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PREFACE 

Modern mechanics is undoubtedly a branch of differential geometry and the title 
'Mechanics in Differential Geometry' asserts this obviousness. 

In particular the structure Mechanics-Geometry presented in this book shows that these 
disciplines complement one another in a pedagogical manner; mechanics is developed 
from entities and methods of differential geometry, but mechanics throws light on 
sometimes arduous geometrical concepts. 

Numerous references are made to the classic 'Foundations of Mechanics' by Abraham 
and Marsden, and to my previous book entitled 'Differential Geometry with Applications 
to Mechanics and Physics'. Some of my published and unpublished research works are 
also introduced. This 'Mechanics in Differential Geometry' is also the fruit of my 
teaching experience, and much work during the 1995-2002 period. 

Leading scientists as Newton, Euler, Lagrange, Laplace, Poisson, Jacobi, Hamilton, 
Liouville and several others have created mechanics from the classical Newton-Leibnitz 
calculus. 

Mathematician and mechanician of genius H. Poincare viewed mechanics from its global 
geometric side and considered the phase space as a differentiable manifold notably. So 
the modern mechanics was born shortly before the 20th century. Moreover, it is a 
recognized fact that his discoverer spirit has mathematically generated the Einstein's 
relativistic leap. 

The works of M.S. Lie, and later in a deciding manner the intrinsic calculus of E. Cartan 
elaborated for the first part of the 20th century, have brought mechanics to the field of 
differential geometry. 

Outstanding works of G.D. Birkhoff, C.L. Siegel, A. Kolmogorov, J. Moser, S. Smale, 
and V. Arnold notably have proven this reality. Published works of mathematicians as 
S. Marsden, A. Weinstein, etc., and numerous recent papers confirm the position of 
mechanics in geometry. 

XV 



xvi Preface 

This book is mainly a course devoted to the fourth year students in mathematics, physics 
and certain paths in engineering. These various audiences will discover notions of 
geometry and mechanics closely connected, they will learn essential mathematical 
methods for mechanics and physics. 

It is also a reference book since it prepares for research. The introduced notions should 
be known by students when beginning a Ph.D. in theoretical physics, theoretical 
mechanics, celestial mechanics, stellar dynamics, special relativity, general relativity, 
cosmology, differential geometry, quantum mechanics, statistical mechanics notably. It 
could also be used for self-study, given its pedagogical structure and the solved 
problems which prepare for these disciplines. The reader will quickly discover the 
importance of successive chapters and, given their controlled and logical progression as 
well as their role of introducing the above mentioned disciplines, will eagerly take up the 
challenge. 

Since modem mechanics is a branch of differential geometry it was necessary to state the 
foundations of this 20th century geometry beforehand. So, the fundamental spaces of 
mechanics are manifolds defined in geometry, the notions of tangent and cotangent 
bundles are introduced in a practical way which will be particularly appreciate by 
physicists and engineers. This properly mathematical part of the book largely takes 
advantage of my previous differential geometry book as proven by the pragmatic 
development of vector and covector fields, tensor fields, tensor algebra, exterior algebra, 
Lie derivative, Lie group, Lie algebra, integration of forms and invariants, Riemannian 
geometry, etc.. Pedagogy, rigor and succinctness highly characterize the first part of this 
book. These foundations of differential geometry recalled as an unavoidable prerequisite 
make the work autonomous. 

Symplectic geometry in Chapter 2 is the 'interlinking field' of this textbook, because the 
manifold symplectic structure, canonical forms, brackets, etc. concern modern 
mechanics. At this stage it is essential to mention that physicists, mechanicians, 
engineers and mathematicians too will appreciate proofs in local coordinates. 

In our modern exposition of mechanics, Lagrangian and Hamiltonian mechanics are first 
separately elaborated with their own spaces, their own functions and equations. 
Fundamental principles, forms and invariants, for example, are clearly situated in their 
respective mechanics formulations. 
Secondly, a didactic comparison between these formulations sheds light on notions 
which could have been tricky without the help of diagrams which, as figures, are 
numerous throughout this work, for instance, rhombic diagrams in the study of the 
second-order differential equation, diagrams illustrating relationships between 
Lagrangian and canonical forms, etc.. 
Next the Hamilton-Jacobi theory is carefully studied and the powerful integration 
method of Jacobi is clearly developed in the context of problems with perturbation forces 
notably. 
Finally, a special introduction to perturbations deals with the important problem of 
stability, notably for infinitesimal canonical transformations, qualitative dynamics, 'third' 
integral, transverse sections, Poincare mapping, etc.. 



Preface xvii 

In the last chapter, after a succinct recall of equations and integrals of the jV-body 
problem, the mean potential and mean density are properly and explicitly compared with 
the respective real potential and real density. 
The two-body problem in Hamilton-Jacobi theory, Kepler elements, osculating orbits, 
Lagrange equations in celestial mechanics, perturbated two-body problem are concisely 
treated as well as statistical mechanics, fluid-dynamical system of the author, etc.. 
The second part of this chapter presents notions which would deserve further study and 
could be a matter for research. It particularly illustrates the fact that differential geometry 
has numerous applications in stellar dynamics, celestial mechanics and statistical 
mechanics notably. 

According to usage the vertical brackets completely enclose the elements of matrices, 
whereas they partly enclose the normal mathematical expressions. 

The important propositions and the formulae to be framed are shown by and The 
glossary of symbols should make the assimilation of notions easier. 

All the proofs, examples and the 36 solved exercises are described in detail. 

I am preparing special texts about perturbation, stability, chaotic behavior, etc. by 
referring to galactic dynamics, celestial mechanics, and other areas. These texts should 
complement this global introduction of mechanics in differential geometry. 

This textbook has been essentially written up and typed in 2002-2005. 

Yves R. Talpaert 





CHAPTER Ο 

INTRODUCTION TO TENSORS 

It is pointless insisting on the considerable importance that tensors have gained 
through the developments of exact and applied sciences in the 20th century. 

Given the purpose of this book and the presentation of various subjects of theoretical 
mechanics, it was necessary to recall notions of tensor analysis. Definitions and 
propositions have been introduced for an inventory and the notation, but most of the 
proofs have been omitted since they are set out in our previous books1 where in addition 
numerous exercises are expounded. 

1. WELL KNOWN CONCEPTS 

1.1 MULTILINEAR FORMS 

Let Ε and F be finite-dimensional real vector spaces. 

1.1.1 Linear Mapping 

D A mapping 

g: Ε -> F \ χ :-> g ( x ) 

is linear if VAT, y e E,Vk e R : 

g(x + y ) = g(.x) + g ( y ) , g(kx) = k g ( x ) . 

1 For instance, in Mechanics, Tensors & Virtual Works (2002), and Tensor Analysis & Continuum 
Mechanics (2003) which are mentioned in the bibliography. 

1 
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Let us denote by L(E; F) the set of (continuous) linear mappings of Ε to F. 

D The addition in L(E\ F) is the mapping 

L(E-F) χ L(E; F) L(E; F): (g, h) g + h 

such that the sum g + h is the linear mapping defined by 

Ε -> F: * H> (g + h)(x) = g(x) + h(x). 

D The multiplication of a linear mapping goiE into F by a scalar k is the mapping 

R χ L(E; F) L(E; F) '.(k,g)l·^ kg 

such that the product kg (of g by k) is the linear mapping defined by 

E ^ F : ( k , g ) ( x ) = kg(x). 

We know that L(E\F) provided with the two previous laws of addition and 
multiplication has the structure of a vector space. 

1.1.2 Multilinear Form 

In mechanics we particularize F by choosing this vector space to be R. So we 
will consider the vector space L(E; R) later on. 

D A linear form on £ is a m a p p i n g 

f : Ε —> R:xl·-* f ( x ) 

such that VJC, y e E,\/k e R : 

/(*+JO = / ( * ) + / ( J O . f { k x ) = k f { x ) . 

A linear form on Ε is also called a one-form or covector. 

Let E(p) b e p vector spaces. 

