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PREFACE

The volumes at hand are the outcome of a concerted effort to make Professor Puri’s
research works easily available to the research community. The sheer volume of the
research output by him and his collaborators, coupled with the broad spectrum of the
subject matters investigated, and the great number of outlets where the papers were
published, attach special significance in making these works easily accessible.

In compiling these volumes, the Editors are satisfied with the feeling of discharging
part of their duty to the profession, and simultaneously expressing their respect and
admiration for their colleague, Madan Puri, for his immense contributions to statistics
and probability literature. A generous dose of appreciation is due to the publishers of
the volumes. The VSP International Science Publishers, for undertaking a less than
profitable venture. Also, thanks are due to professional organizations, as well as the
private publishers who graciously waived all reprinting copyright fees with a deep
sense of service to the profession. An appropriate list of said entities is given at the
end of this preface, whereas suitable acknowledgements are cited at the end of each
paper in the three volumes.

Professor Puri’s published research works number more than 3,000 pages. However,
practical publishing considerations had to be taken into account, and expectedly they
took their toll. Accordingly, the three volumes would have to comprise a total of
about 2,000 pages. The burden of selection was not easy, and works omitted are not
to be considered inferior to those selected for inclusion. The need of exclusion also
explains the title assigned to this work.

The papers selected for inclusion in this work have been classified into three vol-
umes, each consisting of several parts. Thus, Volume 1 consists of 44 papers dis-
tributed into four parts as follows: Part I of 24 papers, falling into the area of Non-
parametric Methods in Univariate Analysis; Part 11 of 6 papers from Nonparametric
Methods in Multivariate Analysis; Part 111 of 4 papers from Nonparametric Methods
in Design and Analysis of Experiments; and, finally, Part IV consisting of 10 papers
in Miscellaneous Topics, 4 of which (#'s [40]-{43]) are also from Nonparametric
Methods in Multivariate Analysis. Volume 2 consists of 35 papers classified in three
parts as follows: Part I of 18 papers under the heading of Limit Theorems, Rates of
Convergence and Related Topics (Independent Case); Part 11 of 13 papers taken from
his contributions in Limit Theorems (Dependent Case); and Part III consisting of 4
papers from the area of Extreme Value Theory. Volume 3 consists of a total of 48
papers distributed into three parts as described below: Part I of 18 papers under the
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heading of Time Series and Related Topics; Part 1 of 14 papers falling into the area
of Fuzzy Set Theory and Related Topics; and, finally, Part III comprising 16 papers
from Miscellaneous Topics. Also, all three volumes carry a final part consisting of
the contents of the other two volumes, as well as the complete list of Professor Puri’s
publications.

It would be appropriate that a brief biographical sketch of Professor Puri be included
in this preface. The following few paragraphs are excerpts from the preface of the
book Asymptotics, Nonparametrics, and Time Series: A Tribute to Madan Lal Puri,
edited by Subir Ghosh and published by Marcel Dekker, Inc. in 1999. One of the
present Editors was a co-author of that preface.

Madan Lal Puri was born in Sialkot (then in India, now in Pakistan) on February
20, 1929. In 1947, when India gained her independence and Pakistan was created,
his family migrated to Delhi as refugees. He received a B. A. degree in 1948 and an
M. A. degree in 1950, both in mathematics, from Panjab University in India. From
January 1951 to August 1957, he served as a Lecturer in Mathematics in different
colleges of Panjab University.

In September 1957, he came to the United States as an instructor and graduate
student in mathematics at the University of Colorado in Boulder. In September 1958,
he moved to the University of California at Berkeley as a research assistant in the
Department of Statistics and received his Ph. D. in statistics in 1962.

In 1962, Dr. Puri joined the renowned Courant Institute of Mathematical Sciences
in New York University as an Assistant Professor and became an Associate Professor
in 1965. He joined Indiana University at Bloomington in 1968 as a Full Professor of
Mathematics and remains there to this day.

Professor Puri is one of the most versatile and prolific researchers in the world
in mathematical statistics. His research areas include nonparametric statistics, order
statistics, limit theory under mixing, time series, splines, tests of normality, generalized
inverses of matrices and related topics, stochastic processes, statistics of directional
data, random sets, and fuzzy sets and fuzzy measures. His fundamental contribu-
tions in developing new rank-based methods and precise evaluation of the standard
procedures, asymptotic expansions of distributions of rank statistics, as well as large
deviation results concerning them, span such areas as analysis of variance, analysis
of covariance, multivariate analysis, and time series, to mention a few. His in-depth
analysis has resulted in pioneering research contributions to prominent journals that
have substantial impact on current research.

Professor Puri has done joint work with many researchers of different countries. To
date he has collaborated with 89 scholars from 22 countries on 5 continents. He was
the Alexander von Humboldt Guest Professor at the University of Gottingen in West
Germany in 1974-1975 and Guest Professor at many other universities in Germany,
with German National Science Foundation grants. He has been a Distinguished Vis-
itor at the London School of Economics and Political Science, Visiting Professor at
the University of Auckland in New Zealand, the Universities of Bern and Basel in
Switzerland, the University of New South Wales in Australia, the University of Gote-
borg and Chalmers University of Technology in Sweden, Université des Sciences et
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Technologies de Lille in France, Australian National University, Canberra, and Uni-
versity of Washington, Seattle, among other universities. In 1974, he was invited
by the Japanese Society for the Promotion of Sciences to visit Japan under its Visit-
ing Professorship Program to conduct cooperative research with Japanese scientists.
He has been an invited speaker as well as a plenary speaker at many international
conferences all over the world.

Professor Puri has received numerous honors and awards. He is an elected member
of the International Statistical Institute, and a Fellow of the Institute of Mathematical
Statistics, a Fellow of the American Statistical Association, and a Fellow of the Royal
Statistical Society. In 1975, he was honored with the D. Sc. degree from Panjab
University in India. He twice received the Senior U. S. Scientist Award from the
Alexander von Humboldt Foundation in 1974 and 1983. In 1974, he was honored
by the government of the Federal Republic of Germany, “in recognition of past
achievements in research and teaching.” In 1984, he received the best paper award
from the Seventh European Meeting on Cybernetics and Systems Research, Vienna,
Austria. In 1991, he received the Rothrock Faculty Teaching Award in recognition
of outstanding teaching in the Department of Mathematics of Indiana University. He
was ranked the ninth most prolific author in 1992, and the fourth most prolific author
in 1997 in top statistical journals of the world.

Professor Puri has served on various committees of many international conferences
in addition to those of the Institute of Mathematical Statistics and the American
Statistical Association. He also served as Editor-in-Chief of the Journal of Statistical
Planning and Inference in 1984-1988.

Professor Puri has directed -16 Ph. D. dissertations. Most of his former Ph. D.
students are in research and teaching positions at respectable universities. A few hold
responsible positions in industry.

Professor Puri is truly an international academician and a peripatetic scholar who
works with missionary zeal. Scientists from all over the world visit him regularly and
do research with him while staying at his home. His office and home have always
been wide open to bright young scientists from the United States and Overseas, who
were more in need of sponsorship and gentle encouragement and guidance in their
professional endeavors rather than mere mathematical mentoring. He is a caring col-
league with the warmest affection, an international host, a persuasive communicator,
a dedicated as well as an outstanding teacher, and a versatile statistician whose work
continues to inspire the scientific community.

We are editing these volumes in the hope of facilitating the availability to the
research community of a substantial part of Professor Puri’s work. We take great
pleasure in doing so.

This project has benefited greatly from the generous financial support of Moya
Andrews, Vice-Chancellor for Academic Affairs and Dean of the Faculties, Indiana
University; Patrick O’Meara, Dean of the International Programs, Indiana University;
Curtis R. Simic, President, Indiana University Foundation; Kumble R. Subbaswamy,
Dean of the College of Arts and Sciences, Indiana University; and George Walker,
Vice-President for Research and Dean of the Graduate School, Indiana University.
Special thanks go to Kenneth R. R. Gros Louis, currently Chancellor-Emeritus and
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Trustee Professor, Indiana University, for his never-ending enthusiastic encouragement
and financial support for several of Professor Puri’s research projects during his tenure
as Chancellor of Indiana University, Bloomington Campus, and Vice-President for
Academic Affairs, Indiana University.

The reprinting copyright fee waivers granted by professional societies and private
publishers have made this undertaking financially feasible. Their deep sense of ser-
vice to our profession is gratefully acknowledged here. They are Akademiai Kiado,
Biometrika Trustees (The Oxford University Press), Sankhya, SIAM, The American
Mathematical Society, The American Statistical Association, The Institute of Math-
ematical Statistics, The Royal Society, and The Statistical Society of Canada. Also,
Academic Press, Blackwell Publishing, LTD, Cambridge University Press, Elsevier
Science, John Wiley & Sons, Inc., Kluwer Academic / Plenum Publisher, and Springer
Verlag GmbH & Co. KG.

July 2002

The Editors

PETER G. HALL
MARC HALLIN
GEORGE G. ROUSSAS
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Nonparametric Methods in Univariate Alalysis






ASYMPTOTIC EFFICIENCY OF A CLASS OF
c¢-SAMPLE TESTS!

MADAN LAL PURI
New York University

1. Summary. For testing the equality of ¢ continuous probability distribu-
tions on the basis of ¢ independent random samples, the test statistics of the
form

£ = jzalmj[(T"'j — wn )/ ANl

are considered. Here m; is the size of the jth sample, uy,; and Ay are normalizing
constants, and

N
Ty, = (l/mj)_ZIEN.i ﬁil

where Z) = 1, if the sth smallest of N = ZLI m; observations is from the jth
sample and Z{) = O otherwise. Sufficient conditions are given for the joint
asymptotic normality of T's,;; 5 = 1, ---, ¢. Under suitable regularity condi-
tions and the assumption that the sth distribution function is F(z + 6./N%),
the limiting distribution of £ is derived. Finally, the asymptotic relative efhi-
ciencies in Pitman’s sense of the £ test relative to some of its competitors viz.
the Kruskal-Wallis H test (which is a particular case of the £ test) and the
classical F test are obtained and shown to be independent of the number ¢ of
samples.

2. Introduction. One of the frequently encountered problems in statistics is
to decide whether differences in various samples should be regarded as due to
differences in the parent populations or due to chance variations which are to
be expected among random samples from the same population. A few tests of
nonparametric nature have been proposed for this c¢-sample problem. The
Kruskal-Wallis H test [14], Terpestra’s c-sample test [26], the Mood and Brown
c-sample test [22] and Kiefer’'s K-sample analogues of the Kolmogorov-Smirnov
and Cramér-von Mises tests [12] are a few of them. Tests for two-sample prob-
lems have been proposed by Wilcoxon [29], Mann and Whitney [19], Mood and
Brown [22], Lehmann [15] and others. Consistency and power properties of
some of these tests have been discussed by Lehmann [15], [16], [17], Mood
[23], Van Dantzig {5] and others. An exhaustive review of this problem is given
n Kruskal and Wallis [14] and Scheffé [25].

The H test of Kruskal and Wallis is a direct generalization of the two-sample

Received 21 February 1962; revised 4 May 1963.

! This paper was prepared with the partial support of the Office of Naval Research,
Contract Nonr-222-(43), while the author was at the University of California, Berkeley. It
was revised at the Courant Institute of Mathematical Sciences, New Ygrk University under
the sponsorship of the Office of Naval Research, Contract Nonr-285(38). Reproduction in
whole or in part is permitted for any purpose of the United States Government.
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4 Madan Lal Puri

Wilcoxon test discussed in detail by Mann and Whitney [19], and its limiting
distribution has been derived by Kruskal [13] under the null hypothesis and by
Andrews [1] under an alternative hypothesis. These results are generalized by
those of the present paper concerning the limiting distribution of the £ test.

The problem discussed in this paper originated from the paper of Chernoff and
Savage [2] and had its basis in the paper of Hodges and Lehmann [10]. In their
paper “The efficiency of some nonparametric competitors of the ¢-test” [10],
Hodges and Lehmann discussed the asymptotic efficiency of the Wilcoxon test
with respect to all translation alternatives. In the same paper they conjectured
that the normal score test which was known to be as efficient as the ¢-test for
normal alternatives [11a] is at least as efficient as the {-test for all other alterna-
tives. The validity of this conjecture was established by Chernoff and Savage
(2], who developed a new theorem for asymptotic normality of normal score test
statistics for the two-sample problem and by a variational argument proved the
Hodges-Lehmann conjecture. The work presented here is an attempt toward
generalizing these results to the ¢-sample problem.

Formally, we may state the ¢-sample problem as follows. Let [X,;,7 = 1,

mi;1 =1, -, c] be a set of independent random variables and let F(')(x) be
the probability dlstrxbutlon of X;; . The set of admissible hypotheses designates
that each F*”(z) belongs to some class of distribution functions ©. The hypothesis
to be tested, say H,, specifies that F*” is an element of , for each %, and that
furthermore

(2.1) FO(z) = «-- = F“(z) for all real z.

The class of alternatives to H, can be considered to be all sets (F®(z),
F'“(z)) which belong to € but which violate (2.1). To avoid the problem of ties,
it is assumed throughout that the class € is the class of continuous distribution
funections.

After finding sufficient conditions for the joint asymptotic normality of

Tw.;37 =1,---, ¢, we study the limiting distributions of £ under a sequence
of admissible alternative hypothesis H ~ which specifies that for each
i=1,2,-,¢;F(x) = F(z + 6:;/n') with F ¢ Q but not specified further, and

for some pair (¢, j), 6:  8; where the 6.’s are real numbers. Limiting probability
distributions of £ will then be found as n — «. The problem will be so formulated
that m.(n)/n tends to some limit s, , 0 < §; < o, asn tends to .

3. The proposed test and its relationship to other tests. The over-all sample
consists of D_s.1m: = N independent random variables X:; (i = 1, ---, ¢;
j =1, ,m), where the first subscript refers to the subsample and the second
subseript indexes observations within a subsample. Under the null hypothesis
all the X’s have the same continuous but unknown c.d.f. (cumulative distribu-
tion function) F(z).

Let Z§) = 1, if the ith smallest observation from the combined sample of
size N is from the Jth sample and 0therw1se let Z{} = 0. Denote
(3.1) m;Tx.; = Zz“’ i

te=l
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where E'x; are given numbers. Then we propose to consider the test statistic £
defined as

(3.2) £ = 2omf(Tws = ww)/An
where uy,; and A y are normalizing constants for the statistics Ty ; ;5 =1, --- ,¢.
The £ test presented in this paper includes as special cases a number of well-
known tests. For example, when Ey ;. = i/N, it becomes the Kruskal-Wallis H
test which is & direct generalization of the two-sample Wilcoxon test and is re-
lated to Terpestra’s K-sample test [26]. When ¢ = 2 and Ey : is the expected value
of the ¢th order statistic from the standard normal distribution, then the £ test
coincides with the symmetrical two-tail version of the normal score test, also
known as the Fisher-Yates-Terry-Hoeffding ¢, test and which is asymptotically
equivalent to Van der Waerden’s test [30], [31]. For it is then seen that

= IN/(V — m)J['z": By 1s.->]

where V¥ < -+ < V*™ is an ordered sample of size N from a standard normal
distribution, and 8; < --- < $m, are the ranks of Xy, - -+, Xym, from the com-
bined sample. See Lehmann [17], pp. 236-237. When¢ = 2,and Ey: = |} — i/N]|,
the £-test test reduces to the Freund-Ansari test [8] for testing the equality of
dispersion of two populations.

4, Assumptions and notations. Let X, ---, X.n, be the ordered observa-
tions of a random sample from a population with continuous c.d.f. (cumulative
distribution function) F¥(z); 1 = 1, --,c.Let N = 23.1 m; and \; = m;/N
and assume that for all N, the inequalitiess 0 < N = A, -, A S 1 — A < 1
hold for some fixed Ay = 1/c.

Let

S,(,.",)(;I:) = m; (numberof X;; S x,j=1, - , m:)

be the sample ¢.d.f. of the m. observations in the 7th set. We shall omit the sub-
script m; whenever this causes no confusion. Define Hy(z) = MSH) (x) + -+ +
2S5 (z). Thus Hy(z) is the combined sample c.d.f. The combined population
c.df.is H(z) = MFP(z) 4+ -+ + AF(2). Even though H(z) depends on N
through the A’s, our notation suppresses this fact for convenience and also because
our limit theorems are uniform with respect to F, --- , F9 and Ny, -, Ac.

Let ZY) = 1 if the ith smallest of N = 2_:_ym. observations is from the jth

set and otherwise let Z) = 0. Denote

N
(41) TN, = m,--TN,,- = EEN,; 1(57,2
where the Ey,; are given numbers. Following Chernoff and Savage [2], we shall
use the representation

(42) Tws = [ JiHw() dS ()
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where Ey,; = Jx(7/N). While Jy need be defined only at 1/N,2/N, --- , N/N,
we shall find it convenient to extend its domain of definition to (0, 1] by letting
J x be constant on (i/N, (¢ 4+ 1)/N].

Let

Iv = {r:0 < Hy(z) < 1}.
Then Iy is a random interval, given by Iy = [X®, X™), where X® < .-- <
X" denote the N observations arranged according to size.

