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ORDER OF NORMAL APPROXIMATION FOR RANK 
TEST STATISTICS DISTRIBUTION 

JANA JURECKOVÁ and MADAN L. PURI1 

Charles University and Indiana University 

0. Summary. Under suitable assumptions, it is established that the rate of 
convergence of the cdf (cumulative distribution function) of the simple linear 
rank statistics 

' • " ^ • » ( J F C ) 

to the normal one is 0(N~l+') for any δ > 0. Here CN1, · · ·, CNN are known 
constants, Rm, · · ·, RNN are the ranks of independent observations XNl, · · ·, 
XNN, and φ is a score generating function defined in Section 1. 

1. Introduction. Let XNi, i = 1, · · ·, Ν be independent rvs distributed ac-
cording to the cdf Ft(x) = F(x — i = 1, · • ·, Ν. We assumed that F(x) 
is absolutely continuous having the density function f(x) whose derivative f'(x) 
exists. Furthermore, F(x) is assumed to have the finite Fisher information, 
that is, 

( 1 . 1 ) / ( / ) = [ / ' W / / W F / W d x < ^ . 

Δ is an unknown parameter, and dNi, i = 1, · · ·, Ν are known constants. Let 
RNi be the rank of XNi among XNl, · · ·, XN!i. Setting u(x) = 1 if χ ^ 0, and 
u(x) — 0 otherwise, we can write 

( 1 . 2 ) R K t = Z U « ( ^ y . - . i = l , - - - , N . 

Consider now the simple linear rank statistics 

(1.3) 
where Cm, · · ·, CNN are known constants, and aN(i), i = 1, · · ·, Ν are "scores" 
generated by a function φ(ί) in the following manner: 

(1.4) e^,-) = Ç p ( _ L T ) , 

Statistics of the type (1.3) play an important role in the theory of non parametric 
inference. For example, in the two sample problem where F1 = ... = Fm = F, 
and 

^ V n = · · · = FN = G » 
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4 Jana Jurecková and Madan L. Puri 

for testing the hypothesis H0: F = G, many rank tests are based on the statistic 

V = Σ Γ-ι «*(*«) 
which is a special case of (1.3) when Cm = · · · = CNm = 1 and C„m+1 = ... = 
Cyy = 0. It is well known (see e.g., Capon (1961)) that the statistics of the 
form (1.3) for different score functions yield locally most powerful rank tests. 
Under suitable assumptions on the C's and the score generating function ψ, 
Hájek (1962) [see also Hájek-Sidák (1967)] established the asymptotic normality 
of SN. However, the problem of determining the rate of convergence of the cdf 
of SN to the limiting normal distribution has remained open. This problem is 
investigated in this paper for the case Δ = 0 as well as for Δ Φ 0. In both cases, 
the rate of convergence is proved to be 0(N~l+i) for δ > 0. For the case Δ = 0, 
the result is valid for the ψ functions having the bounded first derivative, and 
for the case Δ ψ 0, it is necessary to assume the boundedness of the fourth 
derivative of ψ. 

Throughout the paper, we shall make the following assumptions on C's and d's. 

(1 -5) E f - i cKt = ΣΓ=ι dSi = ο , Ef -1 c»4 = ΣΖ . Ιd i , = ι , 

( 1.6) max l s ( s „ C*( = 0(N~> log Ν), max i s i s „ d*Ni = 0(N~1 log N). 
It may be noted that the assumption (1.5) can be made without any loss of 
generality. Furthermore, it may be noted [cf. Hájek-Sidák (1967)] that if φ is 
the difference of two non-decreasing, square integrable functions in (0, 1), then 
SN has asymptotically R¡(0, Σ') distribution under Δ = 0, and Y(ESN, Σ') or 

ΣΓ-1 Cmdm ψ(ήψ(ί, f ) dt, a>) 
distribution under Δ ψ 0. Here 

A* V)) 
and , σ*) stands for the normal distribution with mean £ and variance a1. 

2. Rate of convergence for Δ = 0. The main result of this section is the 
following theorem. 

Theorem 2.1. Let Δ = 0 and the first derivative of <p(t) exist and be bounded in 
(0, 1). Then, under the assumptions of Section 1, corresponding to any δ > 0, there 
exists a constant Α(δ) > 0, and a positive integer N¡ such that for all Ν > Nlt 

(2.1) sup_w < 1 < . | /v(x) - Φ(*)| ^ Α(δ)Ν<-*+» 

where FN(x) is the cdf of <r_l5w and Φ(λγ) is the standard normal edf. 

The proof of this theorem is based on the following two lemmas, the second 
of which is a consequence of Theorem 6, Chapter 5 of Petrov (1972). 

Lemma 2.1. Under the assumptions of Theorem 2.1, corresponding to any positive 
integer k, where 2k + 1 < N, there exists a constant B(k) > 0 and a positive integer 
Nk such that for all Ν > Nk, 
(2.2) E(SN - 7V)" g B(k)N-k 



Rank Test Statistics Approximation 5 

where 

(2.3) Τ„ = Σ Ϊ ^ Μ Ρ ( Χ * ) ) · 

Lemma 2 . 2 . Under assumptions of Section 2 and Theorem 2 . 1 , for any positive 
integer N, 

(2.4) «up_.< e < . |F„*(x) - Φ(χ)\ <¡ A $J \<p(t) - φ\* dt · £ f = 1 \Cm\> 

where A > 0 is a constant independent of N, and FN* is the c d f of a~xTN under 
Δ = 0. 

In what follows, we shall suppress the subscript Ν in Cm, dNi, Rm, etc. when-
ever there is no confusion. 

Proof of Lemma 2.1. Set U( = F(X(), i = 1, · · ·, Ν. Denoting Y¡ = MÄ<) — 
<p(Ut), i = 1, · · · , Ν, w e ge t 

(2 .5 ) £ [ ( S „ - TNy>] = C( K,)»} 

= ς ,(2*)! , e/» · · · >?<) 
Pi'· · · · P«}-

where the sum extends over the set A of vectors (p¡, • • - , ρ„) of integers such 
that 0 ^ Pi ^ 2k, ι = 1, ...,Ν, Σ?-ι Pi = 2k. 

Each point of A could have at most 2k positive components. Noting this fact, 
we may decompose A into 2k disjoint parts such that the jth part consists of those 
points which have just j positive components. Thus we may rewrite (2.5) as 

- 7 V ) " ] = Σ Γ - , c » E Y ? + . . . 

(2-6) + Eisp,.-.pe<u.pi+- + pe=j* —ρ 
rι· ' ' ' r · 

X Eí.-.i.-l.diff.r.nt eli • · • C 'ZE^Y 'Ì • • • Yi¿) + · · · 
+ Σΐί.···,,4=1.ΑΐίΓβΓβηι ct, · · • ' ' ' ^J*) ' 

In view of (1.5) and (1.6), it follows that 

(2.7) IE£....,im=i.diff.rent CÇ · · · c f* l è Κ for Ν > Nk 

for any m = 1, · · ·, 2k and any p¡, 0 < pt < 2k, i = 1, · · ·, m, Pi = 2¿> 
Κ > 0 is a constant dependent only on k. Actually, ifpt ^ 2 for / = 1, · · · , m, 
then 

ΙΣζ.....(.-ι.«κ»»««ΐ? · · · c i : ΙΠ7-ι<ΣΪ1ι |c4|'0 á max i s i s jv |c(|'<*->. 
On the other hand, suppose that some of p¡ s are equal to one, say pm = 1. 

Then in view of (1.5) 

(2-8) Σζ.... ι4.-ι, different Cft • · · Cf-
= Σ ζ . - . ^ ι . different^ · • · ^ ( - C , , C ^ ) 

so that we get m — 1 sums of similar type; each of them sums the products of 
(m — 1) factors. Considering any of these sums, we may have again two cases: 
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either all exponents are at least two, so that we are in the first case; or some of 
them equal one and we may write an equality analogous to (2.8). We continue 
in this way until after a finite number of steps (in which we decompose the 
original expression into at most ml sums) we get only the sums with exponents 
greater than or equal to two. Actually, the extreme case is the sum of the type 

Σ Ν rìk- V» ij.íj-l.íjitij CÍ! — Zj í l - l t i i > 

so that (2.7) is proved. 
Further, using the generalized Cauchy-Schwarz inequality 

(2-9) £|Π?-ι Zi\ á (Π?=ι E\Zx'\f" , » = 2, 3, · . -

we see that 

(2.10) E\ r n . . . Y>:\ g (Π-= 1 E\ Υτρ\Υ" < (Π7-, E\ 

= ( u r - ^ K i ^ ) - 9 m u p ' ) i ß k 

holds for any m = 1, · · - ,2k and any pu 0 < / > , g 2k, 2*=i Pi = 2*. Finally, 
the expression 

( 2 · ΐ ΐ ) Σ ϊ = ι Σΐίρ1,..·.,„ίί*.»ι+···+^=» jTT^yi 

depends only on k. 
Now, if a„(i) = <p(i/(N + 1)), i = 1, · · · , Ν, where ψ has a bounded derivative 

we get the inequality 

(2.12) £ K ( * , ) - <pmr>i <L B¿k)E - U^" 

which is varied for j = 1, · · ·, m; m = 1, · · - ,2k. 
Ux being fixed, R, is the sum of independent zero-one random variables (see 

(1.2)) so that 

(2.13) E - UN1 J'' g Bt(k)N-^ . 

( 2 . 6 ) , ( 2 .7 ) , ( 2 . 1 0 ) , ( 2 . 1 1 ) , ( 2 . 1 2 ) and ( 2 . 1 3 ) then prove the lemma. 

PROOF OF THEOREM 2 . 1 . Since for any E > 0 and any TV, we have 

( 2 . 1 4 ) G χ] ^ Pia-IT» < χ + ε] -F - Τκ\ ^ ε] 

and analogously 

(2.15) PIff-'S* á x] ^ P{°~lTN ^ χ - e} - />{<τ-1|5ΛΓ - T„\ ^ e}, 

it follows using Lemmas 2.1 and 2.2, that 

(2.16) sup_„<1<00 \FJx) - Φ(χ)| â (ea)-»B(k)N~* + c, |cwt|> + 0(s) 

holds for any ε > 0, any k and for Ν > Nt. 
For δ > 0 being fixed, take k such that 2k + 1 > l/2á ^ 2k and put e = 

jy-i(t-v(u+i)i The theorem then follows from (2.13) and from the assumption 
(1.6). 
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3. Rate of convergence for Δ Φ 0. Without loss of generality, we assume 
that Δ > 0. For convenience we shall use the following representation in this 
section. Let X N i , i = 1, · · ·, Ν be independent and identically distributed rvs 
each having the cdf F(JC) such that / ( / ) < oo. Let R^ be the rank of XNi + LdNi, 
that is 

K i = Z U "(xsi - x»i + - dN,)). 

Consider now the statistics 

« „ - Σ Ε . « - » ^ ) . 

The asymptotic distribution of S i ! f — Sm was investigated by Jurecková for 
Wilcoxon scores in (1973 a) and for general score function φ in (1973 b). In the 
case of general scores function φ, it was assumed that the ψ function has the 
four bounded derivatives in (0, 1). 

Suppose now that the vectors (cNl, · · ·, c„N) and ( d N i , · · ·, dNN) satisfy (1.5), 
(1.6) and the following: 

(3.1) l im^„ c*id*i = «*. 0 < α1 < oo , 

(3.2) l im„_ [max l s t sw ( c ^ H E f - i c^rfj,)-1] = 0 . 

and 

( 3 . 3 ) l i m ^ [ Λ Μ ( Σ £ , c m d N i y ( Z ^ C N i d k t ) - 1 ] = Γ è 0 . 

Then, [cf. Jurecková (1973 b)] for φ having four bounded derivatives in (0, 1), 
the asymptotic distribution of 

( 3 - 4 ) - S0N - \as - VbN) 
is η(0, Δ'ρ') where 

( 3 . 5 ) A* = Σ ΐ ΐ ι M i + 3 Λ Τ - ΐ ( Σ Γ = 1 cNidNiy 
( 3 . 6 ) aN = ü f = 1 cNt dNi S <p'{F(x))f\x) dx = 2 f = l cNidKi $J <p{t)<p{t, f) dt 
(3.7) àN = l 2», Cyi di, S <p"(F{x))f\x) dx 
and 

p> = \ [<p'(F(x))YP(x)dx - [<p'(F(x))Yf\x)dxf + 2r(l + Ζγ)'1 

(3.8) X [J F(x)(l - F{y))<p"{F(x))<p"{F(y))r(x)f\y) dx dy 
+ SU, 9'{F{xW'{F(y))r(x)fXy) dx dy 
- S <p'(F(x))f(x)dx . 5 <p"(F(x))F(x)P(x)dx . 

Let F N t denote the cdf of — Δα^). Then we have the following 
theorem. 

THEOREM 3 . 1 . Suppose that cNi, dNi, i = 1, · · ·, Ν satisfy ( 1 . 5 ) , ( 1 . 6 ) , ( 3 . 1 ) — 

(3.3) and that the score-generating function has four bounded derivatives on (0, 1). 
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Then 

(3.9) sup, |F„4(x) - Φ(*)| = 0(N-^') 

holds for any δ > 0 and any fixed Δ. 

P r o o f . We may write for any e > 0 and for any χ 

(3.10) P{o-\SLll - ΔαΝ - Δ'6„) ^ *} 
^ iV- 'So* £ * + ε} 

+ ^{«t-'IS^ - 5o y - ΔαΝ - VbNI ^ e} 
and analogously 

^ " ' ( ¿ λ * - - M*) g *} 

^ Pi'-1*,* £ * - e} - rç*-1!·^ - ^ - Δα„ - Δ ' Μ ^ e}. 

Then by Theorem 2.1, 

(3.11) sup, I F ^ x + a-WbN) - Φ(*)| 

g C . e + /»{<7-1|S4„ - S0N - Δα„ - ^ Ê} 

+ A(ô)N-i+' 

holds for any δ > 0 and Ν > Ν,. 
Let us consider the third member of the right-hand side of (3.11). We shall 

use the following theorem: 

Theorem 3.2 (Petrov). Let H(x) be any cdf and Φ(χ) cdf of the normal (0, 1) 
distribution. 

Let 
V = sup.^.^ IH(x) - Φ(χ)\ 

and let Mr denote the set of distribution functions possessing the finite absolute mo-
ment of order ρ > 0. Then, if 0 < ν and H(x) e Mr, there exists a constant 
Cr depending on ρ only such that 

(3.12) |H(x) - Φ(χ)\ <ί 1 - J l í -

holds for all real x\ here 

lr = \\\x\>dH{x)-\\x\>d<i>{x)\. 

For the proof, see Petrov (1972). 
Let us denote by GNL the cdf of Δ^Α^ρ-χΞ^ - S0!f — AaN - Δ 1 ^ ) . On 

account of the boundedness of ψ, G„à has finite absolute moments of any order 
for any fixed Ν and any fixed Δ. On the other hand, it follows from Theorem 
2.1 of [6] (see (3.1)—(3.8) of the present paper) that l i m ^ „ sup, |GWi(x)— 
Φ(χ)| = 0 for any fixed Δ and that for Ν > 

sup, |C„4(*) - Φ(χ)| < e"». 
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The assumptions of Theorem 3.2 are satisfied for any ρ = k = 1,2, · · ·, so that 
there exists a constant Ck* to any k such that 

(3.13) |σΜ(*) - φ(*)| á C t*(i + μι*)-1 

holds for all j t e ( - o o , oo). 
We have 

(3.14) P{c~*\Si!f - S0lf - - > ε] = 2[1 - Ο ^ - ^ α Α , , - Η ) ] 

so that (3.13) implies that 

(3.15) P{o->lSiy - Sm - Aay - A>b„¡ ^ 

^ 2[1 - Φ(Δ-1
/ο-1σ^-1«)] + 2C„*[1 + ( A - y ^ V ' « 1 ] · 1 

holds for any e > 0, any k = 1, 2, · · • and for JV > 
Let us fix δ, δ > 0 and put ε = A„ · N'". Then in view of (3.15) and Lemma 

2, Chapter VII of Feller (1957) we have that for any Ν > ΝΛ and sufficiently 
large k 

(3.16) sup |FWâ(* + σ- 'Δ '^) - Φ(χ)| ^ C,"N~i+i + 0(N~1+"). 