D A p-linearform defined on the Cartesian product of ρ spaces £ (1) χ. . . χ E(p) is a 
mapping 

/ : Em χ.,.χ E(p) R : (*(1),...,*(|0) H> /(*(I),...,x{p)) 

which is linear with respect to each vector, that is, 

Vxm,ymeE(1),..„ Vx(p),y(p) e E{p), Vk e R-. 
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/(*(!) + ^(1)' X(2)X(p)) = /(*( 1)' X(2) >•··, x(p)) + /(J'(l) »*(2) >···' *(p)) 

/(*(1) '"·' ) _ k f ( x ( \ ) '···> *(p)) · 

Provided with laws of addition and multiplication by a scalar defined as before, the space 
Lp(E\R) of p-linear forms on Ε has the structure of a vector space. 

1.2 DUAL SPACE, VECTORS AND COVECTORS 

1.2.1 Dual Space 

D The vector space of linear forms defined on Ε is called the dual space of E. 

It is denoted by E ' . 

So the dual space is a vector space the elements of which, called covectors, are linear 
functions Ε -> R . It is a space of functions. 

1.2.2 Expression of a Covector 

Let £ be a real vector space of dimension n. 

A covector on £ is a linear mapping / : Ε -» R which associates a real / ( j c ) to each 
vector xeE. 

Wedenote by x{ ,.,.,χ" the components of λ: with respect to a basis {eu...,en) of E. 

The real f ( x ) is written: 

f ( x ) = f(xlel+... + x"e„) 
= * ' / ( * , ) + - + * " / ( * „ ) · 

By letting 

/,=/(*,) 
we have 

/ ( χ ) = Σ ϊ χ ί · 
i=I 
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We mention that the image of χ under / is sometimes called the value of the form (for x). 

We are now going to express the covector / with respect to the dual basis. 

The dual basis (<?",...,e*") of the basis (c,,...,e„) is such that: 

«•< e-'(eJ) = S'J, (0-1) 

where S'j is the Kronecker delta1 and the η linear forms making up the dual basis are 

e" :E->R:xh*e"(>t) = x'. 

Thus Vac e Ε : 

/ ( * ) = £ / , * " ( * ) , 
1=1 

which leads to the expression of the covector 

i=l 

Remark. The reader will compare the previous expression with that of a vector: 
η 

ι=1 

So according to usage the components of vectors show an upper index and the 
components of covectors a lower index. 

Notation. Generally we will represent the covectors (or linear forms) by Greek 
characters, and since they are the elements of a vector space, namely Ε*, we have 
decided to write them in bold characters. 

1.2.3 Einstein Summation Convention 

The Einstein summation convention consists in removing the summation sign Σ, 
more precisely: 

Summation is implied when an index is repeated on upper and lower levels. 

1 The Kronecker delta is the symbol 

δ>=δα=δ>Λ i f i = j · J ,J [0 if i * j . 
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For example, we denote: 
Π 

;=i j=l k=\ 

Remark. By extension, the Einstein convention is sometimes used with indices at the 
same height in the frame of the usual Euclidean space when considering orthonormal 
bases. 

On the one hand, any repeated index of summation is called a dummy index because it 
does not matter what the letter is; for instance: 

On the other hand, there is another type of index. An index which appears once in each 
expression is called a free index. 

So, for instance, the equation 

represents the following system of equations: 

z 2 = c r V . 

In this example the index i is free and the index j is dummy. 

1.2.4 Change of Basis and Cobasis 

In an «-dimensional space Ε we say: 

PR1 The matrix associated with the expression of unprimed components as functions 
of those primed is the transpose of the matrix associated with the expression of 
primed basis vectors as functions of the unprimed. 

Proof. The matrices ( a / ) and [ß'j ) being inverse, we denote 

CjX' =CjXJ =c,x' +c2x2 + ·· 

z' = c\x i = 1,2 ; j = 1,2,3,4 

(0-3) 

(0-4) 

The equations 
x = x,el=x'le'k 

k t _ rk i 

imply 
a/" x' =a'kx'k. (0-5) 
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By comparing the following explicit expressions 

xl =alx'' +a\x'2 + ... , e\ =alet +a\e2 + ... 

and so on, the proposition is thus proved. 

PR2 The matrix associated with the expression of primed components as a function of 
the unprimed components is the transpose of the matrix associated with the 
expression of unprimed basis vectors as functions of the primed. 
It is the inverse and transpose of the matrix associated with the expression of 
primed basis vectors as functions of the unprimed. 

t ^ ß i ' ) , 

Proof. Since 

the equalities 
χ = x'Je'j = x'ei = x' ßje'j 

imply 

6'tS' x'J = β/χ'. (0-6) 

By comparing the following explicit expressions 

χ'1 = β \ χ χ + β \ χ ι + ... , 

ex=ßle\+ßle'2+ ... 

e[ =a\el +afe2 + ... 

and so on, the proposition is thus proved. 

We are now going to show the formulae of the change of dual bases (a dual basis is also 
called a cobasis). 

From every 

λ* = x'et = χfie'j, 

because e"J(ek) = δ[ we deduce: 

e"J{x) = x'J = β/χ' = ß/e"(x) 
which implies 

^ e"J = pje'· ( 0 . 7 ) 

and 

as* e" =a)e"'. (0-8) 

The reader will easily say the propositions which refer to (0-7) and (0-8). 
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1.3 TENSORS AND TENSOR PRODUCT 

Let £ ( 1 ) , . . . , E ( p ) , ...,Eip+q) (or simply E) be finite-dimensional vector spaces. 

1.3.1 Tensor Product of Multilinear Forms 

Let / be a p-linear form defined by 

Emx ...xE{p) R: ( * ( „ , . . • , * < „ ) ) Η» / ( x m , . . . , x i p } ) , 

let A be a ^-linear form defined by 

D The tensor product of a p-linear form / and a ^-linear form h is the (p+g)-linear 
form denoted / ® h : 

such that 
/ ® h ( j e , , , , . . . , = /(*<„,...,*<„) A(*(;,+1),...,jc(p+„). (0-9) 

1.3.2 Tensor of Type (°) 

D A tensor of type (°) or covector is a linear form defined on E. 

It is an element of the vector space E*. 

According to usage the covectors are generally denoted by Greek letters; for instance: 

a>eE*. 

Thus the definition of a covector or tensor of type (°) is expressed as follows: 

ω:Ε -> R:xh+a)(x) 

with Va,beR,Vx,yeE: 

ω(αχ + by) = αω(χ) + b(o(y). 

The covector expressed as (0-2) is written: 
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ω = ω, e" , 
where 

ω, = ω(β,). 

The image of any vector χ under ω is the real 

ω(χ) = ω,ε"{χ'β^ = a,xJe"(ej) 

= ω,χ', 

this value being also denoted by 

(ω,χ) = ω(χ). (0-10) 

Change of basis 

We recall that a linear form ω behaves towards any vector χ in the following 
way: 

ω(χ) = ω(χ' e,) = ω(χ'' e^) 

<=> 

ω,χ' =a>'jx'j =(to,x) (0-11) 

where ω'j = (o{e'j). 

This obvious requirement allows testing of the 'tensor character'. Let us use it in order to 
obtain the formulae of transformation of components of ω . 

By recalling (0-5) and (0-6): 

x'=a'kx,k, χ'ρ=βρ
ηχ\ 

yJ - aiy'r > y"=ß'mym, 

the condition (0-11) that is 

ω,χ' = ω,α[χ'* 

= ω[χ·" 
implies 

<=<ω, (0-12) 

and conversely 
(0-13) 
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1.3.3 Tensor of Type (ö) 

9 

D A tensor of type ( „ ) or vector is a linear form defined on E*. 

So the definition of a tensor of type (J,) or vector * is expressed as follows: 

χ: E' -> R: ω h-> χ(ω) 

such that V a,b e Ä, V ω, μ 6 Ε' : 

χ(αω + 0μ) = αχ(ω) + 0χ(μ). 