Throughout, K will be used as a generic constant which may depend on Jx
but will not depend on F®, ---  F® my, ---, m.and N. The methods used in
the proof for the asymptotic normality of the Ty, ;’s are mainly adaptations of the
methods of Chernoff and Savage [2].

5. Joint asymptotic normality. Before proving the asymptotic normality
of the T'y,;'s we state a few elementary results.

(5.1) H = A\FY 2 AFY; i= 1,---, ¢

(5.2) 1 -F?<Q—-—H/N=Q—H)/\; i=1-,c¢

(5.3) FOl — FYYy S HO — HY/AISHQ —H)/\S; i=1,---,

(5.4) dH =z MNdF® = NdF'; P=1 -,
Lemma 5.1, If

(1) J(H) = liMy.e Jy(H) exists for 0 < H < 1 and s not constant,
(2) [ixlIn(Hy) = J(Hy)]dS3)(z) = o (N~?),
(3) Jn(1) = o(N?)
(4) |[JV(H(z))| = |dJ(H)/dH'| < KIH(1 — H)]77%",
fori = 0,1, 2, and for some 8 > 0, and almost all x (a.a.x),
then, for fized F, -« F and N\, -++ , A,

(5.5) limyaw P <___T""' — BN < t) = f‘ L
. e oN.j - 0 (2m)} '
where

+o .
(56) wvs = [ JH@)] dF(2)
and

Nos=2Tnf[ @I - PO
-2 YL B

1=l
i35

JTH@W'TH(y)) dF (2) dF (y)
+ Z )\ ff:o<z<u<=° F(])(l) F(])(y)

)1 =1
%]

(5.7) J'H@)W'H(y) dFP (z) dFP (y)
1 N j 5
oz Axixk[ff“m«w FO@)t — FO(y)]
1k, ) k)

J'H@)W'H(y)) dF (z) dF® ()
+ f/ FOWI — FY@W H@) H) dF Y (z) dF®(y).

—oey<rlx
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Proor.

=400
Tas = [ JulHy(2)]dS$)(z)

e OO

= [(InlHy(z)] — JIHx(2)]] dS3) ()

{z:0<H N (2)<1)

JIHx(z)] dS5) (z) + JxlHy(2)] dS5) (x).

j;:¢0<ﬂ~(z)<l] (z:Hy(@)=1}
In the second integral, writing dS¥)(z) = d(8%)(z) — F¥(z) + F”()),

J{Hn(z)) = J(H(z)] + [Hv(z) — H(z)}J [H(z)]
+ HHw(z) — H(z)PJ"[6Hx(z) + (1 — 8)H(z)], a.a.2.,
where 0 < 9 < 1;and H(z) = iy AF(z), and simplifying, we obtain

TN.J‘ =4 + Bm + an + gcm
where
(58) A= f JIH(z)] dF? (z)

(2:0<H (2)<1)
(59) Bu = JIH (2)] dIS$)(z) — F(2)]
{2:0<H (2)<1]

(5100 Buw= [ (Hy(z) — H(@)WH(z)] dFP (2)

{z:0<H (2)<1}

Con = [ (85(2) — FO@WH@)] dSE)(2) — FO ()]

(5.11) {2:0<H (<1

(512) e = [ (@) = HOX oighy, + (1 - 6)H) a8 a.

(5.13) Coonw = [ UnlHn(@)] = JUHN ()] 455 (2).
(5.14) Conn = [ IulHo(@) dSE) (@),

(5.15) Covuw = [ [=JIHE@)] — {Hy(z) — H)}IH @] 458 (@),

The proof of the lemma is accomplished by showing that (i) the A-term is
nonrandom and finite, (ii) B,y + B:y has a Gaussian distribution in the limit and
(iii) the C terms are of higher order.
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That the term
A= f JH (2)] dF (z)
[z'O(H(z)<l]

is finite and nonrandom follows from Assumption 4 of Lemma 5.1; see also in
this connection [2], p. 986, and in the appendix we have shown that the C terms
are of higher order. Thus, all that is required is to prove

Sts-LEMMA 5.1. By + Boy has a Gaussian distribution in the limit.

Proor. Integrating B,y by parts, replacing Hy(z) — H(z) by
D NS (z) — F¥(2)], and adding By to it, we obtain

Bu+ B = =3 n [ B@) dIS () — F9()]

il

(5.16) =
+ [T uE@] - N B@1 s @) — FO @),

It

[ A B s - BB ]

=1

(5.17) e
+ L5 W) ~ N B(X) — BUIH(X)] — N B(X)])

where
(518) BG) = [ JHW) aF )

with z, determined somewhat arbitrarily, say by H{z,) = %; F represents the
expectation and X, , --- , X, have the F*”, ... | F® distributions respectively.

The ¢ summations given by (5.17) involve independent samples of identically
distributed random variables. Therefore, if we show that the first two moments
of these random variables exist, then we can apply the central limit theorem,
with the result that each sum when properly normalized will have a normal
distribution in the limit and hence the sum of ¢ summations will have a normal
distribution in the limit.

First, to turn our attention to moments, note that by Assumption 4 of Lemma
5.1 and dF” < (1/\) dH,

|B(z)| £ K-[H(z)[1 — H(z)]]"*
and proceeding as in [2], for any & such that (2 + 6 YW=L438) > —1
E,ol BOON™ < K;  i=1, j—Li+1 ¢
Since

[J(H(z)) — \B(x)| £ K[H(z)(1 — H(z))]"®*
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the existence of 2 + & absolute moments of all the terms in equation (5.17)
follows.
To compute the variance of B,y + B.x, note that

4-” . .
—x,-f_ B(z) diS¥)(z) — FO(z)]

+~ . . .
= M_[ (83 (z) — FO)\'H(=)]dF(2), i=1,--,j—Lj+1,--+¢
has mean zero and variance

E{)\; fﬁ (82(z) — F¥(2)V'[H ()] am“"’(x)}2

40 ot
- e[ 806 - FO@IS0) ~ FOw)]
(5.19) J'H () [H(y)) dFP (z) dFP (y))
- % ff_ e FO@N = POV H@WHWIAF (2) dFO),
t=1---,j—-Lj+1 - ,c

Note that the application of Fubini’s theorem permits the interchange of integral

and expectation.
By a similar argument, the variance of

[T u@) -\ B@) ds (@) — FO (@)

¢ 40 ) , .
=~ [ 189 ~ FO@W (HE) dFO )

7ml

(23]

is given by

o[ P = W@V H)
=

-dF(z) dF (y)

1 ; J G , ’
- T N f_kz_l R ff_m«w FP(2)1 — FOV'(H(2)W'H ()]
(5.20) ikt ot

_dF(i)(x) dF(k)(y)

4

1 ; S ) ,
* ,».:“:1 M A ff_w«w FO(y)[1 — FO () [H(z)W'[H(y)]

Tk as] kot §

-dF®(z) dF® (y).
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Adding the ¢ terms given by (5.19) and (5.20) we obtain the variance result
stated in (5.7).

Thus we have shown that Bix + B:y is the sum of ¢ independent terms, each
of which has mean zero and finite absolute 2 + § moments. Hence Sub-Lemma
5.1 follows,

We shall now extend the proof of the above lemmsa to the case where
F®, ...  F9and A, ---, X are not fixed. We want to find a set of sufficient
conditions under which the asymptotic normality holds uniformly with respect
to FP, ... F and A, -+, A.. For this we need the following theorem of
Esseen [6], p. 43.

THEOREM (Esseen) 5.1. Let X,, ---, X, be independent observations from a
population with mean zero, variance o and finite absolute 2 + & moments Bars |
0 <& <1, then

[F* — " < e(8)lprssr/n®" + piler/n']
where F* is the c.d.f. of X, " is the approximating normal c.d.f., ¢(3') is a finite
positive constant only depending on & and psysr = Baysr/a” . (If 8 = 1, then
[F* ~ @* < e(8)oy/n).

To apply this theorem in our situation, it suffices, since we have shown that
the A term is finite and the C terms are uniformly 0,(N~?), to prove the uniform
convergence of Byx + Bay . For this it suffices to bound pss = Be4s/a’ " for
B(Xy), - -+, B(X,). Since in the above lemma we already bounded the absolute
2 + &' moments, all that is required is to bound the variances of B(X;), -- -,
B(X.) away from zero. Thus we have

CoroLLARY 5.1. If Conditions 1 to 4 of Lemma 5.1 are satisfied, and F” and
Ni,t =1, ,c (where 0 < N S N, -, A = 1 — X < 1 holds for some
fized Mg £ 1/¢) are restricted to a set for which the vartances of B(X,), --- , B(X,)
are bounded away from zero, then the asymplotic normality holds uniformly with
respect to F, - F and N, -+, \.

Next we prove

Lemma 5.2. Under the assumptions of Lemma 5.1, the random vector N My, —
px1 o3 Twe — mne) has a limiting normal distribution.

PROOF The difference N*(Tw.; — un.,) — NY (B + BY), where B{{
B is the “Byy + Buy” term for the jth component Tx.; — uy,; , tends to zero
in probablllty and so, by a well known theorem ([3], p. 299) the vectors N*( Ty .
— pna; 3 TPye — wn.) and N’(B(” 4+ B$Y;---; B B$i}) possess
the same hmltlng distributions. Now since the jth component B{ + B can
be expressed as Qi1 {(1/m.) D=ty BY(X:.)}, the proof of the lemma follows
by applying the Central Limit Theorem to each of the ¢ independent vectors

U/m)Z[B (Xia), B2(X:), , Bhi(Xa); 6= 1,---, ¢
6. The Covariance of two B-Statistics. By definition
COV(B(J) + Bé}’v) (J ) + B;)]V)) = E(B(J) (J))(B(J ) + B(J"))

(6.1) y
( = E(BWWB’) + E(BWBY’) + E(BWB}’
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where

: R G 4"

(62) 8 = [y TH@) ASE2@) = B ()

(63) @ = [Ha(y) — H@)W'H@)] dF(y)
[y:0<H ()<}

and B{} and Bi¥ are given by (5.9) and (5.10) respectively.
Now integrating B{¥’ by parts and using the facts that

f+w d[S(])(.’It) _ F(i)(x)] =0

dH(z) = Z A dFP(2)

¢l

and
Huly) = Hy) = LASD@) — FOW))

routine computations yield, for j = 5,

BB = -2 3o [ [T s - FO@Is ) - FOG))

-J'(H(@)J'H(y)] dF () dF" (y).

Therefore,
(Y pdUn 1 €) f) 4
EBWBE) = L X[ @i - PGV IE@)
(64) J'H(y)) dF¥(z) dFY" (y)

— L[ PN - FO@WIHEW HWIF @) dFOG).
a-l —oly<z<®
Proceeding analogously

E(BY)BY)) = __Z)\ [f_ y FO(2)[1 — F9(y)]-J'H ()]

l-=1

(65) JTH(y) dF¥(z) dF (y)

15 i 7 ’
—a e[ PP - FO@)EE)

J'[H(y)} dF¥(z) dF? (y)
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and
EBEBE) = w2 [ PO - FOW))-JH ()]
1=1 BTy <0
(6.6) J'H(y)] dF(z) dF"(y)
e ea [ FOWN - FO@) T H @ E )
z=-1 VLY <z L™
. F(J)(x) dF(J’)(y).
Thus
N -Cov (B{J) + Béfv’, (J ) B(: ))
- - [ /I FO ()l — FO())-J'[H (2))- T H(y)]
i=1 — R zy <P
dF(z) dFY(y)
+ [ ROl = FO@) T HE@TEE)
Bly<z<®
-dF®(z) dF""(y)]
Sl F@ - FO@L T E@) TEH)
(6.7) -dF¥ (z) dFY (y)

+ f_[ F7 (L — F®2)]-J'[H(2)]-JTH(y))
oly<zLo0
_dF(l')(x) dF(J)(y):I

][ FO@N = QL@ H )
iml -0 LYy <o
‘dF(j)(.’l?) dF(J")(y)

+ ff FOIl — FO(2)]-J'[H(2))-J [H(y)]
— 0Ly <TLW

-dF? (z) dF"’”(;;)], i=7.

Combining the material of the previous two sections produces

THEOREM 6.1. Under the assumptions of Lemma 5.1, the random vector T =
(NY(Twi — wwa), -+ s N(Twe — une)) hasa limiting normal distribution with
zero mean vector and variance-covariances given by limiting forms of (5.7) and (6.7)
respectively as N — oo,
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RemArk. The following theorem gives a simple sufficient condition under
which Conditions 1, 2, and 3 of Lemma 5.1 hold.

TueorREM 6.2. If JN(i/N) is the expeclation of the ith order statistic of a sample
of size N from a population whose cumulative distribution function is the inverse
function of J and |[JU[H(z)]| < KH(1 — D" P for 4 = 0, 1, 2; for some
6 > 0 and a.a. x, then

(1) Impyaw Jv(H) = J(H).

(i) Jw(1) = o(NY).

(i) fiplJn(Hy) — J(HN)]dSE) (2) = o(N"®); 5 = ., c
Remark 1. The condition IJ("[H (x)]| £ K[H(1 - H)]—"“’“aa z is weaker
than the condition |J”(H)| < K[H(1 — H)]""®* used by Chernoff and

Savage [2], otherwise Theorem 6.2 is the generalization of the Ilatter’s
Theorem 2.

ReEMARK 2. With the use of this theorem, it is easy to verify that if Jy(i/N)
is the expected value of the ¢th order statistic of a sample of size N from (z) the
standard normal distribution, (ii) the logistic distribution, (iii) the double
exponential distribution, (iv) the exponential distribution, then the vector
(Tw1;---; Ty,.) has a limiting normal distribution.

7. The limiting distribution of £ under Pitman’s shift alternatives. F'rom
this section onward, we assume that m; , - - - , m, are nondecreasing functions of
a natural number 7 that tends to infinity. The dependence on 7 is indicated when
necessary, by writing m;(n), ux, .(n), ete. For convenience, it is assumed that,
for all 1,

lim,,, m:(n)/n = s;

exists, and there exist two constants a and b such that 0 < a < s; < b < .

In subsequent analysis, we shall concern ourselves with a sequence of ad-
missible alternative hypothesis H; which specifies that for each ¢ = 1, --- , ¢;
F¥(z) = F(z + 6./n') with F £ Q but not specified further, and for some pair
(¢, 7), 6: # 8. The letter n is used to index a sequence of situations in which
H? is the true hypothesis. Limiting probability distribution of £ will then be
found as n — .

We first prove the following

THEOREM 7.1. If

(1) for all z,

lim,..o m:(n)/n = 8;

exists,

(2) Conditions (1) to (4) of Lemma 5.1 are satisfied,

(3) F(z) = F(z + 6,/n*) so that for each index n, the hypothesis Hr, is valid,
then the random vector [mi(Tx1 — uwi), -+, m¥(Tw.c — ux..)] has a limiting
normal distribution with zero means and covariance matriz whose (j, ;' )th term is

(71) [5,’," —'(Sj S,");/Z; 8,] Az
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where
1 1 2
(7.2) 47 = f T (x) de — (f J(z) dz)
0 0

and the limit holds uniformly in s; provided 0 < a < §; < b < w0;i=1,---,¢.
Proor. Irom Equation (5.7) '

lim, .« N-afv_,' = {Z s + —1- Z s+ le Z 8¢ sk:l I Z Sr
i=1 7

=1 8=t SR TR =1
(7.3) 1% 17£) b3 1 1PE ], 3
l L4 [
+2—s~< ;1 868k>12 Zsr
T Nk it ot =t
where
(74) L =2 ffm(m (1 — y)J' (x)J'(y) dz dy,
1 1 2
"l' = 2 — d )
(7.5) ‘[;J(z)dx (/; J(z) dz
and
(7.6) I, =2 f/o<y<z<x y(1 — 2)J'(2)J (y) dx dy,
1 1 2
. _ 2 _
17 - fo JA(z) dz <fo J(z) dx) .

Thus, omitting the routine algebra,

limy.o N-o¥,; = (—-1 + 2 s s,> A%

i=1
Similarly, from equation (6.7),
lim,,*oc N COV(TN,,' — HN.j, T.’\',j' — F-N,j’) = —Az.

Hence using Theorem 6.1, we obtain the desired result.

Denoting mi(Tw.; — uw.;)/A by W;, it now follows that the random vector
W = (W,, ---, W,) has a limiting normal distribution with zero mean vector
and with covariance matrix whose (j, 7' )th term is

I:Bn" — (558} Z; si:]-

We now make the analysis of variance transformation

c

[
So = 2 el W, where e = s:/2_ s,

f=1 =1

S = Zai."Wi’;i= 1,2,---,c—1

2=l
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where the a’s are chosen to make the transformation orthogonal. It follows that
> ¢-1 W is asymptotically chi-square with ¢ — 1 degrees of freedom.
Now recalling that

W, = mi[TN,; — un,i(6))/4
and letting
Py = mé[#N’,(B) - ﬂN,I(O)]/A

we write £as £ = iy (W + r:)? and this has the same limiting distribution as
£ = D i (Wi + rI)? where rf = lim,.. 75 reduces to

¥ = limp.e mf[‘[:o[.] {g )\aF<x + b ; 0‘)} — J{F(x)}]dF(z):I/A.