Thus 

sup_.<1<„ - φ(χ)| 
(3.17) ^ sup, - Φ(χ + a-WbN)\ 

+ s u p , | Φ ( χ + a-WbN) - Φ ( χ ) | 

á s u p , I F K i ( x - - Φ ( * ) | + K.a-WbN . 

(3.16) and (3.17) together with assumption (1.5) complete the proof of the 
Theorem. 

Acknowledgment. It is a pleasure to express our appreciation to Dr. S0ren 
Johansen and Martin Jacobsen for some helpful discussions, and to the referee 
for some very valuable comments. We would also like to thank the referee for 
bringing to our attention a paper of Bickel (1974) where he established that a 
Berry-Esseén bound of order was valid for the Wilcoxon statistic. This 
suggests that the bound in the present paper may be improved upon. The reader 
is also referred to Vizková, (1974) for a related problem. 
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CONVERGENCE AND REMAINDER TERMS IN 
LINEAR RANK STATISTICS1 

A new approach to the asymptotic normality of simple linear rank sta-
tistics for the regression case studied earlier by Hájek (1968) is provided 
along with the estimation of the remainder term in the approximation to 
normality. 

1. Introduction and summary. Let Xu • • ·, Xn be independent random vari-
ables having continuous cdf 's (cumulative distribution functions) /^(x), · • · , 
Fn(x) respectively. Consider a statistic Sn = s(Xlt · · ·, X%) with ES„ — 0 and 
ES„1 < oo. Then, to prove the asymptotic normality of Sn (as π —> oo), Hájek 
(1968) uses the method of projection which gives to the statistic 5„, the approxi-
mation of the form 

Consider now the simple linear rank statistic Sn introduced by Hájek (1962, 
1968) 

where the c's are known constants, is the rank of X, among (Xlt • • - , Xn) 
and φ ( ' ) is a score generating function defined on (0, 1). Hájek (1962) [see also 
Hájek-Sidák (1967)] established the asymptotic normality of S„ in (1.2) under 
the assumption that the Ft are contiguous, e.g., when F¿x) = F(x — Adni) where 
Δ is the unknown parameter and the d's are the known constants. Later on 
Hájek (1968) studied the asymptotic normality of S„ for the general Ft(x) (the 
noncontiguous case). Under the setup of Hájek (1962), Jurecková and Puri 
(1975), referred to hereafter as JP, studied the problem of determining the rate 
of convergence of the cdf of Sn to the limiting normal cdf and established it of 
order 0(N~i+') for 5 > 0. In this paper we not only give a new approach to the 
asymptotic normality of Sn for the general Ft (i.e., not necessarily contiguous) 
but improve the results of JP in providing a sharper bound (for the general Ff's). 
In the passing, we may also mention that whereas JP requires ψ to have a 
bounded fourth derivative, here we only require the boundedness of the second 

Received May 1975; revised January 1977. 
1 Work supported by the Air Force Office of Scientific Research, AFSC, USAF, under Grant 

No. AFOSR 76-2927. Reproduction in whole or in part is permitted for any purpose of the 
U.S. Government. Part of this work was done while the author was the recipient of a Senior 
U.S. Scientist Award from the Alexander-von-Humboldt-Foundation. 

AMS 1970 subject classifications. Primary 62E20; Secondary 60F05, 60F99. 
Key words and phrases. Linear rank statistics, score generating functions, rate of convergence. 

(1.1) 

(1.2) S, = Σί-ι'ΑΦΜ») -
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derivative. Furthermore whereas this paper gives more explicit error bounds 
than the JP paper, the latter gives more information on the limiting behavior 
of ES„ and Var S,. 

We now introduce some notations. We define ψ(·) = 0 outside (0, 1). Then, 
we can use the supremum norm 

(1.3) IMI = s u p t e \ ψ { ί ) \ . 

Set 

(1.4) ft = *,/», Pa = E[Pi I . «(*) = ! Χ x^O 
and u(x) = 0 otherwise. 

Then 

(1.5) Rt = ZU "(χ< - χί) • 

In this paper, we shall deal with the following approximation of S„. 

(1 ·6) Γ . = ΣΓ=ι c^(Pii) - Ε[ψ(Ριί)] + (Pi - pit)<P'(9ii)}, 

assuming that φ' exists on (0, 1 ) and 

(1-7) 

Since E[(p( — Ρίί)ψ'(ρΗ)] — 0, it follows that 

(1.8) t , = Σ? = ι CMPu) - Ε[ψ{ρ«)] + LU El(Pi - Ρα)Ψ'{Ρα) I *AÌ • 
Let Ηλ, G, and ôn be the cdf 's of S„, Tn and fn respectively, and put 

(1.9) <rn' = £[S n
J ] , i.l = E[t.*], Π ; = — Σ?=ι c?T> I\. r > 0 . 

η 

Then our theorems are the following: 

THEOREM 1.1. If ψ has a derivative on (0 , 1) then 

(1.10) ||<S.(¿B.) - Φ(·)|| á 4C[2||^||» + \\ψ'\\>] Σ ? - » Ι Λ " ; 

Φ(χ) = (2ff)-i \'_me-*»dt 

where C is the constant in Berry-Esseen's inequality (Zolotarev (1967) gives the 
approximation 0.9051 ). Further, 

(1.11) I*. - ».I â W l l + ΙΙίΗΙ)Γ„.χ 
with an absolute constant C„ provided ψ" exists on (0, 1). 

THEOREM 1.2. If ψ has a second order derivative on (0, 1), then for any positive 
integers η and r such that n~V3 <; 

(1.12) | |ÍT.(Í..) - φ ( . ) | | ¿ A C i i m + ΙΙί&ΊΙ') ΣΓ-. 

+ CJÍ.-'dlí&'ll + IIÍHI)rrnrY«<»+» , 

where C, is an absolute constant. 

REMARK. If the ci are chosen such that |c¡| ^ a/n* with constant a for all 
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i and n, then 
Γ „ á «/»* -

and for r = [logn], [ r r n r f ^ aiTF(log/i) «-»(1 + 0(l/logn)). 
Note that is invariant and thus also ¿„ -T„ r is invariant under the trans-

formation ct —> yct, i — 1 , 2 , · · · . 

2. Some lemmas. 

LEMMA 2 . 1 . For any positive integers r and n, 2r <Ξ η, we have 

(2.1) 

with 

(2.2) b{r) g „ - ' ΣΓ-. Cl1) ( 2 ^ y
2 t y ' 

and for n~lrl g J 

Ï.3) 

PROOF. By (1.4) we obtain 

(2.3) b{r) ^ 2 - " ^ [1 + 8/i"V3l 
rl 

Pi - Pa = - LU Μ - W W ] • 
η 

By the polynomial theorem we then get 

(2.4) E[(Pi - P i i r ] = η-» Σ t
( 2 r ) ! £ Π"*ι [«(·M - - W ) ] ' ' , 

5,! · · · s j . 

Il + · · · + J. = 2/·. 
We claim that any term in this sum is equal to zero if sio = 1 for some j0. 
Indeed we find that the conditional expection of the product with respect to all 
Xj, j ψ jo is equal to 0 if ss = 1. Hence we have only to regard terms with 
Sj = 0 or 2 for any j, and there can be at most t g r exponents s - different 
from 0. If s,; 7> 2, j = 1, 2, · · ·, t, s¿ = 0 for j > t, i > t we obtain, observing 
that 

Iu(Xt - X¡) - F,(Xt)\ ^ I 

(2.5) E m u m - - ^ e u u ["(Xi - - FÁXÍ ) r 

= E [ U U [FÂXi) - W ) ] ] á 4-1 . 

This inequality remains true for all permutations of the indices 1, · • · , « . Put 

( 2 - 6 ) j i t ) = 2 J » L + - - - + » T = J I - ; « I - A » , I = I , · · · , « — Ρ — ' 
sx. · · · s 

Since t indices out of η — 1 indices can be chosen in ("-1) different ways we 
obtain from (2.4) through (2.6), 

( 2 . 7 ) E[(Pt - ptty\ ^ n~» ΣΓ-ι Cl'M')4"' · 
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We claim that 

( 2 . 8 ) r(t) < QiÈ 2~'t"r~2' . 

K ' (2r — 2t)l 

Indeed, differentiating the identity 
( Σ ^ λ Γ = , ( 2 r ) ! , n u y ; t 

s¿ ·•· stl 

twice with respect to all y¡ and then putting all y¡ equal to 1, we obtain 

(2r)'· y>»-««) _ y Π ' S (S - η (2r)! 

(Ir — 2t)\ ~ 1 +···+«ί=,':·^,'ί=1···' l ) · 

Now using (2.7) and (2.8), we get (2.1) and (2.2). We now estimate b(r) further, 
mainly for use when η and r are large. Put r — t = u. Then we can write 

(2.9) b(r) g 2-" Σϊ-S *(«) 

with 

Particularly 

and for « > 1 

k(u) = (r -
(r - «)! (2«)! 

Jt(0) = M , * ( l ) < 4 n - ' r » . M 

* < » + ' > = ( 1 - . 2· - (r - «) • ( " " - V 
k(u) V τ — u ) v (2« + 1)(2κ + 2) 

< f""1/·3 á i for /r1/·3 á f . 
Hence 

b{r) g 2~Sr · + 8/rV3] 

for /rV3 ¿ f . 

Lemma 2.2. f o r any positive integers r and n, 2r g η, we have 

(2.10) E(Tn - t . y ^ ο(Γ)\\ψ\\*Τχτ 

if ψ' exists on (0, 1), and if ψ" exists on (0, 1) 

(2.11) E[(Sn - T . f ] ^ b(2r)\\<p'Tn:r . 

(2.12) 

with 

b(2r) £ n~2r Cl1) — ^ t,r~" · 2'31 iL 
(4r - 2t)\ 

c(r) g V'n-* 2ÎLi (?) j ¿ ~ 2 t ) l ' 2~' 

d(r, φ) ^ [[0{2γ)Γ'\\Ψ"\\ + [c(/-)]v"||^||]" . 
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Further we have the estimates 

(2.13) b(2r) ^ 2" · ' i ^ j . [1 + 2«n-'r3] 

/or 23/rV3 ^ 
(2.14) c(r) ^ [1 + 23n~1r3] for « "V 3 ^ § . 

REMARK. By Stirling's approximation of the Γ-function we have 

< M i < 2"+ir5r(exp —2r) exp — . 
( 2 r ) \ - v v ' 

PROOF , p y ( 1 . 6 ) a n d ( 1 . 8 ) w e g e t 

(2.15) T , - t u = Σ."=1 «. { ( ft - - Σ E[(Pi - PuWiPit) I *,]} 

and for j ψ i 

(2.16) - = - Σ ϊ « *{[«(-*< - - Ρ* {Χι )ψ {Ρ« )\Χί\ 
η 

= ± £[«(*< - Χ,) - F¿Xt)W(pit) \X¿ , 
η 

since the conditional expectations in the sum are zero for j Φ k, i. Now using 

the relation 

( P i - Ρα)ψ\Ρα) = - Σ " * , - - ^ O W G » « ) , 
η 

and noting that 

E[(Pi - PiiW(Pii) = 0 

we obtain from (2.15) 

(2.17) T „ - f n = l ΣΓ=1 E U Ci Vii 

with 

( 2 . 1 8 ) V i j = [ « ( * , - j r . ) - F y ( X t ) W ( p t t ) 

- £ { [ « ( * , - - F¿XtW{ptt)\X,} . 

Clearly 

( 2 . 1 9 ) E[Vij\Xj] = 0, E[Vtj |Jf4 ] = 0 . 

By the polynomial theorem we get 

(2.20) É[(Tn - f . ) * ] = *-2 '£[ΣΓ=, Σ U c> 

where the sum should be taken over terms corresponding to different vector 
solutions {.$„}, /',; '= 1, ·•• n, j Φ i of the equation 

(2.21) Σ ' - ι Σ ί φ * ' α = 2τ . 
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(2.22) E m u n u v i i i ¡ \ 

is equal to 0 for some vector solutions of (2.21) siflfce (2.19) holds, and we have 
only to regard those solutions for which the expectation (2.22) is not equal to 0. 

We say that stJ gives the contribution to the sum (2.21) from each of the 
indices / and j. Hence according to this notation an index k gives the contri-
bution 

(2-23) 9(k) = J s» + h Σ%κ 

to the sum (2.21). By conditioning with respect to all X j f j Φ k we easily find 
that the expectation (2.22) is equal to 0 if A: gives the contribution \ to the sum 
(2.21), i.e., if skj = 1 for exactly one index j Φ k, and sjk = 0 for j φ k or if 
sjk = 1 for exactly one j and stj = 0 for y Φ k. 

The sum 2] on the right-hand side of (2.20) can be divided into partial sums 
as follows. Let C be a collection of different positive integers belonging to the 
set 1, · · ·, 2 r, say C = (1, 2, · · ·, t). Let consist of all terms in (2.20) cor-
responding to the vector solutions of (2.21) such that 

(a) stj = 0 if not both / and j belong to C; 
(b) for any k eC the contribution to the sum (2.21) is larger than Note 

that C can contain at most 2r different integers since every k ς C gives at least 
the contribution 1 to the sum (2.21). Clearly partial sums and contain 
no common terms if Cl φ C,. Consider now the expectation 

where the i and j belong to the collection C. Note that s(j may be equal to 0 
for some pairs (/,/'). By Holder's inequality we get, using the fact that [Vu\ <: 
2\\Ψ% 

(2.24) IE n u UUi ('< νϋ)'"\ á IIU UU Ν Μ ^ ο Π } ' ^ ' 

^ 2 , , Ι Ι ^ Ί Γ Γ Π ' = ι M ' « 

where 

(2-25) = = 

The partial sum corresponding to C is then estimated by 

( 2 - 2 6 ) Σ ' ο π , ff' , ( 2 ' 1 I Φ Τ Π ί - . \ Φ ) • 
lli=i (sij)· 

Note that (2r)!/JX,î=1 Π'*,· (^,)' a n integer. Hence we have 

Mt) - y (2λ)· 

terms in the class C which are estimated by (2.24). Let ^ be the set of all terms 

Σ Π ? - ι n % x ( C t W 
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j„ · · ·, 5() in (2.26) be given, 0 g <; s2 < · · · <¡ st, Σ<=ι s¡ = I r . Then ac-
cording to the symmetry the set contains a sum of terms, each estimated by 

(2.2?) ^ ' r i L U K b 

where (kt • · · kt) is any combination of numbers 1,2, · · ·, η to the /th class and 
in any order within this class. Let the number of terms in Ct for a fixed vector 
(jj, s„ · · ·, st) as above be n(t) and the sum of terms (2.27) belonging to (slt 

s„ · · ·, st) be A(sl, s2, · · ·, st). (Note that n(t) depends on · • · , Λ,.) Then, 
since A(s„ • • •, st) is a symmetrical function 

(2.28) A(slt s , , · · · , st) = ^ Σ ^ Ι Ι ^ Ι Ι " n U K\·' 
η! 4 

where Σ ' is the sum all terms belonging to all permutations of the numbers 
1 , 2 , · · · , « . By Holder's inequality we get, observing that 

K4I*' = [ e y v , Σ Ϊ - . ¿ = 1 . 

(2-29) Σ ' Π - U K h á 
and here 

Σ ' = — Σ?=ι C¡T · 
' η 

Hence we obtain by (2.28) and (2.29) 

A(s>, st, •. ·, ,,) ^ 2ίτ\\φ'\^τ . n(t) · 1 ΣΓ=ι c," · 
η 

Since ^ contains (?)N(t) terms we then find that ^ gives at most the contri-
bution 

» - " ^ W r G W ) · — ΣΓ=ι ci" η 

to the right-hand side of (2.20). Putting 

r2 r _ l y » c 2 r r > 0 
nr ¿Ji=l Li » 1 »r = " ι η 

and regarding the sets ^ for t = 1,2, · · ·, 2r , we obtain from (2.20) that 

(2.30) E [ ( T . - f n f ] g 2W\\<¡>Tnrr Σ%Α1)Ν(0 • 
We estimate N(t) in the following way. Consider the identity 

(2.31) (Σί=ι Σ ^ W r = Σ π , ν, Πί-ι n u ( W " ' · 
IL-1 Πί=1 (5i¿)! 