A linear form χ defining a tensor of type ({,) is obviously written with respect to a basis 

( e t ) of Ε as follows: 

χ = x'e, 

where 

x ' = x ( e " ) . 

So the image of any covector ω under the linear form χ is the real 

jc(o>) = x'e((<üje'J) = x'wjSj = χ'ωι 

which is written: 

χ{ω) = (χ,ω}. 

In conclusion, we have obtained the following equality 

ä / 1 ( * , ω ) = (ω, * ) (0-14) 

and this important result expresses the duality between covectors and vectors. 

Remarks, (i) In fact, we may identify E" = L(E' \ R) with E: 

Ε" = Ε. 

By referring to the formulae (0-3) and (0-4) for change of basis in Ε on the one hand, and 

to their corresponding (0-7) and (0-8) in E ' on the other hand, we immediately see that 

the relevant vectors e" of E" and et of Ε are transformed according to the same rule. 

To each vector expressed with respect to a basis ( e t ) of Ε there corresponds a vector with 

the same components with respect to the corresponding basis ( e * * ) of E" and 

conversely, such that to the sum of any two vectors of Ε corresponds the sum of two 

corresponding vectors of Ε", to the product of a vector of £ by a scalar corresponds the 

product of the corresponding element of E" by this scalar. 
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Since there is no reason to distinguish the elements of E " from those of E, we have the 
right to identify these vector spaces. 

Algebra courses deal with this question, and the existence of an isomorphism between 
the finite-dimensional vector spaces Ε and E " is easily proved. 

(ii) Following from the duality expressed by (0-1), we point out that the covector e'' of 
the dual basis associates with jt the ith component x': 

(e*',x) = e"(x) = e,,(xJeJ) = x'. 

(iii) We note that the law (0-12) of the change of components of any covector is that of 
change of basis vectors (0-3). 
It is not the case for a vector: the matrix is inverse! That is the reason why, initially, 
every vector (element of E) was called a contravariant vector and every covector 
(element of E*) was called a covariant vector. 
This terminology is logically given up because vectors and covectors exist as their own 
entities regardless of any basis change. 
But later it could well be that we say 'indices of contravariance' and 'indices of 
co variance'. 
According to convention the components of vectors show an upper index and the 
components of covectors a lower index. 

1.3.4 Tensor of Type 

D A tensor of type ) is a bilinear form defined on Ε χ Ε 

D The vector space of bilinear forms defined on E x Ε is called the tensor product 
space of two spaces E*. 

It is denoted 
E'®E*. 

So any tensor of type ) is an element of Ε* ® E* and we denote such a tensor as 

t e E* ®E". 

Given a basis (e , ) of Ε we say: 

1 Sometimes called a covariant tensor of order 2. 
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PR3 A tensor of type ) is expressed as 

t = tije" ®e'j, (0-15) 
where 

h = '(«/·«>) 

and ( e " ® e ' J ) is a basis of E* ®E*. 

Remark. As a vector χ is sometimes and excessively referred to its components χ ' , a 
tensor t of type ( j ) can be referred to its components tfJ (and so for higher order tensors). 

Change of basis 

We recall that any tensor is an 'intrinsic mathemathical entity'; that is, 
independent of the choice of basis; in other words, each real defined by a bilinear form t 
is not 'altered' by a change of basis. 

Given a change of basis defined by e'j = a'jei, the components tl} of a tensor 

t e Ε* ® E* are transformed as follows: 

V(*. y), ( * ' , / ) ε Ε χ Ε: / (*, y) = /(*', / ) 

ο t(xieiyeJ) = t(x're'r,y'se's) 

ο tvx'yJ =frsx'ry'\ (0-16) 

Such a (general) requirement of tensor theory allows testing the 'tensor character'. So, let 
us use it in order to obtain the formulae of transformation of components of t. 

We recall [see (0-5) and (0-6)]: 

x'=a'kxχ'ρ=β„ρχ", 

yJ=a'ry", y's = ßs
mym. 

The condition (0-16), namely: 

t i / x ' y J = t i j a k a i x ' k y n 

= ' l x , k y ' r 

implies 

C = « i « / ' i , · (0-17) 
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Rule. We will notice the presence of elements of two matrices a in (0-17) and of one 
matrix a in (0-12); that is, to each covariance index corresponds one matrix a. It is the 
reason why every tensor of type ) is sometimes called a second order covariant tensor. 

Conversely we have: 

t.j^ßlßjl'rs- (0-18) 

1.3.5 Tensor of Type (ο) 

D A tensor of type (Q ) is a bilinear form defined on Ε* χ E*. 

D The vector space of bilinear forms defined on Ε* χ Ε* is called the tensor 
product space of two spaces E. 

This space being denoted £ ® Ε , any tensor of type (Q ) is such that 

t e E<8> E. 

Tensor expression. The reader can transpose the previous developments from tensors of 
type ) to tensors of type (jj). 

He will define η linear forms on E": 

et \E* -> R :ω t-> et(fo) = ω, 

and then will consider the η2 tensor products 

ei ® : E'x. E' R : (ω, μ) ι-> e, ® et (ω, μ) 
such that 

e, ®ε/ω,μ) = e, (ω) e] (μ) = ω, . 

Therefore he will be able to state: 

PR4 A tensor of type ( j ) is expressed as 

t = tiJei®eJ (0-19) 
where 

=t{e*',etJ) 

and (ei ® e ) is a basis of Ε ® Ε. 
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Change of basis 

It is easily proved that the components of a tensor t of type (Q ) are transformed 
follows: 

as 

t'rs = β\β)ΐ". (0-20) 

Rule. We will notice the presence of elements of two matrices β in (0-20) and of one 
matrix β in (0-6); that is, to each contravariance index corresponds one matrix β (inverse 
of the matrix of basis change). It is the reason why every tensor of type (Q ) is sometimes 
called a second order contravariant tensor. 

Conversely we have: 

Remark. Given two vector spaces Eq and Er of respective dimensions q and r, the 
corresponding tensor product space is Eq ® Er of dimension qr. It is the set of tensor 
products χ ® .y of any χ e Eq and any y e Er. 

Bases (e,) and (e'j) of respective spaces Eq and Er imply that (ej ®e'j) is a basis of 

the qr-dimensional space Eq ® Er. 

1.3.6 Tensor of Type ([) 

D A tensor of type (j) is a bilinear form1 defined either on Ex E' or on Ε' χ Ε. 

Thus a tensor of type (j) is either an element of the tensor product space Ε* ® Ε or an 
element of the tensor product space Ε ® E*. 

From the covectors of the dual basis: 

t«=a'pa't·» (0-21) 

e*' : Ε R:xh-> = x' 

and the vectors of the basis of E: 

the reader will define the n2 tensor products: 

Sometimes called mixed tensor of order 2. 
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such that 

that is 

e" ® e} : Ε χ Ε' -> * : (χ,ω) H>e"® e,(*,«») 

eti<8>ej(x,a>) = xia>j, (0-22) 

<?", ω) = xj(e",ej)a>l(ej,e*} = x'a>j. 

As before, the reader will establish that the various tensors e" form a basis of the 

vector space Ε* ® Ε (likewise for E ® E * ). 

From 

t(co,x) = tffOje*',xJ e j) =mtxJ t(e* ,e j) 

= <oixit'j=ti
jei ®e'J(fo,x), 

it will be deduced: 

and also 
t=t'Jel®e'J sE®E' 

u = u/e" ®ej e Ε* ® Ε. 

In addition, the reader will easily establish the formulae of transformation of the previous 
tensors: 

t". =fl;aj t'j 

u'r'=a>rß'jut>, 

the rule being: To every covariance index corresponds one matrix α and to every 
contravariance index one matrix β. 