We assume that the above limit exists and is finite. Noting that Y_c, s!W: = 0
and D% shr¥ = 0, it follows from a theorem of Mann and Wald [20] that

TuEOREM 7.3. Suppose that for all i, limp.. m:/n = s; exists and is positive,
Then under the hypothesis Hy, , if for any real numbers ty , - -+ , 1, ,

limy .o m} [f: [J {; \F (x + %;)} — J{F(z)}] dF(x)]/ A

exists and is finite, then for n — oo, the limiting distribution of the statistic £ 1is
X2 (AN"(HY)) where N\*(H?Y) is the noncentrality parameler given by

AN(HY) = Z [lim»»w m} [M [J {Z )‘"F(”’ + ean;*ol)}

 _rel|ew] /e

=1
REMarK. If the function J is such that J(u) = u, then from (7.8), letting
m; = n-s;, we obtain for \°(H?%) the expression

c 2 c ¢ =400
[12/ (Z S,’> ] Z 8j (Z Sa limn-;w f n*
A=l 7=1 amal )

. {p (a: + "—7‘,—”) - P dF(x))2

which is the noncentrality parameter \"(H») of the Kruskal-Wallis H test.
(See Andrews [1}, p. 726.)

In many situations, the noncentrality parameter A* can be computed easily
with the aid of the following lemma which, though stated in a form appropriate
to our purpose, is due to Hodges and Lehmann [11].

Lemma 7.2 (Hodges-Lehmann). If

(1) F 1s a continuous cumulative distribution function, differentiable in each of
the open intervals ( — «, a1), (a1, a2), * -+, (@s , @), (@, ®©) and the derivative
of F is bounded in each of these intervals and

(7.8)
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(ii) the function (d/dz)JF(z)] is bounded as x — < then
. +e < 0p — 0;
lim, .o n*f_ [J {Z e F (x + __,—)} - J{F(x)]] dF (z)

© a=1 n

= (1 i s.-) Zc: Sa(0a — 0;) [:ng{p(x)} dF (z).

i1 a=l X

(7.9)

The proof of this lemma follows by the methods used in Section 3 and 4 of
Hodges-Lehmann (1961).
In case the conditions of Lemma 7.2 are satisfied, then

¢ +o00 2
(7.10)  AS(HE) = 3 5.(68, — 8)° (L (%J[F(x)]f(x) dx) /A2

a=1

where

(7.11) 0= $aba/ D, Sa
aml

am=l

and A? is defined in (7.2).

8. Asymptotic relative effciency. The concept of asymptotic relative efficiency
of one test with respect to another is due to Pitman. An exposition of his work,
together with some extensions is presented by Noether [23a].

THEOREM 8.1. If m: = n-s; and if the distribution function F is such that

(1) limpw nf [:" [F (:c + %) - F(z)] dF (z)

exists
et (/B 5%
- J[F(x)]] ar@) [ 4

extsts then the asymptotic relative efficiency of the H lest with respect to an arbitrary
£ lest for testing the hypothesis Hy against Hy, is given by

c c +w
12 Z S {Z $; limy e f n?
a=1 .

{ml ]

. ) : [F (x + %= 0") - F(:c_):l dF(x)}2 A

& F <x 4 b=t } ~ J{F(x)}] dF(x))

2

nt

The proof of the above theorem follows by taking the ratio of the two non-
centrality factors after the alternatives have been equated. The details are
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omitted since similar considerations have been given in several other papers, e.g.,
Andrews [1], Hannan [9)].

CoroLLARY 8.1. If in addition to the hypotheses of Theorem 8.1, the hypotheses
of Lemma 7.2 are satished, then

40 2
©2) P = 124 ([ f@ ar /[ L RIS )

where f is the density of F.

Here e, ¢ does not depend upon ¢, a, 8, and is a function of F only.

It may be remarked that (8.2) agrees with the results found by Chernoff-
Savage (2] and Hodges-Lehmann [11] for the two-sample case, and hence the
results of this paper as well as those of {2] apply directly to the c-sample problem.

The asymptotic relative efficiency of the classical F test with respect to an
arbitrary £ test is contained in the following

THEOREM 8.2, If

(1) for all 7, limg.o m.(n)/n = s; exists and 1s posttive,

(ii) the distribution function F(z) satisfies the assumptions of Lemma 7.2, and

(iif) f_ﬁ 2 dF (z) — <f: z dF(x)>2 =

-]

exists, then, the asymptotic relative effictency of the classical F test with respect to an
arbitrary £ lest for testing the hypothesis H, against H, is

(83) Lo(Flz)) = ;i(l VAR dF(x))

Proor. The § statistic is defined as

F = _i_ zc:'ln,‘(Xi. — X)Q/ 1 zc: i‘: (X,;j - AX")2

C—l.'=1 N—C¢=1,‘=.1

2

where X:. = D74 Xiy/meand X = D 5 D 7 X,,/N. It has been shown by
Andrews [1] that under the hypothesis H» , this has a limiting noncentral chi-
square distribution with ¢ — 1 degrees of freedom and noncentrality parameter
A(H?) given by

c

(8.5) N(HZ) = 2 sd(6: — 8)/o]".
=1
Now proceeding by standard arguments, the proof follows.
In particular, when J = &', where ® is the standard cumulative normal dis-
tribution function having the density ¢,

+o 2 2
(86) ees(F(2)) = o (f_w %%>

which is known to be the asymptotic efficiency of the two sample normal scores
test with respect to the student’s t-test and is always = 1. When F(z) is a normal
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distribution function, this is 1. See in this connection Chernoff-Savage {2} and
Hodges-Lehmann [11].
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APPENDIX

10. Higher order terms. Before we prove that the C terms of Lemma 5.1
are uniformly of higher order, we state the following elementary results which
are used repeatedly. (Also in this connection see Chernoff and Savage [2].)

10A. Elementary results.

1. H 2 MNF©P 2 MFY i=1-,c
2.1 —FY = (1 —-H)/\2 (1 —H)/\. i=1-,c.
3. F(1 = F®) £ HQ — H)/\i £ H(1 — H)/\i; i=1-,c
4. dH 2 M dFY = N dF®; i=1---,c
5. Let (an, by) be the interval Sy, where

(10.1) Sy, = {z: H(1 — H) > no/N},

when 7, can be chosen independent of F*” and \; ;4 = 1, -- - , ¢, such that

(10.2) PiXijeSy, ;¢0=1,---,¢;5=1, -, m} 21— e

10B. Detailed consideration of the C-terms of Lemma 5.1. First, let us consider

Civ = Ni fMK (8l (z) — FO(@)W'H(2)] dISK) (z) — F(2)];

(10.3) i=1:--,j—=14Lj+1--,c

MCHY + O i=1Le, 0]

@ = [ 189@ - FO@WIH@) dSD@) — F@);
(10.4) SN,

=1 ---,¢;1 7 j,
and

;;',>=f (852 () — F® () H(2)] dISE) (2) — F¥(2));
(10.5) o

1=1.--,¢;7 %]
First note that
(10.6) E(CIY) = E{E(CIY | Xpn, -, Xjm))} =0;=1, -+ ,¢;1 =]
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Next,
ewr=2ff 2@ - F@ISR ) - POV E@WH)

dISE)(x) — FO(2)]dIST (y) — FV(y)]

+ 1 [S9(z) — PO PV H@I dSS (2);  d=1, -+, ¢ % j.

m; 2c8y,
Therefore,
-E(C'Sv))2 = E[E{(C(l)) lXle Tty ij,-}]

f/ (t)(x)ll (i)(y)]
mz m; z.ye8N, <y . ]
J'TH()W'[H(y)) dF(z) dF(y)

1

m,m;

+ [ @I - PO HEN ),

‘ t=1:-,¢c2 57
(10.7)
S 5 ]y o HOU = HOIH@O — HE)I™

(H(y)(1 — HyNT Y™ dH(z) dH (y)

+ ]I\i, H@)[l — H@H@)(1 — H@)]7*™ dH(z)
—1428
< Alf? N KN‘+:‘ Y ( % ); (K is generic].

Hence from (10.6) and (10.7), we obtain, using Markoff inequality,
(10.8) |C52] = o (N~P).

We now consider C$y . Let H, = H(ay), Hy = H(by). Then from (10.1)
H, = 1 — H; < K/N. With probability greater than 1 — ¢, there are no ob-
servations in Sy, and

o5 < fo " RO )] dF ()

+ fl (1 — FO@ ()] dFx); d=1,---,¢;15% ]

(109
) <Kf H dH +f (1 - H)dH
= (HQ — B)®= " Ju, [HQ — H)]9-
b+ 1
SK [ HYYH S K g
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Hence

(10.10) |CSR| = op(N™®); i=1,---,¢;¢ #j.
Consequently,

(10.11) Civ = MCR +CN = 0,(N°®);, i=1,---,¢;7 #J.

The proof of C;x = 0,(N™®) follows by first showing that
CjN = _%)‘j[CllN + Cin — Cl:m]

where
(a) Cw = [ [89)(z) — F(2)PI"[H(2)) dH (z),
(b) Ciaw = fs (89(z) — FP(2)J"[H(x)] dH (z),
() Cuaw = o [ VIH@)1 d52(2)

and then showing that each Cixgy is o,,(N—(”); k = 1, 2, 3. The proofs of the
above statement are omitted since they are essentially contained in the work of
Chernoff and Savage [2].
Next consider
Corw = | Hu(@) = H@)FI"BHA(x) + (1 — )H(2)] dS¥) (2),
N
0<8<1.

With probability >1 — ¢, the interval Iy can be replaced by Sy, without chang-
ing Ceq1,v . Furthermore since

Supuys>o [H(z)/Hx(x)| = 0,(1)
and
Supay< [[1 — H(z)]/[1 — Hy(x)}] = 0,(1),

for each ¢ > 0, there exists an 7 > 0 such that with probability greater than
1 — ¢, we have for {z: 0 < Hy(z) < 1},

(6Hy(z) + (1 — O)H ()]l — {6Hx(z) + (1 — 0)H(z)}] > niH(z)[l — H(z)].
Then
lCc+l NI )—(:)-HC

where

Cow = f [Hy(z) — H(@)P{H ()1 — H(z)))"P* 489 (z)
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and

E(CaN) = E[E(CaNIXjI; Sty ij,‘)]

=+ [ TNFOQ - FOEQ ~ B ar ()

Ne t=1

1 — F@ — 9F® _ ~H+H )
+7v‘zf%(1 F7)(1 — 2F7)H(1 — H)} dF9 (z)
K Tt K oy (h
= Nf% (H( — H)]V7dH + szs,,, (H(1 — H)V*" dH
< K
= N®O+*

Consequently Cei.v = 0,(N~P).

The negligibility of C.42.» and C.43,~ follows from Assumptions 2 and 3 of
Lemma 5.1 and the proof of the negligibility of C..,4.~ proceeds in the same
manner as given by Chernoff and Savage for the term Cyv and therefore is not
given here.
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ON THE ESTIMATION OF CONTRASTS IN LINEAR
MODELS

SUBHA BHUCHONGKUL' and MADAN L. PURI?
Universiry of California, Berkeley and New York University

1, Summary, In linear models with several observations per eell, a class of
estimates of all contrasts are defined in terms of rank test statistics such as the
Wilcoxon or normal scores statistic, which extend the results of Hodges and
Lehmann (1963) and Lehmann (1963). The asymptotic efficiency of these esti-
mates relative to the standard least squares estimates, as the number of observa-
tions in each cell gets large, is shown to be the same as the Pitman efficiency of
the rank tests on which they are based to the corresponding ¢-tests.

2. A Class of Estimates of Contrasts. Let the observable random variables
be X, , and suppose they are of the form

(2.1) Xie =4+ Uia (@a=1+,m;i=1,+,¢)

where the variables U,, are independently distributed with common distribution
F having density f, and the £’s are unknown constants. Denote by X, the vector
(X, -+, Xim;) and suppose that the Hodges-Lehmann statistic A [(3.1) of
[4]] is calculated for every pair of samples, there being ¢c(¢ — 1)/2 pairs in all.
We shall write h;;( X, X;) for the value obtained from the ith and jth samples
(5,7 =1, -+ ,¢; 7 # 7). Thus we have

(2.2) hi(Xi, X;) = 2%k Ee[VER),
where 8; < -+ < 8n; denote the ranks of X;;, -+ -, X,»; in the combined 7th
and jth samples, and where V® < ... < V™% denote an ordered sample of

size (m; + m;) from a distribution ¥. Let
Af,- = sup {A;hii (X, X; — Ay) > ul,

(2.3)
A:‘,‘* inf {Aij:hij(Xi , X; — A;) < }L},

where u is the point of symmetry of the distribution of h;;(X;, X;) when A;; = 0
i.e. when & = £ . It was shown in [4] that the estimate &;; = (A]; + A})/2 of
£ — &; has more robust efficiency than the classical estimate T;; = X,;. — X;.,
where X;. = D niy Xia/m; .

Since the estimates A;; are incompatible in the sense that they do not satisfy
the linear relations satisfied by the differences they estimate [see Lehmann
[5], [6]], Lehmann proposed the adjusted estimates Z,; of the type

-~

(2.4) Ziy = A;. — A,

Received 19 March 1964; revised 30 June 1964.
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where
(25) 8,-. = E;-ﬂ 3;,'/0.

(For a short cut method of computing A;; , the reader is referred to [4], p. 602.)
Then for any contrast ), ¢;£; with >, ¢; = 0, which can also be written in the
form

(2.6) 0= D im1 D5 di(k: — &)
the estimate
(2.7) b= D i diiZij = D_jm1 D jm di;(As. — A;.)

is proposed.

3. Asymptotic distribution and efficiency. The asymptotic distribution of
the adjusted estimates Z,; is given by the following theorem, where the sample
sizes m; are assumed to tend to infinity in such a way that m; = p;eN, N —
andi =1, ---,c

THEOREM 3.1.

(i) The joint distribution of (Vy, -+« , V1) where

(3.1) Vi = NA. — (& — &)]
is asympilotically normal with zero mean and covariance matriz

Var (Vz) = (I/Pi + I/Pc)Az/BZ’

82) Cov (V:i, V;) = A%/ (peB)

where

(3.3) A = [§J%x) dz — (f3J(z) dx)?, J=v"
(34) B = [J[F()lf'(x) da.

Here the density f of F is assumed to satisfy the regularity conditions:of Lemma 7.2
! E?ll ) For any t© and j,

(3.5) N*A; ~ NY(Aw — Ap),

where ~ indicates that the difference of the two sides tend to zero in probability.
(iii) The difference N (Z:; — Aij) tends to zero in probability for all <, j.
The proof of (i) rests on the following lemma.
LemMma 1. Suppose that the variables X .o have the distribution specified in connec-
tion with (2.1) with fixed F but a sequence of means

(B, -+, 8) = &™, -, )
satisfying
(3.6) £V — £ = —ay/N.



Contrasts in Linear Models 25

Let hii(X:, X;) be defined as in (2.2) with ¥ satisfying the assumptions of
Theorem 1 of (1], then the variables (Wy, ---, W.;) given by

(3.7) Wi = Nlhie/me — pic) i=1--,c—-1

have a joint asymptotic normal distribution as N — oo, with zero mean and co-
variance matrix

38) Var (W) = A%/ (pi + p)pe,
' Cov (W., W;) = A’pip;/pc(pi + pc)(pi + pc)

and

. _f [ F’(x) 4+ — ‘+ F(x+a,/N*)]dF(x).

The proof of this lemma is given in the appendiz.
Proor oF THEOREM 3.1. (i) By 9.1 of [4],

lim P{N}A,. — (& — &)] £ a. for all 7}
= lim Py{N}[(1/m.)h:. — a] < O for all 4}

where a = fJ [F(x)] dF(z) and Py indicates that the probability is computed
for a sequence of means satisfying (3.6). Furthermore since by Lemma, 7.2 of [8]
N(uie — a) > —a:Bpi/(p;: + pc) as N — =, it follows that

lim P{NYA.. — (& — £)] £ a for all 5}
= lim PN{N’[(I/mc)hic — wi] £ aBp:/(pi + pc) for all 4}.

By Lemma 1, this is equal to @(a., -+, a._1) where @ is the (¢ — 1) dimen-
sional multivariate normal distribution with zero mean and covariance matrix
(3.2).

Parts (ii) and (iii) of the theorem follow by Lemma 2 of Lehmann (1963).

The proof of the following theorem exactly parallels Lehmann’s argument,
see for example Theorem 3 of [6], and is therefore omitted.

THEOREM 3.2. The asymplotic efficiency of the estimate § = D_icy D i1 di;Z i
of0 = Z:=1 Z?:] d,‘j(fi - EJ) relative to the estimale E?.:l 2;‘"1 d;‘j(Xi. - X,)

8

(3.9) e = o’B*/A%
where o = Var (X.a), and where A* and B’ are given by (3.3) and (3.4) respec-
tively.