If an index k gives the contribution 1 to the sum (2.21), i.e., to the sum 
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then the double product 

n u I I U ( W 

contains xk as factor at least in the power 2. Hence differentiating the identity 
twice with respect to each x k , k = 1 ,2 , · · ·, / and then putting all xn equal to 1 
we get the inequality 

(2.32) 2W(/) g I n u ^ Œ . u S U • 

The right-hand side, however, is at most equal to 

(2.33) j n U i - f - «Σί-Χ * < n } = < 4 γ ) ! , λ 7 · 

l dxk )xk=i,t=i ,···,( (Ar — 2t)\ 

Combining (2.30), (2.32) and (2.33), we get 
Ε{{τη - t H ^ c { r w r n r

r 

with 

c(r\ = 22rn~ÌT V 5 ' . Ci 
(Ar - 2t)\ 

c(r) = 22rn~tr Σ%ι (?) — — t*'-1' . 2-

Π ; = - Σ?=ι lc.1- • 
η 

We estimate c(r) exactly in the same way as we have estimated b(r) in Lemma 
2.1 and then obtain for u = 2r — t 

with 

Hence 

c(r) Ú 

k(u) = n~* (4r>! (2r - uf* · 2" . 

and for u > 1 

(2«)·! <2r - u)l 

k(0) = , k ( l ) < n-1 • (2rY 
K ' (2r)\ w v ; (2r)l 

k ( u + !) g |„-1Γ3 g £ f o r n-! rs g I _ 
k(u) 

Hence for n~lr3 ^ § 

c(r) < Í ÍÜÍ [1 + 8n-1r3l . v ' - (2r)\ 1 J 

Thus we have proved (2.13) and (2.14) of the lemma. 
It follows by the definition of Tn that 

S . - Tn = Σ ^ ^ ζ , - Ε ( ζ ί ) ] 
with 

|£tl á i(Pt - Puf WW • 



Convergence and Remainder Terms 19 

Hence 
- Τ J ' ] g «»-ι - Εξ γ*} 

and by Lemma 2.1 

£[(£, - £(£,))*] ^ 2 S \\φ"\\ίτΕ[(ρί - P i i y ] < n-»b(2r)\\</,'T • 

Thus we get (2.11) 
E[(S. - T n r \ ¿ b(2r)T„ . 

By Minkovski's inequality we obtain ( 2 . 1 2 ) from ( 2 . 1 0 ) and ( 2 . 1 1 ) 

£1/2r[(S„ - t . f ] ^ - T n y ] + E1/lr[(Tn - f.]*] . 

LEMMA 2 . 3 . f n = Σ ΐ = Ι f . U ) with independent random variables 

( i) t * = c ^ ( P l j ) - Ε[ψ{ρ^)}} 

+ - Σΐ*ί ci[E{u{Xi - X¡) - /^(WG»«) \X¿ . 
η 

Further, 

(ii) Σ"=ι [ ^ « " T ] á W H » + ιι^ιι«} Σ%> Ν 3 . 
PROOF. We get the representation (i) by (2.16). Using well-known inequa-

lities 
|(a + 6)3| ^ 4[|o|3 + |A|>], |(Σ?=1 a,)31 á «' Σΐ-χ |β.|* 

we obtain 

s[if„">i»] ^ q c m w P i i ï - mpuW\ + - ςr*,· \ct\w\\3 • 
η 

Here 
Ε[\Ψ{Pu) - Ε[Ψ(Ρα)]\3] ^ Ά\Ψ\\Ε{Ψ(.Ρί,) - Ε{Ψ{Ρί,)Υ · 

Thus we get (ii). 

3. Proofs of the theorems. 
(a) PROOF OF THEOREM 1 . 1 . ( 1 . 1 0 ) follows from Berry-Esseen's inequality 

and Lemma 2 . 3 and ( 1 . 1 1 ) from Lemma 2 . 2 ( 2 . 1 2 ) . 

(b ) PROOF OF THEOREM 1 . 2 . F o r h > 0 w e g e t 

( 3 . 1 ) P[Sn ^ 8.x] ^ P(S. G 8.x, \S. - t.\ < h».) + - t.\ ^ A5„] 

^ n t η Á S.(x + h)] + - 1.1 ^ hSn] . 

Applying Theorem 1.1 we get 

(3.2) P[t. ¿ 8.(x + A)] ^ Φ(* + h) + 4C(2||,&||· + ||^'||3) • Σ?=ι • 

Here 

(3.3) Φ(* + h) G Φ(-ν) + ||Φ'(χ)|| = Φ(*) + . 

By Chebyshev's inequality and the inequality (2.12) of Lemma 2.2 we get 

( 3 . 4 ) - 1.1 ^ h8.] Á d{r, φ)Γ»(Ιι8.)-» . 



20 Harald Bergström and Madan L. Puri 

Now we choose η such that 

= d{r, ifrra**.)-" , 
(2π)* 

i.e., 

(3.5) h = [(2ír)W(r, ^ „ - " Π ; ] 1 " " * " . 

It follows by Lemma 2.2, (2.12), (2.13) and (2.14), and the remark made after 
Lemma 2.2 that for n^r3 f 

[d(r,</>))^ ^ C'r(\\4>'\\ + ΙΙ^'ΊΙ) 

with an absolute constant C . Then it follows by (3.4) and (3.5) that 

- A - + d(r, φ)Γ»(Η&.)-» ^ C ^ - ' d l ç & ' l l + \\ψ"\\)ΓΓ.γ]»«*+» . 
(2ff)i 

By (3.1)—(3.6) we get the inequality (1.12) in one direction. It follows for the 
other direction in the same way. 
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ABSTRACT 

In this paper we consider a general class of rank order statistics for testing independence 
in bivariate populations. Each statistic is represented as a sum of independent and identically 
distributed (i.i.d) random variables and a remainder term. Suitable order (a.s.) of the re-
mainder term is found and then some invariance principles are obtained. The results ob-
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1. Introduction 

Let {(X,· , Y¡), \ < i < N} be Ν independent and identically distributed i.i.d. 
random vectors, each having a continuous cumulative distribution function 
(c.d.f.) H(x, y). Let F(x) and G(y) denote the marginal c.d.f.'s of X¡ and Y¡, 
respectively. Denote by FN(x), GN(y), and Hs(x, y), the empirical c.d.f.'s of 
{Χι, 1 < i < Ν}, {Y¡, 1 < i < Ν}, and {(Χ,·, 19, 1 < / < Ν}, respectively. 
Finally, let Rm (and Sm) denote the rank of X¿ (and y¡) among X¡,í<i< Ν 
(and y¡, 1 < i < Ν). Then many rank tests for the hypothesis of independence 

H0:H(x,y) = F(x)G(y) (1) 
are based on the statistic 

r „ = JV"1 Σ = jjN[FN(x)]Ls[GN(y)]dHN(x, y) (2) 

where JN(i/N) = EJ(UNi) or J(i/N + 1), LN(i/N) = EL(Um) or L(i/(N + 1)), 
UNi, (1 < i < Ν) is the ith order statistic in a sample of size Ν from the 
uniform distribution over (0,1), and J(u), L(u), 0 < u < l j are nondecreasing, 
twice differentiable score functions [cf. Bhuchongkul (1964)]. 

For the case JN(i/N) = EJ(Um) and LN(i/N) = EL(Um), Sen and Ghosh 
(1974) have obtained some invariance principles for {TN} when the null 
hypothesis H 0 in (1) holds. Their results are based on a fundamental martin-
gale property possessed by {TN,^N} when {RNi, 1 < i < N} and {SNi, 1 < 
i < Ν} are stochastically independent. Here denotes the σ field generated 
by { R m , S m ; 1 < i < Ν}. 

In this paper the invariance principles are established for {TN} under 
alternatives. When H(x, _y) φ F(x)G(y), the techniques of Sen and Ghosh 
(1974) are not applicable since {T N , ^ N } is not a martingale. Our methods 
are related to those of Chernoff and Savage (1958), Bhuchongkul (1964), 
Bahadur (1966), Sen and Ghosh (1973), Ruymgaart et al. (1972), and Lai 
(1975). The main argument is based on a representation of TN as the sum of 
i.i.d. random variables and a remainder term which is shown to converge a.s. 
to zero at an appropriate rate. The contents of this paper are as follows: 

In Sec. 2, assumptions on the score functions are stated and preliminary 
lemmas are presented. Section 3 deals with the order of magnitude of the 
remainder term. Some invariance principles are then established in Sec. 4. In 
what follows Κ is used as a generic constant whose values may differ from 
line to line. 

2. Assumptions and Some Preliminary Lemmas 

ASSUMPTION 2.1. J(u) and L(u), 0 < u < 1, are absolutely continuous, 
twice differentiable score functions, with 

| j « ( M ) | < K [ M ( l - u ) ] | L « ( u ) | < K [ u ( l - m ) ] - ' ^ , ¿ = 0,1,2, (3) 
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where 

α = (1 - 2δ)/2ρ, β = (1 - 2ô)/2q (4) 

for some 0 < <5 < j and some p, q > 1 with p _ 1 + q'1 = 1. 

We shall start with the following lemmas which are slight variations or 
generalizations of some of the results of Bahadur (1966), Sen (1972), Sen and 
Ghosh (1974), and which we shall need in sequel. 

LEMMA 2.1. Let Xh 1 < i < Ν be i.i.d. random variables, each having a 
continuous c.d.f. F(x). Let U^u) be the empirical c.d.f. of {F(X¡), 1 < i < Ν}. 
Then for every ε > 0, 

sup N1/2{u{l - u)}e~ 1/2| UN(u) - u| = o(log N) a.s. (5) 

Proof. Follows from Lemma 2.1 of Sen and Ghosh (1974). 

LEMMA 2.2. Let FNi„(X) = 0NFw(x)/( 1 +N) + ( 1 - 0)F(x), 0 < θ < 1. 
Then 

1 - FNj{x) > {1 - F(x)}{ 1 - 0(1)} a.s. = {1 - FN(x)}{ 1 - 0(1)} a.s. (6) 

as Ν -* co for F~1(N~l + >·) < χ < F - 1 ( l — Ν~1 + λ), where λ is an arbitrary 
positive number < 1. 

Proof. Follows from Sen and Ghosh (1974, p. 164). 

LEMMA 2 . 3 . Let D = ( 0 , 1 ) χ ( 0 , 1 ) and let w = (u, v) e D. I f H(w) is a con-

tinuous c.d.f. with uniform (0,1) marginal c.d.f,'s, then 

sup sup{\HN(W') - Hn{W) - H(vv') + H(vv)|:|w' - vv| < N~112} 
weD w'eD 

= 0(N~3/4 log N) a.s. (7) 

Proof. By a straightforward generalization of Lemma 1 of Bahadur 
(1966), we have 

sup {|HN(W') - Hn(W) - H(w') + H(vv)|:|vv' - vv| < N~112} 
w'eD 

= 0(ΛΓ 3 ' 4 log ΛΤ) a.s., 

where w e (0,1) χ (0,1) is an arbitrary fixed point. Then (7) can be obtained 
by the same line of argument as in Theorem 4.2 of Sen and Ghosh (1971). 

LEMMA 2.4. Let 0 < λ < 1. Then 

\FN{F-\l - Λ Γ 1 + λ))-( 1 -Ν~1 + λ)\ = 0(N~1 + xl2logN) a.s. as Ν -»· oo. 

Proof. Follows from a slight variation of Lemma 4.1 of Sen (1972). 
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3. Order of Magnitude of the Remainder Term 

T H E O R E M 3 . 1 . Let TN defined in ( 2 ) be written as 

i= 1 

where 

A1N = J_°°œ J [ F ( x ) ] L l G ( y ) ] d H N ( x , y), (9) 

A2N = J ^ - F(x)]J'[F(x)]L(G(y)] dH(x, y), (10) 

A™ = Γ « Γ » - G(y)-]L'[G(y)-]J[F(x)-] dH(x, y), ( 1 1 ) 

andRN is defined below (13). Then, under the assumption 2.1, limN_ œ NÍI2RN = 

0 a.s. 

Proof. Define a l N , b1N, c1N, and d1N by 

where δχ = δρ 1 and δ2 = δς 1. 
Let ξ be any positive number smaller t h a n P i c k and y2 with 0 < y γ < 

min(< (̂l + α)~Sil -2/?)(8«r1)and0 < y 2 < min(£(l + β Γ 1 , ^ - 2α)(8/?Γ1). 
D e f i n e a 2 N , b 2 N , c 2 ¡ v , a n d d 2 N b y F ( a 2 N ) = N~n,F(b2N) = 1 - N~n,G(c2N) = 

N~Y2 a n d G(d2N) = 1 - N~y2. L e t 

= Ι>ΙΛΓ A * ] X lc1N>dlN~\, I2N = [a2N,b2N~\ χ [c2W,d2Ar]. (12) 
and denote the complements of I1N and I2N by Ic

lN and I2N, respectively. 
Then from the decomposition (8) we have 

1Af~ J-® J - » M G ^ y ) ] - L[NGN(y)/(N + D]} M ^ W ] 

- J[NFn(X)/(N + l)]}dHw(x,jO, 

B2N = L[NGN(y)/(N + l)][Jw[Fw(x)] 

- J ( N F N ( x ) / ( N + i m d H N { x , y ) , 

Β3ν = J _ " œ J [ N F n ( x ) / ( N + ï)]{LN[GN(y)-] 

- L [ N G N { y ) / ( N + l)-]}dHN{x,y), 

F{a1N) = N ~ 1 + i l ; F(b1N) = 1 - Λ Τ 1 + ί · ; 

G(c1N) = G(d1JV) = 1 - N - 1 + \ 

17 

Rn = Σ Bi,N> (13) 
i — 1 

where 
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B*n = J J (L[NG„(y)/(N + 1)] - L[G(x>]}{/[NF„<x)/(N + 1)] 
h.ir 
-J[F(x)]}dff„(x,y), 

Β ss = J J {L[iVGw(y)/(JV + 1)] - L[G(>;)]}{7[^(x)/(N + 1)] 
η,» 

-J[F(x)]}dtf„(x, y), 

Β,, = J J L[G(y)]{JlNFN(x)l(N + 1)] - J[F(x)] 
h.N 

- J'lF(*m{NFN(x)/(N + 1) - F(x)} dHN(x, y), 
B1N = J J J[F(x)]{L\_NGN(y)/{N + 1)] - L[G(y)] 

h.N 

- L'lG(y)-][NGN(y)/(N + 1) - G(y)]} dHN(x, y), 
BSN = J J L[G(y)]{JLNFN(x)/(N + 1)] - J[F(x)]} dHN(x, y), 

B9N = JJ J[F(x)-]{L\_NGN(y)/(N + 1)] - L[G(y)]}dHN(x, y), 
n,» 

Β ION — - JjL[G(y)]J'[f(^)]{^W - Hx)} dH(x, y), 

fin, = -JJy[F(x)]L'[G(y)]{G„(y) - G(y)}dH(x, y), 
lC2.N 

B12N = J J L[G(x)]J'[F(x)]{F„(x) - F(x)} dHN(x, y), 
ί1,1*ηί2,ΛΓ 

Biss = J J J[F(x)]L'[G(j)]{G;V(y) - G(y)} dHN(x, y), 

Bw = JJ L[G(y)~\J'[F(x)][Fjv(x) - F(x)] d[HN(x, y) - H(x, >>)], 

Bi5N = J J JCFÍx^LXGÍ^CG^y) - G(y)-]d[HN(x, y) - H(x, y)], 
I2,N 

Bi6N = -(Ν + 1Γ1 JJ L[G(y)-]J'[F{x)-]FN(x)dHN(x, y), 
h.N 

Β17N = -{Ν + l)-1 JJ J[F(x)]L'[G(y)-]GN(y)dHN(x, y). 
¡i.N 

For each 1 < i < 17, we shall show that \BiiN\ = 0 ( Λ Γ 1 / 2 f o r some η > 0. 
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t o r reasons of symmetry, we do not need to treat B3N, BJN,B9N, B11N,B15N, 

Bi7N· 
First, consider B l N . By Holder's inequality, \BlN\ is bounded by 

y/p 
\J»lFs(x)i - J[NFn(X)/(N + 

χ ^ I L N l G N ( y j ] - L[NGN(y)/(N + 1)]|" dGw( J , ) ) ' ( 1 4 ) 

From Chernoff and Savage (1958, Theorem 2), it follows that 

|JW(1/A0 - J(l/(N + 1))| < KN"; ¡J^i/N) - J(i/(N + 1))| 

< K N ' l Φ ( - y f i / K ) + Γ 1 " « ] , 1 < i < Ν/2. ( 1 5 ) 

Thus 

J^i <nfn(x)<n¡2 Ι - Μ Λ Μ ] - J[NFn(x)/(N + 1 ) ] | p d F N ( x ) 

is bounded by 
/ NI2 \ 

ΛΓ1/KJVap + Χ Κ Ν α ρ [ Φ ( - ^ ΐ / Κ ) + Γ 1 - " π < KN"-1. 