Given t = t'j e, ® e*J e Ε ® E' we say: 

D The transposed tensor of t is the tensor of E* ® E , denoted ' t, such that 

V e „ e £ , Me" e : 

't(ep,e'<) = t(e'',ep). (0-23a) 
that is: 

( Ό / = ' V (0-23b) 

In other words: 

V / = /',<», ®e'J: 't = ('t)jie'i®el=tije'J®ei. (0-23c) 

This last result actually verifies (0-23a). 
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D The vector space of p-linear forms defined on Ε χ... χ Ε {p spaces Ε) is called the 
tensor product space of ρ identical vector spaces E*. 

It is denoted 
E* 

and has dimension np. 

In the same manner we say: 
D The vector space of ^-linear forms defined on Ε* χ···χΕ* (q spaces E*) is 

called the tensor product space of q identical vector spaces E. 

It is denoted 
Ε 

and has dimension nq. 

D The (j)-tensor space associated with Ε is the vector space of (p+g)-linear forms 

defined on the Cartesian product (xp Ε) χ (xq E') of ρ spaces Ε and q spaces E*. 

This np*q -dimensional space is denoted' 

Tq
p =(®p£*)®(®,£)· 

D A tensor of type ( ' ) associated with £ is an element2 of the [q
p )-tensor space 

γΐ 
ρ ' 

We denote this (p+^)-linear form by 

teTq. 

' To simplify the presentation, we have first chosen ρ spaces Ε and next q spaces E'. The order of 
successive spaces must be specified. 
2 Also called a p-order covariant and q-order contravariant mixed tensor. 
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PR5®" A tensor of type (q
p ) is expressed as 

t=t h J" e"' ®...®e'ip ®e, ®...®e, (0-24) 
l\ lp 1\ Jq y ' 

where 

and where the different e*n constitute a basis of T* 
J1 Jq Ρ 

=(®pE*)®(®qE). 

Change of basis 

Every transformation of components of a tensor of type (9
p) associated with a 

basis change (0-3) is immediately obtained by considering the rule: 
[ 3 covariance index => 3 matrix a ] and 
[ 3 contravariance index => 3 matrix β ] . 

From this rule it is easy to express any transformation of components. 

For example, let 

t / , e" ®e*J ®ek ®e" 

be a tensor of type (,) . 
To express the 'primed' components in function of the 'unprimed' we simply proceed as 
follows. 
Having written 

=apaqß[a-st*, 

where the various a and β follow from the rule, we immediately replace the dots by 
successive indices of t ^ , , that is: 

ι'„'· = <«ίβΐ"Χ,· 

Remarks, (i) According to usage, it is necessary and useful to consider tensors of type 
(o). They are the scalars (independent of basis choice!). 

(ii) We recall that the previously introduced Kronecker symbol is only a symbol (and not 
a tensor). 

But we can introduce: 
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D The Kronecker tensor δ is a tensor of type (j) whose components are 

si _ 1 'f i = j< 
J~0 if i * j . 

It is a very helpful tensor because its components are unaltered under any change of 
basis: 

D The zero tensor is a zero multilinear form denoted by 0. 

1.3.8 Symmetric and Antisymmetric Tensors 

Let us consider for instance elements of Ε* <8> E* [resp. Ε ® Ε ]. 

D A tensor of type ) [resp. of type (Q)] is symmetric if 

\/x,yeE: t(x,y) = t(y,x) 

[resp. Vft>,// e Ε' : ί(ω,μ) = ί(μ,ώ) ]. 

This definition is equivalent to the following 

D A tensor t^e" ®e*J [resp. t'iei ®ej] is symmetric if 

tu=tß [resp. t'J 

The previous definition may be generalized to higher order tensors. 

D A tensor of type ) is partially symmetric if it is symmetric with respect to 
pair(s) of corresponding indices; 
in other words: 
If there are symmetries following from every transposition of two indices of same 
variance. 

D A tensor of type (°p) or type ) is completely symmetric if every transposition of 
indices changes the corresponding component into itself. 
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Remark. Given an «-dimensional vector space, every symmetric tensor of order 2 has 
n(n +1)/2 independent components. 

Now let us consider tensors which play an important role in mathematics and physics: the 
antisymmetric tensors. 

D A tensor t of type ) [resp. of type (g)] is antisymmetric if 

Vx,yeE: t(x,y) =-t(y,x) 

[ resp. Vct>, μ e E': tip,μ) = -ί(μ, ω) ]. 

This definition is equivalent to the following 

D A tensor t:je" *e'J [resp. t'iej ®<?;] is antisymmetric if 

tv=-tj, [resp. t'J = ~tJ']. 

We deduce 
t{x,x) = 0. 

The previous definition may be generalized to higher order tensors. 

D A tensor of type (g
p) is partially antisymmetric if it is antisymmetric with respect 

to pair(s) of corresponding indices; 
equivalently, 
if there are antisymmetries following from every transposition of two indices of 
same variance. 

D A tensor of type or of type (q ) is completely antisymmetric if every 
transposition of indices changes the corresponding component into its opposite. 

Remark. Given an «-dimensional vector space, every antisymmetric tensor of order 2 
has «(« -1)/2 independent components. 

PR6 Every tensor of type ) [or of type (jj)] can always be decomposed, in a unique 
manner, into the sum of a symmetric tensor ts and an antisymmetric tensor tA : 
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The various operations on tensors are assumed to be known, but we recall them 
for the notation essentially. 

2.1 TENSOR ALGEBRA 

Before defining operations on tensors, we say: 

D Tensors are equal if they are the same element of a same tensor space. 

2.1.1 Addition of Tensors 

An inner law, namely the addition, can be defined on the set of same type tensors. 

D The sum of two tensors whose np*q components are respectively t''h and 

u') '' is the tensor of type ( ' ) the components of which are t'l'"'q +u']"'q . 
J'~Jp J r r Jl-Jp Jl-Jp 

The addition of two tensors of type Cp) is 

where t + u is the tensor sum. 

2.1.2 Multiplication of a Tensor by a Scalar 

D The product of a tensor with components l'^ 'j by a scalar k is the tensor 

whose components are k t''^ '* . 

The multiplication of a tensor of type Cp) by a scalar k is 

Ä X 7 - ; 7 / : ( * , / ) ! ->*/ , 

where kt is the product of t by k. 
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2.1.3 Tensor Multiplication 

D The tensor multiplication of any tensor t of type Cp) and any tensor u of type 

(*) is the mapping 

® : Tq
p χ T' -> Tq

p"r : (t,u) h> t ® u, 

the tensor product t®u being such that 

t ® u (ω(1) ,...,β»(ϊ),»(,+!) ,-,e»(?+J) > *(l) .···. X(p), x(p+\) '···» x(p+r)) 
= t(com,...,(oig),xm,...,x(p)) u(0){g+l),...,m(g+s),x{p+l),...,xip+r)). (0-25) 

This law ® verifies the following properties'. 

PI. The tensor multiplication is bilinear: 

Vi Ε 7-;, V«(1), Um e Tr* : t ® (m(1) + «(2)) = t ® h(1) +1 ® h (2) , 

V/{1) ,<(2) g T<, VH e Γ/ : (ί(]) + / ( 2 )) ® « = /,„ ® Η + ί (2) ® « , 

VAeÄ, VteT',VueTr
s :k(t®u) = kt®u = t®ku. 

P2. The tensor multiplication is associative: 

\/t,u,seTq
p : ( f ® « ) ® s = / ® ( K ® i ) = f ® K ® s . 

P3. The tensor multiplication is not commutative. 

2.1.4 Tensor Algebra 

D The tensor algebra is the infinite-dimensional vector space: 

r = r®e®e'®t°®t0
2®ti'®-®tz®- , 

direct sum of vector spaces the dimensions of which are higher and higher, and 
where R represents the tensors of type (°) (also called scalars). 

This space is provided with a bilinear inner law: the tensor multiplication, and we 
express: 

PR7 The tensor algebra Τ is associative, non-commutative, and of infinite dimension. 
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2.1 CONTRACTION AND TENSOR CRITERIA 

We consider tensors of type Cp) such that p,q>\. 

