen D_{nd} gehören.

Frage: Wenn das Molekül Triphenylphosphan planar wäre, zu welcher Punktgruppe würde es gehören?¹⁵

5. Ein Fließschema zur Ermittlung der Punktsymmetrie

In Abb. 3.16 ist ein Fließschema gezeigt, das die Regeln zur Ermittlung der Symmetrie von Molekülen formalisiert. Das Schema enthält (in quadratischen Kästchen) alle oben diskutierten Punktgruppen sowie einige weniger häufig anzutreffende.

¹³ Das Pentaamminchlorocobalt(III)-Kation hat die "idealisierte" Symmetrie C_{4v} , wenn man die Wasserstoffatome einfachheitshalber ignoriert (die wegen der freien Rotation der Ammoniakliganden regellos orientiert sind).

 $^{^{14}}C_{3v}$

¹⁵ D_{3h}.

Abb. 3.15 Moleküle von D_{nd} -Symmetrie: (a) Ethan, gestaffelt; (b) das Oktafluorozirkonat(IV)-Anion; (c) Bis[dimethylzinn-bis(μ -tetracarbonyl-eisen)]zinn; (d) Oktaschwefel; (e) Dibenzolchrom.

70 3 Symmetrie und Gruppentheorie

ວ

÷ r

Abb. 3.16 Fließschema zur Ermittlung der Punktgruppe eines Moleküls.

Irreduzible Darstellungen und Charaktertafeln

Die Symmetrieoperationen, die zu einer bestimmten Punktgruppe gehören, bilden eine mathematische Gruppe. Das bedeutet, daß zwischen ihnen gewisse Beziehungen bestehen, die man mit einem Satz formaler Kriterien beschreiben kann. Eine wichtige Konsequenz dieser mathematischen Beziehungen ist, daß man jede Punktgruppe in Symmetriemuster zerlegen kann, die man als *irreduzible Darstellungen* bezeichnet und die eine große Hilfe sind bei der Analyse vieler molekularer und elektronischer Eigenschaften. Eine Vorstellung über die Herkunft und Bedeutung dieser Symmetriemuster kann man durch eine qualitative Herleitung erhalten¹⁶.

Bisher haben wir Symmetrieoperationen nur insofern betrachtet, als sie die Atome beeinflussen, die in Molekülen gewisse Positionen besetzen. Es gibt aber auch andere Anwendungen. Betrachten wir beispielsweise, wie eine dynamische Moleküleigenschaft, wie die Translation entlang einer Achse, durch die Symmetrieoperationen der Punktgruppe des Moleküls transformiert wird. Erinnern wir uns an die Symmetrieelemente und das Koordinatensystem des Wassermoleküls (Abb. 3.9), das zur Punktgruppe $C_{2\nu}$ gehört. Die Koordinaten werden nach folgender Übereinkunft zugeordnet: die höchstzählige Drehachse, in diesem Falle C_2 , definiert die z-Richtung und die x-Achse verläuft senkrecht zur Molekülebene. Lassen Sie uns nun die Translation des Moleküls in + y-Richtung durch Einheitsvektoren an den Atomen darstellen (Abb. 3.17).

Wie werden diese Vektoren durch die Symmetrieoperationen der Punktgruppe C_{2v} verändert? Nach Ausführung jeder Symmetrieoperation werden die Vektoren entweder in +y- oder in -y-Richtung zeigen, d.h. sie zeigen bezüglich der Operation entweder symmetrisches oder antisymmetrisches Verhalten. Wenn man ersteres mit +1 und letz-teres mit -1 symbolisiert, kann man jede Operation mit diesen "Charakteren" beschreiben. Die Identität E ändert die Lage der Pfeile nicht (+1). Eine Rotation um die C_2 -Achse um 180° ändert die +y-Vektoren nach -y (-1). Spiegelung an der σ_v (xz-Ebene) überführt +y nach -y (-1), während die Spiegelung an σ_v (yz) die Vek-

Abb. 3.17 Auswirkung der Symmetrieoperationen der Punktgruppe C_{2v} auf eine Translation in Richtung der y-Achse am Beispiel des Wassermoleküls.: (a) Identität, E; (b) Rotation um die C_2 -Achse; (c,d) Spiegelung an den beiden σ_v -Ebenen.

¹⁶ Bezüglich einer eingehenderen und mathematischen Entwicklung der Gruppentheorie siehe die in Fußnote 1 angegebenen Bücher.

Irreduzible Darstellungen und Charaktertafeln 73

Abb. 3.18 Auswirkung der Symmetrieoperationen der Punktgruppe C_{2v} auf eine Rotation des H₂O-Moleküls um die z-Achse: (a) Identität, E; (b) Rotation um die C_2 -Achse; (c,d) Spiegelungen an $\sigma_v(xz)$ und $\sigma'_v(yz)$.

toren unverändert läßt (+1). Der Satz von vier Charakteren (+1, -1, -1, +1), den wir auf diese einfache Weise abgebildet haben, stellt eine irreduzible Darstellung der Punktgruppe C_{2v} dar. Sie ist irreduzibel in dem Sinne, daß sie nicht mehr in eine noch einfachere, fundamentalere Form gebracht oder zerlegt werden kann. Die irreduzible Darstellung beschreibt nicht nur die Auswirkungen der C_{2v} -Operationen auf eine Translation in y-Richtung, sondern auf jede Funktion mit den Eigenschaften eines y-Vektors, z.B. ein p_y -Orbital des Sauerstoffatoms. Man sagt daher, daß y als *Basisfunktion* für diese irreduzible Darstellung innerhalb der Punktgruppe C_{2v} fungiert.

Translationen (und *p*-Orbitale) des Wassermoleküls in Richtung der Achsen x und z weisen ein anderes Symmetriemuster auf, als wir es eben für die y-Richtung abgeleitet haben. Wenn die Symmetrieoperationen E, C_2 , $\sigma_v(xz)$ und $\sigma_v(yz)$ in dieser Reihenfolge auf einen in x-Richtung weisenden Einheitsvektor angewandt werden, ergeben sich die Charaktere +1, -1, +1 und -1. Dagegen wird ein in z-Richtung weisender Vektor durch die vier Symmetrieoperationen nicht verändert, was zu den Charakteren +1, +1, +1, +1 führt.

Nach den Prinzipien der Gruppentheorie ist die Zahl der irreduziblen Darstellungen einer Punktgruppe gleich der Anzahl der Klassen von Symmetrieoperationen, die diese Gruppe charakterisieren. Für die Punktgruppe C_{2v} erwarten wir daher vier irreduzible Darstellungen. Drei haben wir oben bereits hergeleitet. Die vierte erhält man, wenn man eine Rotation des Wassermoleküls um die z-Achse betrachtet. Stellen Sie sich einen Pfeil vor, der im Uhrzeigersinn um die z-Achse gekrümmt ist (bei Blickrichtung entlang dieser Achse, s. Abb. 3.18). Eine derartige Bewegung ist symmetrisch bezüglich jeder Operation, die die Richtung nicht verändert, und antisymmetrisch gegenüber Operationen, die die Richtung umkehren. Sowohl E als auch C_2 lassen die Richtung unverändert (+1), während die Spiegelung an einer der beiden Spiegelebenen die Richtung umkehrt (-1). Das Ergebnis ist: +1, +1, -1, -1; dies ist das vierte Symmetriemuster der Punktgruppe C_{2v} .

Viele der Symmetrieeigenschaften einer Punktgruppe einschließlich ihrer charakteristischen Operationen und irreduziblen Darstellungen kann man in einer Matrix darstellen, die als *Charaktertafel* bekannt ist. Für die Punktgruppe C_{2v} lautet diese¹⁷:

C_{2r}	E	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$		
$\overline{A_1}$	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	<u> </u>	-1	R _z	xy
B_1	1	-1	1	-1	x, R_{y}	xz
B_2	1	- 1	-1	1	y, R_x	yz

Am Kopf der Spalten stehen jeweils die Klassen von Symmetrieoperationen der betreffenden Gruppe, und jede Reihe bezeichnet eine irreduzible Darstellung. Die Zahlen +1 und -1 stehen für symmetrisches und antisymmetrisches Verhalten und werden, wie schon erwähnt, Charaktere genannt.

In den beiden rechten Spalten sind einige der Basisfunktionen aufgeführt, die die Symmetrie der betreffenden Darstellung besitzen. R_x , R_y und R_z stehen für Rotationen um die jeweilige Achse. Die binären Produkte ganz rechts zeigen beispielsweise, wie sich die *d*-Orbitale eines Atoms bei Anwendung der Symmetrieoperationen verhalten (wie sie "transformieren"). Die Symbole in der äußersten linken Spalte der Charaktertafel (Mulliken-Symbole) sind Teil der Sprache der Symmetrie. Jedes von ihnen gibt in abgekürzter Form verschiedene Merkmale der betreffenden irreduziblen Darstellung wieder. Ein derartiges Merkmal ist beispielsweise die *Dimension*, die mit der mathematischen Herkunft der Charaktere zusammenhängt. Genau genommen wird jeder Charakter von einer Matrix abgeleitet, die eine Symmetrieoperation darstellt, und zwar ist der Charakter die Summe der Diagonalelemente der Matrix. Bei der Punktgruppe C_{2v} sind alle diese Matrizen von der einfachsten Form: sie bestehen aus einem einzigen Element (dem Charakter) und sind daher eindimensional.

Bei Punktgruppen mit drei- und mehrzähligen Drehachsen kommen dagegen zweiund dreidimensionale Matrizen vor, die zu Charakteren von 2 und sogar 3 führen. Das wird weiter unten für die Punktgruppe D_{4h} erläutert werden. Eindimensionale Darstellungen wie in der Punktgruppe C_{2v} werden mit A bzw. B bezeichnet, wenn sie zur höchstzähligen Drehachse symmetrisch bzw. antisymmetrisch sind. Gibt es zwei oder mehr Darstellungen in einer Gruppe, die zu A bzw. B gehören, fügt man einen Index an, der das symmetrische (1) bzw. antisymmetrische (2) Verhalten gegenüber einem zweiten Symmetrieelement angibt. Dieses zweite Element ist eine C_2 -Achse senkrecht zur Hauptdrehachse oder, falls eine solche Achse nicht vorhanden ist, eine vertikale Spiegelebene. Zweidimensionale Darstellungen werden mit E (nicht zu verwechseln mit der Identität E) und dreidimensionale mit T bezeichnet. Falls ein Inversionszentrum vorhanden ist, verwendet man die Symbolbuchstaben g und u für gerade (symmetrisch) und ungerade (antisymmetrisch). Die hochgestellten Striche ' und '' werden verwendet, um symmetrisches bzw. antisymmetrisches Verhalten bezüglich einer horizontalen Spiegelebene anzugeben.

Bereits weiter oben haben wir das Tetrachloroplatinat(II)-Ion als ein Beispiel für die Punktgruppe D_{4h} eingeführt (Abb. 3.14c). Die Charaktertafel für diese Punktgruppe lautet:

¹⁷ Charaktertafeln weiterer Punktgruppen finden sich im Anhang D.