By a symmetric argument we can cover the range N/2 < NFn(X) < N. 

Hence the first factor of (14) is bounded by KN(xp~1)p~\ Similarly the 
second factor of (14) is bounded by KN (" i_1)«~1. Thus 

\B1N\ = 0(Niap~1)p~1 +ißq~ 1>β~ 

= 0(N~il~Í2~112) — 0(Ν~η~112) f o r η < δ ί + δ 2 . ( 1 6 ) 

We now consider B2N. By (3), it is clear that L[NGN(y)/(N + 1)] < ΚΝβ for 
N~1 < GN(y) < 1. Hence |B2n| is bounded by 

KN» \Jn(Fn(X)-\ - J[NFn(X)/(N + 1 ) ] | dFN(x). ( 1 7 ) 

Using (15), it follows that (17) is bounded by 

/ Nl2
 \ 

ΚΝβΝ-ΠΚΝ* + χ Κ Ν α [ Φ ( - ^ β / Κ ) + r 1 _ e ] J < ΚΝ-δι-δ2~112. 

Consequently 
\B2N\ = 0(N-"-112) f o r η < δ 1 + δ 2 . ( 1 8 ) 

We now consider ΒΛΝ. By Holder's inequality, |fi4JV| is bounded by 

( Γ , " \ J [ N F " ( X V ( N + D] - J[F(x)]|páFw(x)Y ' 
N / na ^ 

χ ( j ^ I L [ N G N ( y ) / ( N + 1 ) ] - L[G(y)^ dGN(y) 
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By the mean value theorem, the integral in the first factor of (19) is bounded by 

ιNFn(X)/(N + 1) - F(x)|p\JlFNte(x)}\'dFN(x), (20) 

where FNe(x) is defined in Lemma 2.2. 
Let ε be a positive number to be specified later. By (3) and Lemma 2.1, (20) 

is bounded by 

0(N-p'2(\ogN)p) 

χ J ; ' ; [ Í W 1 - F(x)p<-+1 '2>[F„,e(x)(l - FNfi{x))Y«l+'>dFN{x). 

(21) 

Pick a with F(a) — j. Then (21) is bounded by 

0(N~pl2(\ogN)p) jb
a

lN [1 - F{x)l«-*+1'2XFN,e{x)( 1 - FN,e(x)y"1+* dFN(x) 

+ 0(N~p/2(logN)p) f" [F(x)y ( ~ € + l l 2 ) [F N ¡ e (x)]- p < 1 + x ) dF N (x). 

(22) 

By Lemma 2.2, the first term of (22) is bounded by 

0(N~pl2(logN)p) [1 - FN(x)y*e+"+ll2)dFN(x). (23) 

Observe that the integral in (23) tends to infinity as Ν -» oo if and only if 
(2 + α + ε)ρ > 1. For simplicity, we pick ε > SL. Then (^ + α + ε)ρ > 1 and 
only the case where this integral tends to infinity has to be considered. By a 
simple integration, we note that (23) is bounded by 

0(N-p/2(logN)p)(l -FJV(fc1JV))- (1/2+I+£)f ,+ 1. (24) 

By Lemma 2.4 it can easily be seen that (24) is bounded by 

0(N~p/2( log N)P)[N~ 1 + s ' ± 0 (ΛΓ1 +Sl/2 \ogN)y(1'2+x+e)p+1 

= 0(N~pl2(iogN)p)Nl~1+Sl)l~(ll2+a+e)p+ii 

= 0(JV(~1 +¿i><-Pa+ 1}(log N)p)N~pl2~1,1 -£(1 

= 0(iV (~1+<5l)(_pa+1)) 

by choosing e c ^ (1 — ¿ 1 ) - 1 2 _ 1 . Clearly, the second term of (22) is also 
bounded by 0{N(~1 υ ) . Hence, the first factor of (19) is bounded by 
O^í-i+áiK-pa+Dp-1) Similarly, the second factor of (19) is bounded by 
0(N i - 1 +* 2*-< f + 1» ' 1 ) . Finally, 

= 0{Ν~η-m) for some η > 0. 
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Next, consider B5N. Observe that IC
1N = | J f = 1 I U I N , where 

h , i ν = ΦΐΝ> χ (d1N,co), Ilt2N = ( - c o , a 1 N ) χ ( - o o , c 1 N ) , 

h,3N = (b1N,co) χ (-oo,c1JV), I1AN = (~co,a1N) χ (d1N, oo), 
II,5N = (<TIN,BIN) X IU6N = Χ (-CO,CLW), 

Λ,7ν = (¿ιλτ,οο) X (clN,d1N), IUSN = ( -oo,a l i V ) χ ( c l N , d l N ) . 

Define 

Bs,i - - íí HM - ̂ »MM -
Jl . iN - / V . 1 - _l ^ 

Then 5 5 í í = Σ?=ι BStiN. 
First, consider Β5ΛΝ. By Holder's inequality, |S5 i l N | is bounded by 

|j[JVFw(x)/(Ar + 1)] y[F(x)] |^Fv(x)V / P 

" ί (25) 
χ \L[NGN(y)/(N + 1)] - L[_G(y)-]\" d G N { y ) J 9 . 

The integral in the first factor of (25) is bounded by 

Κ J ^ \ J [ N F n ( X ) / ( N + l)]|'áFw(x) + Κ J ^ \J[F(x)-]\"DFN(x). (26) 

By (3), the first term of (26) is smaller than 

Κ [ 1 - NFn(X)/(N + 1 ) y d F N ( x ) , 

which upon integration equals 

K ( 1 — N(N + \)~1FN(bN))~l"1+x. ( 2 7 ) 

Lemma 2.4 now implies that (27) equals 

K(1 - N(N + 1 ) _ 1 ( ^ ( M ± 0 ( N ~ 1 + i l 1 2 log Ν))~ρχ+ί = 0(iV(-1+'5l)(-JW+1)). 

Next the second term of (26) which can be written as — Κ 
d{_ 1 — FjvCO] is bounded by 

K|J[fX&w)]|»[l - FN(bN)1 + Κ J ^ [1 - F N ( x ) ] | J [ F ( x ) ] | ' - V W ] | ^ M 

(28) 

upon integration by parts. 
Now using (3) and some routine computations, it follows that the first 

term of (28) is bounded by K(1 - F(V)]"P"[1 - F ( b N ) + 0{N~1 + á ' / 2 log JV)] = 
0 ( N i ~ 1 + S l ) i ~ p a + l ) ) . 
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By Lemma 2.1, the second term of (28) is bounded by 

Κ [1 - ^ χ ) ] ! ^ ^ ) ) ! " - 1 ^ ^ ) ) ! ^ ) + 0(N~112\ogΝ) 

X [ 1 - F(x)Y'-"2\J(F(x))\^l\J'(F(x))\dF(x), ( 2 9 ) 

where ε is any arbitrary positive number. 
Now using (3), it is easy to verify that (29) is bounded by 

Κ P° [1 - F(x)Y"dF(x) + 0 { N - ^ \ o g N ) Γ [1 - F { x ) Y l l 2 - * p - e d F ( x ) 
Jb in Jb m 

< 0 { N ^ 1 + S l ) i ~ p x + 1 ) ) + 0{N~1/2log]V)(N(~1+äi)(1/2-,*,"£)) 
= i+«.M-i»+«) if ε < ¿i(l — á 1 ) - 1 2 - 1 . 

It is now clear that the first factor of (25) equals 0(iV ( _ 1 + á , ) ("p a + 1 ) p _ 1). Sim-
ilarly, the second factor equals 0(N (~1+á2)("« / ,+ 1)e"'). Hence |fl5i iw | = 
0(Ν~η~112) for some η > 0. 

Using the same arguments, |ß5>w| can be shown to be equal to 0(Ν~η~1/2) 

for some η > 0, i = 1 , . . . , 8. 
Next, consider B6 N. By (3), it is easy to verify that L[G(.y)] is bounded by 

K N f i l ~i2) for y e [c1N,d1N], Hence, \B6N\ is smaller than or equal to 

ΚΝΡ11~δ2) \J[NFn(X)/(N + 1)] - J[F(x)] 
- J'[Fix)][NF«(x)/(N + 1) - F(x)] | d F N ( x ) . (30) 

Using (30) and the mean value theorem, 

\B6N\ < Κ Ν β ( ί { [ N F n ( X ) / ( N + 1 ) ] - F(x)}2\J"(FNte(x)-]\dFN(x), 

(31) 

where FN 9 is defined in Lemma 2.2. Next, (3) and Lemma 2.2 imply that 
(31) is bounded by 

N " - * O i N - > Q o g m [1 - F(x)Y-2c[ 1 - FNie(x)Y2-"dFN(x) 

+ N^~¿2)0(N~»(logN)2) £ w [F(x)]1-2<lFNi„(x)Y2-«dFN(x) (32) 

for all e > 0. By Lemma 2.2, the first term of (32) is bounded by 

N ' U - ^ O i N - ^ o g N ) 2 ) f*1" [1 - F j v i x ) ] - 1 - « " 2 1 ^ * ) (33) 

which, on integration, equals 
jy/»<ι - d ^ o ( N ~ 1 (log N)2)0(N{ 1 ~¿i)<a+2c>) = 0(N~"~112) 
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for some η > 0 since ε can be chosen to be smaller than (¿1 + δ2 + aáj + 
βδ2)2~ι{1-δ1Γ1. Similarly, the second term of (32) equals 0(N~"-112) 
for some η > 0. Hence |Β6ΛΓ| = 0(Ν~η~1/2) for some η > 0. 

Consider BSN. Define 

B6jn = JJ L [G ( y ) ] { J [ iV^ ( x ) / ( iV + 1)] - J[F(x)]} dHN(x, y). 
I Í.ÍN 

Then Β 8 » = Σ;= ι β8, ; ιν · 
By Holder's inequality, 

|B8>1W| < ( J ^ \ J [ N F n ( X ) / ( N + 1)] - J[F(x)-]\'DFN(x)jIP 

x ^ " w | L [ G ( j ; ) ] | « d G w ( y ) J / e (34) 

The first factor in (34) is identical to the first factor of (25), which has been 
shown to be equal to 0(N<~1+ôl)i~pa+1)p~1). Since the second term of (26) 
is bounded by 0 ( N ( ' 1 + Ò t ) ( ~ p x + Ì ) ) , it follows easily that the second term of 
(34) is bounded by 0(ΛΓ ( - 1 +^ ) ( - < " ' + 1 , «~ 1 ) · Thus \Β8ΛΝ\ = 0(N~"-112) for 
some η > 0. By similar treatments, we see that |B8j2n|5 | ^ 8 , 3 n | > and \BSAN\ 
are all equal to 0(Ν~η~112) for sufficiently small η. 

By Holder's inequality, |B8,sjv| is bounded by 

\J[NFN(X)/(N + 1)] - y[F(x)]|" dFN(x)j'P ( J ^ \L[G(y)-]\« dGN(y)J\ 

(35) 

The first and second factor of (35) are respectively equal to the first factor 
of (19) and the second factor of (34). Therefore, \BS¡SN\ = 0(N'"~U2) for 
some η > 0. Similarly, |ß8 6N| = 0(Ν~η~1/2) for sufficiently small η. 

Consider B8j7JV. By (3), L [ G ( y ) ] < XJV«1 _ 4 l> for ye[ciN,d1N]. Hence 
|ß8>7JV| is bounded by 

K N M -a2) \JINFn(X)/(N + 1)] - J[F(x) ]| dF„(x). (36) 

Recall that the first factor of (25) is equal to 0(N(~1 + ¿ 1 , ("p £ I + 1 , p~ '). It is easy 
to deduce that the integral in (26) equals 0(N(~1 +<5·><-«ί,+ U). Hence \B8tlN\ = 
0 ( j V « i - Í 2 ) + { - i + í . ) ( - « í + D ) = = 0 ( j v - i r - i / 2 ) f o r s o m e η > 0 One can'treat 

Β8>8ΛΓ by using the same line of arguments. Finally, |ß8ilV| = 0(Ν~η~112) for 
sufficiently small η. 

Consider B10>N. Write /c2jJV = (J?=i h.iN, where I 2 1 N = (b2iVj00) χ {d2N,J, 
12,2N = { - °0,<*2N) X ( - CO, C2N), I2,3ΛΓ = (&2Ν,®) X K>,C2N), 2̂,4Λί = ( - °0,α2Λ,) 
X(¿2JV,co), L2.SN = (<L2N,b2N)X(D2N,AO), H,6N = (^JV, ¿>2jv) X ( ~ C2N), *2,7N = 
(B2N.00) x (C21v,d2¡v)> ^2,8jv = (~οο,α2 Λ Γ ) x (c2JV, d2N). 
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Define 

BXOJS = - j j L[G(j)]J ' [F(x)][F„(x) - F(Xi]dH{x, y). 
Il.iN 

(p+ l ) / 2p 

Then 
8 

ΒίΟ,Ν — Σ ^ΙΟ,ίΛί· 
i = 1 

By Holder's inequality, |.Bio,ijv| is bounded by 

J ^ \ J ' [ F ( X ) 1 Í F N ( X ) - F (x ) ] | 2 p / <* + 1 ) dF(V 

x ^ j L [ _ G ( y ) - ] \ 2 " d G ( y ) J l 2 q (37) 

Let ν = (α + ε + ¿)2p/(p + 1) = (a + ε + i)/(a + δ ι + i). Pick 0 < ε < <5j and 
note that \ < ν < 1. Lemma 2.1 and (3) imply that the first factor of (37) 
is bounded by 

0 (N~ 1 / 2 log iV)ÍJ f c ^ [1 — F(x)~\~v dF(x)\ , (38) 

which equals 

0{N~1/2 log JV)(iV_ Vl(1 ~v)(p+ 1)/2j7) = 0 (ΛΓ" _ 1 / 2 ) for some η > 0. 

Again by (3), the second factor of (37) is bounded by 

K ( I ; J L - G ( y ) R ^ G { y ) J 2 q , 

which, on integration, equals 0(N~y2il~2ßqil2q) = 0(Ν~η) for some η > 0. 
Hence \B10<LN\ = 0(ΛΓ"~1 / 2). By similar arguments, \B10IIN\ = 0(JV~"~1/2) 
for i = . . . , 11. We now consider B12iN, which can be decomposed as 

8 

ΒI2,Ν = Σ B12¡IN, ( 3 9 ) 
i= 1 

where 

Bl2,iN= JJ" L [ G ( y ) ] J ' [ f W ] [ ^ ( x ) - H*)} dHN(x, y). (40) 
'lNnh.i» 

It is easy to check (by Holder's inequality) that 
/ fh \(p+l)/2p 

|β ΐ2 ,^ ι < ( j ; ; ; ¡ j m ^ i w - w i i 2 p / ( p + i ) J 

χ ^ L[G(y)Y"dGN(y)J2q. ( 4 1 ) 
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Using (3) and Lemma 2.1, the first factor of (41) equals 

^[l-F(x)YvdFN(x)\ , (42) 

i.e., 

/ Pb \{p + l)/2p 

0{N-^2ìogN)l - J J [1 - F ( x ) ] - M [ l - Fn(x)]\ (43) 

Now integrating by parts and using Lemmas 2.1 and 2.4, we obtain, after 
routine computations, that (43) equals 0(Ν~η) for some η. Similarly the 
second factor on the right-hand side of (41) equals 0(Ν~η) for sufficiently 
small η. Thus |B12,in| = 0(N~n~m). The proof that the other terms in (39) 
equal 0(Ν~η~112) is similar and therefore omitted. 

Next we consider Β 14¡N. First, observe that the rank of X ¡ (and Yi) among 
Xlt...,XN (and Yl5 . . . , Y^) is the same as the rank of F(X¡) [and F(Y¡)] 
among F(Xt),..., F(xN) [and F(Y¡),..., F( l^) ] . Following Groeneboom 
et al. (1976), we define H(u, ν) = H{F~ » , G » ) for (m, v) e (0,1) χ (0,1). 
Clearly, H(u, y) = P ( { F (X ) < u, G( Υ ) < υ}) so that it assigns mass 1 to the 
unit square and has uniform (0,1) marginal distribution functions. Without 
loss of generality, we can then assume that H(u, ν) has uniform (0,1) marginal 
distribution functions. 