2.2.1 Contraction 

D The contraction of a tensor is the operation which consists in choosing a 
contravariance index and a covariance index, in equaling these indices, and in 
summing with respect to the repeated index. 

For example, let us consider the tensor 

tmrs em ® e r ® e ' J e 71 ,2 . 

Contracting r and s we obtain a tensor of T0' whose components are 

u = 2 J r — Ο r t s . r 

PR8 Every contraction of a tensor removes one contravariance and one covariance. 

PR9 After q contractions a tensor of type (q
q) is reduced to a tensor of type (jj) (in 

principle q\ in number). 

Example. Given a 2-dimensional space E, two successive contractions of 

lead to the following scalars: 

t
 kr - t " +t 12 +/ 21 +/ 22 lkr ~ 'll 12 21 +i22 ' 
t kF = / " +t 21 +/ 12 +/ 22 
rk M l 12 21 22 

D The contracted multiplication is the tensor multiplication with contraction. 

For instance, the contracted multiplication 

Ε* ® Ε ^ R: (ω,χ) l·^ (ω,χ) 
is such that 

(ω,χ) = ω,χ'. (0-26) 
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Amongst the different contractions of the tensor product t ® u of two tensors we 
emphasize the following: 

Notation. The contraction with respect to the last index of t and the first index of u is 
denoted by1 

tu. 

Amongst the possible double contractions of a tensor product of two tensors t®u we 
emphasize the following: 

Notation. The contraction with respect to the last index of t and the first index of u 
followed by the contraction with respect to the penultimate index of t and the second 
index of u is denoted by 

t:u. 

Remark. The dot between two tensors corresponds to the previous type of contraction. If 
the contraction concerns other indices, then this must be specified by letting both the 
indices of contraction between brackets. 

For instance, given t = ttJe" ® e'J and χ = xkek, we have the following covector 

t • χ = tikxk e" 

= ( f „ xx + tnx2 + ..)e* +(f21 x' + f22 x2+ ...)<?*2 + ... , 

which is different from the (1,1) contraction: 

tkjxke'J =(i„x1 + ?21x2+...)e*1 +(rl2Λτ1 + /22ΛΓ2+...)β*2 +... . 

Following from the properties of the tensor multiplication, we immediately have: 

- the associative property: 

C(l) · '(2) ) ' '(3) = '(I) ' ( ' (2) ' *(3)) = '(1) " *(2) ' '(3) 

and 
C(l) : ' ( 2 ) ) : h = '(1) : ( ' (2) : ' (3 ) ) = '(1) : ' (2) : '(3) ' 

- the following distributive property: 

C(l) + *(2)) · '(3) = t m ' '(3) + '(2) · '(3) · 

1 If this conventional notation is allowed. 
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Examples, (i) Given χ = xlet gE, y = yJej e Ε and t = tpqe'p ®e*q e Ε' ® Ε', we 
immediately have: 

x-t-y = tijx'yi 

= t(x,y). 

(ii) Given χ = x'et e Ε and t = tp
9 e*p ® eg e Ε* ® Ε, we have: 

x-t = x'er(t ;e-"®eq) = x't p
q δ? eq 

and also 

Thus, we have 

P 
= xit,"eqBE 

't χ = (l)"peq®e"-x!e, = / / x ' 8 f e q 

x t = ' t x . (0-27) 

(iii) Given arbitrary second order tensors t, u and v, we have 

/ : (11 · v) = ii : (v • /) = ν : (/ · h) . (0-28) 

Remarks, (i) The double contraction of tensors of order 2 decomposed into symmetric 
and antisymmetric parts is such that: 

t:u = ts :us+tA:uA. 

(ii) The contraction δ-t between the Kronecker tensor and t=t'k er®e'k is the (|)-
tensor 

δ) t[e,® e'' ® et ® e'k = t\ ei ® e'k. 

Thus the double contraction is the following real 

S ' t = 8 \ t \ , (0-29) 

with summation over k. 
This is the so called trace of the second order tensor t and this scalar associated with t is 
said to be an invariant because its value is the same in all coordinate systems 

In particular, we mention that the (] )-tensor δ • δ has the following components 

<?/£*=<?/· (0-30) 
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In a 3-dimensional space the double contraction is the following real value: 

δ ) δ ΐ δ ! = δ ] δ ί = δ ί = 3. 

2.2.2 Tensor Criteria 

Until now we have been able to recognize tensors either from the definition 
directly, or from the transformation of components through basis changes. Let us recall a 
very useful criterion ensuring the tensor character of given mathematical entities; it will 
be based on contractions. 

The general tensor criterion is expressed as follows: 

If the contracted multiplication of a mathematical entity and an arbitrary tensor is a 
tensor, then the mathematical entity is a tensor. 

Criterion. If the contracted multiplication (k times) of a mathematical entity and a tensor 
of type ( p) leads to a tensor of type (r

s), then the mathematical entity is a tensor of type 
(<-+*-? \ \s+k-p )• 

For example, the work done by a force / applied to a particle whose infinitesimal 
displacement is represented by the vector dx is expressed as 

dW = f,dx'. 

The contracted multiplication of the entity of components ft and the vector of 

components dx' leads to a scalar. So the entity of components / , is a tensor of type 

(süM?). 
So the force appears to be a covector. 
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FOUNDATIONS OF DIFFERENTIAL GEOMETRY 

Today's Classical Mechanics can be considered as a branch of Differential 
Geometry. For example, the fundamental spaces of mechanics are manifolds introduced 
in this modern geometry and the various well known functions of mechanics are 
rigorously formulated in this geometric language. 

Foundations of differential geometry, necessary and useful to develop mechanics, are 
recalled. By taking account of this symbiosis Mechanics-Geometry the reader can refer, 
for instance, to Abraham and Marsden (1980) and Talpaert (2000) for proofs and 
additional material of differential geometry. Unlike these books basic notions of topology 
and elementary differential calculus in Banach spaces are not here recalled. 

1. MANIFOLDS 

Let Μ be a set of elements called points, 
F be a finite-dimensional real normed space. 

1.1 DIFFERENTIABLE MANIFOLDS 

Let us provide Μ with a topology by considering that every point of Μ belongs at 
least to an open U, of M. We are going to cover M. In other words, let us introduce a 
covering of Μ by opens. 

25 
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1.1.1 Chart and Local Coordinates 

D A (local) chart on Μ is the pair (U„(f>) made up of: 
- an open i/, of M, 
- a homeomorphism ^>of U, onto an open subset φ(ϋ,) of F. 

The open £/, is called domain of the chart. 

An arbitrary point of Μ can belong to two distinct opens, for instance Uj and Uk. The 
corresponding distinct charts are (Uj/pj) and (Uk,<Pk)• 

The homeomorphisms (pj and <pt being different, we connect the opens φ/JJj) and <Pk(Uk) 
of F by introducing the following notion. 

Let us denote 

Fig. 1 

Henceforward the space F will be only ft", then to each point Μ is associated a chart 
(υ,φ) such that <p(U) is an open of ft". 

D Two charts (Uj,<pj) and {Uhipk) on M, such that Ut Π Uk * 0 , are called in-
compatible (q>\) if the overlap mapping 

<Pkj=<Pk "Ρήυ,ηυ, 
is a C diffeomorphism1 between the opens φι (Ut Π Uk) and (pk {Ut Π Uk) of 

R". 

PjpjWt 
the restriction of φ'^ to the open φt ([/. Π Uk) of F. 

R" 

1 A diffeomorphism of class C is called a C diffeomorphism. 
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This diffeomorphism of class C is the mapping <pk] between the two hatched domains 
as illustrated in Fig. 1. 

D The local coordinates χ of a point ρ belonging to the domain U of a chart ( U,<p) 
of Μ are the coordinates of point tp(p) of R". 

Let us denote by 
( Λ - , * " ) 

the ordered «-tuple of real numbers linked to point p. 

Thus the bijection 

φ·.υ R" :ph-xp(p) = (x\...,x") 

assigns to any point p o f U c z M the «-tuple of reals (χ' ,...,x"). 