D_{4h}	E	2 <i>C</i> ₄	<i>C</i> ₄	2 <i>C</i> ' ₂	2 <i>C</i> '' ₂	i	$2S_{4}$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1q}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2q}	1	1	1	-1	-1				-1	-1	R_z	
B _{1a}	1	-1	1	1	-1	1	-1	1	1	-1	_	$x^{2} - y^{2}$
B_{2a}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_a^{-s}	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
$A_{1\mu}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$A_{2\mu}$	1	1	1	-1	-1	-1	-1	-1	1	1	z	
$B_{1u}^{}$	1	-1	1	1	-1	-1	1	-1	-1	1		4
B_{2u}^{-}	1	-1	1	-1	1	-1	1	-1	1	-1		
$E_u^{}$	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

Man beachte, daß in dieser Gruppe zwei irreduzible Darstellungen zweidimensional sind, nämlich E_g und E_u . Für jede ist ein *Paar* von Basisfunktionen tabelliert. Um festzustellen, wie Translationen in x- und y-Richtung als Basis für die E_u -Darstellung dienen, betrachte man Abb. 3.19, die das $PtCl_4^2$ -Ion mit einem Koordinatensystem zeigt, das der üblichen Konvention entspricht. Die z-Achse fällt mit der C_4 -Drehachse zusammen und die Achsen x und y weisen in Richtung der PtCl-Bindungen. Die Drehachsen C'_2 und C''_2 liegen senkrecht zu C_4 . Die C'_2 -Achsen werden so gewählt, daß auf ihnen so viele Atome wie möglich liegen, sie liegen daher parallel zu den Achsen x und y. Die beiden Achsen C''_2 halbieren die Winkel zwischen den Achsen x und y. Die Spiegelebenen σ_v und σ_d enthalten die Drehachsen C'_2 bzw. C''_2 .

Eine Translation des PtCl₄²⁻-Ions in x- oder y-Richtung kann durch die in Abb. 3.19 am Platinatom eingezeichneten Vektoren dargestellt werden. Im Gegensatz zu allen bisher besprochenen Fällen führen bestimmte Symmetrieoperationen der Gruppe D_{4h} für beide Vektoren zu neuen Orientierungen, die gegenüber der ursprünglichen Richtung nicht einfach mit +1 oder -1 beschrieben werden können. Beispielsweise wird der x-Vektor bei einer C_4 -Drehung im Uhrzeigersinn in die +y-Richtung und der y-Vektor in die -x-Richtung transformiert. Der Charakter dieser Operation ist null. (Dies ergibt sich, weil die Diagonalelemente der Matrix, die diese Operation beschreibt, alle null sind. Andere Elemente dieser Matrix sind verschieden von null, tragen aber nicht zum Charakter bei.) Die Operationen S_4 und σ_d führen zu einer ähnlichen Mi-

Abb. 3.19 Das $PtCl_4^2$ -Ion (D_{4h}) mit x- und y-Translationsvektoren am Zentralatom.

76 3 Symmetrie und Gruppentheorie

schung von x- und y-Funktionen, was ebenfalls zum Charakter Null führt. Wegen dieser Mischung sind die x- und y-Funktionen innerhalb der Punktgruppe D_{4h} untrennbar; man sagt, sie transformieren als zweifach entartete oder zweidimensionale Darstellung.

Die verbleibenden Charaktere der E_u -Darstellung kann man erzeugen, indem man die kombinierte Wirkung der Symmetrieoperationen auf die Vektoren x und y betrachtet. Bei Anwendung der Identität bleiben beide Vektoren unverändert; daher ergibt sich der Charakter dieser Operation zu zweimal +1 ist gleich +2. Die Operation σ_h (Spiegelung an der Molekülebene) läßt die beiden Vektoren in ähnlicher Weise unverändert und führt zum Charakter +2. Durch die Operation C_2 (Drehung um die z-Achse) wird der x-Vektor in die Richtung -x und der y-Vektor nach -y transformiert, was den Charakter $2 \cdot (-1) = -2$ ergibt. Inversion am Symmetriezentrum führt zum gleichen Ergebnis. Bei einer C'_2 -Operation (Drehung um die y-Achse) bleibt der y-Vektor unverändert (+1), während der x-Vektor in die entgegengesetzte Richtung (-1) gedreht wird, was insgesamt zu einem Charakter von null führt. Das gleiche Ergebnis wird bei einer Spiegelung an der σ_v , die die y-Achse enthält, erhalten.

Reduzible Darstellungen

Bei der Anwendung der Gruppentheorie auf Probleme der Molekülstruktur oder Moleküldynamik geht man normalerweise so vor, daß für das betrachtete Phänomen eine reduzible Darstellung abgeleitet wird, die dann in ihre irreduziblen Komponenten zerlegt wird. Eine reduzible Darstellung ist immer die *Summe* von irreduziblen. Obwohl man die Zerlegung manchmal schon durch eine einfache Betrachtung erkennen kann, wird im allgemeinen Fall die folgende Reduktionsformel angewandt:

$$N = \frac{1}{h} \sum_{\mathbf{x}} \chi_r^{\mathbf{x}} \cdot \chi_i^{\mathbf{x}} \cdot n^{\mathbf{x}}$$
(3.1)

In diesem Ausdruck gibt N an, wie oft eine bestimmte irreduzible Darstellung in der zu reduzierenden Darstellung enthalten ist, h ist die Gesamtzahl der Symmetrieoperationen in der Punktgruppe, χ_i^x ist der Charakter einer bestimmten Klasse von Operationen in der reduziblen Darstellung, χ_i^x ist der Charakter von x in der reduziblen Darstellung, n^x ist die Anzahl von Operationen in der Klasse; die Summe wird über alle Klassen gebildet. Die Ableitung reduzibler Darstellungen wird im nächsten Abschnitt behandelt werden. Im Augenblick wollen wir nur die Anwendung der Reduktionsformel erläutern, indem wir die folgende reduzible Darstellung (Γ_r) für die Freiheitsgrade der Bewegung (Translation, Rotation, Schwingung) des Wassermoleküls betrachten:

$$E \quad C_2 \quad \sigma_v(xz) \quad \sigma_v(yz)$$

$$\Gamma_r: \quad 9 \quad -1 \quad 1 \quad 3$$

Um diese Darstellung zu zerlegen, muß Gleichung 3.1 für jede der vier irreduziblen Darstellungen der Punktgruppe C_{2v} angewandt werden:

$$A_1: N = (\frac{1}{4})[(9)(1)(1) + (-1)(1)(1) + (1)(1)(1) + (3)(1)(1)] = 3$$

$$A_2: N = (\frac{1}{4})[(9)(1)(1) + (-1)(1)(1) + (1)(-1)(1) + (3)(-1)(1)] = 1$$

$$B_1: N = (\frac{1}{4})[(9)(1)(1) + (-1)(-1)(1) + (1)(1)(1) + (3)(-1)(1)] = 2$$

$$B_2: N = (\frac{1}{4})[(9)(1)(1) + (-1)(-1)(1) + (1)(-1)(1) + (3)(1)(1)] = 3$$

Es ergibt sich, daß die reduzible Darstellung in drei A_1 -, eine A_2 -, zwei B_1 - und drei B_2 -Spezies zerlegt wird. Man kann leicht zeigen, daß die Summe der Charaktere dieser Kombination gleich ist den Charakteren von Γ_r .

Anwendungen der Punktgruppensymmetrie

Optische Aktivität

Wahrscheinlich ist der Leser mit der Chiralität organischer Verbindungen, die auf asymmetrisch substituierten Kohlenstoffatomen beruht, wohl vertraut. In anorganischen Lehrbüchern wird die Chiralität gewöhnlich mit Bild und Spiegelbild definiert¹⁸, die nicht zur Deckung gebracht werden können. Die Chiralität von Helicen und von Spiroverbindungen wird auf diese Weise erklärt, aber wenige Lehrbücher diskutieren die Chiralität anderer Moleküle als die, die auf dem asymmetrischen C-Atom basiert¹⁹. Anorganische Moleküle können als Folge eines asymmetrischen Stickstoff-, Phosphoroder Schwefelatoms optisch aktiv sein²⁰, aber die bei weitem größte Zahl chiraler anorganischer Moleküle besitzt überhaupt kein einzelnes asymmetrisches Atom, sondern ist chiral als Folge ihrer Molekülsymmetrie, insbesondere wegen der Abwesenheit einer Drehspiegelachse. Viele Beispiele finden sich bei den oktaedrisch koordinierten Komplexen von D_3 -Symmetrie oder ungefährer D_3 -Symmetrie. Diese Verbindungen werden im Kapitel 12 ausführlich behandelt. Da chirale Moleküle oftmals einige Symmetrieelemente besitzen (z. B. enthält die Punktgruppe D_3 die Drehachsen C_3 und C_2), ist es nicht angebracht, von asymmetrischen (unsymmetrischen) Molekülen zu sprechen. Die beste Bezeichnung für alle chiralen Moleküle ist dissymmetrisch, da die Abwesenheit einer Drehspiegelachse ein Molekül als dissymmetrisch ausweist¹¹. In Tabelle 3.1 sind wichtige Punktgruppen nach chiral und achiral klassifiziert.

¹⁸ Wie wir gesehen haben, ist die formelle Bedingung für optische Aktivität die Abwesenheit einer Drehspiegelachse. Die zwei Bedingungen sind äquivalent.

¹⁹ Bezüglich einer Diskussion chiraler organischer Moleküle, die kein asymmetrisches Kohlenstoffatom aufweisen, siehe L.C. Wade J. Organic Chemistry, Prentice Hall, Englewood Cliffs, NJ 1987, S. 354-356; K. Schlögl, Top. Curr. Chem. 1984, 125, 27; W.H. Laarhoven, W.J. Prinsen, ibid. 1984, 125, 63; K.P. Meurer, F. Vögtle, ibid. 1985, 127, 1.

²⁰ Diese werden in Kapitel 6 besprochen.

78 3 Symmetrie und Gruppentheorie

Chiral	Achiral (ursächliches Symmetrieelement)
C_1 (asymmetrisch) C_n (dissymmetrisch) D_n (dissymmetrisch)	$C_s \text{ (Spiegelebene)} \\ C_i \text{ (Inversionszentrum)} \\ D_{nh} \text{ (Spiegelebene)} \\ S_n \text{ (Drehspiegelachse)} \\ T_d \text{ (Spiegelebene)} \\ O_h \text{ (Inversionszentrum und Spiegelebene)} \\ I_h \text{ (Inversionszentrum und Spiegelebene)} \\ C_{nv} \text{ (Spiegelebene)} \\ \end{array}$

 Tab 3.1
 Punktgruppen chiraler und achiraler Moleküle

Dipolmomente

Ein Molekül hat ein Dipolmoment, wenn die Summe aller individueller Bindungsmomentvektoren und sonstiger Komponenten von null verschieden ist. Das Vorhandensein eines Inversionszentrums i führt zum Dipolmoment null, da jede Ladungstrennung auf der einen Seite des Moleküls kompensiert wird durch die gleichgroße Ladungstrennung auf der anderen Seite. Daher besitzen [CoF₆]³⁻ (Abb. 3.4c), trans-N₂F₂ (Abb. 3.5) und Ferrocen in der gestaffelten Konformation (Abb. 3.8b) keine Dipolmomente. Wenn zwei oder mehrere C_n -Achsen vorhanden sind (n > 1), muß das Dipolmoment null sein, da der Dipolvektor nicht gleichzeitig in Richtung mehrerer Achsen liegen kann. Daher haben SiF₄ (Abb. 3.4a), PF₅ (Abb. 3.4b), ekliptisches Ferrocen (Abb. 3.8a) und alle Moleküle von D_n -Symmetrie (s. Abb. 3.14) kein Dipolmoment. Das Vorhandensein einer horizontalen Spiegelebene verhindert ebenfalls ein Dipolmoment, während eine oder mehrere vertikale Spiegelebenen dem nicht entgegenstehen. In letzterem Falle muß der Dipolvektor offensichtlich in diesen Ebenen liegen; darüber hinaus kann auch noch eine C_n -Achse vorhanden sein, die dann auch in der gleichen Ebene liegen muß. Beispiele dafür sind $cis-N_2F_2$ (Abb. 3.6) und O=N-Cl (Abb. 3.11b).