For reasons of symmetry, it is enough to consider 

¡m"1'"2 Ji/2*~VI L{v)J'(u){Fn{u) - u ]d [ H N ( u , v ) - tf(u,t;)] (44) 

We now show that (44) is equal to 0(N η 1/2) for some η > 0 by extending 
a method used in Sen and Ghosh (1974). 

Define TUNi = [ i + (i - 1 )N~ i + (AT1/2 ] , i = 1, 2 , . . . , N\ - 1, where 
NX is the largest positive integer such that \ + (Ν* — 1 )N~112 < 1 — N~yi. 
Define TUNN. = β + (Ν*, - 1)ΑΓ1/2,1 - N ~ u N i = i + iN~1/2, 0 < i < 
m -l,uNN. = l - N~y¡. Define T2,Nj = [ i + ( ; - 1 )ΛΓ«, ¿ + ;ΛΓ< ] , j = 
1, 2 , . . . , N% — 1, where iVf is the largest positive integer such that \ + 
{Nt-l)N-s<l-N-y\ Define /2>JVJV. = [$ + ( # ! - 1)ΛΓ<, 1 - Α Γ Λ ] , vN] = 
i + jAT « , 0 < j < Nì - 1, vNjf· = 1 - N~n. Observe that JVf = 0(Nm), 
N*2 = Om. Let JNij = 71>WI χ llNj, i = 1 , . . . , N f ; j = 1,..., NJ. Ifu e Ium, 
then J'(u) = J'(uNi) + 0(N~ 1/2)0({1 - m w } " 2 " " ) and by Lemma 2.3, 

Fn(u) - u = Fn(uní) + 0(JV~ 3/4 log N ) a.s. 

If veT2<Nj, then L(v) = L{vNj) + 0(Ν~ξ)0{{ 1 - i ^ · } - 1 - " ) . Note that for 
ν, vNje [ i 1 - N-y>], |L(i?)| < KNYlß and {1 - vNj}~1-ß < Ny2(-l+ß). It is 
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easy to see that (44) is bounded by 

N*2 N* 
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Σ Σ n("wì) - ^ Ι Λ κ μ ^ Μ Ι ft d[HN(u, ν) - H(u,v)] 
1 ¡Ni} 

Κ 

ί— ι 

κ 
+ Σ I ^ W - ^ i I o í n - ^ ^ i - m , « } - 2 - « ) ^ * ' 

ι=1 

+ Σ 0(iV" 3/4 l o g N ) \ J ' ( u m ) \ K N y i ß J f i n¡ \d[HN(u,v) - | 

«î 
+ Σ 0(Ν~51*logΝ)0({1 - um}~2~')KNy2fi 

¡= ι 
χ ¡ m Jr,N1 \ d í H » { u > - ®>]|· (45) 

Consider the first term of (45). Observe that 

J Jd [ t f w (u , i> ) -H(M)] 
Tnu 

< \HN{uNi,vNj) - HN(um-v,vNJ) - H(uNi,vNj) + H(uNi_v,vNj)\ 

+ IHN{uNi_ i'VNj- J - HN{uNi,vNj_ J - H(um- v v N J . x) + H(uNi vNJ-i)|. 

(46) 
Lemma 2.3 implies that (46) is bounded by 0(N~ 3 /4 log N). 

Using (3) and Lemma 2.1, it is easily seen that the first term of (45) is 
bounded by 

Nl 
0(N~^(\ogN)2)[ Σ [1 

/= ι Σ (47) 
\j= 1 

for any e > 0. Note that if ε is small enough, then \ + α + ε < 1. Hence 

Κ N\ 

Σ [ 1 - % , · ] " 1 / 2 - β " ε < Σ (iN~ll2)~ll2~*~l = 0(Ν~112). (48) 
>=1 i = 1 
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Also note that 

Σ [ ι - % λ Τ < Σ u N ~ r ß = o m 
}=1 j=i 

Since ξ < ζ, we see that (47) is equal to 0(Ν~η~1/2) for some η > 0. It can 
similarly be shown that the other terms in (45) also equal 0(Ν~η~112). Hence 
1̂ 14,¡v| = 0(N~""i/2) for sufficiently small η. 

Next consider B16¡N. For y e [c1JV,d1JV], L[G(y)] < KNßn ~Ô2\ 

\b16,n\ <(N + 1 Γ W 1 " ^ ' [1 - F ( x ) r ^ « ^ ( x ) 

+ (N +1)-1ΚΝβ<1-*>) [F(x)] ~1 ~" dFN(x). (49) 
Ja in 

Lemma 2.2 implies that the first term of (49) is bounded by 

0 { Ν - 1 +/)(i ~s2)) ^ _ _ ! d F ^ x ) ( 5 0 ) 

Also the integral inside (50) equals 0{Nx(l ~ò°). Thus Eq. (50) equals 

0 ^ N -m- i l -ö 2 -ßs 1 -a6^ = o i N ' " - 1 1 2 ) for η < ôt + δ2 + βδ2 + α ^ . 

Similarly, the second term of (49) equals 0(Ν~η~1/2) for sufficiently small η. 
Hence |·ΒΙ6,Ν| = 0(Ν~η~112). The proof of the theorem is now complete. 

Now set 

M = J[F(x)]L[G(y)] dH(x, y) (51) 

and 

σ2 = var^J[f(X)]L[G(y)] 

+ / T . £ ι - F ( x ) V Ï F ( x j ] L [ G ( y ) ] d n ( x , y) 

+ J ^ ίΦΛν) - G(y)-]JlF(x)-]L'[G(y)-]dH(x, y ) j , 

where φχ(χ) = 1 (<My) = 1) if X < χ (y < y) and is zero otherwise. Then we 
have the following result. 

THEOREM 3.2. Under the assumption 2.1, N1/2(Tn — μ) - I Ν(0, σ2) as 

Ν -y oo, uniformly with respect to H ( χ , y). 

Proof. From Ruymgaart et al. (1972), Λί1/2(Σ?=ι ¿¡Ν - μ) Ν{0,σ2) 

uniformly with respect to Η (χ, y) as Ν-> oo. Since (by Theorem 2.1), 
N1I2Rn -*• 0 a.s., the proof follows. 
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4. Invariance Principles 

As a consequence of Theorem 3.1, we have the following law of the iterated 
logarithm. 

THEOREM 4 .1 . Under Assumption 2 .1, 

lim sup N1I2(Tn - μ)/(2 loglogiV)1'2 = σ a.s., 
¡V-oo 

liminf N1I2{TN - /i)/(21oglogiV)1/2 = - σ a.s. 
N-* co 

Proof : It can be shown that t AUN is the average of Ν independent 
and identically distributed random variables, each having mean μ and 
variance a2 . Hence 

lim sup N1 '2 

JV-> 00 

lim inf N112 

N-oo 

( i a J ) - μ ^ Ι (2 loglogiV)1/2 = σ a.s., 

( . Σ A·,*) - log Ν)112 = — σ a.s. 

Also by Theorem 3.1, 

l i m s u p N1I2RN = O a . s . 
JV-» oo 

The proof follows. 

It is also easy to establish the following. 

THEOREM 4 .2 . Let WN = N1I2{Tn — μ). If Assumption 2.1 holds, then 
iV ~1 /2 H[jvrj/cr, 0 < t < 1, converges weakly to the standard Wiener process. 

Both Theorems 4.1 and 4.2 have useful applications to sequential tests for 
independence. Along the lines of Sen and Ghosh (1973), a class of sequential 
tests having power 1 and arbitrary small Type 1 error can be constructed for 
testing H{x, y) = F(x)G(y). The invariance principles obtained here are useful 
for the study of the asymptotic properties of these tests, especially when the 
null hypothesis does not hold. 
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ON THE DEGENERATION OF THE VARIANCE IN 
THE ASYMPTOTIC NORMALITY OF SIGNED RANK 
STATISTICS 

MADAN L. PURI and STEFAN S. RALESCU 
Indiana University, Bloomington, IN, and Brown University, Providence, RI, U.S.A. 

The purpose of this paper is to establish the asymptotic normality of simple linear signed rank 
statistics S ¿ considered by HuSkovà (1970), Koul and Staudte (1972), and Puri and Ralescu (1980) 
for the case when the score-generating function is discontinuous and VarfS^ ) compared with the 
variance of .SNI under the hypothesis of symmetry is allowed some degree of degeneracy. 

The results obtained are extensions of those by Hájek (1968), Dupa£ and Hájek (1969), Dupac 
(1970), Koul and Staudte (1972) and Puri and Ralescu (1980). 

1. Preliminaries 

Let X m , . . . , XNN, N>\ be independent random variables, with continuous distribu-
tion function FNL,..., FNN respectively, and let R^¡ be the rank of ΙΛ^,Ι among 
Ι-Υ,ν, |,..., IXMN\. Cons ider the statistic 

Ν 

s¿ = Σ cNiaN(RNi)sgn*A» (1-1) 
ι = 1 

where cNl,...,cNN are known regression constants, a N ( l ) , . . . , a N ( N ) are scores and 
s g n x = 1 if x > 0 , sgn x= — 1 if jc<0. 

For simplicity of notation, we shall drop the subscript Ν in XNi, cNi and R^ in the 
sequel. 

In order to study the asymptotic behavior of , the ratio Va r (5^ ) /Σ?= , cf plays 
an important role [see Hájek (1968), Dupac and Hájek (1969), Dupac (1970) and 
Koul and Staudte (1972)]. For the case of the unit step score-generating function 
ψ ( ί ) = 1 for t>v, ψ ( / ) = 0 for t<v ( 0 < c < l ) , under suitable conditions on the 
distribution functions and regression constants, we shall prove that if the ratio 
V a r ( ) / 2 f L i cf goes to zero at most at the rate Ν " for some 0 < a < ^ , then S¿ 
is asymptotically normal with natural parameters ( E( S ¿ ), Var (5^ )) as well as with 
some other simpler parameters (μ^ ,σ^ ) . 

We assume that the c, 's satisfy the condition 

m a x c f / 2 cf —0(N ~ l / 2 ) . ( 1 . 2 ) 
1 < / < iV _ , 
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Let F*(x) be the distribution function of and define 

1 N 

1 = 1 

H*~l{t) = mî{x·. Η * ( χ ) > ή , 0 < r < 1, 

L,(r) = F í ( / f * - , ( 0 ) , 0<t< 1, 

Μ , · ( 0 = - Ζ ( - Η * ~ ι ( 0 ) , O e r e l , 

Gi(t) = F*{H*-i(t)]=Li(t) + M i ( t ) , 0<t<\. ( 1 . 3 ) 

Assume that the scores are generated by a function ψ(ί)> 0 < / < 1, either by 
interpolation 

aN(i) = 4,{i/(N+l)), ( 1 . 4 ) 

or by a procedure satisfying 

Σ Μ 0 - ψ ( ' / ( ^ + 1 ) ) Ι = Ο(ΐ) . (1.5) 
i = ι 

If υ G(0,1) represents a jump point of the score-generating function ψ, then for 
every K> 0 we assume the existence of the derivatives L'-(t ) and M/( t ) in the interval 
\t — v\<KN ~i/2Lg]/2N and the satisfaction of the following conditions. 

max |L; (0 | = 0(1), (1.6) 
1 

max |M/(0 | = O(l) , (1.7) 
I </'<Λ' 

m a x S u p \L'i(t)-L'l(v)\ = 0 ( N - l / 2 L g i / 2 N ) , ( 1 . 8 ) 
Ι«'·«ΛΓ ì t-o ì t i K N-ViL g i /2N 

m a x S u p \M¡{t)~M¡(v)\ = 0(N - ^ L g ^ N ) . ( 1 . 9 ) 
1 < / < Λ Γ Ιί-υΙ^ΑΓΛί-1/2/.«'/^ 

Another condition concerning the G¡'s that we use is: 
Ν 

l iminfA^ 1 2 G í ( ü ) ( 1 - G í ( ® ) ) > 0 . (1.10) 
Ν-, oo l = 1 

Sometimes, mainly for purposes of applications, we replace (1.6)-(1.10) by the 
following condition which is easier to verify: 

Suppose that each F¡ has a density / . For each ε > 0 denote Ie = (H*~l(v) — 
ε, / ί * - ' ( υ ) + ε). 

Suppose that there exist ε,, ε2, ε3 > 0 such that: 
(a) 

liminf H*~\v)>0, (1.11) 
N—> oo 
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(b) f'(x) are uniformly bonded (in x, i, Ν) on Ie¡ U(—/Ci), 
(c) for all N > 1, 

^ C a r d { l « / « t f : mf ¿ * ( x ) > e 2 } > e 3 Ν 

where f* is the density of F*. 
The last condition that we require concerns some possible degeneration of 

Var(S^ ) in the form 

for some 0 < α < 3. 
Alternatively we shall assume that (1.12) holds with V a r i S ^ ) replaced by some 

approximate variance σ^: 

2. Main theorems 

Let u(t) be 1 or 0 according to t>0 or t<0. 
The main result of this paper is the following theorem: 

Theorem 2.1. Let given by (1.1) have scores given by (1.5) where ip(t) = u(t — v), 
0<υ<\. 

Then is asymptotically normal with natural parameters ( ), Var(5^í )) if 
any of the following sets of conditions is satisfied: 

Proof. We show that is asymptotically equivalent to its projection onto the 
space of linear statistics and then that is asymptotically equivalent to a sum of 
independent random variables to which the Lindeberg central limit theorem applies. 

Let us begin by assuming that scores are given by (1.4) and that (C,+ ) holds. 
First we would like to derive an upper bound for the residual variance E(S¿ — 

Sf¡ )2, where: 

(1.12) 

(1.13) 

(C,+ ) : (1.2), (1.6), (1.7), (1.8), (1.9), (1.10), (1.12), 

(C 2
+ ) : (1 .2) , (1 .11) , (1 .12) . 

Ν 
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This will be accomplished by using the Residual variance inequality [see Hájek 
(1968) and Koul and Staudte (1972)]: 

E{S¿ 2 ¿}E{a{Rt)-E(aW)\X,))2 

1=1 

¡¥=j 
2 c.ci E(sgn X¡sgn Λ,-Cov(a(i?,+ ), a{R¡ )\X„ *,.)) 

+ £{sgn A)sgn Xj[E{a{Rt )\Xt, Xj)-E(a(R+ )|X,)] 

k ^ i j ' 

We investigate each term in the above inequality. The proof is divided in several 
steps: 

Lemma 2.1. Let x, y EU. Then for each Kx>\f6 there exists a K2> 2 such that for 
all N>N0(K] ) we have 

( i) O — H*(\x\)>K\N~i/2Lgi/2N=*P(Rf > V\X¡ =x, Xj=y)<N~K\ 
(i i) v-H*(\x\)<-KiN~l'/2Lg^2N=i'P(R^ Xj=y)<N~K2 where V 

= [(#+1)«]. ([-] = integerpart). 
Furthermore, (i) and ( i i) remain true even when the condition X¿ —y is omitted. 

Let 

Z ^ A T - ' S G ^ X l - C ^ ) ) · 
/= 1 

Lemma 2.2. Suppose that |u-//*(|x|)|s£/f37V i/2Lg^/2N. Then for sufficiently large 
N, we have 

0) 

(ii) 

Σ F*(\x\)(l-F*(\x\))-ND-' 
i= 1 

lK4Nl/2Lgl/2N, 

φ| ν-, í í r ( M ) ( i - f r ( w ) ) 
1 = 1 1 = 1 

-Φ|ΛΓΙ>; Σ F*(\X\),ND: 

ί= ι 
íKsN~xLgi/2N, 
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(iii) φ | κ ; 2 /T(W). Σ ^ ( M ) O - - W ) ) ) 

I N \ 
lK6N~i/2Lgx/2N - Φ No; 2 /T'(M), ND2 

\ i=l 

where φ(χ;μ,σ2), Φ(χ;μ,σ2) denote the normal density, respectively the normal 
distribution function with parameters (μ, a2). 

The proofs of Lemmas 2.1 and 2.2 are analogous to those of Lemmas 5 and 6 of 
Dupaò and Hájek (1969) and are therefore omitted. 

Lemma 2.3. For N—> oo, we have 
E{a(Rt)-E(a{Rn\Xt))2 = o(N-") 

uniformly in Κi<N. 