Conversely φΛ assigns to every ordered «-tuple of real numbers a point of U. 

Fig. 2 

So, to coordinate lines of R" are associated coordinate lines on Μ and a chart defines a 
local coordinate system on M. 

The reader will notice that the reference made to R" in which differential calculus is well 
known will later be profitable for mechanics. 

1.1.2 Atlas 

Of course before defining the rules of differential calculus on Μ we must properly 
define a set of charts on the whole of M. 
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D An atlas of class C on M i s a family A of charts (U„<p,) such that: 

(0 the domains U, of charts make up a covering of M: 

re; 

(;';') any two charts (ΙΙ,,φ,), (Uj,<pj) of A, with Ui Π Uj * 0, are C-compatible. 

Let us observe that an atlas of class Ο generates an atlas of class C such that p < q . 

Classic examples. Atlases of S2 and S". 

Let the unit 2-sphere be: 

Consider the mapping φχ, Stereographic projection from the north pole η onto the plane 
{ q e Ä3 :x3(q) = θ}. It is a bijection between S2 - {n} and this plane locally. More 
details about stereographic projections are given in Talpaert (2000) for instance. 

Similarly, the stereographic projection φ from the south pole s onto the previous plane is 
a bijection between S 2 - {,?} and the plane locally. 

Because of poles the sphere cannot be covered by only one chart: no single 
homeomorphism φ can be used between S2 and the plane. 

On S 2 , with the topology induced by the one of R 3 , we know that two arbitrary charts 
(U\,<p\) and (U2,(pi) are compatible. The 2-sphere atlas is composed of (at least) two 
charts. 

The reader will immediately generalize to the «-sphere: 

He will consider two homeomorphisms: the stereographic projections from respectively 
the north pole and the south pole, i.e. two mappings of S" - \n] (resp. S" - {5}) onto the 
hypersurface of equation x"*' = 0 . With the usual topology on S " as a subset of Rn+I 

then an atlas with two charts will be defined. 

D A chart (U,tp) is compatible with the atlas {(t/,,<p,)lei} or is admissible if the 
union {(U ,<p)}(J {(U ̂ φ,) ieI} is again an atlas; in other words if it is a chart of the 
atlas. 

D Two atlases of class C are equivalent or compatible if their union is still an atlas. 
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To avoid that different atlases lead to the same calculus on Μ we are going to 
consider the two following notions. 

D The maximal atlas A , associated with an atlas A is the atlas being composed of 
all (equivalent) charts compatible with A. 

D A maximal atlas on Μ provides Μ with a differentiable manifold structure. 

In practice, a differentiable manifold structure is defined from an atlas representative of 
its equivalence class (all the equivalent atlases defining the same differentiable manifold 
structure). 

Let us emphasize that the definition of a differentiable manifold structure has two 
requirements: 
(i) The opens of local charts cover M. 
(ii) Two any charts (U J ( U φ k) suchthat U ] Π Uk Φ 0 are C-compatible. 

Let us make more explicit the second requirement with the aid of the notion of change of 
charts (or change of local coordinates). 

Let ρ be a point belonging to the intersection UJ Π Uk of domains of distinct charts 

{UJ,<PJ) and (Uk,<pk). 

The reader will easily sketch the following situation by referring to Fig. 1 and where the 
C diffeomorphism <pt] is the Cq diffeomorphism φ~ι ° <pk between the hatched opens of 
R" included in <pk (Uk) and φ] (Uj) respectively. 

Thus let us consider two local coordinate systems. 

The definition of an atlas of class C means the coordinates x'\...,x'" of ρ with respect to 
a local coordinate system are functions of class C of coordinates x\...,x" of ρ with 
respect to the other system of local coordinates. Thus we express: 

D The change of charts (Uφt) and (Uk, tpt) or local coordinate transformation of 
point ρ is admissible if there is a C diffeomorphism between opens of R": 

φ, ο φ]1 :R" -+R" : (χ',.,.,χ") ι-> ( χ Λ ) , 
that is: 

if the functions / ' defining the coordinate transformation 

y1 =/'(*',...,*·),..., *'·=/"(*',...,x") 

have continuous gth-order partial derivatives with respect to variables χ . 
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1.1.4 Differentiable Manifolds 

D A differentiable manifold of class C is a pair consisting of a topological space 
and a maximal atlas. 

It is denoted by 

(AM). 

Henceforward we will assume that the basis for the topology defined by chart domains is 
countable. We recall that a topological space is said to be a space with countable basis if 
there is (at least) one basis consisting of a countable number of elements, countable 
meaning finite or denumerable. Since every topological space with countable basis is 
separable, that is containing a (everywhere) dense countable set, then every manifold is 
assumed separable. 

In addition every manifold will be assumed of Haussdorff type. We recall that a 
topological space is a Haussdorff space if for any two distinct points of this space there 
are neighborhoods of these points that do not overlap. 

In practice, we define a differentiable manifold from an atlas on M. Unless otherwise 
specified, the differentiable manifolds will be of class C" and we express: 

D A differentiable manifold is a pair consisting of a Haussdorff space with 
countable basis and an atlas. 

A differentiable manifold is an n-manifold if for every point χ of space there 
exists an admissible local chart (ΙΙ,φ) with χ eU and <p(U) c R". 

Notation. Its dimension being n, the manifold (M„,A) will be denoted Mn or simply Μ 

Examples, (i) Space R" is a manifold such that the atlas {(R", id) } is made up of only 
one chart (R",id) . 

(ii) By considering 

S ' = { ( x ' , * 2 ) e Ä 2 : (χ1)2 +(* 2) 2 =l}, 

then circle S'1 is provided with the induced topology. 

The circle is evidently not homeomorphic to R and thus S] cannot be covered by only 
one chart. 

Let us check an atlas of S1 defined by two charts {UU<P\) and (ί/2,ζ%) which are 
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t/, ={ ( j c 1 > x 2 ) eS 1 : * ' <l} 

φ, : i / , ( cS ' ) - • ] ( ) , 2 ; r [ : ( x ' = cos0 ,x 2 = sin0)h->6> 

and 

U2 = { ( x ' , x 2 ) e S ' :x ' > - l } 

<p2 : i / 2 ( c S ' ) - > ] - f f , f f [ : (x1 = cos0,x2 = sin6>) h^ <9. 

These charts evidently cover S 

Now from 

C/,nC/2 =5'-{(1,0) , ( -1 ,0)} 

let us check that the mapping φ1 °φ 2 is a diffeomorphism between the opens 

*>,(!/, Π I/,) and f W 2 ) o f * . 

Fig. 3 

On the one hand, for θ <Ξ]0, π [ we have: 

φ} (φϊ'θ) = φι (cos θ, sin θ) = θ. 

The example corresponding to ö = π/4 is sketched. 

On the other hand, for θ e ] - π, 0 [ we have: 

Ψ\ (ψι θ ) = Ψ\ (cos Ö, sin θ) = θ + 2π . 

The case of the value θ = -— is illustrated, that is: 
2 

Ψ\ (0,-1) = e ]0,2π[. 

In conclusion, φ ι ° φ~' is a diffeomorphism between the above mentioned opens of R. 

Note that the only one-dimensional connected manifolds are R and 5 1 . 
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PR1 A manifold Μ is such as the topological space is locally compact and locally 
connected. 

Proof. First, let us show that every point χ of Μ has a compact neighborhood. 
Let (U,<p) be a chart containing χ where φ is a homeomorphism U —> <p(U) such that 
<p(U) is a neighborhood of φ(χ) in R" locally compact. Thus there is a compact Κ of R" 
such that φ(χ) e Κ c <p(U). 
But, <p~x being continuous and Μ being Haussdorff, we can conclude <p~'(K) is a 
compact neighborhood containing χ since any continuous mapping/of a compact space S 
into a Haussdorff space Τ implies the subset / ( S ) of Τ is compact. 