In Tab. 3.2 sind die häufigsten Punktgruppen hinsichtlich der Möglichkeit eines Dipolmomentes als "Symmetrie-erlaubt" und "Symmetrie-verboten" klassifiziert. Die Symmetrie allein sagt natürlich noch nichts über die Größe des Dipolmoments aus,

Symmetrie-erlaubt	Symmetrie-verboten (Symmetrielement(e), die ein Dipolmoment verhindern)
$ \begin{array}{c} C_1 \\ C_S \\ C_n \\ C_{n\nu} \end{array} $	$C_{i} \text{ (Inversionszentrum)} \\S_{n} \text{ (Drehspiegelachse)} \\D_{n} (C_{n} + n C_{2}) \\D_{nh} (C_{n} + n C_{2} \text{ und } \sigma_{h}) \\D_{nd} (C_{n} + n C_{2}) \\T_{d} (4C_{3} + 3C_{2}) \\O_{h} (i, C_{n} + n C_{2} \text{ und } \sigma_{h}) \\I_{h} (i, C_{n} + n C_{2} \text{ und } \sigma_{h}) \\$

Tab 3.2 Punktgruppen, für die Dipolmomente Symmetrie-erlaubt bzw. Symmetrie-verboten sind

Anwendungen der Punktgruppensymmetrie 79

Abb. 3.20 Schematische Darstellung von Infrarot- und Ramanspektrometern. Bei der Infrarotspektroskopie werden die Molekülschwingungen durch Absorption charakteristischer Wellenlängen der polychromatischen Strahlung angeregt. Bei der Ramanspektroskopie führt die unelastische Streuung von Photonen an den Molekülen zu einer Schwingungsanregung.

und einige der Moleküle, die aufgrund ihrer geringen Symmetrie ein Dipolmoment μ haben können, weisen einen sehr kleinen aber endlichen Wert von μ auf, z. B. S=C=Te (0.57 · 10⁻³⁰ C m; 0.17 D), *cis*-FN=NF (0.53 · 10⁻³⁰ C m; 0.16 D), NO (0.50 · 10⁻³⁰ C m; 0.15 D), SbH₃ (0.40 · 10⁻³⁰ C m; 0.12 D), CO (0.37 · 10⁻³⁰ C m; 0.11 D), FCIO₃ (0.077 · 10⁻³⁰ C m; 0.023 D).

Infrarot- und Ramanspektroskopie

Bei der Infrarotspektroskopie wird die zu untersuchende Probe mit polychromatischer infraroter Strahlung bestrahlt. Die Probe absorbiert solche Photonen, deren Energie der Anregungsenergie bestimmter Molekülschwingungen entspricht. Hinter der Probe hat daher die Intensität derartiger Photonen abgenommen; man sagt, die Durchlässigkeit der Probe für solche Frequenzen sei vermindert (Abb. 3.20).

Bei der *Ramanspektroskopie* wird sichtbares monochromatisches Licht (normalerweise sichtbares) an der Probe gestreut. Der größte Teil der gestreuten Photonen hat die gleiche Frequenz wie das einfallende Licht (Erregerstrahlung), aber bei einem kleinen Teil der Photonen ist die Frequenz um einen Betrag verändert, der der Energiedifferenz zwischen Schwingungsniveaus entspricht (Abb. 3.20). Da für Infrarotspektroskopie (Absorption) und Ramanspektroskopie (Streuung) verschiedene Auswahlregeln gelten, kann man das vollständige Schwingungsspektrum einer Substanz i.a. nur durch Anwendung beider Methoden erhalten.

Abb. 3.21 Normalschwingungen des Wassermoleküls: (a) symmetrische Valenzschwingung, A_1 ; (b) Deformationsschwingung, A_1 ; (c) asymmetrische Valenzschwingung, B_2 . Die Transformationen der Normalkoordinaten unter der Wirkung der Symmetrieoperationen der Punktgruppe $C_{2\nu}$ sind angegeben.

Die Zahl der Schwingungsfreiheitsgrade eines Moleküls aus N Atomen beträgt 3N - 6 (oder 3N - 5, wenn es linear ist)²¹. Welche davon infrarot-aktiv oder Ramanerlaubt sind, kann man durch einige einfache Symmetriebetrachtungen herausfinden. Infrarote Photonen werden als Folge von Schwingungsübergängen im Molekül absorbiert. Damit eine Schwingung infrarot-aktiv ist, d.h. durch Photonenabsorption angeregt werden kann, muß sich der Dipolmomentvektor, der mit der Schwingung verknüpft ist, ändern. Betrachten wir zunächst das einfachste mögliche Molekül: bei einem Molekül X₂ gibt es nur eine Schwingung, die sogenannte Streckschwingung. Bei dieser ändert sich das Dipolmoment nicht (weder vor noch während der Schwingung hat X₂ ein Dipolmoment, solange die beiden Atome identisch sind). Folglich ist diese Schwingung nicht infrarot-aktiv oder IR-inaktiv. Moleküle wie H2, F2, Cl2 und N2 zeigen daher keine IR-Absorption. Kohlenmonoxid andererseits, das mit N2 isoelektronisch ist, hat ein kleines Dipolmoment und seine Schwingung ist IR-aktiv, weil sich das Dipolmoment ändert, wenn sich der Kernabstand ändert. Die Absorption liegt bei der Wellenzahl 2143 cm⁻¹, was ein für die Chemie von Koordinationsverbindungen (Carbonylkomplexen) wichtiger Wert ist²². Entscheidend ist, daß die elektromagnetische Welle der IR-Strahlung mit dem elektrischen Dipolmoment des Moleküls wechselwirken kann. Das elektrische Feld der Strahlung muß das schwingende elektrische Dipolmoment des Moleküls anregen können, so daß eine Molekülschwingung gleicher Wellenzahl aber erhöhter Amplitude resultiert.

Betrachten wir als nächstes das Wassermolekül. Wie wir gesehen haben, besitzt es ein Dipolmoment und daher erwarten wir mindestens eine IR-aktive Schwingung. H_2O gehört zur Punktgruppe $C_{2\nu}$ und wir benutzen dies, um die IR-aktiven und Raman-

²¹ Ein Molekül hat insgesamt 3 N Freiheitsgrade, wovon drei auf die Translation und drei (im linearen Fall zwei) auf die Rotation entfallen.

²² Siehe Kap. 11 und 15.

Abb. 3.22 Cartesische Koordinaten und Bewegungsvektoren für die Atome des Wassermoleküls.

erlaubten Schwingungen zu identifizieren. Jede Normalschwingung bildet eine Basis für eine irreduzible Darstellung der Punktgruppe des betreffenden Moleküls²³. Eine Normalschwingung ist IR-aktiv, wenn sie zu einer der irreduziblen Darstellungen gehört, die den Vektoren x, y und z entsprechen. Die Charaktertafel der Punktgruppe C_{2v} enthält vier irreduzible Darstellungen: A_1 , A_2 , B_1 und B_2 . H_2O hat 3N-6 = 3 Normalschwingungen, die in Abb. 3.21 schematisch dargestellt sind. Die symmetrische Valenzschwingung (v_1) und die Deformationsschwingung (v_2) sind nicht nur bezüglich der C_2 -Achse symmetrisch, sondern auch bezüglich der beiden Spiegelebenen. Sie sind daher von A_1 -Symmetrie und da z als A_1 transformiert, sind sie beide IR-aktiv. Die dritte Schwingung (v_3) ist weder zur C_2 -Achse noch bezüglich der $\sigma_v(xz)$ -Spiegelebene symmetrisch; sie ist daher von B_2 -Symmetrie. Da y als B_2 transformiert, ist diese Schwingung ebenfalls IR-aktiv. Sie wird als asymmetrische Valenzschwingung bezeichnet. Im IR-Spektrum erscheinen die drei Normalschwingungen des H_2O -Moleküls bei 3652 (v_1) , 1545 (v_2) bzw. 3756 cm⁻¹ (v_3) .

Damit eine Schwingung Raman-aktiv (oder -erlaubt) ist, muß sich der *Polarisier*barkeitstensor ändern. Wir wollen hier in dieser Frage keine Details betrachten²⁴, sondern lediglich feststellen, daß die Komponenten des Polarisierbarkeitstensors als quadratische Funktionen von x, y und z transformieren. Daher suchen wir in den Charaktertafeln nach x^2 , y^2 , z^2 , xy, xz, yz oder deren Kombinationen wie $x^2 - y^2$. Da die irreduzible Darstellung für x^2 gleich A_1 ist und die für yz gleich B_2 , sind alle drei Normalschwingungen des Wassermoleküls auch Raman-aktiv.

Die vorstehende Behandlung des Wassermoleküls beruhte auf unserer Fähigkeit, seine fundamentalen Schwingungsbewegungen (Normalschwingungen) zu beschreiben. Für ein AB_2 -Molekül ist dies eine einfache Aufgabe, bei komplexen Strukturen jedoch äußerst schwierig. Es gibt jedoch eine alternative Vorgehensweise, die nicht die Kenntnis der Schwingungsformen voraussetzt. Man beginnt mit der Herleitung der irreduziblen Darstellungen für alle 3N Freiheitsgrade des Moleküls. Dazu werden die Freiheitsgrade für jedes Atom durch einen Satz cartesischer Verschiebungsvektoren so dargestellt, daß die z-Vektoren parallel zur höchstzähligen Drehachse des Moleküls stehen (Abb. 3.22).

²³ Eine eingehende Besprechung der Anwendungen der Gruppentheorie in der Schwingungsspektroskopie findet man bei D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy, Dover, New York 1989, Kap. 3.

²⁴ Siehe E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed., CRC, Boca Raton, 1991, Kap. 5; R. S. Drago, Physical Methods for Chemists, 2nd. ed., Saunders, Fort Worth 1992, Kap. 6.

	E	<i>C</i> ₂	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
Zahl der nicht bewegten Atome: Beitrag pro Atom:	3 3	1 - 1	1 1	3 1
Γ_{tot}	9	- 1	1	3

Tab. 3.3 Ableitung der reduziblen Darstellungen für die Freiheitsgrade des Wassermoleküls

Die Charaktere der reduziblen Darstellung können dann dadurch ermittelt werden, daß man die kombinierte Wirkung jeder Symmetrieoperation auf die atomaren Vektoren betrachtet. Eine Vereinfachung ergibt sich dadurch, daß nur diejenigen Atome zum Charakter einer Operation beitragen, die durch die Operation nicht bewegt werden. Im Falle des H₂O-Moleküls gilt dies z.B. für alle drei Atome bei den Operationen *E* und $\sigma_v(yz)$, aber nur für das O-Atom im Falle der Operationen C_2 und $\sigma_v(xz)$; vgl. Tab. 3.3.

Tab 3.4 Atomare Beiträge (je Symmetricoperation) zu der reduziblen Darstellung für die 3 N Freiheitsgrade eines Moleküls

Operation	Beitrag pro Atom ^a
E	3
C_2	- 1
C_3	0
C_4	1
C_6	2
σ	1
i	- 3
S ₃	-2
S_4	-1
S_6	0
$a C_n = 1 + 2\cos\frac{360}{n}$	
$S_n = -1 + 2\cos\frac{360}{n}$	

Jedes am Ort verbleibende Atom trägt zum gesamten Charakter so viel bei, wie sich als Summe der Wirkungen der Operationen auf die atomaren Verschiebungsvektoren ergibt. Bei den Operationen der Punktgruppe C_{2v} bleibt ein Vektor entweder unverändert (+1) oder wird in die Gegenrichtung überführt (-1). Daher erhalten wir für die Identitätsoperation +3, da alle drei Vektoren unbeeinflußt bleiben. Im Falle von C_2 bleibt der z-Vektor am Sauerstoff unverändert, während die Vektoren x und y in -x und -y überführt werden, was insgesamt einen Wert von -1 ergibt. Da diese Beiträge unabhängig von der Molekülsymmetrie sind, kann man sie für häufige Operationen bequem tabellieren (Tab. 3.4). Eine einfache Multiplikation der Anzahl am Ort verbleibender Atome mit dem Beitrag für jede Operation ergibt die reduzible Darstellung (Γ_{tot}) für Wasser, die in Tab. 3.3 gezeigt ist.