In particular when J = &', where ® is the standard normal cumulative distri-
bution function having the density ¢ then (3.9) is the same as the Pitman efficiency
of the normal scores test relative to the t-test [of. 1].

4, Appendix.
Proof of Lemma 1. Let F,,, (z) be the cdf (cumulative distribution function)
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of m; observations X1, ---, X, of which the population cdf is F.(z) =
F(x — &;). Denote m;; = m; + m. and \;,e = m;/ms. ;2 =1, ++-, ¢ — 1.
Define H,., () = NeFm, () + (1 — MNe)Fm,(2) and Hi(x) = M Fo(z) +
(1 — N )F;(z). Then [cf. Chernoff-Savage (1958)] we can write

(4.1) Tie = hu/m, = A + BYY + BSGPY + Dk 089,
where

(4.2) A% = [J[H(z)] dF(2),

(4.3) BiY' = [J[Hi(2)) d[Fn(z) — Fo(z)),

(4.4) Biv = [[Hn.(z) — Hi(z)W'[Hi(2)] dFc(x)

and the C-terms are all 0,N _%..
The difference N*(7., — A") — N} (B}’ + Biy’) tends to zero in probability
and so, by a well-known theorem ([2], p. 299) the vectors (Wy, -+, W.,) and

(Zi, -+, Zey) where Z; = N*(B{}’ + Bsi) possess the same limiting distribu-
tion. Thus to prove the lemma it suffices to show that for any real §.; i =
1, ---, ¢ — 1, not all zero, J_i—1 8;Z; has normal distribution in the limit. Now

proceeding as in [1] or (8], we find

Zfzi 61'Zi = —Z"=l [6 ((1 - M)/m)z Bu(Xla) - EB:(X)}]

(#5) + D201 — M) {mT Domey Be(Xea) — EBi(X.)),
where

(4.6) Bi(z) = [%,,J[Hw(y)] dF:(y),

(4.7) Bi.(z) = [1.,J'Hi(y)] dF.(y)

and z 1s such that H;(x,) = 1.

The above summations involve independent samples of identically distributed
random variables having finite first two moments. Hence D_ i1 8.Z; when properly
normalized has normal distribution in the limit. The proof follows.

The covariance matrix (3.8) is obtained by taking limits of N Var (B{y’

Bsy’) and N Cov (Biy’ + By, BiY’ + BS) as N — .
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SOME DISTRIBUTION-FREE k-SAMPLE RANK
TESTS OF HOMOGENEITY AGAINST ORDERED
ALTERNATIVES*

MADAN L. PURI

1. Introduction and Summary

A problem which occurs frequently in statistical analysis is that of deciding
whether several samples should be regarded as coming from the same population.
This problem, usually referred to as the k-sample problem, when expressed
formally is stated as follows: Let X;,j=1,---,m;,i=1,--+,k, bea set of
independent random variables and let F,(x) be the probability distribution
function of X;;. The set of admissible hypotheses designates that each F; belongs
to some class of distribution functions Q. The hypothesis to be tested, say H,,
specifies that F; is an element of {2, for each i, and that furthermore

(1.1) Fi(x) = - - - = Fy(x) for all real x.

The class of alternatives to H, is considered to consist of all sets (Fy(x), - - -,
F,(x)) which belong to Q but which violate (1.1). This is the most general form
of the alternative and is the basis of most of the existing work in the non-para-
metric theory. Reference to prior work on this problem and some of the recent
work may be found in Dwass {7], Kruskal-Wallis {12], Mood [15], Terpestra
120}, and the author [16].

However, in some problems, it is possible to be more precise in the specifi-
cation of the alternative. When this is the case, it is advantageous to make use
of this extra information to obtain more powerful tests. Thus instead of the
unrestricted form of the alternative mentioned above, we shall consider in this
paper the ordered alternatives

(1.2) Fy(x) Z -+ Z Fy(x)

(at least one inequality being strong).

For the case k = 2, the situation is met by using the single-tail test but for
k> 2 the distinction between one- and two-tail tests is lost. The present work
may therefore be regarded as generalizations of some of the single-tail non-para-
metric tests,

R e —

® This work represents results obtained under Sloan Foundation grant for statistics and under
U.S. Navy Contract Nonr-285(38). Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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This problem has many applications in social sciences. Jonckheere [11], for
example, has mentioned an experiment to test the effect of stress on the task of
manual dexterity. Here data would be obtained from groups of subjects working
under high, medium, low, and minimal stress; the null hypothesis being that
stress has no effect on performance, and the alternative that increasing stress
produces an increasing effect. Armitage [1] discussed a similar problem in
connection with 2 X k contingency tables and found the applications in the
medical field.

A few tests of parametric nature have been developed for this problem by
Bartholomew [2], Chacko [3], Kudo [13], among others (see Bartholomew [3]
for references). In non-parametric theory, attempts to meet the ineed for a test
against ordered alternatives have only been made very recently. Jonckheere [11]
discussed the one-way analysis of variance and proposed a distribution-free test
which may be considered the most direct predecessor of the tests presented in
this paper. Chacko [5] proposed another test similar to the one proposed by
Kruskal and Wallis [12] for the unrestricted altérnatives and studied its asymptotic
Pitman efficiency against translation alternatives. In the present paper, we
propose and develop a family V of rank tests for the equality of k£ probability
distributions against the ordered alternatives. Limiting distributions of the
proposed test statistics are derived, following the methods used in Chernoff and
Savage [6] and the author [4], [16]. These results are used to derive general
formulas for the asymptotic efficiencies of these tests with respect to one another
and their parametric competitor, viz. the test based on the Student statistic.
In some of the cases where the asymptotic efficiency cannot be used to compare
the tests, the asymptotic power comparisons are made in an attempt to select the
best test.

2. The Proposed Family of Tests

&

The over-all sample consists of N = 3 m; independent random variables

{=1
Xy, i=1,--k j=1,---,m, where the first subscript refers to the sub-
sample and the second subscript indexes observations within a sub-sample.
Under the null hypothesis, all the X’s have the same continuous but unknown
c.d.f. (cumulative distribution function) F(x).

Denote by X; the vector (X;,--+,X,,) and consider all the samples in
pairs, there being k(k — 1)/2 pairs in all. Let &9 =} if the »-th smallest
observation from the combined i-th and j-th samples is an X; observation and,
otherwise, let £ = 0. Let #{"#? = —1, if the »-th smallest observation from
the combined i-th and j-th samples is an X, observation and, otherwise, let
P = 0.

Denote

2.1 by = = + 1,
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where
+
(2.2) m;z{) ="zm E-D g
pm]
and
(2.3) mrld) = z E(-.n |
-1

where the {E¥? » =1,--- ,m; + my); i <j} are constants satisfying certain
restrictions to be stated below. Then we propose to consider the test statistics of
the form

k-1 &
{2.4) V=73 3 mmph,

fm] jmitl

for testing the null hypothesis against the alternative of ordered cumulative
distribution functions.

Relationship to other tests. The V test presented here is a simple extension
to several groups, of a class of procedures, which have been frequently recom-
mended for the problem of deciding whether two samples come from the same
population. For example, when E!"" = y[(m; + m;), the test described above
coincides with the Jonckheere test [11] which is a direct generalization of the
one-sided Wilcoxon test discussed in detail by Mann and Whitney [14]. When
k = 2 and E!? is the expected value of the k-th order statistic of a sample of
size (m; + m;) from the standard normal distribution function, then the V test is
the same as the one-tail normal scores test (which is asymptotically equivalent
to the Van der Waerden test) discussed in detail by Hoeffding [10}], Terry [19],
Chernoff and Savage [6), Hodges and Lehmann [9], and the author [16]. When
k =2 and E! is the expected value of the »-th order statistic of a sample of
size (m; 4+ m;) from the exponential distribution, then the V test reduces to the
I. R. Savage test [18].

3. Assumptions and Notations
Let X, -, Xim, be the ordered obscrvatlons of a random sample from a
population with continuous c.d.f. Fi(x). Let N = Z m; and suppose that the m;

tend to infinity in such a way that m; = p, - N, N-» 0. Write m; = m; + m; .
Let F,, (x) be the sample c.d.f. of m, observations X; . Then

Ho(5) = 2P () + 22 o ()

(7]
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is the combined sample c.d.f. of the i-th and j-th samples. The combined popu-
lation c.d.f. of the i-th and j-th samples is

my my
Hy(x) = — F((x) + — Fi(x) .
o) = S Fa) + L)
Then the following representation of A, is equivalent to (2.1):

@ b [P () ) = Fu o)
where

J(,'“)[r/m“] BES"”, v=1--,m,, 1<y=1,",k.

While the function J,,, , need be defined only at 1/m,; , - - -, my/m,; , we may
extend its domain of definitions to (0, 1] by letting it be constant on (v/m,;,
(» 4+ 1)/m,]. Furthermore, we make the following assumptions:!

AssuMpTiON 1. lim Jy(u) = J(u) exists for 0 < u < | and is not a constant.
N—x
ASSUMPTION 2.
.[1 [Vimop [ Hom, ()] = J(H , (3)]] dF o (5) = 0,(1/V'N) 2
where
1,,.“-{2:0 <Hm“(x) <l}' ('.vj) m i,k 1<y,
AssumpTioN 3. Jy(l) = o(NV/S),

AssuMpTION 4. |[JU)(u)| m |dTdut"| § K[u(l ~ u)]*-1/%-, i m 0, 1,2, for
some X and some 4 > 0.

4. Asymptotic Normality
We shall prove the following theorem.

THeoREM 4.1. Under Assumptions 1-4,

—_— {3 1
(4’.1) lim P[N—s/g(V I“\') < ‘] = f — -2t dx
N—w Oy - —o V2r
where

42 wy=3Smm, [ [t @1600 - [ IH R0 ]

! These assumptions are analogous to those of Chernoff and Savage (6], to which paper the
reader is also referred to for general background.

s If {X,) is a sequence of random variables and {f,} a sequence of positive numbers, we write
X, = o,(f,) if X,[f, — 0 in probability, or equivalently, if for each ¢ > 0 there is a sequence
M, —0such that Pljx | > M, fi} <1 —¢.
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and
RPN IR IPIPIPWILILY X PP
(43) i<j i<j; r<s
{i,j#r.e}
o}, and o, ,, being given by (4.12) and (4.13), respectively.

The proof of this theorem rests on the following lemma.

LemMAa 4.1, Under Assumptions 14, the matrix with elements NV2(h;; — u,),
where

+ o + ®
(44 po = [t a ) — [ R,

- ®

has a limiting normal distribution with zero mean and covariance matrix given by (4.12)
and (4.13).

Proof of Lemma 4.1: We can rewrite &;; (cf. {16]) as

+x + @
by [ ol N ) = [ [ (0] dF 2
(4.5) . .
= Uyj + B,..“ + z C(K‘.Tm,«, + z Cg'),,,” ’
KE=1 K=1
where

+

46) = [ IHL dE) — F),
+

Buy = [ THL 0 ) = Fi)

+o
[ ) — How 1 01 dF
4.7) >
~ [T A0 ) ~ Fie

~ [ ) = H ) ),

and the C-terms are all o, (N-V%) (cf. [16]). The difference NV2(h; — u,;) —
AVWBM" tends to zero in probability and so the matrices with elements NV2(h,; — u,))
and NV2B_ = possess the same limiting distribution if they have one at all. Thus,
to prove this lemma, it suffices to show that for any real 6;;,i < j=1,---,k,

not all zero, NV2 3 34,8, has the normal distribution in the limit. Now
i<j )
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B, , after omitting straightforward but tedious computations, can be rewritten
as

Bo, == 3 (B(X.) ~ EB,(X)]
¢ v=]

(4.8) .
- & 28— BB,

where

(4.9) Bx) = [ UH01 40

and *

(4.10) B (x) = f JH 40 dF.()

with x, determined somewhat arbitrarily, say by H(x,) = §; E represents the
expectation and X; has the F, distribution. The rest of the proof follows by
standard arguments, see for example Bhuchongkul and Puri (4].

To compute the variance-covariance matrix of 8, , we note from (4.8) that
B,,, can be rewritten as

B, = 780 dtF ) — Fi0) = B2 AF ) - Fi(0)

@iy = = [l ~ R 0] 4R

+®
+ [T 1P e) — B0 )
Since the two samples are independent and EB,, | = 0, we have

+® 2
of, = Var (By,) = EU‘.‘ (Fo (%) = Fy(%)]J'[Hy(x)] ‘Fl(*)}

+® L
+ E{[1hu, 0 = oW ) R0
This gives (after omitting the routine computations)

% ’=m£‘ J] Fi(x)[1 = F(50))'[Hy(x) ' [His()] dFi(x) dF ()

~m<E<Y<®

(4.12) )
Ry ﬂ Fy(x)[1 — Fy( )W’ [Hy()1 [His( )] dF (x) dFy(y) -

—W<E<Y <D

Note that the application of Fubini’s theorem permits the interchange of integral
and expectation.
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Similarly,

Oyyrs = Cov (Bm"-) B

(4.13) 4

™)

r - - . . -
=0 if 14, r, s are distinct,

m;
~W<Z<Y< T

1
B —[ .U Fi(x)[1 = Fi( )V [Hy(x)) ' [H,,(5)] dFy(x) dF ()

v [ Ron - R0 O dF.(y)]
TEsysEse if i=r, j#s,
1

= [ ﬂ Fi(x)[1 — F(n) W' H(x)]'[H,,(5)] dFi(x) dF( y)
—W<I<Y<®

v [ Ao - RO aEe dF,m]

-OCY<TI<D £ oisr j=__s,
1

- [ [ ren = rons a0 are a0

my
-V LILY< D

+ _U F(»)[1 — Fi(x)1J[Hy(x)T'[H,,( )] dFy(x) dFr(J)]
~WLY<T<®

if i=s5 js#r,
1
= - —[ ff F(x)[1 = F;(0) 1 [Hy(9)1'[H,, ()] dF(x) dF,(y)

™y —@<T<Y<®
+ Jf Fi( )1 = Fy(x) ' [Hi;(x))J'[H,,( 5)] dF;(x) dF,(J):l

-~ <y<z<®©

L if 195, j=r.

We have now proved that the set of random variables {NV2(h;; — u,;) , i < J}
is asymptotically normally distributed. Consequently, the matrix with elements
{N-320, i < j}, where Uy; = m;m;(h;; — pi;), has a limiting normal distribution,
The theorem follows.

5. Asymptotic Distribution Under Translation
Alternatives and Efficiency

In this section, we shall concern ourselves with a sequence of admissible

alternat

ive hypothesis Hg which specifies that, for each i =1, -k, Fi(x) =

F(x + 6,/v/N), with F € Q but not specified further, and not all the 6’s being

equal,
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THEOREM 5.1.  For each index N, assume that m; = p,+ N, with p, a positive
integer and that the hypothesis HY, is true. Let h; be defined as in (3.1) with the function J
satisfying the assumptions of Lemma 7.2 of {16). Then the matrix with elements {N~32U,; |
i <j}, where Uy = mm,(hy; — pys), has a joint asymplotic normal distribution with
zero mean and convariance matrix

Var (N=32U,) = pip,(p:i + p;)4*,

[ =0 if i,j,r,5 are distinct,
= pipsp,A* f i=r, jHs,
(5'1) Cov (N—3I2U“ 4 N—3/2U") 1 = P‘PIP'A’ !f i~ 7, ] =35,

= —pipsp A’ if i=3s, jHET,
| = —pipsp,A? f i#s, j=r,

where
1 1 2
(5.2) A =j J3(x) dx — (f J(x) dx) .
0 0
This theorem is an immediate consequence of Theorem 4.1 and the fact that
under the assumptions of Lemma 7.2 of [16],

[ =0 if 1,4, r, s are distinct,
A
=— ifi=r, jos,
Pt
A* e .
lim Noy,, | == if iz r, j=gs,
N P
A?
= - ifi=s, j#f,
P
A2
=~— ifigks j=r,
P;

and
Nim Nog, = (1p, + 1/p) 4%

Furthermore, since under the regularity assumptions
NY(p;4(8) — pis(0)) — (8, — Os)I{JJ[F (x))/dx} dF (x)
we conclude

Tueorem 5.2. For each index N assume that m; = p;- N, with p; a positive
integer, and that the hypothesis HY is true. Then the statistic N-Y3V has a limiting distri-
bution with mean

3.3 oty — 00 [{WIF (1) (e
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(50 - S

where A2 is given by (5.2). Here the function J is assumed to salisfy the regularity
conditions of Lemma 7.2 of [16].