Next, to prove that a manifold Μ is a locally connected topological space we proceed as 
previously so that <p(U) is a neighborhood of (fix) in R" containing a connected 
neighborhood C of <p(x) and then <p~' (C) is a connected neighborhood in Μ containing x. 

Let us now introduce the notion of product manifold. 

Let Μ be a manifold of class C7 defined by an atlas 

A = {{U„Vi)\iel}. 

Let Ν be a manifold of class C defined by an atlas 

Ä = { < y j , V j ) \ j e j } . 

D The product atlas Ax A is 
/ X j j 

where 
l/l^J={(x„yJ)lxleU„yJeVJj 

φ, χ ψ] : U, χ V] Ρ" χ Pm : (x,y) η» {φ, {χ),ψJ (y)) . 

PR2 The structure of differentiable manifold MxN follows from the structures of 
differentiable manifolds Μ and N. 

Proof If we denote 
wtj = u, xVj, w; = u\ χ ν], 

then the following set 

w.mij =(utw,)x(v]r\rJ) 
is an open of MxN. 

If we define 
<pv(x,y) = (<pAx),Vj(.y)) 
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and analogically for φ'η, then the C°diffeomorphism between opens of R"*m is: 

φ» °<p< =(φ'°φ?)χ(ψ] °v~/)· 

Indeed 
{φ',]οφ;;){χ,γ) = φ·](φ-\χ\ψ-]\γ)) 

= (φ·χφ;\χ)\ψ){ψ-;{γ))) 

Thus we naturally express: 

D The product manifold Μ χ Ν of two manifolds is the manifold defined from the 
product atlas of Μ and N. 

Its dimension is the sum of dimensions of each manifold. 

Examples, (i) The 2-torus Τ2 = S 'χ S 1 is the product of two manifolds S1 which are 
two circles respectively around the inner tube and the cross section. 

More generally the «-dimensional torus is the product of η circles. 

(ii) The cylinder S'xR, provided with the product manifold structure is a two 
dimensional manifold. 

More generally the (n+1)- dimensional cylinder is the product manifold S"xR. 

Let us conclude this section with the notion of orientable manifolds. 

Let (x1) and (yJ) be two coordinate systems of an open U of M. 

D A differentiable manifold is orientable if there is one atlas suchthat 
in the common domain of any two charts the orientations are the same·, 
in other words 

if 
D(yJ) 

Let us note that the orientations associated with each coordinate system (in the common 
domain) are opposite if, at every point of the domain: 

D(yJ) 
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D A differentiable manifold is orientable if there is one atlas (U i,<pi ) lei such as 
the Jacobian of every coordinate transformation φ, ° <p~' is positive at every 
point. 

We immediately deduce from the definition: 

PR3 The product manifold of orientable manifolds is orientable. 

PR4 Any open of an orientable manifold is an orientable manifold. 

Examples, (i) The manifold S" (η > 1) is orientable. 

It is readily proven that S" has a differentiable manifold structure. See for instance 
Talpaert (2000), but the atlas which has permitted defining the differentiable manifold 
structure of S" does not allow using the definition of orientation; thus we are going to 
choose another atlas. 

Let us consider the opens 

[ / ,={(* ' , . . . , *"+1)|x"+1 <l}, t/2 ={(* , , . . . ,x"+ ,) | x"+> > - l } , 

and the poles N= (Ο,.,.,Ο,Ι) and S = (0,...,0,-1). 

Let φ ι be the stereographic projection from the north pole Ν onto the plane of equation 
= 0 . 

Let <p2 be the stereographic projection from the south pole S onto the previous plane. 
Let ψ be the symmetry with respect to the plane of equation x] = 0. 

The atlas consisting of charts (U\,q>\) and (U2,tf° qh) is in accordance with the definition. 
Indeed the coordinate transform 

0 Γ 1 =ψ°{ψ2 ο ρΓ ' ) 

is the composition of an inversion (mapping presenting an always negative Jacobian) 
with a symmetry with respect to a plane. Thus it is a diffeomorphism with positive 
Jacobian. Therefore the sphere S" is orientable. 

(ii) Any torus or cylinder is orientable. 

This is an obvious consequence of PR3 and of the fact that S" and R" are orientable. 

To prove a manifold is not orientable it is easy to consider the next proposition. 

PR5 In order that a differentiable manifold Μ be orientable it is necessary, for any pair 
of connected charts (U,<p) and (V, ψ), the Jacobian of ψοφ^ to have a constant 
sign on <p(U Π V). 

Example. The Möbius strip is not an orientable manifold [see e.g. Talpaert (2000)]. 
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1.2 DIFFERENTIABLE MAPPINGS 

Let us introduce the notion of mapping of class C ' between differentiable 
manifolds. 

Let M„, Nm be manifolds of class Cp, 
/ be a continuous mapping of M„ into Nm, 
λ: be a point of M„. 

1.2.1 Differentiable Mapping between Manifolds 

D A mapping / o f M„ into Nm is of class C (q<p) at point χ of M„ if, for each chart 
(U,<p) such as xe U and each chart (V, ψ) such as y = f(x) e V , the mapping 
called 'local representative' of / 

/ „ - p / ^ - X f n f ' e c r ^ r 

is of class C . 

Let us express this definition in coordinate systems. 

Let x1,..., x" be the local coordinates of χ in (U,<p), 
y\.,.,y" be the local coordinates of y =/(x) in (V,ψ). 

D A mapping / of M„ into Nm is of class C at point χ of M„ if the m local 
coordinates / of point y =f(x) are, in the neighborhood of x, the m functions of 
class C 

of η coordinates x' of x. 
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D A mapping / of M„ into Nm is a mapping of class C of M„ into Nm if, for every χ 
in Mn, to any (admissible) chart {Υ,ψ) on Nm is associated a chart (U,<p) on 
Mn such as χ eU, flx)eflU) c V and also 

/„^ψο/οφ-' :9(U)czR" 

is of class C . 

Notation. 
C{Mn\Nm) denotes the set of mappings of class C of M„ into Nm; 
C°{M„\Nm) denotes the set of differentiable mappings (class C") of Mn into Nm. 

It can be proved: 

PR6 A mapping / of M„ into Nm is a mapping of class C iff for each χ of M„ there 
exists one chart (U,<p) with xelf and one chart {Υ,ψ) with J(x)eV such that 

Now, we consider the notion of canonical projection. 

PR7 The canonical projections are differentiable mappings of the product 
differentiable manifold M„ χ Nm into the respective manifolds M„ and Nm. 

Proof Let us consider the canonical projection 

p:M„xN„ M„. r η m η 

It is sufficient to prove that there are a chart (U χ V, φ χ ψ) on Μη χ Nm at each 
(x,y ) eM„xNm and a chart (U',tp') on Mn at χ = p(x,y) such as p(U xV)<zU' and 
φ' ο ρ ο (φ χ ψ)~ι is a mapping of class C°° of {φ χ ψ){Ό χ V) into R". 

f(U)<zV and / w e C ' ( # ) ; r ) . 

Μ 

R" 
Fig. 5 
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Let (JJ xV ,φχψ)be a chart at (x,y) on the product manifold, and (U,(p) be the 
corresponding chart on M„ at x. 

We have: 
p(UxV) = U, 

and the following mapping 

φ° ρο(φχψ)~] :(<pxij/)(UxV)-> R": 

is of class C™. 

The following propositions are proved, for instance, in Talpaert (2000). 

PR8 The composition of mappings of class C between manifolds is a mapping of class 
C". 

PR9 Let Mn, Nm , Pr be differentiable manifolds, 
px be the canonical projection of Mn χ Nm onto Μn, 
p2 be the canonical projection of M„ χ Nm onto Nm . 

The mapping 

f'.Pr^M„xNm 

is of class C iff the coordinate functions 

are of class Cq. 

PR10 A mapping f :M„ Nm is of class C iff there is an (open) covering (U,),ei of 

M„ such that / | lfj is of class C for every iel. 

1.2.2 Diffeomorphism, Immersion, Submersion, and Embedding 

First, let M„ and N„ be differentiable manifolds of same dimension. 