Weiter oben (S. 77) haben wir abgeleitet, daß die irreduziblen Komponenten dieser Darstellung die Spezies $3A_1$, $1A_1$, $2B_1$ und $3B_2$ sind. Um hieraus die Darstellungen nur für die Schwingungen zu erhalten, müssen die Darstellungen für die Rotation und die Translation abgezogen werden. Mit Hilfe der Charaktertafel können wir diese identifizieren. Die drei Translationen müssen zu den gleichen Darstellungen wie die Basisfunktionen x, y und z gehören. Die Rotationen transformieren als R_x , R_y und R_z . Die Subtraktion ergibt:

$$\Gamma_{tot} = 3A_1 + A_2 + 2B_1 + 3B_2 - \Gamma_{trans} = A_1 + B_1 + B_2 - \Gamma_{rot} = A_2 + B_1 + B_2 - \Gamma_{rot} = A_2 + B_1 + B_2$$

Das Ergebnis ist selbstverständlich das gleiche, wie wir es oben durch Analyse der Symmetrie der Normalschwingungen erhalten haben.

Als zweites Beispiel für die Verwendung von Charaktertafeln bei der Analyse von IR- und Ramanspektren wollen wir das D_{3h} -Molekül BCl₃ betrachten. Da es aus vier Atomen besteht, erwarten wir sechs Normalschwingungen. Da drei Bindungen vorhanden sind, müssen davon drei Valenzschwingungen sein, wodurch drei Deformationsschwingungen übrig bleiben. In Tab. 3.5 ist die Herleitung von Γ_{tot} für die 12 Freiheitagrade dieses Moleküls gezeigt.

Tab. 3.5 Ableitung von Γ_{tot} für BCl₃

	 E	2 <i>C</i> ₃	3C ₂	σ_h	2 <i>S</i> ₃	3σ _υ
unbewegte Atome: Beitrag pro Atom:	4 3	1 0	2 - 1	4 1	1 - 2	2 1
Γ _{tot}	12	0	- 2	4	- 2	2

Durch Anwendung der Reduktionsformel und Subtraktion der Translations- und Rotationsdarstellungen erhält man:

$$\Gamma_{tot} = A'_{1} + A'_{2} + 3E' + 2A''_{2} + E'' -\Gamma_{trans} = E' + A''_{2} -\Gamma_{rot} = A'_{2} + E'' \overline{\Gamma_{vib}} = A'_{1} + 2E' + A''_{2}$$

Man erkennt, daß die sechs grundlegenden Schwingungen von BCl_3 als A'_1 , A''_2 und 2E' transformieren. Jede E'-Darstellung beschreibt zwei Schwingungen gleicher Energie, d.h. die Bezeichnung 2E' steht für vier verschiedene Schwingungen, die paarweise

Abb. 3.23 Normalschwingungen des Bortrichloridmoleküls: (a) symmetrische Valenzschwingung, A'_1 ; (b) nichtebene Deformationsschwingung, A''_2 ; (c) asymmetrische Valenzschwingung, E'; (d) ebene Deformationsschwingung, E'.

energiegleich (zweifach entartet) sind. Die A'_1 -Schwingung ist Raman-aktiv, die A''_2 -Schwingung IR-aktiv und die E'-Schwingungen sind sowohl Raman- als auch IR-aktiv. Wenn wir uns die tatsächlichen Formen dieser Schwingungen vorstellen wollen, sollten wir im A'_1 -Fall eine symmetrische Valenzschwingung erwarten, da diese Schwingung symmetrisch bezüglich aller Symmetrieelemente ("totalsymmetrisch") ist (Abb. 3.23a). Eine andere Bewegung ist die symmetrische aus-der-Ebene-Deformationsschwingung, bei der sich das Boratom in die eine Richtung und die drei Chloratome gemeinsam in die entgegengesetzte Richtung bewegen (Abb. 3.23b). Die vier verbleibenden Schwingungen (zwei Valenz- und zwei Deformationsschwingungen) können nicht so leicht eingeteilt werden, da sie auf zwei zweifach entartete Normalschwingungen von jeweils E-Symmetrie verteilt sind. In Abb. 3.23c und d ist jeweils eine Komponente dieser Schwingungen gezeigt. In beiden Fällen führen die zwei Komponenten nur zu je einer beobachtbaren Schwingung. Sowohl c als auch d sind auf die xy-Ebene beschränkt und können daher nur x- und y-Komponenten enthalten. Sie können daher nur zweifach und nicht höher entartet sein. Beide Schwingungen sind symmetrisch zur horizontalen Spiegelebene, weswegen sie als E' und nicht als E'' transformieren.

Eine bei der Interpretation von Spektren nützliche Erfahrung ist die Tatsache, daß die Wellenzahl einer Normalschwingung von den Massen der dabei *in Bewegung be-findlichen* Atome abhängt. Man kann daher durch isotope Substitution die Zuordnung von Wellenzahlen zu Normalschwingungen untermauern²⁵. Bei der symmetrischen Valenzschwingung v_1 bewegt sich das Boratom überhaupt nicht, weswegen eine Substitution von ¹⁰B durch das häufigere ¹¹B die Wellenzahl von 471 cm⁻¹ unverändert läßt (s. Abb. 3.23a). Im Gegensatz dazu bewegt sich das Boratom bei den Normalschwingungen v_2 und v_3 erheblich und die Substitution von ¹⁰B durch ¹¹B führt zu einer erheblichen Verminderung der Wellenzahlen. Die Deformationsschwingung v_4 ist ein interessanter Fall: in erster Näherung bewegt sich das Boratom kaum. Tatsächlich bewegt es sich aber doch etwas, und zwar folgt es dem einzelnen Chloratom, das dem Paar von Cl-Atomen gegenübersteht. Die Schwingungswellenzahl ändert sich aber kaum, wenn ¹⁰B durch ¹¹B ersetzt wird, nämlich von 243 nach 244 cm⁻¹.

²⁵ Natürlich kann man auch andere Anhaltspunkte verwenden. Beispielsweise beobachtet man die asymmetrische Valenzschwingung gewöhnlich bei höherer Wellenzahl als die symmetrische, obwohl es auch Ausnahmen gibt.

Anwendungen der Punktgruppensymmetrie 85

Abb. 3.24 Normalschwingungen des XeF₄-Moleküls. Man beachte, daß die E_u -Schwingungen zweifach entartet sind.

Wir haben gesehen, daß sich nicht alle Moleküle wie Wasser verhalten, bei dem sämtliche Normalschwingungen sowohl IR- als auch Raman-aktiv sind. Bei Molekülen mit einem Inversionszentrum gibt es sogar eine sehr nützliche Ausschließungsregel: Hat ein Molekül ein Inversionszentrum i, schließen sich IR- und Raman-Aktivität gegenseitig aus, d.h. wenn eine Schwingung IR-aktiv ist, kann sie nicht Raman-aktiv sein und umgekehrt (Alternativverbot).

Ein Beispiel für die Anwendung dieser Regel ist XeF₄. An diesem Molekül kann man sehr schön die Nützlichkeit von IR- und Ramanspektroskopie für die Zuordnung von Strukturen illustrieren. Für XeF₄ erwartet man 3N - 6 = 9 Grundschwingungen, nämlich vier Valenz- und fünf Deformationsschwingungen. Die entsprechenden Schwingungsformen, die sogenannten Normalkoordinaten, sind in Abb. 3.24 dargestellt.

Man beachte, daß XeF₄ wie BCl₃ zwei zweifach entartete Schwingungen aufweist (E_{μ}) , wodurch sich nur sieben Normalkoordinaten ergeben. Die Bedeutung der Schwin-

²⁶ Man beachte, daß ein Molekül mit Inversionszentrum zwar keine Schwingung aufweisen kann, die sowohl IRund Raman-aktiv ist, es kann aber sehr wohl eine Schwingung vorkommen, die weder IR- noch Raman-aktiv ist; s. R.L. Keiter, J. Chem. Educ. 1983, 60, 265.

gungsspektroskopie für XeF₄ rührt von der Tatsache her, daß nach der ersten Synthese von Edelgasverbindungen bezüglich ihrer Strukturen erhebliche Unsicherheit herrschte. Während einige Chemiker mit theoretischen Neigungen eine tetraedrische XeF₄-Struktur favorisierten, glaubten die meisten Chemiker, die sich für dieses Gebiet interessierten, an eine planar-quadratische Struktur. Die Frage wurde geklärt durch eine Publikation von Claassen, Chernick und Malm mit dem Titel "Schwingungsspektren und Struktur von Xenontetrafluorid"²⁷. Im Abstract dieser Arbeit heißt es:

"Das IR-Spektrum von gasförmigem XeF₄ besteht aus starken Banden bei 123, 291 und 586 cm⁻¹. Das Ramanspektrum der festen Verbindung weist sehr starke Linien bei 502 und 543 cm⁻¹ und schwächere bei 235 und 442 cm⁻¹ auf. Diese Daten zeigen, daß das Molekül planar und von D_{4h} -Symmetrie ist."

Claassen et al. trafen ihre Zuordnung wie in Abb. 3.24 angegeben. Die schwache Absorption bei 442 cm⁻¹, die in Abb. 3.24 nicht vorkommt, wurde nicht einer Normalschwingung, sondern der Oberschwingung der B_{2u} -Schwingung zugeordnet. Ein Blick auf die Charaktertafel der Punktgruppe D_{4h} (für quadratisches XeF₄) zeigt, daß die B_{2u} -Schwingung weder IR- noch Raman-aktiv ist. Ihre Wellenzahl wurde aus der Oberschwingung (442 cm⁻¹) berechnet, die Raman-aktiv ist²⁸. Der entscheidende Punkt ist, daß XeF₄ ein Inversionszentrum besitzt, so daß keine IR-Bande mit einer Ramanlinie zusammenfallen kann. Wäre XeF₄ tetraedrisch, sollten einige IR-Banden und Ramanlinien bei der gleichen Wellenzahl liegen. Die Beobachtung von sechs Normalschwingungen, drei davon im IR-Spektrum und drei im Ramanspektrum, ohne daß Koinzidenzen auftreten, spricht eindeutig für eine planare XeF₄-Struktur.

Kovalente Bindungen

Kovalente Bindungen können mit einer Reihe von Modellen beschrieben werden, die praktisch alle Symmetriebetrachtungen beinhalten. Um dies zu illustrieren und um eine Grundlage für daran anschließende Betrachtungen zu schaffen, werden wir in diesem Abschnitt die Verwendung von Symmetrieprinzipien bei der Konstruktion von Hybridorbitalen erläutern. Es sei dabei jetzt schon daran erinnert, daß die der Hybridisierung zugrunde liegende Prozedur der Kombination von Atomorbitalen zwecks Erzeugung neuer Orbitale auch zur Ableitung von Molekülorbitalen sowie von Ligandengruppenorbitalen angewandt wird, worauf in späteren Kapiteln eingegangen wird. Bei einem bestimmten Molekül oder Molekülion können solche Atomorbitale zu Hybridorbitalen kombiniert werden, die gewisse Symmetriekriterien erfüllen. Die relevanten Symmetrieeigenschaften der Orbitale können den Charaktertafeln entnommen werden. Oben wurde bereits ausgeführt, daß das p_x -Orbital in einer bestimmten Punktgruppe in der gleichen Weise transformiert wie ein x-Vektor. Ein p_x -Orbital kann als Basisfunktion für irgendeine irreduzible Darstellung dienen, die unter ihren Basisfunktionen in einer Charaktertafel ein x aufweist. Entsprechend transformieren die Orbitale

²⁷ H.H. Claassen, C.L. Chernick, J.G. Malm, J. Am. Chem. Soc. 1963, 85, 1927.