We are now in a position to make large sample comparison between different
members of the ¥ test and their normal theory competitor based on Student’s
statistic. We shall adopt a method developed by Pitman [15a] who defined the
relative asymptotic efficiency of two sequences of tests as the limiting inverse
ratio of sample sizes necessary to achieve the same power against the same
sequences of alternatives at the same significance level.

and variance

TueoreM 5.3. The asymptotic efficiency of the V test relative to the normal theory

test based on the statistic
T = z 2 m"mj(X.'- -— X’-) >

i<j)

™,
where X, = ziX,-,/m,, is
A=l

ot [ [+® ‘)
5.9 va®) =5 ([ wrreya) s,
where o® = Var (X_,).
Proof: Let Ty = X, — X;. and V;; = NY¥T, — (£, — £;)). Then the
variables {V,,, i <j} have an asymptotic normal distribution with zero mean

and covariance matrix _
Var (V) = o*(1/p: + 1/p;) ,

(=0 if 4,7, r, s are distinct,
P
= — fi=r, j3#s,
Pi
i ifi787, j=3s
’ =— 4 ’ =
Cov (Vi) 1 P ’
=---o—8 ifi‘—'—'-", j#';
Pi
-_-.—-f if igfs, j=vr.
Pi

Hence N-32T has a limiting normal distribution with zero mean and variance
‘after omitting the details of computation) ¢qual to

21T -3

=] i=1
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Now proceeding-by the standard arguments, see for example Puri [17] and
Chernoff-Savage [6], the result follows.

The relative efficiency of the V test relative to the T test is the same as found
by Chernoff-Savage [6] for the corresponding procedures in the two-sample
problem, and shown by the author [16] to be valid also for the multi-sample
problem (unrestricted alternatives).

Special cases. (i) let J be the inverse of the rectangular distribution on
(0, 1), then the F test reduces to the rank-sum V(R) test, better known as the
Jonckheere test {11]. The efficiency (5.3) then is equal to 12¢%(ff3(x) dx)2

3
This is known to satisfy ¢pp) p(F) = 0.864 for all F; epp)p(F) = — ~0.955
-

when F is noymal, and e,(p) r(F) > | for many non-normal distributions. (For
the Gamma distribution with parameter p = 1, ¢p(g) p(F) = 3.)

(i) Let J = ®-1, where ¢ is the standard normal distribution function.
The V test reduces to the normal scores V(®) test. The efficiency then is
known to satisfy ¢y o(F) Z 1 for all F and epq) r(F) = 1 if and only if F is
normal.

Thus from the asymptotic efficiency point of view both the V(R) and V(®)
tests can appear to be advantageous compared with T test unless one can be
reasonably sure of the absence of gross errors and other departures from normality.
(For the asymptotic efficiency comparison of the rank-sum to the normal sco:es
procedure, sce Hodges and Lehmann [98].)

In [2], under the assumptions of normality, Bartholomew derived the likelihoosd
ratio statistic £? relevant to the problem treated in -this paper. Chacko [i}
extended the work of Bartholomew and showed that the £?2 statistic has the
limiting non-central chi-square distribution as N — c0. Asymptotic relativc
efficiency cannot be used to compare the ¥ and £? tests because of the fact that
the forms of their limiting distributions are different. For the same reason, it is
not possible to find the asymptotic relative efficiency of the ¥ and # tests, However,
sorhe light can be thrown on the question of the choice between the V, £2 and F
tests by making large sample power comparisons. Some numerical results for
V(®), V(R), E2 and F are given in Table 1. Some of the figures for £2 and F
have already been given by Bartholomew {2] but they are reproduced here for
ease of comparison. It must be borne in mind that they are asymptotic results
and that they involve the assumptions of normality. Furthermore, it is assumed
that the sample sizes m; are all equal. Two configurations of #’s are considered and
the power in each case is expressed as a function of

=3 60,

.
where 6 = 3 0,/k.

$=1
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[asie 1. The asymptotic power comparisons of V(®), V(R), £2 and &

when 8, 26,2 ---20,.
A

Q 1 2 3 4
k=3 V(o) .050 .258 637 911 .991
.050 218 .532 .829 .965
V(R) .050 .252 .622 901 .988
.050 212 519 814 .959
Er .050 .239 .594 .885 .980
.050 221 .569 872 .983
F .050 0.130 0.402 0.776 .959
k=4 V(o) .050 .258 637 911 .991
.050 .192 460 .749 .926
V(R) ,050 0.252 0.622 0.901 0.988
.050 .187 .448 734 917
Es .050 .239 .594 .885 .980
.050 .202 .531 .849 .978
F 0.050 0.115 0.350 0.710 0.945
k=8 V(D) .050 .258 .637 911 991
.050 .142 311 .532 744
V(R) .050 .252 622 .901 .988
.050 .140 .303 .519 .730

B .050 —_ — — —
.050 .191 .456 .800 973
5 .050 0.090 0.249 0.535 0.853
k=12 V@) .050 .258 637 911 .991
.050 121 .258 417 .606
V(R) .050 .252 622 901 .988
.050 120 240 .406 .592

f ool .050 — — —_ = -
.050 .0178 423 .766 .963
5 0.050 0.080 0.205 0.466 0.776

(1) 6's equally spaced. Let 0,_, — 8, = A*, i =2, -k, then 6, — 0, =
: =j)4*%, i < j. The asymptotic power of the V(R) test (cf. Theorem 5.2)
v then

*4) B(V(R)) =1 — ®[4, — AV 3[n],
and the asymptotic power of the V(®) test is given by (cf. Theorem 5.2)
1.3) V(D)) =1 — d[2, — A].

Here
z

. 1 .
—_ — —z*/2
tb(x) \/217 J:. a ¢
and 1, is the upper 100a -/ point of ®(x).
——

* The upper figure of each pair corresponds to equal spacing of the 8's and the lower figure to
'he case when all but one of the 0's are equal.
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(i) 6,206, =---=06,. The asymptotic powers of the V(R) and V(®P) tests
in this case are given by

(5.6) AV(R) =1~ ¢[1. - A~/§ ~/7c'—j'-:1]

and

(5.7) BV(®)) =1 — d>[z, - A*/FE] :

It is clear that, unless & = 2, both the V(R) and V(®) tests are more powerful
in detecting a given A when the means are equally spaced than when all but
one are equal. Furthermore, in the latter case the power of the V(R) test as well
as that of the V(®) test decreases as k increases.

The following conclusions may be drawn from these results.

(i) The V(®), V(R) and E? tests arc always to be preferred to the classical
& test which assumes no prior information regarding the 6's.

(ii) The powers of the V(®), V(R) and E? tests for the case when all but one
of the 0’s are equal, are lower than the powers of the corresponding tests for the
case when the 0’s are equally spaced.

(iii) The V(®) test is superior to the V(R) and E? tests when the 6’s are
cqually spaced; it is also superior to the V(R) test but inferior to the £? test
when all but one of the 8’s are equal.
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Preface. The results of Part I and Part III were obtained by the second author
(cf. Puri (1962)) and those of Part I and Part II by the first author by following
different methods (cf. Mehra (1963)). The authors wish to express their sincere
thanks to Professors Erich L. Lehmann, Jaroslav Hijek and Edward Paulson
for very helpful suggestions and criticisms.

PART I

1.1. Introduction and summary. Consider K treatments in an experiment
which yields paired observations, namely (Xua,X;), =1, ---,Ny;
1 £ 2 < j £ K, obtained by N,; independent paired comparisons for each pair
(4, 7) of treatments and assume that N; difference scores Z,*? = X4 — X1,
!=1,-.-, Ny, have a common continuous cdf (cumulative distribution func-
tion) II,;(2). This is the situation, for example, if in the analysis of an incomplete
blocks experiment with each block of size two, one makes the assumption of
additivity in the usual analysis of variance model. Then for testing the
hypothesis

H,: Hij(z) + H.'j( —2) =1 and Ilij(z) = H,-:,-»(z)

for any two pairs (4, 7) and (¢, /) [which states that each of the distributions
II; of the differences Z;;; = X, — X;;,l =1, --- , Ny, is symmetric with respect
to the origin, and furthermore all distributions II;; are identical] some rank tests
based on the generalizations of the one-sample Chernoff-Savage-H4jek type tests
(cf. [9) and [3]) are proposed, their limiting distributions are derived, and their
efficiency properties with respect to one another and some of their competitors,
viz. the Bradley-Terry test [1], the Durbin test [6] and the classical F test are
studied. (For alternative formulations of the null hypothesis, and the study of
the special case of the generalization of the one-sample Wilcoxon test, the reader
is referred to [16].)

Let {J~x;k =1, -+, N}, be a double sequence of numbers satisfying certain
conditions to be stated below (Section 2) and let Ry be the rank of |Z,?|,
when the N = k1 2> Ny absolute values of the observed differences

[Z.%?,1=1,2,--- ,Ni;,1 £i<j = K, are arranged in the ascending order of

Received 17 May 1965; revised 30 November 1966.
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magnitude in a combined ranking. Define
(L.1) = YU IN(RED /(N + 1)) -sign 2,57,

where Jx(u) is a step function defined over (0, 1) taking constant values Jx
over the interval ((k — 1)/N, k/N], i.e.,, Jy(u) = Jyu = J(k/N + 1) for
k — 1/N < u £ k/N. (Note that 7y*? = —rx%?); 74" is also expressible as

(1.2) ' =l 4
where

N * — N * %
= Zk=l Iw @i, Tij = Ek=1 JN,kai:',k ’

with a¥, = l(a. & = —1) if the kth smallest absolute Z in the combined rank-
mg corresponds to a positive (negative) Z,%?,1 = 1,2, ..., N,;, otherwise
al;x = 0 (aij% = 0). Consider now, for testing the hypothesis H, , the statistics
of the form

(1.3) Ly = 20 { 2o (a7 /NI /(N7 22 TR K,

with the test consisting in rejecting Ho at level a if Ly exceeds a predetermined
number ¢y o where Py [Ly 2 cv.o] = a. The limit distributions of these statistics
as N — o, under H, and “contiguous” translation alternatives, are derived in
Part I under two sets of sufficient conditions—under (a) the assumptions of
Hijek [9] and (b) under those of Chernoff and Savage [3] (Section 2). This enables
us to determine (Section 3) the asymptotic (Pitman) efficiency of any two sta-
tistics belonging to this class relative to each other and, for that matter, relative
to any other competing statistic for which the limit distribution is of the same
form e.g., Bradley-Terry statistic, the classical F-statistic and the class of statis-
ties Ly* described by (1.4).

It turns out, however, that given any statistic belonging to this family, the
statistic constructed in exactly the same manner but with 74? now based on
separate-rankings of the absolute Z’s for each pair (¢,7) (1 £ ¢ < j £ K) is, in the
Pitman sense, as efficient as the given statistic. This latter family of statistics is
represented by

(14) Ly* = 25 {2 (P /(K dN.,) )}
where dx,; = D24 J%;,, and
5P = S T (REGP /(N + 1)) -sign 2,7,
R;}f; ;) bemg the rank of |Z,”| when the N, absolute values |Z,"?|,
1=1,2, , Ni; , are ranked separately for each pair (7,7) (1 £ i< j < K).

The form of the hypothesis H, suggests that it is the “joint-ranking” procedure
which is more appropriate. However, if we apply the Pitman criterion, the
question as to which of the two procedures—the joint-ranking or the separate-
rankings—is preferable remains unresolved. This question is partially investi-
gated in Part II by considering the local ‘“asymptotic’ efficiency as the number of
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treatments tends to infinity. The results obtained suggest, that for testing against
shift in location, a “‘joint-ranking” statistic Ly is preferable to its counterpart
Ly”* based on “separate rankings” except for alternatives for which the Durbin-
statistic is relatively Pitman-efficient than the given statistic Ly . It is also shown
that for testing against a specified alternative, the ‘“best’’ rank-order statistic (in
the sense of local power) is the one based on the joint ranking procedure.

Part III contains the proof of the asymptotie joint-normality, as N — «, of
the variables 7v*” (1 £ ¢ < j £ K) under fixed alternatives from which then
one can easily derive the limit distribution of L for ‘“contiguous’” translation
alternatives.

1.2. Limit distributions. Consider the problem of testing H, against the alterna-
tives of shift in location. To investigate the asymptotic efficiency of any Ly or
Ly* (or F-statistic), we obtain in this section their limit distributions, assuming a
sequence Ky (defined below) of translation alternatives which approach Hy, as
N > o, viz.,

(2.1) Ky :Ii(2) = O(z 4+ uiN ) for each pair (4,5),(1 £i<j £ K),

where II(z) is a continuous cdf satisfying the symmetry condition II(z)
+ I(—2) =1 and us are certain constants, not all zero and satisfying
wi; = —uj; . Consider now the following two sets of sufficient conditions:

H djek conditions:

@ : Assume the existence of a function J(u) defined over (0, 1) such that

() [o(u)du < o,  (ii) limy.w [5{Jx(u) — J(u)}*du = 0.
Q, : II(z) possesses a differentiable density w(z) such that the function
Y(u) = =o' [ ((1 + w)/2))/=[I(L+u)/2)], 0<u<]l,

satisfies fﬁ Vi(u) du < .

Chernoff-Savage type conditions: We introduce some notation. Let
¢ = K(K — 1)/2 denote the number of all possible pairs and label them
a=1,2 ---,c. Let ma, na be the number of positive and negative Z‘*’s (then
Ma , N are random but ma + na = N, is non-random). Let FY®(z)(F™“(z))
stand for the conditional distributions of the [Z®| given Z” > 0(Z” < 0) and
F;ﬂ(z)( F..(z)) the sample cdf’s of the absolute values of the positive (nega-
tive) Z‘’s. Further let Aa = ma/N, pa = na/N.

(2.2) Hy(z) = 2iaci MaFh(2) + paFn (2)]
and
(2.2a) H(z) = 2 e NF @ (2) 4 paF ™ (2)]

and denote by Q; and Q4 the conditions
Q: (i) J(u) = limy., Jy(u) exists for 0 < u < 1 and is not constant;

(i1) Jin Un(Hu(2)) — J(Hy(2))] dFn(z) = 0,(N7),
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Jin Un(Hu(2)) — J(Ha(z))] dF, () = o,(N7H),

where Iy = {2:0 < Hy(z) < 1}.
(ili) Jw(1l) = o(N?)

(iv) J(u)| = flu(l — u)] 7,
JPw)| = |dT/du’] < tu(l — u)]7,

for 7 = 1, 2, for some ¢t and 6 > 0.

Q : (i) The distribution II(z) admits a unimodal density =(z) which is

bounded in the neighbourhood of the origin.
(ii) J'[I{z)]r(x) is bounded.

Let x.'(8°) stand for the non-central x*-variable with ¢ degrees of freedom and
the non-centrality parameter §°; and let .’ stand for the corresponding central
x’-variable. We now state

TureoreM 2.1. Assume for each N the truth of Ky and that either (a) the conditions
(2, Q) or (b) the conditions (s, Qu) are satisfied. Assume further that
pij = limy. {Nij/N} exists and is positive for each pair (4, 7) (1 £ 7 <j £ K).
Then the statistic Ly is distributed in the limit, as N — o, as a xx-1(8°) variable
with

(2.3) 8 = (B/K) 25 { Do imi (Phiwii)}’
where
(2.4) B = ([ J(w)¥(u) du)*/([§ T3 (u) du)

under (@, Q) and
(2.4a) B = 16([¢ J'(21(x) — 1){x(x)}? dx)*/([3 J*(u) du)

under (Qs , Q).

It is easily verified that when both the conditions (2, @) and (2;, Q) are
satisfied, the two expressions for B above coincide. This holds for most situations
of applicational interest (Section 3).

For the special case when u;; = 8; — 6; where not all s are equal and N;; = n
for each pair (¢, 7), the non-centrality parameter (2.3) takes the form

(2.5) 8 = (2B/(K — 1)) 2% (8: — 8)°

where § = >, 6./K.

The proof of part (a) is based on the following two lemmas, the first of which
is an extension of the main theorem of Héjek, based on the notion of “contiguity.”
This lemma, which enables us to conclude the joint-normality of the variables
= (1 £ 4 < j £ K) under (€, @), is also needed for the results of Part II.
The proof of part (b) is based on the more general Theorem 3.1 of Part III.

The statement of Lemma 2.1 concerns a slightly more general model deseribed
below: Let (Z,1 - - - Z.y,), 1 = v < =, be a sequence of random vectors, where
N,— « asv— «» and Z’s are independent, and denote by R, the rank of |Z,| as
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the totality of |Z|’s are ranked in ascending order of magnitude. Further, let

(2.6) S, = 242 dued (Roa/(N, + 1)) -sign Zo
whered,;. ,1 < k £ N, , are certain constants satisfying
(2.7) lim,.. {(maxi<ign, die)/( 2iz1 d)} = 0,
and assume that

(2.8) P(Zu < 2/B, 0] = II((2 — Bew) /o),

where II(z) is as defined in (2.1), —o < 8 < «, ¢ > 0, are unknown param-
eters and ¢,; are again certain constants satisfying the condition (2.7) with d’s
replaced by ¢’s and

(2.8a) sup, ( D_r2 cy) < .

Let £(Y,/P,) — N(a,, b,}) denote that the distribution of b,”(¥, — a,) con-
verges, as v — o, to N(0, 1) distribution.

LeEMMA 2.1. Suppose that the conditions (2, ) are satisfied. Then under the
model (2.8), the statistic (2.6) satisfies £(S,) — N(n, , t,") where

(29) 7 = (B/0)(Jo J(w)¥(u) du)- 232 ducw
)= (Jo ' (u) du) 2t diy .