Proof. Let ν +(X,) = E(a(R + )\Xi)-[E(a(R + )\Xi)]2. Then, by conditioning, we 
obtain 

Now, by definition 

Thus 

V + (X,=x) = P(Rf >V\X,=x)-P(R+ <zv\x¡=x). 
Let I={x: l / / * ^ ! ) - ^ « / ^ - 1 / 2 / ^ 1 / 2 ^ } with Κλ >i /6 . By Lemma 2.1, if x<£I 

we have: 

V +(Xi=x)<N-Ki for every N>N0(Ki), K2>\. 
On the other hand, if Jt G / , then since P(Rf = k\ X,, = x) = B\k, 

F*(|jc|), . . . , (in the notation used by Dupaò and Hájek (1969)) we obtain, 
using Lemmas 2.1 and 2.2, that 

I· L·^ y ' 

2 B'(l,F*(\x\),...,F*(\x\))} 

for sufficiently large N, Here Φ denotes the standard normal distribution 
function. We use φ for its density function in the sequel. 

• k>V 

X\ 
lav 
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We observe that the last equality remains true even if we enlarge I to 

/ ' = { * : l / í - d x D - ü l ^ A r ^ i V - ' ^ L g 1 / 2 ^ } , 

where K9 is such that K9=K\/2KS with 
Now, using (1.6)-(1.9) it is easy to show that 

and 

Ν ~x/2Lgi/2N J^eidFj(x) = o(N ~a) 

uniformly in K / ' < J V . Hence 

£ ( v + (χ,·)) = ο(ΛΤ~") uniformly in 

and the proof follows. 

Lemma 2.4. For Νoo we hace 

E{sgn Ajsgn + )|Λ,., Xj)-E(a(Rt )|*,)] 

uniformly in 1 </', j<N. 

The proof of this lemma is similar to that of Lemma 2.3 and is therefore omitted. 

Lemma 2.5. For N—* oo we have 

£[sgn Xtsgn ), a{R¡ )|Z„ */)] 

= N~iD2( L'i(v) — MI(V))(LJ(V) — Mj(v)) + o(N ~1 

uniformly in 1 </, j<N. 

Proof. We have 

Δ + = C o w { a { R f ), a(R+ = x , X} =y) 

'P(R+ > V\Xt =x, Xj —y)P{Rf < V\Xt= x , Xj =y), 

i f W < M . 
P(r; > V\X, =x, Xj =y)P(R+ < V\X¡ =x, X¡ =y), 

ii\x\>\y\. 

Let AT, > y 6 . Denote 
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By considerations as used in the derivation of (4.11) and (4.12) in Dupac and 
Hájek (1969) we obtain: 

<N~Kl ΐοτ(χ,γ)$Ι,Ν>Ν0(Κ2) 

for Ν sufficiently large, (x, y)Gl, |x| < [y| 
a n d | 0 2 | « t f l o (2.1) 

for Ν sufficiently large, (x, y ) e / , |jc| > 
and \ θ 3 \ < Κ η 

where We note that the equality in (2.1) remains true even if we enlarge / to 
/ ' where 

r={(x,y): max(|/f*(|x|) — u|,|//*(Lvj) — υ|)^ÄTgZiA^- 1/2JLg1'/2Ar} 

where Kg=Kl/2Ks, 
We have, using (2.1) that 

£(sgn *,sgn XyCov(a(R,+ ), a(R + Xj) = 

+ N~ì/2Lgi/2Nj J^gnxsgnye4{x,y)dFi(x)dFj(y) + e5N-^ 

with |04|<Ä"12, \θ5\<1. 
The last two terms are ο (Ν 1 α ) uniformly in i, j as follows by using (1.6)-(1.9) 

and K2> §. It remains to estimate the first two terms. 
Denote the first term by 5". Consider 

/ / • ( x ) - © \ f I H*(y)-v 

where 

í *>0 Ì 
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Set 

H*(x)-v H*(y)-v 
P = -

and 

Then 

D N - ' / 2 ' * D N ~ ] / 2 ' 

= f f <S>{p){\-Q>{q))àLi{v + DN~i<'2p)àLÀv + DN-x/2q). 
3 JI"n{p<q) 

Let Q,—I"C\{p<q} and &* = {p<q}\Sl. Then using (1.6)-(1.9), one can easily 
show that 

«Γ, = /> 2 i v - · ζ , ; (« ) ζ . ; ( ΐ ΐ ) / / ^ χ ι - Φ ^ / ^ + ο ί (2.3) 

uniformly in 1 j<N. 
Let = Ω* Π {p> —q}. Then, by Fubini's theorem we have: 

N - ' f f <t>(p)(\-<i>(q))dpdq = N - > r (1-Φ(9))( Γ <t>(p)dp)dq 
3 JSiì 3K9Lg ^ Ν \3-q I 

<2 Ν - * Γ q ^ - q ) d q . 
" K9Lg / Ν 

Using integration by parts it follows that: 

K ~ l [ f Hp)(\-<t>(q))dpdq=o(N~l-a). (2.4) 
3 3W{ 

Similarly we can show that: 

N ~ l f j <t>{p){\-*{q))dpdq = o{N-'"«) (2.5) 
Ω* 

where Ω£=Ω*\Ω| . 
By (2.4) and (2.5) 

D2N-'L¡(v)L'j(V)f f ^ ( p ) ( l - < i > ( q ) ) d p d q = o ( N - ì - ° ) . ( 2 . 6 ) 

From (2.3), (2.6) and the fact that 

/ / <t>(p)(l-<ì>(q))dpdq=ì 
3 3{P<q) 

we obtain: 

?Γ1 = ¿Z>2Λr-1L;(υ)L;(ü) + o ( ; V - , - 0 , ) (2.7) 

uniformly in K i , j<N. 
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Let 

= 11 -<Í>{p)(\-Q{q))áM¡(v + DN-'i/1p)áLj( υ + DN ì/2q) J J I" r\(p<q) 

where 

Í * < 0 1 Bxy = \ ( x , y ) : y>0,max(\H*(-x)-v\,\H*(y)-v\)<K9DN-i/2Lgi/2N\, 

I -x<y J 

H*(—x)—y \ Γ / H*(—y) — v 

and 

where 

Γ x < 0 1 
Cxy = \ ( x , y ) : y<0 ,max(\H*(-x)-v\,\H*(-y)-v\)*¿K9DN-l/2Lg]/2N\ 

i - x < - y J 
and 

Γ x > 0 1 

[ 
We now repeat the steps used in the derivation of (2.7), this time applying them to 

% and % to obtain 

% = -^D2N'iM;{v)L'j(v) + o(N~i~a) u n i f o r m l y in K i , j < N , 

% = ^D2N~lM;(v)M^v) + o(N-i~a) u n i f o r m l y in 1 < / , 

and 

% = - {D2Ν - 'Li( Ό)M;( ν) + o( Ν - 1 ) uniformly in 1 <i,j<N. 

Thus 

uniformly in 1 j<N. (2.8) 

Proceeding as above, it can be shown that the second term of (2.2) is the same as 
(2.8). The proof follows. 
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Lemma 2.6. For N-> oo we have ( for ι φ-j ) 

Σ Cov{£(sgn X,a(RÏ £(sgn ) | * t ) } = 

k¥=i.j 

=D1N-Î{L',(V)-M;(V)){L'J(V)-M;(V))+O(N-1-°) 

uniformly in 1 j ^ N . 

Proof. By Lemma 3.2 in Hájek (1968) we have 

E{a(R; ) s g n X,\X, =x, Xk =z)~E(a{Rt ) s g n X,\X, = x ) = 

= sgn x[ u{ |*| •- |z|) - F*(|*|)] · P( R; = V+ 1 \X, = X, \xk \ = | x | - 1 ). 

From Lemma 2.1, we have 

P ( R = V+\\Xi =x, )Xk I = μ ι - 1)<N ( 2 . 9 ) 

for some K2>\ and all \H*(\x\)-v\S*KxN ~^2Lg^2N. 
Furthermore Lemmas 2.1 and 2.2 imply: 

P(R+ =V+\\Xt=x, |Λ·Λ| = |χ | -1 ) = φ | ^ ο ; 2 F*(\x\), Νϋ2^+Θ6Ν -lLg^2N 

for some l ó U « / ^ and all 
As before, the last equality remains true even if \H*(\x\) — v\<K9DN~l/2Lgx/2N. 

Let 

/'={*: \H*(\x\)~v\<K9DN-^2Lgl/2N}. 

Then 

E(a(R + ) s g n Xt\Xk =z)-E{a{Rt ) s g n * , ) = 

= / s g n * [ « ( | * | - | z | ) - ^ ( M ) ] 

= f ( - - - ) d F l ( x ) + ( {•••)dFi{x). 
Jr JR\i' 

The second integral is o(N " " ' " " ) by (2.9), while the first is equal to 

jf sgnx[u(|x| - | r | ) - J V « ; 2 * ? ( M ) . ND1 J dF,(x) 

+ f[Sgnx[u(\x\-\z\)-Ft(\x\)]e6N-'LgV2NdFi(x). 

In the last expression, let us denote by ?Γ5 the first term and ÍT6 the second. 
From (1.6)-(1.9) and the Mean Value Theorem, it follows that: 

max Sup \Gk(v + DN~x/2p)-Gk(v)\=0(N-^2Lgl/2N). (2.10) 
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Then it is easy to show that 

J{[p^f<9Î-Sl/2N) 

= ΰ ~ ι Ν - { / 2 ( Gk(v)<t>(p)dLi(v + D N ~ ì / 2 p ) + o ( N - t - a ) 
J{\pl<K9Lg'/2N} 

uniformly in i and k. 
We write 

f ( • • • ) d F i ( x ) 
J{x>0:\H'(x)-v\*iK9DV~l/2Lgl/2N} 

+ D~]N ~1/2 ( ( . . . ) d / ; ( * ) 
J(x<0: \H*(-x)-cl<K„DN~l/2Lg'/2N) 

= ÚJ5' +ÖJ5". 

We have: 

-]L>(v)( [ u { p - q ) - G k ( v ) ] < t > ( p ) d p 

+ N - ' 0 ( N - ' / 2 L ^ 2 N ) ( [ u { p - q ) - G k ( v ) } $ { p ) d p 
J{\p\^K9Lg'/2N)'· 

+ o(N ~i~a). 

In the last expression, the second term is ο (Ν while the first is equal to 

~ N ^ L ' , ( v ) f [ u ( p - q ) - G k { v ) ] * ( p ) d p . But 

, [ u ( p - q ) - G k ( v ) ] < t > ( p ) d p 

Xa Γ <t>{p)dp = Na<t>(-K9Lgl/2N)-*0 
'K9Lg>/2N 

and we obtain: 

uniformly in z, \ where q=(H*(\z\)-v)/DN ~ l / 2 . 

Similarly 
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Also, it is easy to check that % = o ( N ). Hence 

E(a(R+ ) s g n Xt\Xk =z)-E(a(R+ ) s g n X,) 

(2.11) 

uniformly in — oo <z< oo. 
We now show that under (1.6)-(1.9) 

/ < 1 - e ) / D ^ , / 1 ( l - ® ( 9 ) ) d < ? f c ( 0 + D ^ - ' ^ ) = C / l ( 0 ) + 0 ( ^ - ) . (2.12) 
J-v/DN',/1 

Indeed, using integration by parts 

J-v/DN~1/2 

1 —o 
1 - Φ 

DN~i/2 

+ /_ [h 

Let Sr denote the last integral in the above relation. Then: 

J{\q\>LgW1N) J{\q\<Lg</2N) 

Since 

<t>{q)àq=Na$( — Lgx/2N)^>0 
JLg^1N 

and 

it follows that 6E, = o ( N On the other hand, (2.10) entails for sufficiently large Ν 
that: 

\Naâ2\<Na( \Gk{v + DN-l/2q)-Gk(v)\<¡,(q)dq 

= 0(Na~l/2Lgx/2N). 

Thus &2 =o(N and we get 

&=&l+a2=o ( N ~ a ) . 

This, together with the fact that 

1 - Φ | 1 v
n )=o ( jV~ n ) ' DAT-1/2 1 

proves (2.12). 
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Similarly we can show that 

/ · ( — > / ™ - | / 2
( ι _ φ ( < 7 ) ) i d G k ( v + D N - ^ q ) = Gk(v) + o ( N - a ) · (2.13) 

Finally, using (2.11), (2.12) and (2.13) and proceeding as in Dupac and Hájek 
(1969), the proof follows. 

By Lemmas 2.3-3.6 and the Residual variance inequality 

= (2.14) 

Let us show now that 

* { · ( ) = - ) · (2.15) 

The left-hand side of (2.15) equals / , + I 2 where 

/ , = f ° $1(p)áGi{v+DN ~ x / 2 p ) 
J-v/DN-'/2 

f0_Jl(-v/DN->n¡0)(p)Gi{v + DN-V2p)-Gl(v)]2<t>(p)<¡>(p)dp 

and 

I 2 = f ( ' - v ) / D N ' / 2 [ l ^ ( p ) ] 2 d G i ( v + D N - ^ p ) 

( ! - « ) 

Χ 2 Φ ( ~ ρ ) φ ( ρ ) ά ρ . 

= φ2—¿F̂  Γ I W ^ y o . - ^ M G ^ + D N - ^ - G X v ) } 

Then, proceeding as in the derivation of (2.12) and (2.13) it follows that / , = 
ο (Ν ~ a) and 12 =o(N and hence (2.15) holds true. 

Now, using (1.6)-(1.9) and (2.15) we obtain 

E(y¡ ~Z , ) 2 = o | N ~ l ~ a 2 c? I (2.16) 

where 

Yt= £ c > { £ ( a ( ^ ; ) s g n ^ | ^ ) - £ ( f l ( / ? ; ) s g n X y ) } , K i < N (2.17) 
j= ι 

and 

Z;=N -1 2 c , ( L ; ( , > ) - « ; ( » ) ) Ί 
j= I 
j¥=¡ 

[ u i v - H ^ X ^ - G ^ v ) ] 

+ c , [ E { s g n X i a ( R Ï ) \ X i ) - E ( s ë n X A K ) ) ) , 1<ί<ΛΓ. (2.18) 
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Then, since S¿ ~E(S¿ ) = Σ?=ίΥ„ (2.14) and (2.16) entail 

V a r ( s + - (2.19) 

Proceeding as in Lemma 13 of Dupac and Hájek (1969), it is easy to show that 
(1.12) holds if and only if (1.13) holds with σ^ =Σ^=ί Var(Z,) and in this case 

lim Var(S + ) / a ¿ = l . 
N—> oo 

Finally, the asymptotic normality of ΣίΙ ,Ζ, with parameters (0, σ^) follows as in 
Lemma 14 of Dupac and Hájek (1969) with the help of (1.2), (1.6), (1.7), (1.13) and 
the Lindeberg central limit theorem. 

Hence, since we have proved that 

N « / N \ , eJ 

2 Z,/0N^N(0,1), s + - E i s ; ) - 2 ζ , /**->o 
1=1 \ 1=1 / 

and 

V a r ( S + ) / a ¿ - * l , 

we obtain 

(S¿ -E(S + ))/(V»rS„+)l/2ZN(0,1). 

Suppose we want to relax condition (1.4) to (1.5). Let us denote the statistic 

Ν corresponding to (1.4) by and the statistic corresponding to (1.5) by *. Then, 
using (1.2) and (1.5) 

V a r i s i - # · ) = <> * - « Σ c? 

Ν 

1=1 

Consequently, the asymptotic normality of easily follows from the last 
relation and the asymptotic normality of . 

We have proved Theorem 2.1 under condition (C^) . It remains to show that this 
set of conditions is implied by the conditions (C2+ ). The proof of this fact is similar 
to the implications (C 3 )=*(C ( ) and (C2)=>(C1) in Dupac and Hájek (1969, Section 
5) and is therefore omitted. 

The following theorem shows that under the same conditions ( C ) or (C2+ ), SN is 
asymptotically normal with (simpler) parameters (μ^ ,σ^) . This problem is of 
practical interest since μ^ and are easier to evaluate: 

Let us define: 

= 2 c,£[sgn Χ,.ψ(//*(|*,|))] (2.20) 

and 
Ν 

(2-21) 
1 = 1 
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where 

Ν 
z ; = N ~ l Σ CJ{l'J(V)-m;{v)) [ « ( ο - / / · ( μ τ , | ) ) - σ , ( « 0 ] 

(2.22) 

Theorem 2.1. Let be given by (1.1) with scores satisfying (1.5) where ψ ( / ) = «(/ — ϋ ) · 

Assume that (C,+ ) or (C2
+) holds, with (1.12) replaced by (1.13), where is given 

by (2.21). 
Then is asymptotically normal with parameters ( μ ^ , σ ^ ) defined in (2.20) and 

(2.21). 