²⁸ Für Oberschwingungen erhält man die Darstellung durch Quadrieren der irreduziblen Darstellung für B_{2u} $(B_{2u} \times B_{2u} = A_{1g})$. Das Ergebnis A_{1g} transformiert als binäres Produkt und ist daher Raman-aktiv. Ausführliche Angaben findet man in der angegebenen Literatur^{1,24}.

 p_y und p_z wie die Vektoren y bzw. z. Die d-Orbitale d_{xy} , d_{xz} , d_{yz} , $d_{x^2-y^2}$ und d_{z^2} transformieren wie die binären Produkte xy, xz, yz, $x^2 - y^2$ bzw. z^2 . Es sei daran erinnert, daß entartete Gruppen von Vektoren, Orbitalen usw. in Charaktertafeln in Klammern gesetzt werden.

s-Orbitale sind kugelsymmetrisch und bleiben daher bei allen Symmetrieoperationen einer Punktgruppe unverändert. Daher gehören s-Orbitale immer zur totalsymmetrischen Darstellung (alle Charaktere +1), obwohl dies in Charaktertafeln nicht explizit angegeben wird. Die totalsymmetrische Darstellung steht in der Charaktertafel immer ganz oben und wird mit A bezeichnet (A_1, A_g, A_{1g} usw.). Wenn man diese Mulliken-Symbole verwendet, um die Symmetrie von Orbitalen oder anderen Einelektronenfunktionen zu bezeichnen, verwendet man kleine Buchstaben (a_1, a_g , usw.).

Um festzustellen, wie die s-, p- und d-Orbitale eines Zentralatoms durch die Symmetrie des betreffenden Moleküls beeinflußt werden, betrachten wir die oktaedrischen (O_h) , quadratisch-pyramidalen (C_{4v}) und schmetterlingsartigen Moleküle (C_{2v}) in Abb. 3.25.

Im AB₆-Fall zeigt die Charaktertafel der Punktgruppe O_h (Anhang D), daß die Orbitale p_x , p_y und p_z zur Darstellung t_{1u} gehören. Da sie gemeinsam transformieren, bilden sie einen dreifach entarteten Satz. Die fünf *d*-Orbitale bilden dagegen zwei Sätze entarteter Orbitale: $d_{x^2-y^2}$ und d_{z^2} gehören zur zweifach entarteten Darstellung e_g , und d_{xy} , d_{xz} und d_{yz} transformieren gemeinsam als deifach entarteter t_{2g} -Satz. Das *s*-Orbital gehört wie immer zur totalsymmetrischen Darstellung, hier a_{1a} .

Wenn wir in Gedanken vom Molekül AB₆ ein B-Atom entfernen, erhalten wir das quadratisch-pyramidale AB₅ (Abb. 3.25b). Die Charaktertafel der Punktgruppe C_{4v} zeigt, daß das p_z -Orbital jetzt zur Darstellung a_1 gehört, während die Orbitale p_x und p_y zu e gehören. Mit anderen Worten, wenn man von O_h - zu C_{4v} -Symmetrie übergeht, spalten die dreifach entarteten p-Orbitale in zwei Sätze auf, nämlich einen nichtentarteten und einen zweifach entarteten. In ähnlicher Weise bilden die d-Orbitale in C_{4v} mehr Sätze als im Oktaederfall: das ursprüngliche e_g -Niveau spaltet auf in zwei, nämlich ein b_1 ($d_{x^2-y^2}$) und ein a_1 (d_{z^2}), und das dreifach entartete t_{2g} -Niveau wird in e (d_{xz} , d_{yz}) und b_2 (d_{xy}) umgewandelt. Dieser Verlust von Entartung ist ein charakteristisches Ergebnis der Symmetrieerniedrigung eines Moleküls.

Wenn man die Symmetrie durch Entfernung eines weiteren Atoms B noch mehr erniedrigt, nämlich auf C_{2v} (Abb. 3.25c) im Molekül AB₄, geht die Orbitalentartung vollständig verloren²⁹. Die Charaktertafel für C_{2v} ergibt folgende Zuordnungen: a_1 (p_z) , b_1 (p_x) , b_2 (p_y) , a_1 (d_{z^2}) , a_2 (d_{xy}) , b_1 (d_{xz}) und b_2 (d_{yz}) . Die Funktion $x^2 - y^2$ ist in der Charaktertafel dieser Punktgruppe nicht explizit angegeben; da aber x^2 und y^2 diese Symmetrie aufweisen, hat eine Linearkombination aus beiden ebenfalls diese Symmetrie. Man beachte, daß obwohl d_{z^2} und $d_{x^2-y^2}$ in dieser Punktgruppe beide als a_1 transformieren, sind sie doch nicht entartet, da sie nicht gemeinsam transformieren.

Die Hybridorbitale, die ein Atom nach der VB-Theorie (valence bond theory) für die Bildung von Bindungen und für die Unterbringung seiner nichtbindenden Valenzelektronen verwendet, werden so konstruiert, daß ihre räumliche Orientierung mit der Geometrie des betreffenden Moleküls übereinstimmt. Ein tetraedrisches Molekül oder

²⁹ Man beachte, daß das in Abb. 3.25 dargestellte Molekül beim Übergang von AB₅ zu AB₄ nicht nur ein B-Atom verloren hat, sondern auch relativ zum Achsensystem gedreht wurde, damit übereinkunftsgemäß die Hauptdrehachse mit der z-Achse zusammenfällt.

Abb. 3.25 Symmetrie und Entartungsgrad der Orbitale des Zentralatoms in den Spezies $AB_6(O_h)$, $AB_5(C_{4\nu})$ und $AB_4(C_{2\nu})$.

Ion, wie CH_4 , MnO_4^- oder $CrO_4^{2^-}$, erfordert also vier Hybridorbitale am Zentralatom, die auf die Ecken eines Tetraeders gerichtet sein müssen. Die allgemeine Vorgehensweise zur Bestimmung derjenigen Atomorbitale, die zu den gewünschten Hybridorbitalen kombiniert werden können, beginnt mit der Erkenntnis, daß die Hybridorbitale einen Satz von Basisfunktionen einer Darstellung innerhalb der Punktgruppe bilden müssen. Diese Darstellung, die reduzibel ist, erhöht man dadurch, daß man die Wirkung jeder Symmetrieoperation der Punktgruppe auf die Hybridorbitale betrachtet. Nachdem die Darstellung auf diese Weise erzeugt wurde, kann sie in ihre irreduziblen Komponenten zerlegt werden (s. S. 77). Diejenigen Atomorbitale, die wie diese irreduziblen Darstellungen transformieren, sind geeignet für eine Kombination zu den gewünschten Hybridorbitalen.

Wir wollen diese Prozedur für das Tetraeder im einzelnen betrachten und stellen dazu die zu konstruierenden Hybridorbitale durch vier Vektoren am Zentralatom dar (Abb. 3.26). Um die reduziblen Darstellungen für diese Vektoren abzuleiten, führen

Abb. 3.26 Tetraedrisches AB_4 -Molekül mit Vektoren, die die Hybridorbitale des Zentralatoms darstellen sollen.

wir mit ihnen nacheinander je eine Symmetrieoperation jeder Klasse der Punktgruppe T_d aus. Wie bei der weiter oben behandelten Analyse der Grundschwingungen eines Moleküls tragen nur die Vektoren zur Darstellung bei, die in Ruhe bleiben. Wir können daher für jede Symmetrieoperation den Charakter dadurch bestimmen, daß wir einfach die Vektoren zählen, die in Ruhe bleiben. Für AB₄ lautet die so erhaltene reduzible Darstellung Γ_r :

$$E = 8C_3 \quad 3C_2 \quad 6S_4 \quad 6\sigma_d$$

$$\Gamma_r: \quad 4 = 1 \quad 0 \quad 0 \quad 2$$

Anwendung der Reduktionsformel (3.1) ergibt a_1 und t_2 als die irreduziblen Komponenten. Für die totalsymmetrische Darstellung sind in der Charaktertafel für T_d keine Orbitale aufgeführt, wir wissen aber, daß s-Orbitale immer zu dieser Klasse gehören. Für den Fall t_2 gibt es zwei mögliche Sätze entarteter Orbitale: p_x , p_y , p_z und d_{xy} , d_{xz} , d_{vz} . Daher können die vier gewünschten Hybridorbitale entweder aus einem s- Orbital und drei p-Orbitalen (sp³-Hybrid) oder aus einem s- und drei d-Orbitalen (sd³-Hybrid) konstruiert werden. Vom Standpunkt der Symmetrie aus betrachtet sind beide gleichermaßen möglich. Um zu entscheiden, welche Hybridisierung am sinnvollsten ist, muß man die Orbitalenergien berücksichtigen. Beim Methan und anderen Kohlenstoffverbindungen sind die d-Orbitale von so hoher Energie verglichen mit dem 2s-Niveau, daß keine merkliche Mischung der beiden möglich ist. Dagegen sind d- und s-Orbitale bei tetraedrischen Übergangsmetallverbindungen, wie MnO₄ und CrO₄²⁻, von ähnlicher Energie, so daß die für die Bindung benötigten Hybridorbitale eine Mischung aus sp^3 und sd^3 sein können. Es ist wichtig zu behalten, daß die Charaktertafel nur Informationen darüber enthält, welche Orbitale die richtige Symmetrie für eine Wechselwirkung haben; ob sie es wirklich tun, hängt von ihrer relativen Energie ab.

Die im vorstehenden Beispiel konstruierten Hybridorbitale sind vom Zentralatom auf die gebundenen Atome hin gerichtet und man nimmt an, daß sie auf diesen Achsen mit entsprechenden Orbitalen der Ligandatome überlappen, wobei σ -Bindungen entstehen. Im Prinzip kann man nach der gleichen Methode, die zur Ableitung der Hybridorbitale eines Zentralatoms für σ -Bindungen angewandt wurde, auch die Orbitale auswählen, die für π -Bindungen in Frage kommen. Als Beispiel betrachten wir das quadratische Ion PtCl²₄⁻. Hierbei sind zwei Sorten von π -Bindungen denkbar: (a) parallel zur Molekülebene mit Überlappungsregionen oberhalb und unterhalb dieser Ebene und (b) in der Ebene, d.h. mit beiden Überlappungsgebieten in der Molekülebene. Die Atomorbitale des Platins, die zur Molekülebene senkrecht stehen und die in Abb. 3.27 durch Vektoren symbolisiert werden, können an der π -Bindung vom Typ

Abb. 3.27 Das $PtCl_4^2$ -Ion mit Vektoren, die diejenigen Orbitale des Zentralatoms darstellen sollen, die für die π -Bindung oberhalb und unterhalb der Molekülebene geeignet sind.

(a) teilnehmen. Die reduzible Darstellung erhält man wie üblich durch Ausführung der Symmetrieoperationen der entsprechenden Punktgruppe (D_{4h}) und Aufzeichnung der Zahl der Vektoren, die in Ruhe bleiben:

$$E \quad 2C_4 \quad C_2 \quad 2C'_2 \quad 2C''_2 \quad i \quad 2S_4 \quad \sigma_h \quad 2\sigma_v \quad 3\sigma_d$$

$$\Gamma_c: \quad 4 \quad 0 \quad 0 \quad -2 \quad 0 \quad 0 \quad 0 \quad -4 \quad 2 \quad 0$$

Die Reduktion von Γ_r nach Gleichung (3.1) ergibt die Komponenten e_g , a_{2u} und b_{2u} . Aus der Charaktertafel für D_{4h} geht hervor, daß keine Orbitale als b_{2u} transformieren, daß p_z zu a_{2u} gehört und daß d_{xz} und d_{yz} zu e_g gehören. Daß diese drei Orbitale des Platins die richtige Symmetrie für eine Beteiligung an der π -Bindung vom Typ (a) haben, leuchtet ein, da sie alle senkrecht zur Molekülebene (xy-Ebene) stehen. Die Auswahl der für die π -Bindung vom Typ (b) geeigneten Orbitale sei dem Leser als Übung empfohlen. (Hinweis: Man beachte, daß die π -Bindungen vom Typ (a) und (b) senkrecht zueinander stehen müssen, d. h. orthogonal zueinander sind. Die Überlappungsregionen im Fall (b) müssen daher auf beiden Seiten der Bindungsachsen liegen. Die Vektoren, die die Atomorbitale darstellen sollen, müssen folglich senkrecht zu den Bindungsachsen orientiert sein³⁰).