Proor. Consider a particular distribution II and let @, and P, stand for the
probability distributions under 8 = B0, = o9 and 8 = 0, ¢ = o respectively.
The proof below is simply a reconstruction of certain essential steps in Hajek’s
proof. Let T, denote

T, = 2 4 dvod[T(|Yi])] sign Z,a

where Y., = (Zx — Bo)/ooand T(z) = 2II(z) — 1,ifx = 0, and T(x) = O
otherwise. Then, as in [9], one obtains that if after proper normalization, one
of the limit exists,

(2.10) : limye £(8,/Q) = lim,.. £(T,/Q).

To apply Lemmas 4.2 of [9] we have to show now that £(7T,, L,/P,) converges
to some bivariate normal distribution. The equation (2.10) and part (iii) of
Lemma 4.2 [9] would then give the result forthwith. For this it suffices, on account
of the arguments of Section 7 of Wald-Wolfowitz [24], to prove the asymptotic
normality of an arbitrary linear combination of 7, and L, , where L, is as defined
by (4.16) of [9], viz.,

(2.11) T, + wL, .

From equation (5.21) of [9] we know that P, — lim,..{L + (¥*d./2)
— 48,% = 0, where v = (Bo/00), d,’ is defined by (7.6) of [9], and S,* =
— > e (Vi) /m(Yi)}, so that (2.11) is asymptotically equivalent in dis-
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tribution, after proper normalization, to the statistic
(2.12) 280 (ru + ) — $uy" d)

where i = w du{T(|Yi])} -sign Z,i and rae = —pacuy- {7’ (V) /mw(Yr)}. It
is easy to see that the variance ¢,’ of (2.12) is given (since the summands ry; and
rax have zero expectations under P,) by

0v2 = Mlz(fé Jz(u) du) 21?;'1 dfk + #2272( f(lj J2(u) du) Zr)cv=’1 ka
+ Zupy([5 T (w)¥(w) du) 282 o doi -

We may assume that ¢,’ is bounded away from zero (for otherwise the result
trivially holds).

Letting now I, denote the indicator function of the set A, we have for every
e>0

0 2ok Bl rprai zeon (e + 726)°} S 0070 200 E{T (e 23601718
(2.13) + 0,7 200 B g zheontiel + 0070 2082 E{I 1y 2400172k}
+ av_z lecv;;l E{I[[r2k| ;%w,]rgk}

where each summation on the right of (2.13) converges to zero on account of
conditions ©:(1), @, (2.7) and (2.8). Thus the Lindeberg-Feller condition is
satisfied, which establishes the asymptotic normality of (2.11); and the proof is
complete.

LEmma 2.2. Under the conditions of Theorem 2.1 with either (a) (1, @) or
(b) (R, ), thec = K(K — 1)/2 random variables {7v"*"/N¥}, (1 £ i <j £ K),
are distributed in the limit, as N — o« , as independent N (1, A®) variables, where

= [fs J*(u) du]® and

(2.14) 2" = phi pii([o J(w)¥(u) du) under (01, &),
207 = 4ot wi ([T T 2I(2) — 1ln(z) dI(z)) under (D5, ).

Proor. The proof of part (a) of this lemnma is based on Lemma 2.1, and that
of part (b) is given in Part III. Under a labelling « = 1, 2, ---, ¢ of the

= K(K — 1)/2 pairs (4, j) (1 = 7 < 7 £ K), the statistic (2.6) can be ex-
pressed in the present context as

(2.15) Sy = 2.5y D V= dPIn(RY)/ (N + 1)) -sign Z,®
= 2% 2 | 204 d T n(BN /(N + 1)) -sign 2,7},

For a given palr (%, 7), the statistic 74 /N* is obtained from (2.15) by setting
deP =N 1=1,2, , N, and all other d’s equal to zero. The condition
(2.7) for thls ch01ce of ds is satisfied, so that by Lemma 2.1 £(r»""/N}))
— N(n?, A?) under Ky . Furthermore, a similar argument shows that any arbi-
trary hnear combination of {ry"”?/N¥;, 1 <4 < j £ K} has normal distribution
in the limit. The proof follows.
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Proor oF THEOREM 2.1. It follows from Lemma 2.1 that the variables
Wi = [D i (Ngra®? — 0 )/AR,

t=1,2 ---, K, have in the limit a multivariate normal distribution N(0, A)
where A = || 8;» — 1/K ||. Now making the analysis of variance transformation
Up= 2500 (KW,

Ui= f’=1Aii’WN,i’7 1= 1’ 27 e ’K— 1!

where A’s are chosen to make the transformation orthogonal and proceeding
exactly as in [18], the proof follows.

The following theorem concerns the limiting distribution of the separate-
rankings statistic Ly* defined by (1.4).

TueoreM 2.2. Under the assumptions of Theorem 2.1, the statistic Ly™ is dis-
tributed in the limit, as N — , as a xx-1(8°) variable with & given by (2.3).

ProoF. Similar to that of Theorem 2.1.

From Theorems 2.1 and 2.2 it follows by letting u;; = 0 for all pairs (7, 7)
that Ly and Ly™ are asymptotically distributed, under H, as xx_; variables.
This provides a large sample approximation to the critical points cy . and ¢y« )

1.3. Asymptotic efficiency. In this section we consider some interesting special
cases of the statistics Ly and Ly™* and discuss their asymptotic efficiencies rela-
tive to each other and the F-test. If we now let

(i) J(u) = u, 0 < u < 1, then Ly reduces to the rank-sum
version of Ly discussed in [16].

(i) J(u) = x '(u), where x is the cdf of the chi-distribution
(3.1) with one degree of freedom, we get the multi-sample ana-
logues of the Fisher-Yates-Fraser and Van der Waerden

tests of symmetry respectively.

(iii) If we let J(u) = constant, Ly(Lx") reduces to the Durbin-
statistic.

Let these statistics be denoted by Wy , Ly, 1, Ly, 2 and Dy respectively. Simi-
larly one obtains the counterparts of the above statistics from Ly*. Let these be
denoted by the corresponding starred letters.

Now it is well known [10] that in the situations we are considering the asymp-
totic efficiency of one test relative to the other is equal to the ratio of their non-
centrality parameters. Hence we have (e.g. when u;; = 6; — 6, and N;; = n)
the efficiencies of Ly, Ly2, Wy, Dy and F-statistics as follows:

Ei.s = Ei,s = or'lfo x (w)¢(u) du}’

(3.2) = o[ % m(z) dz/¢[d~ (I(2))]I;
Eiw = Erw = [[Zo7(2) da/¢[@7 (W(2)]]'/12[[ 20 7°(2) da]’
Eip = Eryp = [[2 7'(z) dz/6[@7 (I(2))]]’/47°(0).
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TABLE 1
Distribution EL, Ew,y, Eun.p
Normal 1 3/n ~ 955 x/2 ~ 1.571
Uniform © 0 0
Double exponential 4/m ~ 1.273 3r/8 ~1.18 2/7 ~ .637

Table 1 gives the efficiency comparisons for different densities of the L, test, the
W test, the D test and the § test.

For distributions II(x) which are not covered under the conditions Q. , one
may define

E} s,(I1) = lim,.o Es, 5,(I,),

if it exists, to be the asymptotic efficiency of S; relative to S, , where II, denotes
the convolution of II(z) with N(0, ¢°). For II,(2) the condition Q, is satisfied.
This covers the case, for example, of uniform distribution over [—¢, 6]. It is
also interesting to observe that if the form of II(z) is specified, one can be letting
J(u) = y(u) obtain from the family Ly (or Ly*) a statistic which is most
(Pitman) efficient for the given distribution II(z)—for example, by letting

J(u) = x (u) if II(z) is normal;
(3.3) J(u) = u if Ti(z) is logistic;
J(u) = constant if II(z) is double exponential.

Finally, we observe on account of Theorems 2.1 and 2.2 that E . = 1.
Discussion. On account of the last remark above, the question of preference
between the joint-ranking and separate-ranking procedures remains unresolved.
It is worth observing that the Pitman efficiency, although satisfactory in most
situations, is a rather narrow criterion for comparing the expected performance
of two tests, being just a limiting number which compares only their local asymp-
totic powers as the number of observations tends to infinity. A more compre-
hensive definition of asymptotic efficiency is discussed by Hodges and Lehmann
[11]; but such a comprehensive comparison is often too difficult to carry out in
more complex situations. The considerations of Part II, however, based on a
comparison of the “asymptotic” efficiencies of the statistics Ly and Ly™ as the
number of treatments is allowed to increase, do throw some light on this question.

PART II

I1.1. Local “asymptotic” efficiency. In view of the result that the joint-ranking
statistic Ly and the separate-ranking statistic Ly~ are equally efficient in the
Pitman sense (1.3), the question of the relative merits of these two statistics
remains undecided. This part is devoted to an investigation of this question.
For reasons stated in the last paragraph of Part I, however, we shall attemnt to
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throw some light on this question by a comparison only of their local “asymp-
totic”” powers, as K, the number of treatments, is allowed to increase indefi-
nitely.

It is shown below that if the number of comparisons N;;{ = n) is kept fixed for
each pair (7, j), but instead K tends to infinity, both the statistic Ly and the
statistic Ly*, after proper normalization, converge in distribution to the N(0, 1)
variable. This enables us to compare their local “asymptotic’”’ powers for each
fixed N. We observe that (since N = n(5)) as K — «, {Ky} again provides a
sequence of translation alternatives approaching H,. Let E(-) and ¢°(-) stand
in the sequel for the expectation and the variance, respectively, with any sub-
scripts indicating the conditions under which these quantities are obtained.

We need the following:

Lemma 1.1. Let x,” = x.(A,) denote the non-central chi-square variable with
r df and the non-centrality parameter A, , and assume that A, = o(r), asr — .
Then, asr — », &([x. — E(x,)]/a(x")) = N(0, 1).

Proor. The density of x,” is given by pa,(2) = D o Pr(Ar)friee(x), Where
pe(Ar) = (A,/2)* exp {—(A,/2}/k! and f.i2(z) is the probability density of
the central xi,2 variable, so that the characteristic function of [x,” — E(x.")]/
o(x.") is given by
J(@) = exp (=itlr + A)(2r + 44)7) 2oiko pe(8)(1 —2i(2r + 44,)7) 7

~ (1 = a(2/r))) 7" exp (~it(r/2)")}
-exp (—at(A(2r) ™) 2imo pi(A)(1 — it(2/m)) ™
= {(1 — at(2/r))) 7" exp (—it(r/2)")}
-exp | —3A(1 + a(2/r)") + 3A(1 — a(2/r)}) 7]
where the first term converges to exp { —*/2} and the second to unity, asr — w,
on account of the condition A, = o(r); the proof is complete.

RemARK. In the statement of Lemma 1.1 above we may replace E(x,”) and
o(x:) by r + A, and (2r + A,)? respectively.

THEOREM 1.1. Assume, for each index N, the truth of Ky with py; = 6; — 6;
(where not all 8’s are equal) and N;; = n for all pairs (i,j) (1 £ 7 < j £ K).
Further, assume that
(1.1) supx K2 ic; (6: — 6;)° < 0.

Then under the conditions @, and Qs of Part I, £(Ly) — N(3, 2(K — 1)) as
K — o, where
(1.2) n=(K—1)+ &,

with 65" given by (2.5) of Part 1.

Proor. Let the C = K(K — 1)/2 pairs (7,7) (1 £ 7 < j £ K) be labelled
a=1,2 ---,C (as in the proof of Lemma 2.2 of Part I) in some convenient
manner, where if a corresponds to the pair (7, 7), pa = pi; = 0; — 0;. Then, the
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N = nK(K — 1)/2 c’s defined for each N and « by
Cxar = pwa/N' = (8; — 6;)/N,

l=1,2, ..., n, satisfy the condition (2.7) I, as K — « (and consequently
N — ). This is easily seen by observing that, for the above cy’s, the left hand
side of (2.7)I reduces to

(1.3)  limg.e {maxigicj<x (8: — 0')2/7’"Zi<i (6: — 0')2}

< (4/n) limg., {maxi<igx (0: — 8) /KD T (6: — 8)) =
where 8 = Y %y 6,/K. The last inequality follows since D _.c; (6; — 6;)° =
KY X, (8; — 8)% On account of (1.1)II and (1.3)II, the conditions (2.7)I
and (2.8a)I are satisfied, so that by applying Lemma 2.1 of Part I one obtains

the asymptotic normality, after proper normalization, of any statistic of the
type (2.15)I (or (2.6)I) for which (2.7)1 is satisfied. Cons1der now any arbitrary

linear combination of the variables vx® = D ;4 Vi®?, ¢ =1,2, ---, K;
viz.,
Sy = SNV Y = Zf=1 (Zj;éixiVN(i'j))
= 22 i (N = M) VRY?,
(using V¥ = —V4"“?), where not all M’s are equal and zero values are per-
missible. The statistic Sy is obtainable from (2.15)I by letting for each
i=1,2 - K di? =Ni—\jforj>iandl =1,2, --- , n. With the above

choice of d s the left hand side of (2.7)I takes the form
limg,e {Mmax; <ici<x (Ne — ) Doici (N — A

which equals zero by the same arguments as used in (1.3)II. Accordingly, by
applying Lemma 2.1 of Part I and using, for any K, however large, the same
arguments as in Section 7 of Wald and Wolfowitz [24], it follows that, for suf-
ficiently large K, the variables (nK) H{Vy® — m®}, ¢ = 1,2, --- , K, where
m® = {—(2n)}(0; — 8)% [8J(u)¢(u) du)}, are approximately jointly normally
distributed with mean vector zero and the covariance matrix¥ = || 8;» — (1/K ||
-( f o J°(u) du). Arguments similar to those used in the proof of Theorem 2.1 of
Part I, coupled with an application of Lemma 1.1 above and Theorem 5 of Mann
and Wald [24] gives the result forthwith; and the proof is complete.

A similar result also holds for the statistic Ly™ defined by (1.4)I:

THEOREM 1.2. Assume, for each index N, the truth of Ky with u; = 6; — 0;
and N; = n for all pairs (4,5) (1 £ 7 < j £ K). Then, under the conditions of
Theorem 1.1, £(Ly*) - N(n', 2(K — 1)), as K — «, where

(1.4) 7 = (K —1) + (&™/nd")

with 8x* and d,’ are given by (1.8)II and (1.9)II respectively.
Proor. The proof of this theorem can be accomplished by using the central
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limit theorem for random vectors, Lemma 1.1 and arguments similar to those
used in the proof of Theorem 1.1 above.

Theorems 1.1 and 1.2 can be used to compare the local powers of the two sta-
tistics Ly and Ly*, as K — . Let 6 = (6;,0:, - - - , 6x) and let {Iva} and {Ixa}
be two sequences of numbers determined such that limy,e Pu[Ly > Iva =
liMy.w Pry[Ly* > Ixa] = a. The local powers of the statistics Ly and Ly* under
Ky at level a, are given respectively by

Bu(n, a,8) = Pry[Ly > Iva] ~ 1 — &{(Iva — n)/(2(K — 1IN},
Bra(n, &, 8) = Pry[Ly™ > lxa] ~ 1 — &{(Ixa — 7')/(2K — 1))},

for sufficiently large K, on account of Theorems 1.1 and 1.2 above, where ®(z)
represents the standard normal cdf, ¢(x) the corresponding density and the
symbol ~ denotes that the ratio of the two sides tends to one, as K — oo,
Accordingly, from Theorem 1.1 above it follows that

(L5) Buln, @;8) ~ a + 2H{(f5T(u)p(u) du)?/(f3J*(u) du)}
KR (0 — 6) - 9(ta)

for sufficiently large K, where {, is the upper « point of N(0, 1) distribution. To
obtain a similar expression for 8z+(n, a, 8), set

(1.6) 8. = liMyaw N Exy(V*¢7;
then following the above reasoning again we obtain

(1.7) Bus(n, @, 8) ~ a + (85" /n d")$(ta)
where

(1.8) o™ = (2Y/KY) T ( i (a7 /KDY,
and

(1.9) A’ = au (V") = Yiadu,

Jap = Jalk/(n+ 1)),k =1,2 --.,n, being the scores on which the definition
of the function &,(u), 0 < w < 1, is based. From (1.5) and (1.7), it follows that
for large K the local power for shift alternatives 8.(n, a, §) will tend to be larger
than B.+(N, a, 8) if and only if

eie = liMgaw {(Bu(n, @, 8) — a)(Bre(n, a, §) — a)7}
limg.w {(f3J(u)(u) du)®/(f5 T4 (u) du)} 2= (6; — 8)°
A2 { i (@K dl

is larger than unity. The expression ey}« may be called the local (“asymptotic”)

efficiency of Ly and Ly*, as K — «, and may be used to throw some light on the
question of comparison of Ly and Ly*. It may be pointed out, however, that for

(1.10)



52 K.L. Mehra and M.L. Puri

the ratio ei"%. a meaningful interpretation as in the case of Pitman’s formula
cannot be given.