Proof. We shall follow the proof of Theorem 2.1 (where it is first assumed that 
α(ί)=φ(ί/(Ν+ 1)) and that (C,+ ) holds). 

With Yj and Z, defined by (2.17) and (2.18) respectively, we have: 

Proceeding as in Dupaè (1970) it can be shown (omitting the details of computa-

uniformly in K î ' < j V , as follows from (2.11) and (2.15). 
Define 

(2.23) 

Ai(X,) = {£(sgn X,a(RÏ M - £ ( s g n X A K )} 

tion) that 

Var(A i) = £(A^) = 0 ( i V - 1 / 2 ) 

where Δ,. =Δ,(ΛΓ,). 
Then, since Z, = Z\ + c, Δ,, we have 

(2.24) 

uniformly in K i ^ J V . 

This together with (2.14) entails 
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Then, proceeding precisely as in the proof of Theorem 2.1, it follows that: 

£ « 
Σ z ; / o n ^ N ( 0 , 1 ) , 
1=1 

and 

VariS,* (2.25) 

Further set 

p, = £(sgn ΧΜ Κ; ) - £ ( s g n X,u{ H*(\X,. |) •- υ )), 1 < / 

It can be shown (again omitting the details of computation) that: 

p , = o ( J V ~ a / 2 _ 1 / 2 ) uniformly in K j ^ T V . (2.26) 

Now, using the inequality: 

together with (2.26) we get 

( £ ( S w
+ ) - p j t ) 2 = o J j V - 2 c ? ) . (2-27) 

Finally, making use of (1.13), (2.25) and (2.27), the proof follows. 

3. An example 

Assume that A",,..., XN are i.i.d. with common density function/, and consider the 
problem of testing the hypothesis of symmetry with normal underlying density H0 : 
/ ( χ ) = φ ( χ ) against the sequence of shift alternatives 

Η , : / ( χ ) = φ ( χ - Δ ) ( A = A N > 0 ) . 

Assume that Δ—» oo sufficiently slow such that: 

lim sup ALg~ l / 2JV< j. (3.1) 
Ν->oo 

We shall prove that under H,, (3.1) implies the asymptotic normality of where 

S¿= Σ « ( ^ y - o j s g n A ; . . 

First we note that since Δ—>oo, H*~'(v)-* co, in such a way that: 
l i m ( H * - ' ( V ) - A ) = 0. ( 3 . 2 ) 
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Using (3.2) it is easy to see that condition (1.11) is satisfied. Also, since c, = · · • = 
cN — 1, it is easy to check that ->0, where σ^ is defined by (2.21). 

Now, (3.1) implies the existence of a constant 0 < C < ^ such that, for sufficiently 
large Ν 

â2^C2LgN. ( 3 . 3 ) 

It can be shown (omitting the details of computation) that for sufficiently large TV, 

o 2
N / î c f > C M - 2 Δ - 1 ) (3.4) 

1=1 

for some constant C">0. 
Let α and C" satisfy ^ < C " < ( 1 / 8 C 2 ) and 4C"C 2 < a < ^ . Thus from (3.3) and 

(3.4) we have: 

ri/(Ν~α Σ c , 2 j > c w « - 4 c " c 2 . 

The last relation clearly implies the satisfaction of ( 1.13). The result follows by an 
application of Theorem 2.2. 
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ON THE ORDER OF MAGNITUDE OF CUMULANTS 
OF VON MISES FUNCTIONALS AND RELATED 
STATISTICS 
R. N. BHATTACHARYA1 and M. L. PURI2 

Indiana University 

It is shown that under appropriate conditions the sth cumulant of a von 
Mises statistic or a U (or V) statistic is 0(n'"+1), s s 2, as the sample size η 
goes to infinity. A possible route toward the derivation of an asymptotic 
expansion of the characteristic function is indicated. 

1. Introduction. The Edgeworth expansion of the characteristic function of a nor-
malized sum of η independent and identically distributed (i.i.d) random variables derives 
from the order of magnitude 0(n~[s 2)/2) of the sth cumulant (s > 2) (See, e.g., Bhatta-
charya, 1977). For statistics which may be expressed as or approximated by polynomials 
in several average sample characteristics (e.g., (i) polynomials in sample moments and (ii) 
maximum likelihood estimators in the regular case), the validity of the so-called "formal 
Edgeworth expansion" depends crucially on the above order of magnitude of the sth 
cumulant (s > 2) of the normalized statistic (see Bhattacharya and Ghosh, 1978). In this 
note it is shown that cumulants of normalized U-statistics and von Mises functionals have 
the above order of magnitude, if certain conditions are satisfied. For general background 
on these statistics we refer to von Mises (1947) and Serfling (1980). Assuming the validity 
of (a) the above order of magnitude of the cumulants and (b) the Edgeworth expansion of 
the distribution function of a von Mises functional, Withers (1980) has given an algorithm 
for computing the coefficients in the asymptotic expansion. Some of the moment compu-
tations in Section 2 are similar to those in Withers (loc. cit). In Section 3 a new method of 
derivation of Cramér-Edgeworth expansions of characteristic functions of a class of 
statistics is provided. 

2, Moments and cumulants. Let χ be a separable metric space (e.g., a subset of 
Rd), !%x its Borei sigma field, and Ρ a given probability measure on 3SX, whose support is S. 
Let â̂ f denote the set of all probability measures on á?x Π S having finite supports. Endow 

U {P} with the weak-star topology. Consider for each η the product space (χη,38χ"), and 
let .Χι, · · · , Xn be the η coordinate random variables. Let G®" = G X G Χ · · X G denote 
the product probability measure on 3SX*, where G is a probability measure on 0SX. Under 
G®" the random variables Χι, · · · , Xn are i.i.d. with common distribution G. We shall write 
EG to denote expectation under G®". Denote the empirical distribution of the 
"observations" Χι, · · · , Xn by Fn, i.e., F„ = δ*,, where Sx is the Dirac measure with 
point mass at x. 

Let h(xι, x2, · · · , xr) be a real-valued, Borei measurable, symmetric function on χΓ, for 
some r > 2. Define the V-statistic (with kernel h) 

(2.1) Vn = n~r Σζ_, - • - Σ"-ι h(Xh, Xl2, .... , Xir), 

and the U-statistic (with kernel h) 

(2.2) U„ = φ Σ A(X„ Xi,, · · · , Xir) 

where the summation is over 1 < ti < i2 < · · · < ir £ n. 

Received February 1982; revised August 1982. 
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THEOREM 2.1. (a) If for some integer s > 3 one has 

(2.3) EP\h(Xh,X^ ... ,X , r ) | s <°° 

/ o r a / / choices of ji, j% · · · , y r( 1 5 y'i, >2, · · · , yV S r) , ίΛβη í/ie p t h cumulant kp,n(P) of V„ 
under Ρ is of the form 

(2.4) A„„(P) = Em-p-i n~m\m,p(P) + ο(η">+1), ( 2 < p < s). 

77ie quantities \m,P(P) are independent of n. 

(b) Suppose that, for some integer s > 3 one has 

(2.5) Ep\h(XltX2, ... ,X. ) | S <°° . 

Then the cumulants of the statistic Un also are of the form (2.4). 

PROOF, (a) W r i t e 

(2.6) V„= I · · · I h(xi, · · · , Xr)Fn(dx1) · · • Fn(dxr). 

For G = Σ?-ι otiSy¡ in ä^, F„ may be expressed as (with G®"-probability one), where 
ά, is the proportion of ^,'s in the "sample" [Xh · - · , Xn}. Thus V„ becomes a polyhomial 
in the ç-variables â„ 1 < i < q. Hence by a result of James and Mayne (1962) (this may 
also be derived from the results of Leonov and Shiryaev, 1959), the pth cumulant of V„ 
under G is of the form 

(2.7) kp,n(G) = n~mXm.p(G), ( p > 2). 

On the other hand, for all G such that EG\ Vn\ " < 00, one has (for all η > rp) 

EaVn = n~rpEo J • · · J ( IK- i A(jtr<i-i)+i, - · · , *«)) 

• (δχ, + δχ2+ . . . + SxnHdxù • • • (&X¡ +δχ2+ . . . + SxJidXrp) 

(2.8) = η-** j · · · J (Π?-ι Α(λκ_„+1, · - -, xn)) 

[ (η -m)\ Σζ Σι · ·. Ôx,(dxJu) 

Sx2(dxhl) • • • *x¿dxj¿ - - - SxJdXjJ . . . Sx¿dxjmt )} } 
Here, for a given m, £2 denotes summation over all collections of m positive integers {si, 
S2, · · · , Sm} satisfying = rp\ for a given collection {si, s2, · · · , sm}, Σι denotes summation 
over all partitions of {1, 2, · · ·, rp) into m groups of Si, s2, · · · , sm elements, a typical 
partition being ({;'n, y'12, • • • . y ' u j , {>21,722, · · · ,j2*¿}, { i „ i , M · · · J m . J ) . Denote by 
H,{G) the distribution of the s-dimensional random vector (.Xi, Xu · • · , under G, and 
let ... ,tJG) stand for the measure 

HSi,S2....,,JG)(dx1dx2 · · . άχφ) = ^HH(G)(dxjndxjn ·•• dxJu)HSl{G) 

(2.9) 
• (dxhldxj^ •. · dxJu ) • • • HsJdxjmidxJm2 • • • dx]mJ. 

Also note that 
n! 

-7 = n~rpn(n - 1) · · · (n - m + 1) 
(2.10) ( n ~ m ' · 

= I m - i ( - 1 ) m - m ' n - r p * m ' 9 ( m - m'; m - 1), 

where θ(ί; Ν) is the sum of all products of i distinct integers taken from {1, 2, · · · , N), 
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0(0; Ν) = 1. From (2.8)-(2.10) one obtains 

EoV"n = Σ^-Ι Em- (—l)m~m η ~rp+m θ(πι -m'; m - 1) 

• J • • · J ( I K - i h(xr«-l)+1, ••• , xr,)) χ 2 H,^... An(G)(dx1 • • • dxrp) 

(2.11) = Σ7-ο n-J{Z%.rp-j ( - 1 ) m - r p + J e ( m - rp + j- m - 1) 

• J . . . J fl]f-l h(Xr(t-l)+\, · · · , Xr,)) Σ2 H,^,...,,JG)(dXl . . . dXrp)) 

= Σ7-ο'η-%,Ρ(0, (1 

say. Here ßj,P(G) is a linear combination (with coefficients not depending on n, G or A) of 
terms like 

(2.12) J · · · J (Ufr h(xr(l-i)+i, • • · , x r l ) ) H , , J G ) ( d x ¡ • • • dxrp). 

Using the familiar relations between moments and cumulants one has 

(2.13) kp,n{G) = ΣΤ-ο1 n~%,p(G), 

where A>,P(G) is a polynomial in μj,p ( 1 <p) , whose coefficients are absolute constants. 
Since the map G —* HS¡(G) is continuous in the weak-star topology, so is the map G —» 
Hit,si. • ,sm(G). It follows that for a bounded continuous h the integral (2.12) is a weak-star 
continuous function of G; this implies that the maps G —> μJíP and, therefore, G —» 
Xm,p(G) are continuous. I f p > 2, thenXm,p(G) = 0 f o r 2 < m < p — 1 and G E ??f. Also there 
exists Gn e â?i(N = 1, 2, · · ·) such that GN converges to Ρ (This is where the separability 
of χ is made use of; see, e.g., Parthasarathy (1967), Theorem 6.3). Therefore, one must 
have λ„,ρ(Ρ) = 0 for 1 < m < ρ — 1. This completes the proof of (a) for bounded con-
tinuous h. Since functions of the form Π ? - Ι h{xru-D+I, · · · , Xn) belonging to 
LI(xrp, HS]lS2,... ,Sm(P)) may be approximated (in V ) by continuous bounded functions of 
the same form, the proof is complete. Note that for this last argument (2.3) is needed. 

(b) First assume (i) h(xi, x2, • • • , xr) = 0 if x¡ = x¡ for some i, j(i j ) . Then the 
cumulants of Un satisfy (2.4), since - (̂ r . - ν - ( ( - ¿χ - ï) - ( · - - - · » · ν -

Next, instead of (i) assume (ii) Ρ has no atoms. Then modify h so as to satisfy (i); this does 
not change Un, except on a set of probability zero. Finally, consider an arbitrary P. Let D 
be its set of atoms. Let D' be a subset of reals in one-one correspondence with D. Consider 
the space χ' = (x\D) U R, with x\D and R each carrying its own topology but their union 
is topologically disconnected. Then Ρ lifted to this space χ'' (by placing the discrete mass 
on D') is a weak-star limit of nonatomic probability measures. Extend h to (χ')Γ by setting 
it zero if any coordinate is in R\D'. Now apply an argument entirely analogous to that in 
the preceding paragraph. 

REMARK 2.1.1. The U„ and V„ defined above are not centered around their expecta-
tions (under P). Centering has been avoided deliberately to ensure that h does not depend 
on P. For the general von Mises functional considered below centering seems unavoidable; 
this causes some technical problems. 

REMARK 2.1.2. Under the hypotheses of Theorem 2 . 1 the p th cumulants of the 
normalized statistics Vrë( V„ - EVn), Jn(Un - EU„) are of the order 0(n"<p_2l /2), 2 < p < 
s. 

Let Γ be a von Mises functional defined on U (P}, and let the statistic T(F„) have 
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the expansion 

T(Fn) - T(G) = ΣΓ-ι i •·• i Tf"(G- xu x2, • · · , Xi) nV- i (Fn - G)(dXj) + Rn 
(2.14) J J 

= Σί-ι VnAG) + Rn (G e 9, U {Ρ} ), 

where T(,) is a real-valued, symmetric (in the arguments xu ··· , xì), Borei measurable 
function on &f U {Ρ} x χ1 satisfying 

(2.15) E P \ T m ( P \ X A , X h , · . . , X j ) r<oo , (1 < i < r), 

for all 1 < juh, · ·· , j¡ S r, and the "remainder term" Rn satisfies 

(2.16) Ep\Rn\p = o(n~*+I), ( l < p < s ) . 

Write 

(2.17) V„(G) = ΣΓ-ι Vn,i(G). 

Then 

(2.18) EoVUG) = Σ3 Vnj¡(G)Vn,h(G) . . . Vn,ip(G), 

where Σ3 denotes summation over all p-tuples (ii, ¿2, · · · , iP) such that 1 < • • · , ip < r. 
Now let Ip = ¿1 + · · · ip and write, as in (2.8), 

EaVn(G) = £ 3 £ c J . . · J (Π?-ι TU,)(G; x,,_1+1, · · · , x,,)) 

(2.19) n'» tí¿T (n Σ2 Σί - G)(dxj¡l)(Sxl - GHdxjJ 

• (Sx¡ - G)(dxju ) - - - (&xm - GHdxjJ •.. (SXm - G)(dxJm„ ) 

Here, for a given to, Σ2 denotes summation over till collections of m integers {si, S2, · • · , 
sm} satisfying s, > 2 and Σ«ί = h'< and Σί denotes, for each collection {si, s2, · · · , 
summation over all partitions of {1, 2, · · · , Ip} into m subgroups of Si, ί>2» · · * > Sm elements 
such as ({>11,>12, . . . ,>1»,}, . . . , {jm\,jmi, ... ,jmsj)· Note that expectations of terms 
involving s¡ = 1 for some i vanish. Next let Hq(ii, i2, · * · , is, G) denote the distribution of 
a 7-dimensional random vector whose iith, · · · , iVth coordinates are X¡, while the remaining 
coordinates are i.i.d with distribution G and independent of X\. Write Hq(G) for the signed 
measure 

(2.20) ñq(G) = (-««"Σ· Hq(ilt G), 

where Σ4 denotes summation over all choices {¿1, ¿2, · - · , if) of £ distinct integers from 
{1, 2, · · · , 9}. Now define 

(2 21) ' dx>dx2 · · · dxtp) 

= Σί ñ,,(G)(dxJudx!¡2 • • - dx,J - • • ÜsJG)(dx^dxJm2 • - • dxjmt ). 