Kristallographie³¹

Die Symmetrie von Kristallen beinhaltet nicht nur die individuelle Punktgruppensymmetrie der Moleküle, aus denen der Kristall besteht, sondern auch die *Translationssymmetrie* dieser Moleküle im Kristall. Diese kann durch einen Lattenzaun veranschaulicht werden, der die regelmäßige Wiederholung eines Motivs in einer Richtung (Dimension) darstellt. Bei einem Kristall bilden die Moleküle oder Ionen das Motiv, das sich jedoch in drei Dimensionen regelmäßig wiederholt. Die Wiederholungseinheit eines Kristalls ist i. a. nicht ein einzelnes Molekül oder Ion, sondern die Elementarzelle, die den Latten des Zaunes entspricht und deren dreidimensionale periodische Translation den gesamten Kristall aufzubauen gestattet. Die Elementarzelle enthält i. a. mehrere Atome, Moleküle oder Ionen.

Die Bestimmung von Kristallstrukturen durch Röntgenbeugung ist heute für Anorganiker so wichtig (und so einfach)³², daß ca. 50% der in anorganischen Zeitschriften veröffentlichten Arbeiten mindestens eine Strukturbestimmung enthalten (z. B. in: *Inorganic Chemistry*; Zeitschrift für Naturforschung, Teil B; Zeitschrift für Anorganische und Allgemeine Chemie; u. a.). Was für eine Information ist nun gemeint, wenn wir z. B. in einer dieser Zeitschriften lesen, daß eine Substanz im festen Zustand monoklin in der Raumgruppe $P 2_1/c$ vorliegt? Um diese Frage zu beantworten, wollen wir mit einigen Grundlagen beginnen.

³⁰ Antwort: a_{2q} : keine; b_{2q} : d_{xy} ; e_u : (p_x, p_y) .

³¹ M.F.C. Ladd, Symmetry in Molecules and Crystals, Wiley, New York 1989; B.G. Hyde, S. Andersson, Inorganic Crystal Structures, Wiley, New York 1989; P. Luger, Modern X-Ray Analysis on Single Crystals, de Gruyter, Berlin 1980.

³² Früher (vor 1970) war die Datensammlung und Lösung einer kristallographischen Struktur eine wirklich ungeheure Arbeit, und die Bestimmung einer einzigen Struktur wurde als Doktorarbeit anerkannt. Heute kann eine nicht zu komplizierte Kristallstruktur dank Automatisierung und Datenverarbeitung innerhalb einer Woche gelöst werden, und es gibt sogar Forschungsorganisationen, die diese Aufgabe für relativ geringe Kosten übernehmen.

Die bei der Beugung von monochromatischen Röntgenstrahlen an Einkristallen beobachteten Beugungsmuster können erklärt werden, wenn man den Kristall als dreidimensionale Anordnung von Gitterpunkten betrachtet³³. Eine regelmäßige Punktreihe auf einer Geraden ist ein eindimensionales Gitter. Die Fliesen auf einem Fußboden stellen ein Modell für ein zweidimensionales Gitter dar, wobei die einzelnen Fliesen den Elementarzellen entsprechen. In drei Dimensionen erhält man aus Elementarzellen einen Kristall, der Einkristall heißt, wenn er völlig frei von Stapelfehlern und anderen Störungen der Periodizität ist. Eine Elementarzelle ist ein Parallelepiped mit drei parallelen Paaren von Seiten. Für die Symmetrie dieser Elementarzellen gibt es sieben Möglichkeiten, entsprechend den sieben Kristallsystemen. Die relative Kantenlänge der Elementarzellen und die Winkel zwischen den Kanten sind für jedes Kristallsystem charakteristisch (s. Tab. 3.6).

Obwohl diese Beziehungen zwischen den Zelldimensionen für jedes Kristallsystem charakteristisch sind, ordnet ein Kristallograph bei einer Strukturbestimmung einen Kristall nicht danach einem Kristallsystem zu, sondern aufgrund der Symmetrie eigenschaften des Kristalls. Wenn z.B. eine Struktur innerhalb der experimentellen Fehlergrenzen drei verschiedene Zellkanten (a, b und c) und drei gleiche Winkel $\alpha = \beta = \gamma = 90^{\circ}$ hat, würde man zunächst auf eine orthorhombische Elementarzelle schließen. Wenn sich aber herausstellt, daß die Zelle nur *eine* zweizählige Drehachse aufweist (statt drei), muß man sie als monoklin einstufen.

System	Beziehungen zwischen Ecken und Winkeln der Elementarzelle	Längen und Winkel, die anzugeben sind	Charakteristische Symmetrie
Triklin	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	a, b, c α, β, γ	1-fache Symmetrie (Identität oder Inversion)
Monoklin	$a \neq b \neq c \alpha = \gamma = 90^{\circ} \neq \beta$	a, b, c β	2-fache Achse (2 oder $\overline{2}$) nur in einer Richtung (y-Achse)
Orthorhombisch	$a \neq b \neq c \alpha = \beta = \gamma = 90^{\circ}$	a, b, c	2-fache Achsen in drei zuein- ander senkrechten Richtungen
Tetragonal ^b	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	а, с	4-fache Achse nur in z-Richtung
Trigonal ^b und Hexagonal	$ \begin{array}{l} a = b \neq c \\ \alpha = \beta = 90^{\circ} \\ \gamma = 120^{\circ} \end{array} $	<i>a</i> , <i>c</i>	3-fache oder 6-fache Achse nur in z-Richtung
Kubisch	a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	а	vier 3-fache Achsen jeweils um 54°44' gegen die Zellachsen ge- neigt (d. h. parallel zur Raum- diagonalen der Elementarzelle)

Tab. 3.6 Die sieben Kristallsysteme^a

^a A. F. Wells, Structural Inorganic Chemistry, 5. Aufl., Oxford University, Oxford 1984

^b Gewisse trigonale Kristalle können auch als rhomboedrisch bezeichnet werden, wenn die Elementarzelle ein Rhomboeder darstellt, definiert durch die Zellkante *a* und den Winkel α zwischen den Achsen ($\alpha \neq 90^{\circ}$).

³³ C. Brock, E. E. Lingafelter, J. Chem. Educ. 1980, 53, 57.

Abb. 3.28 Die 14 Bravais-Gitter, arrangiert entsprechend den 7 Kristallsystemen.

Anwendungen der Punktgruppensymmetrie 93

Abb. 3.29 Illustration der Wirkung einer vierzähligen Drehinversionsachse ($\overline{4}$). Die Achse $\overline{4}$ steht senkrecht zur Zeichenebene, A₁ und A₃(+) befinden sich oberhalb, A₂ und A₄(-) unterhalb dieser Ebene. Wenn der Punkt A₁ mit den Koordinaten +x, +y, +z um 90° gedreht wird gefolgt von einer Inversion, geht er in Punkt A₄(-x, +y, -z) über. Analog geht A₂(+x, -y, -z) in A₁, A₃ in A₂, und A₄ in A₃ über.

Für die sieben Kristallsysteme gibt es 14 Raumgitter, die sogenannten *Bravais-Gitter* (Abb. 3.28). Diese werden unterteilt in primitive (*P*), innenzentrierte (*I*), flächenzentrierte (*F*)³⁴, flächenzentrierte bei einem Satz von Flächen (*C*) und rhomboedrische (*R*) Gitter. Unsere monokline Struktur der Raumgruppe $P 2_1/c$ gehört also zum monoklinen Kristallsystem und hat ein primitives Bravais-Gitter.

Die interne Struktur einer Elementarzelle kann, wie bereits erwähnt, kompliziert sein, da sie aus einem einzelnen Atom, einer Gruppe von Atomen oder mehreren Molekülen bestehen kann. Die Anordnung dieser Teilchen und die daraus resultierende Gesamtsymmetrie führt zu 32 kristallographischen Punktgruppen. Die bisher für Symmetriebetrachtungen und Punktgruppen benutzten Symbole entsprechen dem *Schoenflies-System*, das von Spektroskopikern und solchen Chemikern, die primär an der Struktur und Symmetrie des isolierten Moleküls interessiert sind, bevorzugt wird. Kristallographen benutzen dagegen fast ausschließlich ein äquivalentes, aber verschiedenes System, nämlich das *Internationale System*, auch bekannt als *Hermann-Mauguin-System*. Einige bei dreidimensionalen Gittern mögliche Symmetrieelemente sind die gleichen wie bei molekularen Punktgruppen: das Inversionszentrum (Symmetriezentrum), Spiegelebenen (hier mit *m* symbolisiert) und einfache *n*-zählige Drehachsen (symbolisiert durch den Wert von n = 1, 2, 3, 4, 6)³⁵. Eine Spiegelebene (*m*) senkrecht zur Hauptdrehachse (*n*) wird mit *n/m* abgekürzt. Zusätzlich gibt es drei weitere Symmetrieelemente: Drehinversionsachsen, Gleitspiegelebenen und Schraubenachsen.

Im Schoenflies-System haben wir die Drehspiegelachse kennengelernt (S. 63). Im Internationalen System besteht die *Drehinversionsachse* (Symbol \bar{n}) aus einer *n*-zähligen Drehung gefolgt von einer Inversion (s. Abb. 3.29).

Eine Gleitspiegelebene besteht aus einer Translation gefolgt von einer Spiegelung an einer Ebene parallel zur Translationsachse. Als einfachen Fall betrachten wir ein Gitter

³⁴ In Kap. 4 findet man eine eingehendere Besprechung der primitiven, flächenzentrierten und innenzentrierten Gitter.
³⁵ Man kann mathematisch zeigen, daß in einem wirklich periodischen Kristall aus einzelnen Elementarzellen keine

fünfzähligen Achsen vorkommen können. In neuerer Zeit hat man aber sogenannte "Quasikristalle" mit interessanten Symmetrieeigenschaften entdeckt; s. Aufgabe 3.36.

Abb. 3.30 Illustration einer Gleitspiegelung. Das links befindliche Molekül wird in Richtung der x-Achse um die Strecke a/2 bewegt und dann an der xy-Ebene gespiegelt. Man beachte, daß sich die Chiralität des Moleküls ändert.

mit einer Elementarzelle der Kantenlänge a in x-Richtung (Abb. 3.30). Eine Gleitspiegelung besteht aus einer Translation um a/2 in x-Richtung gefolgt von einer Spiegelung.

Gleitspiegelebenen werden mit a, b oder c bezeichnet, je nachdem in Richtung welcher Achse die Translation erfolgt. Zusätzlich gibt es Gleitspiegelungen in Richtung einer Flächendiagonalen (Symbol n) oder in Richtung einer Raumdiagonalen (Symbol d). Wenn eine Gleitspiegelebene senkrecht zu einer Hauptdrehachse oder Schraubenachse steht, wird dies durch n/c, n/a, usw. beziehungsweise durch n_1/c , n_1/b , usw. abgekürzt. Man beachte, daß infolge der Spiegelung bei diesen Operationen chirale Moleküle in ihre Enantiomere überführt werden. Damit in einem Kristall einer chiralen Verbindung eine Gleitspiegelebene vorhanden sein kann, müssen beide Enantiomere in der Elementarzelle im Verhältnis 1:1 vorhanden sein, d. h. es muß ein *Racemat* vorliegen.

Ein weiteres, bei einem Kristall mögliches Symmetrieelement ist die Schraubenachse (abgekürzt als n_1), die eine Kombination aus Drehung um eine *n*-zählige Achse und einer Translation entlang dieser Achse ist. Eine einfache zweizählige Schraubenachse (2_1) ist in Abb. 3.31 gezeigt. Im Gegensatz zur Gleitspiegelung sind bei der vorliegenden Operation nur Translation und Drehung beteiligt, so daß ein chirales Molekül seine Händigkeit behält und nicht in sein Enantiomer überführt wird.