I1.2. The explicit evaluation of e.";.. We shall derive in this section an

explicit expression for the local “asymptotic” efficiency ei*:s by evaluating
G
a7

oy = limy s N Ery{ 25 Jo(BLD/(n + 1)) sign 2,7}
= limyae N Y0 (nV/(k — 1)1(n — k))Tag [3[T6?(2)]
L~ Ty (@)™ dll(z — (8: — 6)N) — (z + (6: — ;)N )]

where Tv"?(z) = I(z — (6; — 6;)N?) — II(~z — (6; — )N }),if z = 0
and Tx"?(z) = 0if z < 0. In evaluating the above limit, it is permissible to
interchange the operations of limit and integration as is shown by the following:
Lemma 2.1. If the distribution TI(x) possesses a differentiable density =(x)
and the condition Q, is satisfied, then the expression a,*” is given by
(21) @ = (8: — 8) 20 (nl/(k — 1)1 (n — k)!)
T Jop ()1 — )" Fdu
(5,9

Proor. Since II(z) possesses a differentiable density m(z), @, "' can be written

as
iy (6: — 6;) 2o5m (nl/(k = 11 (n ~ k) )Jas(Arn + Bew)
where, setting tx = (8; — 9, )N (max.c; (tv) = 0, a8 K — ).
Ay = [SIT(@)I L — Tw(@)]" (m(z — tv) — 7(2))(2tx-7(2)) ™" dT()
and
Biw =[5 [Tu(2)] 71 — Tw(x)]" ™ (m(2) — (2 + tn))(2n-7(2)) " dT(z);

(in Ay y and By, y we have suppressed the index (<, j) for convenience). The proof
of the lemma will be complete if we show that

lime, Ak,N = limN-uu Bk,N
} 0TI = T(@)) ™ (—='(2)/x(x)) dT(z) = D (say)

k
where D = [o¢(u)u* (1 — w)" " du, and T(z) = 2M(x) — 1,if z = 0 and
T(z) = 0if z < 0. To see this, note that

vy — Dil < 3IJ7 [Tu(@) 1 = Tw(2)]"™*
A(r(x — ty) — w(@)ym(@)T — (—a'(2)/m(z)} dT(2)
+ 3T Tl — To(@)"™ — [T(@))'1 — T(2)]"™
-'(x)/7(z) dT(z)]
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where the second term on the right — 0, as N — o, using the dominated con-

vergence theorem and the condition Q, . Consider now the first term, which cannot
exceed

HIT (e — tn))} = (n(2))(ty-w(2)) ™ 4T ()|
+ 15 {(x(z — ) — (w(2)) W ~ta(x (@) = '(z)/2w(2)} dT(2)]
< Il f7 {l(r(z — tn))t = (x(2))}tn™"}? da]
+ 27 {[(r(z — tv)) = (@)= &™) — o'(z)/(2(x(x))H)}? da]'.

The last inequality follows by applying Schwartz inequality to the second term.
Both terms on the right tend to zero, as N — «, on account of Lemma 4.3 of
Hajek [9], since the condition £, implies the quadratic integrability of the deriva-
tive of (w(z))*. This establishes that limy.e Axx = Di. The same argument
shows that limy,. Bx,y = D; . The proof is complete.

Now substituting (2.1)II and the expression for d,’ in (1.10)II, we obtain

(2.2) eit%e = (3T (u)(u) du)*(f3J°(u) du)™
(o Taa(F3) ()™ (1 — )" ™ du)?(n ™ e J2 ) T

One naturally expeets the local efficiency ei"%+ to converge to the asymptotic
efficiency E, :» = 1, as n — «. However, despite the plausibility of the above
statement, we are able to prove it only for the case when £(u) is monotone.

THEOREM 2.1. Suppose that the conditions @ and Q2 of Part 1 are satisfied.
Then under the assumption of monotonicity of J(u), liMp.e € 2e = 1.

Proor. Clearly we need to prove the theorem for non-constant J(u), for other-
wise Ly and Ly* are identical and the result is trivially true. First we observe
that, on account of the conditions @ ,

(2.3) a7 2 b Tk = [0 J5(w) du— [1 T (u) du < o,
as n — oo. Further, if we let pi(u) = (FH)u*(1 — »)" ™,
(Jo w(u) [ 2ot Juspr(w)] du — [59(u)J (u) du)®
(24) = ([ivA(w)du) (J§ 2o8m1 Tnse — T () pe(u)du)
< 2[5 9% (u) du)(fs Xim [Ta(k/(n + 1)) — Jalu)'pu(u) du
+ [3a(w) — J(w)]* du,

by substituting J,..» = Ja.(k/(n + 1)). The proof of the theorem will be complete
if we show that the right hand side of (2.4)II tends to zero as n — o, and use
(2.3)II and (2.4)II in (2.2)II. For this it suffices, on account of Q; and Q. ,
to prove that

(2.5) liMpaw [3 20m1 [a(k/(n + 1)) — Ju(w)pu(u) du = 0.

In order to prove (2.5)II we observe that on account of monotonicity of J(u)
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and Qy , there is no loss of generality in assuming that J,1 S J,2 = ++* £ Jam-
Thus, using Lemma 2.1 of Hdjek [9] it follows that left hand side of (2.5)II
does not exceed

(2.6) 2.2t maXicign |[Jax — Tty (Jaie — Ja)i/nl

where J, = D7 J.1/n. Now the expression (2.6)1I tends to zero as n — o,
since

17 e (Jag =) S 07 L Jaa— [5 75 (u) du < o
on account of (2.3) and
nt maXik<n IJ,,,,,I2 = MaXi<k<n f[(lc—l)/n,k/n] J,,"’(u) du — 0

as n — o, on account of uniform integrability of the functions J, (%), a con-
sequence of the conditions @ ; and the proof is complete.

For distribution funections II(z) not satisfying the differentiability conditions
of Theorem 2.1 of Part I, one may define the local efficiency of Ly relative to
Ly* (as K — ) in the same manner as the asymptotic relative efficiency
E3, s,(7) was defined in Part I, viz.,

(2.7) et (m) = limg.o e re (),

provided the limit exists. It is interesting to note that lima.. 5 po(r) may or
may not be equal to 1, as is illustrated by the case when w(z) is the cdf of the
uniform distribution over ( —i, t) (see 11.3).

IL3. Special cases. In this section, we shall evaluate the local efficiency eS"%e
for some well known distributions and the special choices of the functions J,(u)
and J(u) considered in Section I.3:

Wilcoxon-statistics. By substituting £(u) = u, 0 < u < 1, and J,, =
(k/(n + 1)),k =1,2, .-+, n, in (2.2)I] we obtain

(3.1) exwe(m) = 3(n + 1)(2n + 1)([s wp(w) du)®
(Jow(wl(n — Du + 1) du)™,
so that from (3.3)I it follows that
esw+(Normal) = (n 4+ 1)(2n + 1)/2(n — 1 + 2} > 1,
(3.2) ew we(Logistic) = (2n + 2)/(2n + 1) > 1,
(2n + 1)/(2n + 2) < 1,
2n4+1)/(2n + 2) < 1.

For evaluating ep'%» (uniform), defined by (2.7)II, we note that the density
m(2) of the distribution II,(z), the convolution of R(—3%, 1) and N(O, 1) dis-
tributions, is given by

(3.3) mo(2) = 2((22 + 1)/20) — ®((2z — 1)/20),

ew w+( Double exponential)

[

ew .wx( Cauchy)
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where & is the standard normal cdf, so that from (3.1)II
e;(f,‘;?. (uniform) = lim,. ei;:)‘vt(ﬂ')
= lime.o 3(n + 1)(2n + 1)(f5 upo(u) du)’
(3.4) 1o va(w)l(n — Du + 1]dw)’]”
= lim,.o 2(n + 1)(2n + 1)([Z ¢ () dx)’
(m(0) + (n — 1) [Zo 7 () dx)™
=(n+ 12+ 127" > 1;

the last equality follows by interchanging the limit and integration, which is
permissible since |7, (z)| < 2 for —% < z £ } and |m(z)| is bounded by a
Lebesgue integrable function for x < —3% and =z > }. We note that the local
efficiency expressions (3.2)II and (3.4)II converge to 1, as n — .

Absolute-normal-score statistics. By letting J(u) = x (1), 0 < u < 1, in
g

(2.2)11 we obtain the local efficiencies e(,,':,) L,* and ei’;,) 1,+ for the absolute-normal-

score statistics defined in Section 3I, namely,
(3.5) et he(T) = 07" Dor Jha([3 x 7 (w)¥(u) du)?
(2R Jan (B Jop(w)u" (1 = w)" ™ du))™

which yields e(,,';,),,,o(II) if the scores J,x = Ja.(k/(n + 1)),k =1, --- | n, cor-

respond to the Fisher-Yates type and e(,];,),,z.(l'[) , if these scores correspond to the

Van der Waerden type. From (3.3)II and (3.5)I1 we obtain
ei2+(Normal) = ((Xfa I k) /m)( ke Joa(iS
JEe7((1 + w)/2)u (1 — w)"F du)
eir2s(Logistic) = n(n + 1)( 2ia Jos)
(3.6) (2 kT w i) 7
4" 2+(Double Exponential) = 2n( 2_pwt J% ) (7( 2t Jui)®) 7,
ex"2+(Cauchy) = (2im Jou/m)(Jo 87 ((1 + u)/2)
(sin 7u) du)’( Doy Ja k(5
5 (sin 7u)uw* (1 — w)* ™ du) ™
For evaluating e} 2% (Uniform), we note from (3.5)II that
et (Uniform) = lim,.o es"2+(11,)
(3.7) 2 limeo (5 87 ((1 + u)/2)¥e(u) du)®
(R (fovou) du)®) ™

where, on account of Fatou’s lemma,
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TABLE 2

e(L';‘)L; n =1 n =2 n=3 n =4 n=5 n=w
Normal 1.571 1.34 1.24 1.20 1.14 1
Logistic 1.273 1.152 1.102 1.075 1.058 1
Double exponential .637 .746 .803 .839 .862 1

€Ly,
Normal 1.571 1.34 1.24 1.20 1.14 1
Logistic 1.273 1.148 1.096 1.068 1.051 1
Double exponential .637 .730 .781 .814 .835 1

lim,_ o (f% (1 + u)/2)¢e(u) du)
(3.8) = lim inf,.o [3 (mo[IL, 7" (u))/8[® " (u)) du
= (¢ lim inf,.o ([0, (u)]/6[@ " (w)]) du

= [L{el@(u + D)} 7 du = .
Also, from (3.3)I1 we have

{3 0e(u) du = 2(8(1/20) — ®(—1/20)] — 2

ase — . From (3.7), (3.8), and (3.9) of this section, it follows that e} (Uni-
form) = o for both version Ly 1 and Ly 2 of the absolute-normal-score statistics.
The approzimate numerical values of the local efficiency expressions (3.6) I1
are tabled in Table 2 for both versions of the absolute-normal-score statistics.
We observe that for the cases considered in Table 2, the numerical values of
e3"2+(1I) seem to converge monotonically to 1, as n — .

IT.4. Conclusion. The local efficiency expressions and their numerical values
obtained in the preceding section indicate the superiority of the ‘‘joint-ranking”
procedure against shift alternatives with normal, uniform or logistic as the under-
lying distribution; whereas against a double exponential or Cauchy distribution
the “separate-ranking” statistic Ly* seems to have better local power. These
observations however seem merely incidental to a presumably more basic pattern
suggested by the following: (a) First, we note that for n = 1 the local efficiency
ei"ls reduces to E. p, the asymptotic efficiency of Ly relative to the Durbin
statistic, and (b) secondly, that for the special cases considered above the local
efficiency seems to converge monotonically to 1, as n — «. Thus if we consider,
for a given choice of function Jx(u) and J(u), the class of all distributions satis-
fying (b), it follows that ei"2« > 1 or < for all n, according as Ey o(IT) > 1
or <1. These considerations suggest the following heuristic conclusion (for the
class of distributions satisfying the condition (b)): For a given functions J(u)
and Jy(u), the “‘joint-ranking statistic” Ly(J, Jy) is preferable to its counterpart
Ly*(J, Jx) based on “separate-rankings”, except for alternative distributions for
which the Durbin-statistic is relatively Pitman-efficient than the statistic Ly(J, Jx)
i.e., for which Epis o5y, 0(I1) > 1. It would be of interest to characterize for a
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given function J(u) the class of distributions satisfying the condition (b). For
example, for the Wilcoxon-statistics W and W*, a simple characterization of
such a class would be: The class of all edf’s I(z) for which

t(r) = 'lr(())/_’.f,° x’(2) dz

is either <(12/7) or >(7/4). In fact, ey decreases monotonically to 1 if
t(r) < (12/7) (e.g., normal, logistic, uniform distributions) and increases
monotonically to 1 if ¢(x) > (7/4) (e.g. Cauchy and double exponential).
Accordingly, since Ew p = e,‘yl,)w‘ , for this class of distributions the above heuristic
conclusion clearly holds for the Wilcoxon-statistics.

A strong argument in favour of the ‘“‘joint-ranking” procedure, however, is the
following: Consider the problem of testing H, against the alternatives of shift in
location and assume that the underlying distribution I(z) is specified. Then,
one can select a most Pitman-efficient rank-order statistic by letting J(u) = ¢¥(u)
in Ly or Ly*. However, since Ey ;» = 1, the choice is still to be made between
the “joint-ranking” and the “‘separate-ranking” procedures. Now one can easily
show that, for the above choice of the function J(u),

ete(r) = (f3¢'(w) du)(n™ i i)
(o1 ¥ s () S () (L — w)" ™ du)
(2o 'P:k)/")(ﬁ [ b Yk (B W (1 — )" P dw)™ 2 1,

with equality sign only if J(u) = ¥(u) = const., 0 < u < 1, in which case ob-
viously the statistics Ly , Ly are identical. This leads us to the conclusion that,
against a specified alternative distribution II(2), the “best” rank-order statistic
(in the sense of local-power) is the one based on the ““joint-ranking’ procedure.

Finally, it seems worth mentioning that the form of the hypotheses H, favours
the “joint-ranking” procedure. The ‘“‘separate-ranking” statistic is essentially a
test of symmetry about zero for each of the distributions II;;(z) i.e., II;;(z) +
O;;(—2) =1,(1 £7<j £ K). It does not take into consideration the second
part of the hypothesis Hy, namely, that II;;(z) = I.;(2) for any two pairs
(4, 7) and (7', j/), whereas the “joint-ranking” statistic Ly does take this into
consideration.

v

PART III

III.1. Summary. Let (¢4, 90), I = 1,-- , Ni;; 1 £ ¢ < j £ K be inde-
pendent samples from populations with absolutely continuous cdf’s D;;(u, v).
Denote a}",—, = +1, if the rth smallest observation from the ordered absolute

values |Z;u| where Z;; = Eau — na, in the combined sample of size
N = Z Z;<,~N i is from a positive Z;; , and otherwise let af;, = 0. Denote
all; = —1, if the rth smallest observation from the ordered absolute values

|Z;;} in the combined sample of size N is from a negative Z;; and otherwise
let af = 0.
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Denote
(1.1) W =1+
where
(1.2) 78 = miTh = 2.7 Ev.aly,
and
(1.3) i = niTe; = Do Ex alf.

The Ey,. are given numbers satisfying certain restrictions to be stated below;
and m,; and n,; are the number of positive and negative Z’s among Z;;, -+ - ,
Z ;- The purpose of this part is to find a set of sufficient conditions for the
joint asymptotic normality of the statistics 74'*'”. Various applications of these
statistics are given in Part I where the problem of testing the hypothesis of no
difference among several different treatments is considered for the case when the
comparison between the treatment is possible only in pairs. (However, in Part
1, the joint asymptotic normality of the statistics 7»*'”’s which can be obtained
as a special case of the more general theorem (Theorem 3.1 below), is obtained by
following the methods of Hajek [9] so as to present a different approach to the
reader).

II1.2. Assumptions and notations. Let ¢ = (§) denote the number of all
possible pairs and label them « = 1, --- | ¢. Let mq and n, be the number of
positive and negative Z’s respectively for the ath pair. m, and n. are random
but Ma 4 e = Ng is non-random. For given m, , let X% , - -+ , X#n, denote the
positive Z’s and Xar, -, Xa,.a denote the absolute values of negative Z’s
among Za1, *** , Zav,; & = 1, -++ ¢ Let F*“(z) and F~®(z) denote the
edf’s of X, "’s and X, ’s respectively. Let F, (z) and F, () denote the sample
cdf’s of X,"’s and X, s respectively. Define

(2.1)  Hy(2) = 2emi paFny(3) + 2emt patal Fr(z) — Fr ()
and

(2.2) H(z) = D %1 pal () + 2 ors pavala(z)

where

(23) pa = No/N, vy = ma/Na, As(z) = F*(z) — F“z).

Denote

(24) H¥(2) = 21 0P~ V(2) + 2imt paPada(T)
where
(2.5) Pa = E(va) and E denotes the expectation.