D A mapping / o f Mn onto N„ is a C diffeomorphism of M„ onto N„ i f / i s a bijection 
of C'(M„;7VJand / " ' E σ(Ν„;Μ„). 
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Notation. 

Let Dijf (M„; Nn) denote the set of C diffeomorphisms of M„ onto N„, 
Diff{Mn; Nn) denote the set of (C*) diffeomorphisms of M„ onto N„. 

By referring to PR8 it can be easily proven the following. 

PR11 If Mi is a differentiable manifold then Diff(Mn \Nn ) is a group with respect to the 
composition of mappings. 

D A differentiable mapping between manifolds (of same dimension) f : M„ Nn 

is a local diffeomorphism at a point χ of M„ if the rank of / a t χ is n. 

It is a local diffeomorphism on M„ if it is a local diffeomorphism at every point 
of Λ/„. 

PR12 A mapping of class C of M„ onto N„ is a C diffeomorphism i f f it is bijective 
and is a local diffeomorphism on M„. 

Let us emphasize the importance of the bijective assumption. 

PR13 A bijection / of M„ onto N„ is a diffeomorphism of M„ onto N„ i f f , in local 
coordinates x', the η differentiable functions 

f \ x ' ) i = l,...,«, 

that define f show a nonzero Jacobian. 

Secondly, let M„, Nm be differentiable manifolds. 

D A differentiable mapping / : M„ Νm is an immersion at point χ of M„ if the 
rank of / is equal to the dimension of M„. 

It is called immersion of M„ into Nm if it is an immersion at every point of M„. 

It is necessary that n<m. 

D A differentiable mapping / :M„ -> Νm is a submersion at point χ of M„ if the 
rank o f f is equal to the dimension of Nm. 

It is called submersion of M„ into Nm if it is a submersion at every point of Mn. 
It is necessary that n>m. 



Foundations of Differential geometry 39 

D A differentiable mapping / : Μn -> Νm is an embedding of M„ into Nm i f / i s an 
injective immersion and a homeomorphism of Nm onto f[Mn) (for the induced 
topology). 

The reader will prove the following propositions by having in mind the constant rank 
theorem. 

PR14 If / : Mn -> Nm is an immersion (resp. submersion) at point χ of M„, a chart 
(U,<p) on M„ containing χ and a chart (V, ψ) on N„ exist such that 

f(U) c V 
and 

f „ =ψ°ί°φ-χ -.cp{U)-*Rm ·,{χ\...,χ··)^{χ\...,χ"Α...,0) 
[resp. {x\...,x") (x',.. . ,xm),« > m], 

PR15 If / : Mn Nm is a mapping of class C of constant rank r on M„ then, for 
every χ of M„ , a chart {IJ,φ) on M„ containing χ and a chart (ν,ψ) on Nm exist 
such that: 

f(U) e V 
and 

ί„~Ψ° f° <P~' •• 9<V) ->· Rm : (X1,.., X") ^ (x',...,,Ο,.,.,Ο). 

PR16 If / is an embedding of M„ into Nm then the set / ( M n ) is provided with a 
differentiable manifold structure (induced by the embedding). 

Proof. If {(U,,>p,),t,} is an atlas of M„, let us prove that {(f(Ul),<pl ° f~l)leI} is an 
atlas of f(M„). 

Every point f{x) of /(?7,) corresponding to χ eU; has a neighborhood which is 
homeomorphic to an open of R"; and the opens f(U,)iel cover / (M„) ; moreover the 
image of any « U, Π U] is a point f(x) e f(U, )C\f(UJ). 
The mapping 

is a diffeomorphism between the opens (of R") 9J(UJ) and φ,(1/,) because: 

{ψ, - Γ') ο {φ, » /"')"' = {φ, ο /"') ο (/ ο φ'1 ) = φ,ο φ^ 

and that (£/,, ρ,) and ( ί / ; , φ1) are charts of atlas on M„. 
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1.3 SUBMANIFOLDS 

1.3.1 Submanifolds of R" 

D A subset Κ of R" is a submanifold of R", of dimension m (< n) and of class C 
if, for every xeV, there exists an open Ux of R" containing χ and a C 
diffeomorphism g of Ux onto the open g(Ux) of R" suchthat 

Fig. 6 

The following propositions which allow to find submanifolds of R" are illustrated and 
proved in Talpaert (2000). 

Let U be an open of R". 

PR17 Let / : t / ( c /?")-> Ä"' be a mapping of class C , 

If / is a submersion at every point of V, then V is an (n -m) -dimensional 
submanifold of R". 

From this proposition we can immediately deduce another one very useful in practice. 

PR18 Let f ' : U(c /?")->/? be m functions of class C, 

V = {x = (χ',.,.,χ") e R":/'(*',...,*") = 0, V/ e {l,...,w}}. 

If for every χ of V, the rank of the Jacobian matrix 

g ^ n r ^ g o / j n / r . 

R 

R 

y be a point of Rm, 
V = r \ y ) . 

is m{<ri), then Vis an (n-m ) -dimensional submanifold of R". 
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A special case of the previous proposition is the following. 

PR19 Let f:U(czR")^>R be a function of class C, 
V = [x e R" \ f(x) = θ}. 

If for every χ of V one of partial derivatives of / is nonzero (nonzero gradient of 
/ ) , then V is an (« -1) -dimensional submanifold of R". 

Another interesting proposition lets conclude to the existence of submanifolds of R": 

PR20 If / : U(c: Rm) -> R" is an injective immersion ( m < n ) , 
if / " ' : V = / ( [ / ) U is a continuous mapping, 
then V is an w-dimensional submanifold of R". 

1.3.2 Submanifold of Manifold 

D A subset W of a manifold Mn is an m-dimensional submanifold of M„ (m < n) if 
for each χ e W there is a chart (υ ,φ) in M„ containing χ such that: 

<p{Ur\W) = <p{U)[-\Rm. 

A chart {υ,φ) such that (p(UC\W) is the set of points (χ',.,.,χ") of <p(U) 
fulfilling x"*x = ... = χ" = 0 is said to be 'adapted' to W. 

Example. Let us consider the classic case η = 3, m = 2. 

Fig. 7 

In this example we have: 

<p(Uf)W) = (p(U)C\R 
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PR21 Given two differentiable manifolds Mn and Nm if f\Mn^>Nm is of class C 
and of (constant) rank r on M„ then, for each ye f(Mn), f~\y) is an ( n - r ) -
dimensional submanifold of M„. 

PR22 If / : M„ Nm is a mapping of class C between differentiable manifolds, if y 
is a point of f{Mn) and if / is a submersion at each point of f](y), then 
f'x (y) is an ( n - m ) -dimensional submanifold oiM„. 

We express in another manner: 

PR23 Given m differentiable functions / ' : Mn ->· R : χ l-> / ' (x) on M„ defining a 
differentiable mapping / : M„ Rm : χ ι-» (f](x),...,fm(x)), then a subset W of 
M„, defined by m equations f'(x) = 0 and / having rank ρ at each point of W, is 
an (n-m)-dimensional differentiable submanifold of Mn. 

2. TANGENT VECTOR SPACE 

We are going to associate an «-dimensional vector space at any point χ of a 
differentiable manifold Μ which will be called the tangent space to Μ at x. A decisive 
progress in differential geometry occurred when tangent space was defined given a 
manifold without reference to R". Different techniques can be used, for example the 
algebraic approach using the notion of ideal, but we have chosen the method which is the 
most used by engineers and physical scientists. 

2.1 TANGENT VECTOR 

Let Μ be a differentiable manifold, 
x0 be a point of M, 
I be an open interval in R containing 0, 
(υ,φ) be an admissible chart of M. 

2.1.1 Tangent Curves 

D A (differentiable) curve1, passing through x0, in Μ is a differentiable mapping 

c:I Μ : n-> c{t) 
such that 

c(0) = x0. 

1 Strictly speaking it is a matter of an arc. 