Eine Gegenüberstellung der 32 kristallographischen Punktgruppen im Hermann-Mauguin- und im Schoenflies-System ist in Tab. 3.7 enthalten³⁶. Der komplette Satz von Symmetrieoperationen für einen Kristall wird als *Raumgruppe* bezeichnet. Es gibt 230 mögliche Raumgruppen für dreidimensionale Kristalle. Es ist bemerkenswert, daß es eine unbegrenzte Zahl von möglichen Punktgruppen gibt, die Zahl der Raumgruppen trotz der zusätzlichen Translationssymmetrie aber strikt auf 230 begrenzt ist. Jede Struktur, die ein Kristallograph löst, wird einer dieser Raumgruppen zugeordnet. Glücklicherweise wird diese Aufgabe durch die Symmetrieelemente der Translation erleichtert: alle Formen von Translationssymmetrie einschließlich Zentrierungen führen im Beugungsmuster zu leeren Stellen, die man "systematische Auslöschungen" nennt.

³⁶ Ein Fließschema der 32 kristallographischen Punktgruppen des Internationalen Systems, das dem in Abb. 3.16 dargestellten analog ist, findet man bei G.L. Breneman, J. Chem. Educ. 1987, 64, 216.

Abb. 3.31 Wirkung einer zweizähligen Schraubenachse (2_1) . Das links gezeichnete Molekül bewegt sich um die Strecke a/2 in Richtung der x-Achse und wird gleichzeitig um die x-Achse um den Winkel 180° gedreht (C_2) . Die Chiralität ändert sich dabei nicht.

Wir können jetzt vollständig antworten auf die Frage: "Welche Information wird übermittelt, wenn wir lesen, daß die Kristallstruktur einer Substanz monoklin ist und die Raumgruppe $P2_1/c$ vorliegt?" Die Struktur gehört zum monoklinen Kristallsystem und hat ein primitives Bravais-Gitter. Sie besitzt außerdem eine zweizählige Schraubenachse und senkrecht dazu eine Gleitspiegelebene. Das Vorhandensein dieser beiden Symmetrieelemente erfordert, daß auch ein Inversionszentrum vorhanden ist. Dieses

	Hermann-Mauguin	Schoenflies		Hermann-Mauguin	Schoenflies
Triklin	1	C ₁	Trigonal	3	<i>C</i> ₁
	1	C_i	U	3	$\vec{C_{3i}}$
		L.		32	D_3
Monoklin	2	C_{2}		3 <i>m</i>	C_{3n}
	т	<i>C</i> .		$\overline{3}m$	D_{34}
	2/m	Č.,			
	,	2.0	Hexagonal	6	C_6
Orthorhombisch	222	D_{2}	C	6	C_{3h}
	mm 2	$\tilde{C_{2v}}$		6/ <i>m</i>	$C_{6h}^{\circ n}$
	mmm	D_{2h}^{2b}		622	$D_6^{\circ n}$
		2.1		6 <i>mm</i>	C_{6v}
Tetragonal	4	C_{4}		<u>6</u> m2	D_{3k}
C	4	$S_{\mathbf{A}}$		6/ <i>mmm</i>	$D_{6k}^{\circ n}$
	4/m	$\vec{C_{Ab}}$			0.0
	422	$D_{\mathbf{A}}$	Kubisch	23	Т
	4 <i>mm</i>	C_{4v}		<i>m</i> 3	T _h
	4 2 <i>m</i>	D_{2d}^{*}		432	Ő
	4/mmm	D_{4h}		43 <i>m</i>	T_d
				m3m	0.

Tab. 3.7 Vergleich der Schoenflies- und der internationalen Bezeichnungen für die 32 kristallographischen Punktgruppen^e

^a A. F. Wells, Structural Inorganic Chemistry, 5. Aufl., Oxford University, Oxford 1984, S. 48.

Abb. 3.32 (a) Molekülstruktur von $Os_3(CO)_9(\mu_3-CC_6F_5)$; die Osmiumatome bilden ein Dreieck, das von dem CC_6F_5 -Liganden überbrückt wird, so daß eine trigonale Os_3C -Pyramide entsteht. An jedem Metallatom sind außerdem drei terminale CO-Gruppen gebunden. (b) Stereobild der Elementarzelle von $Os_3(CO)_9(\mu_3-CC_6F_5)$. Diese Verbindung kristallisiert in der monoklinen Raumgruppe $P 2_1/c$. Das Inversionszentrum ist durch einen Punkt in der Mitte der Zelle angedeutet; die zweizähligen Schraubenachsen stehen senkrecht zur Papierebene und sind mit dem Symbol \blacklozenge gekennzeichnet. Zwei Gleitspiegelebenen liegen senkrecht zu den Schraubenachsen in der xy-Ebene (parallel zur Papierebene), und zwar bei 1/4 und 3/4 der Elementarzellentiefe; sie sind nicht eingezeichnet. Die Fluoratome sind der besseren Übersicht halber weggelassen worden. (Nach N. Hadj-Bagheri, D.S. Strickland, S.R. Wilson, J.R. Shapley, J. Organomet. Chem. 1991, 410, 231).

wird aber im Raumgruppensymbol nicht explizit erwähnt, da diese Information redundant wäre.

Abb. 3.32 zeigt die Elementarzelle von $Os_3(CO)_9(\mu_3-CC_6F_5)$, einer Verbindung, die in der Raumgruppe $P2_1/c$ kristallisiert. Außer der Identität liegen noch eine zweizählige Schraubenachse, eine Gleitspiegelebene c und ein Inversionszentrum vor. Zur leichteren Identifizierung dieser Symmetrieelemente wurden die vier Moleküle der Elementarzelle numeriert und, wie in Tab. 3.8 gezeigt, durch Symmetrieoperationen miteinander verknüpft. Die Identitätsoperation läßt die Positionen der Moleküle selbstverständlich unverändert. Das Inversionszentrum befindet sich im Zentrum der Elementarzelle und überführt 1 in 2 und 3 in 4. Zwei Schraubenachsen liegen senkrecht zur xz-Ebene (Zeichenebene) und sind mit ihren Symbolen eingezeichnet. Man sieht, daß beide nicht durch das Zentrum der Zelle gehen, sondern beim halben x-Abstand (x/2) und einem Viertel des z-Abstandes (z/4) bzw. bei x/2 und 3z/4. Die erste Schraubenachse überführt

	1	2	3	4
1	Identität	Inversion	2 ₁ -Schraubenachse	c-Gleitspiegelebene
2	Inversion	Identität	c-Gleitspiegelebene	2_1 -Schraubenachse
3	2 ₁ -Schraubenachse	c-Gleitspiegelebene	Identität	Inversion
4	c-Gleitspiegelebene	2 ₁ -Schraubenachse	Inversion	Identität

Tab. 3.8 Symmetriebeziehungen zwischen den vier Molekülen in der Elementarzelle von $Os_3(CO)_9(\mu$ -CC₆F₅); siehe Abb. 3.32

1 in 3 und gleichzeitig werden 2 und 4 in benachbarte Elementarzellen bewegt. Die zweite Schraubenachse, die über das Inversionszentrum mit der ersten verknüpft ist und deren Schraubungssinn daher entgegengesetzt ist, überführt 2 in 4 und transportiert 1 und 3 in Nachbarzellen. Die Gleitspiegelebenen sind parallel zur xz-Ebene und liegen bei y/4 und 3y/4. Die erste überführt 2 in 3 und spiegelt 1 und 4 in Nachbarzellen, während die zweite 1 in 4 überführt und 2 und 3 in Nachbarzellen transportiert.

Obwohl $P 2_1/c$ eine der einfachsten Raumgruppen ist, ist es gleichzeitig eine der häufigsten, da komplizierte Moleküle dazu neigen, in Gittern niedriger Symmetrie zu kristallisieren. Das obige Beispiel illustriert den wesentlichen Unterschied zwischen Punktgruppen und Raumgruppen: Während Symmetrieoperationen bei Punktgruppen mindestens einen Punkt in Ruhe lassen, gibt es diese Einschränkung bei Raumgruppen nicht.

Fehlordnung

Um den Abschnitt über Kristallographie möglichst kurz zu halten, haben wir die Theorie der Röntgenbeugung nicht behandelt. Es dürfte jedoch allgemein bekannt sein, daß das Vorhandensein von kristallinem Material (d.h. regelmäßig angeordnete Teilchen) eine der Voraussetzungen für ein Röntgenbeugungsexperiment ist. Amorphes Material weist diese regelmäßige Anordnung nicht auf. Man stellt jedoch gelegentlich fest, daß selbst scheinbar reine Kristalle subtile Mischungen zweier verwandter Verbindungen darstellen, was zu fehlerhaften Ergebnissen führt. Und weil die Kristallisation ein *kinetischer* Vorgang ist, kann es selbst bei einer ganz reinen Verbindung vorkommen, daß nicht der *thermodynamisch* stabilste perfekte Kristall entsteht. Es kann vielmehr zu einer statistischen Fehlordnung kommen, bei der zwar die meisten Elementarzellen Moleküle in der stabilsten Konformation enthalten, aber ein Teil kann Moleküle in einer anderen, geringfügig energiereicheren Konformation enthalten. Da die Röntgenbeugung am gesamten Kristall erfolgt, also über alle Elementarzellen integriert, wird sich also die Fehlordnung bei der Strukturanalyse auf die eine oder andere Weise bemerkbar machen.

Wenn ein Molekül einen hohen Grad an Rotationssymmetrie aufweist (C_n) mit Ausnahme einer die Symmetrie störenden Gruppe R, kann es vorkommen, daß das Molekül im Kristall in *n*-facher Weise gepackt ist und R scheinbar keinen Einfluß auf die Packung hat, sondern die *n* möglichen Positionen zu jeweils einem Bruchteil (1/n) besetzt wer-

den³⁷. Betrachten wir als Beispiel eine Modellverbindung für die Wechselwirkung von Disauerstoff (O₂) mit der Hämgruppe (FeN₄C₂₀) des Hämoglobins. Diese Verbindung zeigt im festen Zustand eine vierzählige Rotationsfehlordnung des terminalen Sauerstoffatoms, so daß dieses Atom verteilt über vier Positionen zu jeweils $\frac{1}{4}$ O auftritt:

In ähnlicher Weise zeigt der N-Methylimidazolligand (die Gruppe unterhalb des Eisenatoms) eine zweizählige Fehlordnung, da die Methylgruppe zwei äquivalente Positionen einnehmen kann, die *im Mittel* mit je $\frac{1}{2}$ CH₃ besetzt sind. Die Modellverbindung hat also kristallographisch gesehen pseudo-zweizählige Symmetrie. Die Rotationsfehlordnung hat keinen Einfluß auf die molekulare Packung, was besonders deutlich wird, wenn man sich das terminale Sauerstoffatom ansieht. Die vollständige Struktur ist in Abb. 19.4 dargestellt.

In Fällen wie dem obigen ist die Verwirrung minimal, obwohl das Auftreten fraktioneller Atome oder Gruppen beim ersten Mal etwas bestürzend sein mag. In anderen Fällen liegen wesentlich ernstere Probleme vor. Ein "klassischer" Fall von Fehlordnung ist die Struktur von $Fe_3(CO)_{12}$. Als Folge der Fehlordnung im Kristall wurden die Eisenatome in Form eines Davidsterns gefunden³⁸, wobei jede Position mit $\frac{1}{2}$ Fe besetzt ist.

³⁷ Wenn R groß genug ist und die Packung der Moleküle im Kristall beeinflußt, dann gibt es offensichtlich keine Möglichkeit für eine Rotationsfehlordnung.

³⁸ L.H. Dahl, R.E. Rundle, J. Chem. Phys. 1957, 26, 1751.