Let
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(26) H2a = E(Va - pa)Z; Se = (Va - pa)/l‘%,a .
Define

E() = E[()llsal = w]; a = 1)"'76)

where w is a fixed positive constant, and similarly ¥ar (-) and Gov (- ). Note that
( )| ] stands for ( ) given [ ]. Denote

(27) az,r = +1,

if the rth smallest observation from the ordered absolute values |Z.j,
j=1,-++,Nas;a =1,---,¢ is an X, observation and otherwise denote
ax, = 0. Denote ais = —1, if the rth smallest observation from the ordered
absolute values |[Zqo5l,7 =1, ,Naja =1, -+, ¢, isan X, observation and
otherwise denote ass = 0. Then [cf. (1.1), (1.2), (1.3)], we can rewrite
TN(a), o, Ta Ta+, T. as

(2.8) = 4 1

where

(29) 7t = maTt = 2Ny Enjak, = me [ JulHu(2)] dF}(2),

(210) 7o = nTe” = X% Ewoakt = —na [ JlHa(2)] dF5(2),

and where

(2.11) Ey.= Jx(r/N), r=1--- N.

While J» need be defined only at 1/N, --- , N/N, it will be convenient to extend
its domain of definition to (0, 1] by letting it have constant value on
(r/N, (r + 1)/N]. Let

J(H(z)) = limyaw Jy(H(z)).

Denote
(2.12) aa” = [J[H(2)]dFt*(z), aa = —[J[H(z))dF “(z);
(2.13) dot = E(maa,?), da = E(nae.);

(214) L' = JJH*@)]dF"(z); L@ = [JH"(2)]dF“(z);
(215)  Li® = [ aq)J [H*(2)] dFF(z);

JH*(z)] = dJ[H*(z)]/dH*(z);
(2.16) L™ = [ Alz)J [H"(2)] dF~“();
(2.17) dat = NapaLe™™®, da” = —Nagels™, qa=1~—1pa;
(2.18)  dy'® =dt + do;
(219)  Tgasan(z, y) = F*O(2)1 — F* () [H()W'H(y));



60 K.L. Mehra and M.L. Puri

Iiairian(z, y) = the expression for I a4:ix(z, y) with H changed
to H*;

(2.20) Ugasitio = J [wocecvcn Lgairirn(T, ¥) dFO(z) dFT®(y);
Virarinn = | [—ocucece Igaritn(y, ©) dFYP(z) dFT® (y);
Utia;+i+k) = the expression of U a;4i+4 With T changed to I *, and Viiatisn

= the expression for Va1:.+x with I changed to I*.
Nbor = 2 25t ita MU ikt + 2 251 Uit
(2.21) + (2/A) 2t ina M Utatinn + (2/Na) 2oicr 88Uamimn
+ (1) Z oMW gariin + (1/ha) 2a panW cra—i—b
+ (2/) 2w MW ity Ni = mi/N, ui=ni/N,

where (1) indicates the summation over all (¢, k) with ¢ # «, the (2) over all
(7, k) with¢ = k, and (3) overall (¢, k) with? # k,7 # a, £k # o, and where
W = U 4 V with U and V having the same subscripts as W.

(2.22)  Nb%- = the expression of Nbs+ with X’s and u’s interchanged, and the
subscripts of U’s and V’s written with opposite signs.
(2.23) NbL = — i MWiarinar + Waritinay — Wgitatan)
— i pdW Gairieny + Waansitay = Witatan]
and a similar expression for Nb,— .'—.
(2.24) Nbu+ o- = —(the right hand side of (2.23) with 4o’ changed to —a'),
and similar expressions for Nba+ o— and Nbg/+ o .
(2.25) an'® = Mala’ + Naa
(226) by’ = ma'bs’ + nabe’ + 2MaNabat -
(227) '™ = MaMabat o'+ + Maltarbat o= + Matiabart o= + Naftarba ar- .
Bat = 2NapaPa® 2 it ivia piPiUkisbartad
+ 2N apape’ D i piqiU i ta by
(2.28) + 2NoPa 2 int ivia piD U lsassiven + 2NaPa Doict piEU rasmiim
+ Nupe 2-® piosPPiW Cairitty + Napa 2o 0ioeqigeW Cras—imi)
+ 2Napa 2y piorD @i W Crasrimiy
+ N Lo Y uz.atpa® Doimr pima,( LT5)* + 2papa#2,aL0+(u)L::§a)]
where W* = U* 4+ V* with U* and V* having the same subscripts as W*.



(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

™
e
!

2]
a,a’

da+ a=

dat+ o

6a+,a‘
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= the expression for Bf,+ with p’s and ¢’s interchanged; sub-
scripts of U* and V* written with opposite signs; Lo

changed to —Lo™; LT{® changed to Li®

= NapeDo P4 (the expression for b7Y, with N\;, u;, U and V

changed to ppi, pigs, U* and V* respectively), where
Pa” = Pa O ¢y a8 Tis + or —, and pY% = par O qu a8 ¥ is

+ or —.

= NopaPoga (the expression for be+ .- with N;, u;, U and V
changed as in (2.30))

= NapapPaqa (the expression for bei+ o- with X\;, y;and U and V
changed as in (2.30)).

= da"‘,a‘ + Na2#2.aL0+(a)L0—(a) + Na2ﬂ2,apaPaLtfxa)L0‘(u)
2 —( + 2 ( ~(
- Na M2, aQaPaLl aa)LO @ _ N pa,q«: Zt=l P M2, le 1a)L a)‘

Ba-f-'u,— = da+ o= — N N ™ aq«:'PaLl(a )L +{(a)

Ba’*‘,a‘

Ba‘,a’_

Ba+,a'+

+ NoNapzaPapalo LTS
— NoNoPaga' D im1 pipa Lis¥ L.
= da'+,a- - NaNa'I-'r2,a’ Qapu’Ll.a')L0+(al)
+ NaNapg,aPapalts Le @ — NoNuwPar@a
DIMPTI bl FpLd
= da- o~ — NaNap2,agarpalie La @
~ NoNopz,ar@apar Lo Le "
+ NoNaGaGar 251 pipe, L1 Lis®".
= dat o+ + NaVaps.aDarpalta Lo
+ NulNariz o Dape L+(a)L +(a’)

+ NaNa’papa' Zl=l Pt M2, ;Ll (a)L+(¢')
(a),

The methods used in the proofs for the asymptotic normality of r» ~’s are
mainly adaptations of the methods of [18] and [7]. It is assumed that the sample
sizes N, tend to infinity in such a way that No = po-N, N — .

II1.3. Joint asymptotic normality.
THEOREM 3.1. If
(1) E(va) = Pa = Day Such that 0 < ps, < 1,

(i1) pra =

E(va — pa)* = O(1/N),

(iii) for ma such that |ss| < w for some fizxed w > 0,

Pr (Ma = ma) = p(ma) = (Na(z,a)?) "6(sa) + 0(1/N?)
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where ¢ is the standard normal density function, and 8a = (va — Da)/1h.« and, if for
given F¥(z), F7(2); N\a , ta bounded away from zero and one,

(iv) the conditions Q3 of Section 2, Part 1, are satisfied then the random vector
(rv® — dy®, -, 9 — dx?) has a imiting normal distribution with zero mean
vector and covariance matriz.

var (7x'® — dy®)

(3.1) = Bx'" = fer + Bi- + 2dar o~ + 2N (Lt LT
— 2N 2q"l"'2 "p"’Ll—f'a)L @ — 2N 2paQ¢x Zt—l Pi K2, zL-l‘-ia)L—(a)
where 84+ , Bi— , dut -, t2.i , Lo™® and Ly, LT{® and L1{* are given by (2.28),

(2.29), (2.33), (2.6), (2.14), (2.15) and (2.16) respectively.
cov (1v® — dy'®, 74 — dp@) = gy
= dot o+ + dat .o~ + dart,a= + do= ar-
+ NaNoPapatiz.alo” VLTe" + NuNa'Papariz,ar Lot Lis?
+ NoNoPaper Ez—-l pi i, 1L+(a) Ha,) — NoNoqorpapsa, aLo+(°)L_("')
(3.2) + NoNopapartizaLe LY — NaNapaGar 2imt piue i ¥ Lis"”
— NuNoGapar L1a” Lo pp.ar + NaNaParpatiz.alo @ Lie""
 NoNabage S5 plus L LT
— NoNegarpalo™ (a)L!(a,)FQ,a - Naana'Pa'uz.a'Lo—(a,)L;.Eﬁ)
+ NaNaGagar D_5e1 pibie,Lii® L™,

REMARKs. (a) The Theorem 3.1 remains valid if the assumption (iii) is re-
placed by the assumption

(iii)" p(ma) = (1/Napia)ld(sa) + h(¢(sa))] + o(1/N), where ¢ is the
standard normal, density, h(¢) is a polynomial in ¢ whose coefficients involve
inverse powers of N, , and s, = (v, — p,,)/p,g_a .

(b) The assumptions (ii) and (iii) of Theorem 3.1 are satisfied if the random
variable m, has a binomial distribution with parameters N, and p. such that
pa_)pdoxo < Pay < 1.

(c) The assumptions (ii) and (iii) of Theorem 6.1 are also satisfied if m. has a
hypergeometric distribution, and the size of the population N.* and the size of
the sample N, , are such that N* = O(N**’) for k = 2 and some > 0, for then
(cf. [7]),

P(me) = (Z2)pacga ™ + o(1/N 7).

To prove this theorem, we first consider the case when the sample sizes mq , nq;
a =1, -+, ¢, are non-random instead of random. In such a case the random
variables (X4, -, XT:,,.G) and (Xa1, -+, Xan,) can be regarded as consti-
tuting 2¢ independent samples from the distribution functions F™“(z) and
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F~®(z) respectively, « = 1, - - - , ¢; and we have the following specializations
of the conditional analogues of Theorem 3.1, the proofs of which follow by pro-
ceeding exactly as in Theorem 6.1 of Puri (1964 ), and are therefore omitted.

(3A) Non-Ranbom Cask.

Lemma 3A.1. If assumption (iv) of Theorem 3.1 is satisfied, then the random
vector N*( T —a’, -, TN — o) where TV's and a’s are defined by (2.9)
and (2.12) respectively, has a limiting normal distribution with zero mean vector
and variance-covariances given by Nbi+ and Nba+ o+ where b+ and ba+ o+ are de-
Jfined in (2.21) and (2.23) respectively.

Lemma 3A.2. If assumption (iv) of Theorem 3.1 is satisfied, then the random
vector N*( Ty —ar, -+, T, — a. ) where T ’s and a™’s are defined by (2.10)
and (2.12) respectively, has a limiting normal distribution with zero mean vector
and variance-covariances given by Nb%- and Nba- o~ where bi- and ba- o - are de-
fined in (2.22) and (2 .23) respectively.

THEOREM 3A.2. Under the assumptions of Lemma 3A.1, the random wvector
W= (WP ..., W) where

(3.3) W = N maTat + nala” — Mala’ — nata”)

has a limiting normal distribution with zero mean vector and variance-covariances
given by Ny @ and N by where by'®* and by are defined in (2.26)
and (2.27) respectively.

We have thus established the joint asymptotic normality of the random vari-
ables 74'®’s when the sample sizes M, , e (e = 1, - - - , ¢) are non-random. We
now drop the assumption that m, and n, are non-random. We assume that ma , na
are random variables which satisfy the assumptions (i) to (iii) of Theorem 3.1.

(3B) Ranpom Cask. We shall need the following lemmas:

Lemma 3B.1. Under the assumptions (ii) and (iii) of Theorem 3.1

(3.4) fre = E{(ve — pa)| Isal < @} = o(N7Y)
(3.5) uz.a — fizal = O(we™ “*/N) + o(N7Y),

where f2a = E{(va — pa)’ | 8al < o).
The proof of this lemma is the same as in ([7], p. 37) and is therefore omitted
LemMa 3B.2. Let { Xx} be a sequence of random variables and {ry} a sequence of
numbers. If Xy = ry + O,(ly) wherety > 0and ry > ras N — «,and h(z) tsa
Sfunction admitting continuous (j -+ 1)st derivative in some interval containing r,
then

(3.6) h(Xw) = h(rx) + i BV (ru)(Xw — ra)/i!
+ Xy — m)™/G + DDAV (X, + (1 = e)rw), 0<e<1,
(3.7)  h(Xn) = h(ra) + 2 i hO(rn)(Xw ~ 1) /il + 0p(tn’).

Proor. (3.6) is just the Taylor expansion of h(Xy) and (3.7) follows as a
special case of the Corollary 3 of Mann and Wald [15].
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Lemma 3B.3. Under the assumption (it) of Theorem 3.1
(38) J(H) = J(H") + J'(H*) Xia p:idi(2)(v: = ps) + 05(N ),
(3.9) J'(H(z))J'(H(y)) = J'(H*(2)J' (H*(4)) + 05(1).

Proor. The proof follows by noting that H(z) = H*(z) + 0,(N™?), and
applying Lemma 3B.2.

LemMa 3B.4. If the assumptions (ii), (iii) and (iv) of Theorem 3.1 are satisfied,
then for large N

(3.10) @*X = NadaLd™® + Na(va — pa)Li™®
+ Nata D tu1 pi(vi — p)LE + O(NY),
(3.11) ba*X = Bu2X — N(L™ ) ure + da® 2ot plpe o LE®)?

+ 2patatiz.ala” CLTi7] + O(N)
where
Ga*X = Malat, ba'X = mabat, da=€a=pa if Xis+;
0a*X = Nalla, ba'X = na-bo-, da=6a=¢qa U Xis—.
(3.12) MeMabat o+ = NapaDaPar [the expression for Nba+ o+ (cf. (2.23) with
Ni, ui, U and V changed to ppi, pigi, U* and V*
respectively] + o(N);
(3.13)  NaNaba—a'- = NoparQaGar [the expression for Nba- - (cf. (2.23)) with
i, pi, U and V changed as in (3.12)] + o(N);
(3.14)  MeNabar+.a~ = NapaPage [the expression for Nbgr+ a— with Ns, pi, U
and V changed as in (3.12)] + o(N);
(3.15)  MaNabat o~ = NapaPagar [the expression for Nba+ o with Ng, pi, U
and V changed as in (3.12)] + o(N);
(3.16) MalaDat @~ = NapaPefe [the expression for Nbg+o— with Ni, ui, U
and V changed as in (3.12)] + o(N).

ProoF. Apply Lemma 3B.3 and make use of the facts that v.'v; = pa.p: + o(1);
va(l — v:)) = paqi + o(1) and similar expressions for vws, va(1 — ;)%
Vav,-vk,v.,(l —_ V.')(l - Vk) and Vav,'( 1 — Vk).

Lemmva 3B.5. If the hypothesis of Lemma 3B.4 hold, then for large N,

a = l) tr, 6
(3.17) (da — MalGa+)/Maba+ = — Dt swi/Ii + o(1);
(3.18) Ba+/Maba+ = I,/I + o(1);
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where

Napta = Pagata’, ce = O(1);
v = Pa(pipap:gs) el i), i=1--,¢ i#a
Ve = (Paga) (CaLs™® + papatalis”;

LI = 2p,p, Z?=1,i,4a pDiUl iirartay + 2paPa D pQiUl i va v
+ 2D 2o ict ina 0PIVl aihity + 2Da D im1 PG Ulras—i1— i)
+ Pa 2o PP P rashity + Pa 220 PR (rasiviy
+ 200 -y piPkDGW Crasti—iy

where W* is defined in (2.28). and I2 = I + D i1 vi.

The proof of this lemma involves straightforward algebraic computations and
is therefore omitted.

Lemma 3B.6. If

(1) 0 <N =N, - ,AS1 — N <1 for someNy £ 1/2¢,
0<woZm, -+ ,p =1 — p <1 for somepo £ 1/2c,

(ii) the assumptions (ii), (iii), and (iv) of Theorem 3.1 hold,

(i) B(Tat M, -5 Ne)y E(Ta- [N, -+, N), var (Tat | M, -c+, Ao,
var (Te- | N1, + -+, Ne) exist, then for large N, such that w(uz,,)‘ < Pafa ,
(3.19) B(raz) = das + o(N*);
(3.20) E(ra'®) = v + o(N*);
(3.21) var (1a¥) = Biz + O(Nwe™ “"*) + o(N);
(3.22) %OV (Ta+, Ta=) = Bat, a- + O(Nwe™™?) + o(N);
(3.23) var (rv®) = Ba+ + Ba- + 2Bt + O(Nwe™ ) + o(N);

(324) 60V (T,v(a), ij(al)) = 6a+,u’+ + Ba*‘,a"‘ + Ba’*‘,a‘ + ﬂa‘,a’—
+ O(Nwe ™) + o(N).

Nore. The quantities de+, da-, dn'®, B3+, Bi—, Ba*t,a=, Batart ) Batar)
Bart.a= , Ba—.ar— are all defined in Section 2.

The proof of the lemma follows by straightforward computations.

Lemma 3B.7. Under the assumptions of Theorem 3.1, the random vector
(nt—da", - , 1ot — d.T) has a limiting normal distribution with zero mean vec-
tor and covariance matrix
(325) var (Ta+ — da+) = 62‘*‘, cov (Ta+ — da+ y Ta't — d«’+) = Bu+,a’+
where Ba+ and Ba+ o+ are given by (2.28) and (2.39) respectively.

The proof of this lemma follows from Theorem 3.1 of [7] as does Lemma
3A.1 (or Theorem 6.1 of [18]) from Theorem 1 of [3].