Then, as in (2.10), 

EoVJG) = Σ3 ( - 1 ) m - ' » + J e ( m - I P + j ; m - 1) 

(2.22) f 

• · · · (Π?-ι Τ'"'(G- χ,_1+Ι> . . . , χ,,)) Σ2 es„... dXl . . . dxIp) 

For G = Σ?-ι
 a>ûyo Vn(G) is a polynomial in <x¡ — a¡, so that thep th cumulant of V„(G) is of 

the order 0(n'p+l) under G(2 < ρ < s). In view of (2.16) and (2.22), the proof of the 
following theorem is now complete. 
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THEOREM 2.2 Suppose that ( 2 . 1 4 ) - ( 2 . 1 6 ) hold. Assume, in addition, that there exists 
a sequence {GN'N S 1} having finite support such that 

(2.23) lim.v^c;,v(n?=. T'"'(Gn; Xt¡, X,.)) = EP(Π?-ι Τ('·](Ρ· Xt¡, ••• , Χ,.)) 

for all 1 < ¿i, ¿2, • • • , ip ^ r, and all 1 < tu t2, · · · ,t¡, < rp (1 < t < p). Then the p t h 
cumulant of T(Fn) under Ρ is of the order 0(n~p+l) for 2 < ρ s s . 

REMARK 2.2.1 . Notice that the statement "condition (2 .23) holds for some 
{GJV; ¡V > 1 } C 3S/' is much weaker than the statement "condition (2 .23) holds for all 
sequences {G.V: Ν ζ 1} converging to Ρ (weak-star)", the latter being equivalent to saying 
that the integral is weak-star continuous at Ρ (on 9f U {P}). To illustrate this point, note 
that even such functionals as T(G) = $xkG(dx), k > 1, are not weak-star continuous on 
&fU {P}, where Ρ is a probability measure on the line having a finite Ath moment. The 
difficulty is that one may place a mass 0(N~k/Î) at * = TV which goes to zero to ensure 
weak-star convergence, but is large enough to blow up the integral as Ν —* oo. On the other 
hand, one may integrate (with respect to P) a step-function approximation, /«(*) to xk, 
which amounts to integrating xk with respect to an appropriate GN E á8/; and the latter 
integral fx^G^ldx) will converge to fxkP(dx), as the intervals of constancy decrease to 
zero in width. These considerations apply to more general functions (see, Serfling (1980), 
pages 2 1 4 - 2 1 6 , for examples). 

REMARK 2.2.2. The fact that the sth cumulant of V„ (or Tn) is 0(n~s+i) when G has 
finite support means the vanishing of a number of polynomials in the variables /IP(G). One 
should be able to prove that these polynomials are identically zero by showing that the 
ßp(G)'s assume a broad enough spectrum of values as G ranges over the set of all 
probability measures having finite support. This would enable one to dispense with the 
condition (2 .23) in Theorem 2 .2 . However, we are unable to make this algebraic argument 
firm. 

Finally, the method used here should be more widely applicable in deriving orders of 
magnitudes of cumulants. 

3. A method of derivation of Edgeworth expansions of characteristic func-
tions, and an unsolved problem. In the present section we provide a method (which 
appears to be new) for the derivation of Cramér-Edgeworth expansions of characteristic 
functions of a class of statistics T„ having zero means, finite moment generating functions 
(m.g.f.'s), and cumulants χρ,„ satisfying 

(3.1) Χρ,„ = Λ- ( '-2 ,/2λρ + ο<«-(''-2)/2), (ρ >2) , λ 2 > 0 . 

Let 

(3.2) /„(ξ) = E e x p [ ΐ ξ Τ η ) 

denote the characteristic function of T„. One may write 

(3.3) fn(è) = /(& ε), 

with ε = n~U2. Under the additional assumption that f(i£, ε) has an absolutely convergent 
power series expansion in ξ and e in a neighborhood of the origin (0, 0), it is shown in 
Theorem 3.1 that /"„(ξ) and its derivatives have a proper asymptotic expansion of the 
Cramér-Edgeworth type. The unsolved problem is to identify a large enough class of von 
Mises functionals for which this analyticity holds. In particular, we do not know if the 
analyticity property holds for i/-statistics (see (2.2)) with kernels A satisfying: 

(3.4) E exp{th(Xi,X2, ••• , X ) } < (-oo<£<oo). 

In remarks following the corollaries to Theorem 3.1 it is shown that the assumption of 
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analyticity does hold for some special classes. We expect the moment computations of 
Section 2 to be crucial in resolving the problem of analyticity in the general case. 

THEOREM 3.1. Let T„(n = 1, 2 , · • • ) be a sequence of random variables having zero 
means. Assume that (i) E exp{íT„} < oo for all t(-oo < t < oo) and n, (ii) /({'£, ε) can be 
extended as an analytic function f(z, η) of the complex variables ζ and η in a neighbor-
hood of the origin (0, 0) in C2, and (iii) the cumulants χρ,„ of Tn s a t i s f y (3.1). Then the 
following results hold: 

(a) There exist a positive constant <50 and polynomials P„ whose coefficients do not 
depend on n, such that for all ξ, — fiovïî < ξ < fio vñ, one has 

m = e x p j - j £ 2 j ( l + Σ7-. n-J'2Pj(m. 

(b) For every pair of integers m and ρ satisfying ρ > 2, 0 < m S ρ, there exist positive 
constants fio, Ci, c2 such that 

dm 

dfn 
Uf) - expj— j £2}(1 + Σ?-.2 n~'/2Pj(i£)) j | 

- Cl [|Ér ,-"+|í|3"-1 ,+Texp{-csÉ ,) I (|€| <*>£) . - n(p-W2\ 

PROOF. Since f(z, η) is analytic in a neighborhood of (0, 0), and f (0, 0) = 1, φ(ζ, η) = 
log f(z, rj) (we take the principal branch of the logarithm) is defined and analytic in a 
neighborhood of (0, 0). In view of (3.1) and the fact that ETn = 0, one may express 
φ(ζ, η) as 

(3.5) 

22 Zk 

Φ(ζ, i?) = - (λ» + Σ?-. λ2.,ν) + ···+-η"-ΗΣ7-ολ*.,ν) + 

Σ?-2 — (Σ7-0 (λ*,ο — λ*). 

Since this last series is absolutely convergent in a neighborhood of (0, 0), so is the series 
within square brackets. Let fii, fi2 be two positive numbers such that this last series is 
absolutely convergent for |z| = fi], |t/| = fi2. Then 

(3.6) Sr-2 2 Σ7-0 I λ*,>| δ'2 < » . 
re! 

It follows that (3.5) is absolutely convergent for |ζη| S διδ2 and |τ/| < fi2. Therefore, the last 
expression in (3.5) defines an analytic function in the region D = {(ζ, η) E C2: \z\ < 
¿Λ/ΙηΙ, |η| < fi2}, and over this region exp{<f>(2, η)) defines an analytic continuation of 
f(z, η). We shall refer to this extension also by f(z, η). Since the characteristic function 
ξ -* fn(i) is entire (by assumption (i)) and since analytic continuations are unique, /"„(ξ) = 
/"(¿ξ, n'1/2) for - oo < ξ < oo (note that one could not assume a priori that this equality 
holds between fn and the analytically extended /). In addition, on D one has 

(3.7) 1/(2, η) — 1| < c' < 1, 

for some constant c', and φ(ζ, η) is the principal branch of the logarithm of f(z, η) on D. 
The relations (3.5) now hold on D and one may rewrite the first relation in (3.5) as 

(3.8) log f(z, v ) - ^ z 2 = Σ7-ι vJQAz), (ζ, V) e D, 
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where Q, is a polynomial of degree j + 2. Thus 

(3.9) f ( z , η) e x p j - j z2 J = e x p | ς " - ι VJQA*)} = 1 + Σ7-. η («, V) Ξ D, 

where P/s are appropriate polynomials. From (3.9) one gets 

(3.10) f(z, η) = exp { I z 2 j (1 + Σ7-1 VJPj(z)), (z, v) S D, 

and, in particular (with ζ = ¿ξ, η = n"1/2), 

(3.: 

This proves part (a). To prove part (b) one may first approximate log f(z, η) by 

!£>! 
k\ 

3.11) fn(i) = exp J - y i 2 j (1 + n-^Pjdi)), ( - « A Vn < I < δ,δ2 Λ ) . 

(3.12) <MZ, Η) = 2 2 Σ* -2 <Σ7-Ο W > -

Writing 

(3.13) ψ(ζ, τ,) = φ(ζ, η) - J ζ2, φρ(ζ, η) = <M¿, ν) - j ζ2, 

one has (using (3.6), or analyticity on D) 

(3.14) |ψ(ζ, η)-φ„(ζ, 7,)| = Wz, ν)-ψρ(ζ,η)\< e Ιτ,Ι""1 |2|ρ+1, ( ζ , ΐ ) ) β Α 

for an appropriate constant c3. By (3.6) and (3.14), if δι is small, then 

(3.15) |exp[i(z, η)} - βχρ{ψρ(ζ, η)} | < * | ΐ ϊ Γ ι | ζ | " + Ι e x p | ^ - L j , 

for some constant c4; this may be written as 

e 2 [f(z, η) - expOMz.Tj)}] £ C4|TJI"-1 |z |p + 1 exp m (3.16) 

Letting ζ = ίξ, η = n~'/2, (3.16) becomes 

(3.17) I fn(i) - exp{<j>p(i£, n-1/2)}| s c4n- ("-1>/2Ur+1 exp J - ( | i | < δ Α J ñ ) . 

The comparison of βχρ{φρ(ί£, n~1/2)) with e x p | - y | 2 j (1 + n~jnP,(i£)) is carried 

out exactly as in Lemmas 9.7, 9.8 in Bhattacharya and Ranga Rao (1976). • 

COROLLARY 3.1.1. Under the hypothesis of Theorem 3 .1 one has the Berry-Esseen 
bound 

(3.18) sup,|i>(T„ <= χ) - Φλ2(χ)I < en"2, 

for some constant c > 0. Here Φχ2 is the normal distribution function with mean zero and 
variance λ2. 

PROOF. Use Theorem 3 .1 (b) and Esseen's inequality (see Lemmas 12.1, 12.2 in 
Bhattacharya and Ranga Rao (1976)) . • 

COROLLARY 3.1.2. Assume the hypothesis of Theorem 3.1. I f , for some ρ > 2 , g is a 
p-times continuously differentiable function on IR1 such that sup{(l + | :r|p) |g(m>(x) |: 
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χ E IR1} < » for 0 < m < ρ, then 

(3.19) IEg(T n ) - g(x) 
J DI' 

for some positive constant d. 

φχ^(χ)άχ\ < dn -(/>-1)/2 

PROOF. One may apply the method of Götze and Hipp (1978) to the estimate in 
Theorem 3.1 (b) to derive (3.19) directly. Alternatively, first establish (3.19) for the class 
of all Schwartz functions as in Bhattacharya and Ranga Rao (1976), Theorem 20.7, 
expressing the error estimate in terms of a Sobolev norm; then extend the result to a wider 
class by completion in the Sobolev norm. • 

REMARK 3.1.3. Let Xu X2, ··· be an i.i.d. sequence having mean zero and a positive 
variance. The hypothesis of Theorem 3.1 is satisfied for the statistics Tn = n~1/2(X¡ + · · · 
+ X„) if the m.g.f. of X¡ is finite everywhere. Of course, in this classical case Theorem 3.1 
(b) holds under less stringent assumptions (see, e.g., Bhattacharya and Ranga Rao (1976), 
Chapter 2). Note, however, the conclusion of part (a) of Theorem 3.1 requires stronger 
assumptions than finiteness of moments. 

REMARK 3.1.4 Let U„ be a {/-statistic with kernel Λ (see (2.2)). Assume, without loss 
of generality, that Eh(Xu X2, ••• , Xr) = 0. If E exp{th(X¡, ••• , Xr)} < oo for all t, -oo < t 
< oo, then hypothesis (i) of Theorem 3.1 is satisfied for the statistic Tn Un (see 
Serfling (1980), Lemma C, page 200). In addition, assume Εφ2(Χ1) = λ2 > 0, where φ(χ) = 
Eh(x, X2, ·· · , Xr). Then Tn is asymptotically normal (see Serfling (1980), Theorem A, 
page 192) and, by Theorem 2.1 (b), hypothesis (iii) of Theorem 3.1 also holds. It would be 
of great interest to see if hypothesis (ii) of Theorem 3.1 is a consequence of the above 
assumptions. We emphasize that this is the main unresolved problem in the context of the 
present article. For kernels h which are sums of products of functions of single variables, 
analyticity of f(z, η) in a neighborhood of the origin in C2 has been proved by methods of 
statistical mechanics (see, e.g., Ruelle, 1969). However, for these special kernels an 
adequate theory of Edgeworth expansions has been derived in Bhattacharya and Ghosh 
(1978) under less stringent assumptions. 

REMARK 3.1.5. Some partial expansions of characteristic functions of {/-statistics have 
been obtained by Callaert, Janssen and Veraverbeke (1980). 
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terse comments in an earlier draft be expanded; the present Section 3 constitutes the 
resulting expansion. Thanks are also due to the Associate Editor for indicating that 
asymptotic expansions for von Mises functionals are of potential use in robust estimation. 
Finally, we are indebted to Charles M. Newman for pointing out that the analyticity 
hypothesis in Theorem 3.1 has been verified in the context of statistical mechanics for the 
special class of kernels mentioned at the end of Remark 3.1.4. 
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ON BERRY-ESSÉEN RATES, A LAW OF THE 
ITERATED LOGARITHM AND AN INVARIANCE 
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Let Fn(x) be the empirical distribution function based on η independent random 
variables X,,..., X„ from a common distribution function F(x), and let 
Χ=Σ",= ι XJn be the sample mean. We derive the rate of convergence of F„(X) to 
normality (for the regular as well as nonregular cases), a law of iterated logarithm, 
and an invariance principle for F„(X). 

1. INTRODUCTION 

Let X¡,..., Xn be independent real valued ru's with common distribution 
function ( d f ) F ( x ) , and let F„(x) be the corresponding empirical d f , i.e., 
nFn(x) = number of X¡ < χ, 1 < i < η. Let Χ — , Χ ¡/η, and consider the 
statistic 

T„ = F„(X) (1.1) 

which represents the proportion of the sample below the sample mean. Such 
a statistic is often used in estimating a functional θ = Ffa), where μ — EXl if 
both F and μ are unknown or in testing the hypothesis that F is symmetric 
about an unknown location μ against certain classes of alternatives (see 
Gastwirth (1971)). The asymptotic normality of Tn was first derived by 
David (1962) under the assumption that F is normal. Later Ghosh (1971) 
derived this result under weaker assumptions that 0 < Var X¡ < oo and F is 
differentiable at μ with 0 < F'Qi) < oo. (See also Sarkadi, Schnell and Vincze 
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(1962) for the connection between the limit law of Tn and the occupancy 
problem). 

Quite often, however, one needs more precise information than the 
asymptotic normality can provide. On the one hand, in view of applications, 
one may need bounds on the rate of convergence of Tn to normality, and, on 
the other hand, one may be interested in deriving the rates of strong 
convergence of T„ to F (μ) or certain invariance principles for T„ and incor-
porate them in the study of the asymptotic properties of the procedures 
(testing and estimation etc.) based on this statistic. The present note 
addresses these problems. Under different assumptions on F we derive (i) the 
Berry-Esséen rate 0(n ~~1/2) for the convergence of Tn to normality in the 
nonregular cases (i.e., when F ' (u) = 0), (ii) a law of the iterated logarithm, 
and (Iii) an invariance principle for Tn. We also obtain a bound on the rate 
at which Tn converges to normality in the general case when F'{μ) does not 
necessarily vanish. 

Here we consider the question: What happens to the asymptotic law of Tn 

when Ρ'(μ) = 0? Note that in such a case the asymptotic variance of the 
modified sign test equals that of the regular sign test (Gastwirth (1971)). 
Ghosh's (1971) method fails when Ρ'(μ) = 0, while Gastwirth (1971) 
provides a heuristic argument. However, it will become clear from our 
Lemma 4.1 that if one is just interested in the asymptotic law of Tn under the 
assumptions that F'{ji) = 0, 0 < Var Χλ < co and 0 < F(p) < 1, then one may 
derive the representation 

and show that n1/2R„-+p 0. The asymptotic normality of T„ then follows 
immediately. 

To motivate our study, consider the following example (cf. Chandra 
(1975)). Let 

2 . T H E B E R R Y - E S S É E N T H E O R E M FOR 

T„ IN A N O N R E G U L A R C A S E η 

Fn(X) = Fn(M) + R η (2.1) 

F(x) = 0 if χ < μ — 1 

(2.2) 

= 1 if χ ^ μ + Ι 