Die Struktur von $Fe_3(CO)_{12}$ ist ein Beispiel für eine Symmetrie-bedingte Fehlordnung³⁹, da die Fehlordnung um ein Inversionszentrum herum auftritt. Wie wir gesehen haben, sind die Positionen der Atome in Elementarzellen durch Symmetrieelemente verknüpft. Wenn ein Atom auf einem festen Symmetrieelement liegt (Inversionszentrum, Drehachse, Spiegelebene) und selbst nicht diese Symmetrie besitzt, erhält man bei der Röntgenstrukturanalyse eine Überlagerung von Bild und Spiegelbild. Dies ist beim vorliegenden Beispiel der Fall. Das Molekül $Fe_3(CO)_{12}$ besitzt kein Inversionszentrum, besetzt im Kristall aber eine spezielle Lage der Symmetrie *i*, so daß sich die zwei möglichen Lagen des "Eisendreiecks" überlagerung zweier "halber Moleküle" im $Fe_3(CO)_{12}$ erwies sich die Lokalisierung der Carbonylgruppen als sehr schwierig. Tatsächlich dauerte es 17 Jahre, bis man das Problem durch eine Computersimulation gelöst hatte⁴⁰. Die vollständige Struktur dieses Eisencarbonyls ist in Abb. 15.7 dargestellt.

Ein aktuelles Beispiel für eine fehlgeordnete Kristallstruktur ist das Buckminsterfulleren. Bis vor kurzem kannte man nur zwei kristalline Kohlenstoffmodifikationen: Diamant und Graphit. Dann beobachtete man in einem Massenspektrometer⁴¹ Ionen mit m/e = 720 entsprechend einem hypothetischen Molekül C₆₀. Inzwischen hat man diese dritte (und weitere) Modifikationen des Kohlenstoffs aus den Verdampfungsprodukten von Graphit in reiner Form isoliert. Dazu erhitzt man Kohleelektroden durch einen Lichtbogen in einer inerten Atmosphäre aus Helium oder Argon und extrahiert den gebildeten Ruß mit Benzol⁴². Die für C₆₀ vorgeschlagene Struktur entspricht einem Fußball⁴³ mit kovalenten Bindungen entlang der "Nähte" und C-Atomen an den Ecken (s. Abb. 3.33).

Der Name Buckminsterfulleren wurde zur Erinnerung an Buckminster Fuller, den Architekten geodätischer Kuppeln vorgeschlagen, denen die C_{60} -Struktur ähnelt. Nachdem man gelernt hatte, makroskopische Mengen von C_{60} herzustellen und diese Verbindung inzwischen auch im Handel erhältlich ist, wurden viele interessante Eigenschaften des C_{60} -Moleküls untersucht, was zu einer Flut von Veröffentlichungen führte⁴⁴. Die Röntgenstrukturanalyse von kristallinem C_{60} erwies sich jedoch als schwierig. Da C_{60} -Moleküle nahezu kugelförmig sind, bilden sie eine kubisch-dichteste Packung, in der sie aber nahezu frei auf ihren Gitterplätzen rotieren können, wobei die Schwer-

³⁹ Ob sich ein Molekül im Kristall wirklich fortbewegt oder ob es nur statistisch über mehrere mögliche Positionen verteilt ist, kann durch Röntgenbeugung nicht entschieden werden, da die Wechselwirkungsdauer der Röntgenquanten mit den Molekülen größenordnungsmäßig nur 10⁻¹⁸s beträgt und damit schneller ist als die atomaren Bewegungen. Im Falle von Fe₃(CO)₁₂ gibt es aber andere Hinweise (s. Kap. 15) für eine Bewegung der Eisenatome. Sie brauchen sich aber nicht zu bewegen, denn die Fehlordnung entsteht dadurch, daß ein Molekül ohne Inversionszentrum im Kristall auf einer speziellen Lage, hier einem Inversionszentrum der Elementarzelle, plaziert ist.

⁴⁰ F.A. Cotton, J.M. Troup, J. Am. Chem. Soc. 1974, 96, 4155; s. auch C.H. Wei, L.F. Dahl, J. Am. Chem. Soc. 1969, 91, 1351. Eine weitergehende Behandlung dieses Problems folgt in Kap. 15.

⁴¹ H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 1985, 318, 162.

⁴² W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. Huffmann, Nature 1990, 347, 354. Siehe auch P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S.J. Anz, R. L. Whetten, J. Am. Chem. Soc. 1991, 113, 1050. Im Hinblick auf die in Kap. 1 aufgeworfene Frage nach den ersten von Menschen ausgeführten chemischen Reaktionen ist zu vermuten, daß Fullerene schon sehr frühzeitig synthetisiert und als Ruß auf den Höhlenwänden abgelagert wurden. Verbrennungsprozesse sind möglicherweise geeignet, Fullerene in größerem Maßstab herzustellen.

¹³ Ein Fußball in europäischem Sinn.

⁴⁴ Übersichtsartikel: F. Diederich, R. L. Whetten, Angew. Chem. 1991, 103, 695; vgl. auch das März-Heft von Acc. Chem. Res. (1992). A. Hirsch, The Chemistry of Fullerenes, Thieme, Stuttgart 1994; A. Hirsch, Angew. Chem. 1993, 105, 1189; H. Schwarz, Angew. Chem. 1992, 104, 301; F. Diederich, Y. Rubin, Angew. Chem. 1992, 104, 1123.

Abb. 3.33 Vergleich zwischen einem Fußball (a) und dem Molekül C_{60} (b; Stereobild).

punkte in Ruhe bleiben⁴⁵. Daher konnte die Kristallstruktur nicht ohne weiteres gelöst werden⁴⁶.

Das Problem mit der Rotationsfehlordnung wurde schließlich durch die Synthese eines Osmylderivates von C_{60} überwunden. Osmiumtetraoxid (OsO₄) addiert sich an eine Doppelbindung:

⁴⁵ Reines sublimiertes C₆₀ kristallisiert in einem regelmäßigen flächenzentrierten kubischen Gitter (kubisch dichteste Packung). Bei Verunreinigung mit anderen Fullerenen oder Lösungsmittelmolekülen kann es zu Schwierigkeiten bei der Kristallisation kommen. Siehe J.M. Hawkins, T.A. Lewis, S.D. Loren, A. Meyer, J.R. Heath, R.J. Saykally, F.J. Hollander, J. Chem. Soc., Chem. Commun. 1991, 775; Y. Guo, N. Karasawa, W.A. Goddard, Nature 1991, 351, 464.

 ⁴⁶ Die nahezu isotrope Rotation erkennt man am ¹³C-NMR-Spektrum: C.S. Yannoni, R.D. Johnson, G. Meijer, D.S. Bethune, J.R. Salem, J. Phys. Chem. 1991, 95, 9; R. Tycko, R.C. Haddon, G. Dabbagh, S.H. Glarum, D.C. Douglass, A.M. Mujsce, J. Phys. Chem 1991, 95, 518.

Anwendungen der Punktgruppensymmetrie 101

Der Einbau einer oder mehrerer Bis(4-t-butylpyridin)osmyl-Gruppen hebt die pseudokugelförmige Symmetrie des C_{60} -Moleküls auf und verankert letztere fest im Kristall. Die Strukturanalyse des oben dargestellten 1:1-Adduktes gelang dann auch ohne Probleme und führte zu folgendem Ergebnis: "Die Kristallstruktur (Abb. 3.34) bestätigt die Fußball-ähnliche Anordnung der Kohlenstoffatome in C_{60} , indem sie eindeutig die 32 Flächen des C_{60} -Clusters zeigt, wobei 20 sechseckige und 12 fünfeckige Ringe auftreten. Die fünfgliedrigen Ringe sind niemals benachbart, während jeder sechsgliedrige Ring alternierend mit sechs- und fünfgliedrigen Nachbarringen kondensiert ist. Die O-Os-O-Gruppe ist an der Nahtstelle zwischen zwei sechsgliedrigen Ringen gebunden"⁴⁷.

Abb. 3.34 ORTEP-Darstellung von $C_{60}(OsO_4)(4-t-butylpyridin)_2$ (nach J.M. Hawkins et al., *Science* **1991**, 252, 312).

⁴⁷ J.M. Hawkins, A. Meyer, T.A. Lewis, S. Loren, F.J. Hollander, Science 1991, 252, 312.

Bei 249 K beobachtet man an kristallinem C_{60} einen Phasenwechsel von einer kubisch-flächenzentrierten zu einer einfachen kubischen Struktur. Im Gegensatz zur Raumtemperaturphase ist die Tieftemperaturphase geordnet, so daß Kristallographen die Kristallstruktur des reinen C_{60} bestimmen konnten⁴⁸. Außerdem wurde die Struktur in der Gasphase mittels Elektronenbeugung ermittelt⁴⁹. In der Gasphase wurden die C—C-Abstände für die gemeinsame Kante zweier sechsgliedriger Ringe zu 140.1 pm und für die Nahtstelle von fünf- und sechsgliedrigen Ringen zu 145.8 pm bestimmt.

 C_{60} -Fulleren hat eine hohe Elektronenaffinität. Beim Behandeln mit bis zu sechs Äquivalenten eines Alkalimetalls wie Kalium, Rubidium oder Caesium entstehen binäre Verbindungen

$$n\mathbf{M} + \mathbf{C}_{60} \rightarrow \mathbf{M}_{n}\mathbf{C}_{60} \tag{3.3}$$

die metallisch leitend sind. Wenn nur drei Äquivalente Metall eingesetzt werden, entstehen Produkte der Zusammensetzung K_3C_{60} und Rb_3C_{60} , die unterhalb 18 K bzw. 30 K supraleitend werden⁵⁰. Diese Verbindungen kristallisieren in der flächenzentrierten kubischen Kryolithstruktur (Na₃AlF₆), wobei die C_{60}^3 -Ionen eine dichteste Pakkung bilden und die Kationen Tetraeder- und Oktaederlücken besetzen (s. Kap. 4). Gegenwärtig sieht es aber nicht so aus, als ob diese Supraleiter mit den Hochtemperatursupraleitern auf Cupratbasis (s. Kap. 7) konkurrieren könnten, da die Sprungtemperatur viel zu niedrig ist und sie außerdem ziemlich oxidationsempfindlich sind.

Buckminsterfulleren (C₆₀) ist das erste Glied einer großen Zahl allotroper Fullerene: C₇₀ ist bereits ziemlich gut untersucht; es hat die Struktur eines Rugbyballs. Andere C_n-Moleküle mit n = 76, 84, 90 und 94 wurden ebenfalls isoliert und man vermutet sogar die Existenz von noch viel größeren Kohlenstoffclustern mit 240 und 540 Atomen⁵¹.

Aufgaben

- 3.1 Bestimmen Sie die Punktgruppensymmetrie der Moleküle in Abb. 3.2, 3.4 und 3.7.
- 3.2 Ordnen Sie die Moleküle in Abb. 3.5, 3.6 und 3.8 den entsprechenden Punktgruppen zu.
- 3.3 Ordnen Sie die folgenden Moleküle den entsprechenden Punktgruppen zu:
 a) Cyclopropan; b) SO₂; c) CO₂; d) B₂H₆; e) P₄; f) Cl₂C=C=CCl₂; g) BF₃;
 h) PH₃; i) O=SCl₂; j) O₂SCl₂;

⁴⁹ K. Hedberg, L. Hedberg, D.S. Bethune, C.A. Brown, H.C. Dorn, R.D. Johnson, M. DeVries, Science 1991, 254, 410.

⁴⁸ S. Liu; Y.-J. Lu, M.M. Kappes, J.A. Siebers, Science 1991, 254, 408; W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, Nature 1991, 353, 147; H.-B. Bürgi, E. Blanc, D. Schwarzenbach, S. Liu, Y.-J. Lu, M.M. Kappes, J.A. Ibers, Angew. Chem. Int Ed. Engl. 1992, 31, 640.

⁵⁰ R.M. Fleming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, S.M. Zahurak, A.V. Makhija, *Nature* 1991, 353, 787.

⁵¹ F. Diederich, R. Ettl, Y. Rubin, R.L. Whetten, R. Beck, M. Alvarez S. Anz, D. Sensharma, F. Wudl, K.C. Kheman, A. Koch, *Science* 1991, 252, 548; H. Kroto, *Pure Appl. Chem.* 1990, 62, 407.