# Inverse and lll-Posed Problems Series 

Linear Sobolev Type Equations and Degenerate Semigroups of Operators

## Also available in the Inverse and III-Posed Problems Series:

III-Posed and Non-Classical Problems of Mathematical Physics and Analysis
Editors: M.M. Lavrent'ev and S.I. Kabonikhin
Forward and Inverse Problems for Hyperbolic, Elliptic and Mixed Type Equations
A.G. Megrabov

Nonclassical Linear Volterra Equations of the First Kind
A.S. Apartsyn

Poorly Visible Media in X-ray Tomography
D.S.Anikonov, V.G. Nazarov, and I.V. Prokhorov

Dynamical Inverse Problems of Distributed Systems
VI. Maksimov

Theory of Linear III-Posed Problems and its Applications
V.K. Ivanov, V.V.Vasin and V.P.Tanana

III-Posed Internal Boundary Value Problems for the Biharmonic Equation
M.A.Atakhodzhaev

Investigation Methods for Inverse Problems
V.G. Romanov

Operator Theory. Nonclassical Problems
S.G. Pyatkov

Inverse Problems for Partial Differential
Equations
Yu. Ya. Belov
Method of Spectral Mappings in the Inverse
Problem Theory
V.Yurko

Theory of Linear Optimization
I.I. Eremin

Integral Geometry and Inverse Problems for
Kinetic Equations
A.Kh.Amirov

Computer Modelling in Tomography and III-Posed Problems
M.M. Lavrent'ev, S.M. Zerkal and O.E.Trofimov

An Introduction to Identification Problems
via Functional Analysis
A. Lorenzi

Coefficient Inverse Problems for Parabolic Type
Equations and Their Application
P.G. Danilaev

Inverse Problems for Kinetic and Other
Evolution Equations
Yu.E Anikonov
Inverse Problems of Wave Processes
A.S. Blagoveshchenskii

Uniqueness Problems for Degenerating
Equations and Nonclassical Problems
S.P. Shishatskii, A. Asanov and ER. Atamanov

Uniqueness Questions in Reconstruction of Multidimensional Tomography-Type
Projection Data
V.P. Golubyatnikov

Monte Carlo Method for Solving Inverse
Problems of Radiation Transfer
V.S.Antyufeev

Introduction to the Theory of Inverse Problems
A.L Bukhgeim

Identification Problems of Wave Phenomena -
Theory and Numerics
S.I. Kabanikhin and A. Lorenzi

Inverse Problems of Electromagnetic
Geophysical Fields
P.S. Martyshko

Composite Type Equations and Inverse Problems
A.l. Kozhanov

Inverse Problems ofVibrational Spectroscopy
A.G. Yagola, I.V. Kochikov, G.M. Kuramshina and Yu.A.

Pentin
Elements of the Theory of Inverse Problems
A.M. Denisor

Volterra Equations and Inverse Problems
A.L Bughgeim

Small Parameter Method in Multidimensional Inverse Problems
A.S. Barashkov

Regularization, Uniqueness and Existence of Volterra Equations of the First Kind
A. Asanov

Methods for Solution of Nonlinear Operator
Equations
V.P.Tonana

Inverse and III-Posed Sources Problems
Yu.E Anikonov, B.A. Bubnov and G.N. Erokhin
Methods for Solving Operator Equations
V.P.Tanana

Nonclassical and Inverse Problems for
Pseudoparabolic Equations
A.Asanov and ER.Atamanov

Formulas in Inverse and III-Posed Problems
Yu.EAnikonov
Inverse Logarithmic Potential Problem
V.G. Cherednichenko

Multidimensional Inverse and III-Posed
Problems for Differential Equations
Yu.EAnikonov
III-Posed Problems with A Priori Information
V.V.Vasin and A.LAgeev

Integral Geometry of Tensor Fields
V.A. Shorafutdinov

Inverse Problems for Maxwell's Equations
V.G. Romanov and S.I. Kabanikhin

# Inverse and Ill-Posed Problems Series 

## Linear Sobolev Type Equations and

Degenerate Semigroups of Operators
G.A. Sviridyuk and V.E. Fedorov

VSP
P.O. Box 346

3700 AH Zeist
The Netherlands

Tel: +31 306925790
Fax: +31 306932081
vsppub@compuserve.com
www.vsppub.com
© VSP 2003
First published in 2003
ISBN 90-6764-383-1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

## Contents

Chapter 1. Auxiliary material ..... 1
1.1. Banach spaces and linear operators ..... 1
1.2. Theorems on infinitesimal generators ..... 6
1.3. Functional spaces and differential operators ..... 9
Chapter 2. Relatively $p$-radial operators and degenerate strongly continuous semigroups of operators ..... 13
2.0. Introduction ..... 13
2.1. Relative resolvents ..... 15
2.2. Relatively $p$-radial operators ..... 20
2.3. Degenerate strongly continuous semigroups of operators ..... 25
2.4. Approximations of Hille-Widder-Post type ..... 31
2.5. Splitting of spaces ..... 36
2.6. Infinitesimal generators and phase spaces ..... 42
2.7. Generators of degenerate strongly continuous semigroups of operators ..... 46
2.8. Degenerate strongly continuous groups of operators ..... 49
Chapter 3. Relatively $p$-sectorial operators and degenerate analytic semigroups of operators ..... 55
3.0. Introduction ..... 55
3.1. Relatively $p$-sectorial operators ..... 57
3.2. Degenerate analytic semigroups of operators ..... 59
3.3. Phase spaces for the case of degenerate analytic semigroups ..... 65
3.4. Space splitting ..... 68
3.5. Generators of degenerate analytic semigroups of operators ..... 74
3.6. Degenerate infinitely differentiable semigroups of operators ..... 77
3.7. Phase spaces for the case of degenerate infinitely continuously differentiable semigroups ..... 81
3.8. Kernels and images of degenerate infinitely differentiable semigroups of operators ..... 84
Chapter 4. Relatively $\sigma$-bounded operators and degenerate analytic groups of operators ..... 87
4.0. Introduction ..... 87
4.1. Relatively $\sigma$-bounded operators ..... 89
4.2. Relative $\sigma$-boundedness and relative $p$-sectoriality ..... 92
4.3. Relative $\sigma$-boundedness and relatively adjoint vectors ..... 95
4.4. Degenerate analytical groups of operators ..... 97
4.5. Sufficient conditions of the relative $\sigma$-bounded ness ..... 101
4.6. The case of a Fredholm operator ..... 108
4.7. Analytical semigroups of operators degenerating on the chains of relatively adjoint vectors of an arbitrary length ..... 111
Chapter 5. Cauchy problem for inhomogeneous Sobolev-type equations ..... 119
5.0. Introduction ..... 119
5.1. Case of a relatively $\sigma$-bounded operator ..... 121
5.2. The case of a relatively $p$-sectorial operator ..... 131
5.3. Case of a relatively $p$-radial operator ..... 135
5.4. Strong solution of Cauchy problem ..... 139
5.5. Cauchy problem for an equation with Banach-adjoint operators ..... 143
5.6. Propagators ..... 150
5.7. Inhomogeneous Cauchy problem for high-order Sobolev-type equations ..... 154
Chapter 6. Bounded solutions of Sobolev-type equations ..... 159
6.0. Introduction ..... 159
6.1. Relatively spectral theorem ..... 160
6.2. Bounded relaxed solutions of a homogeneous equation ..... 163
6.3. Bounded solutions of the inhomogeneous equation ..... 170
6.4. Examples ..... 177
Chapter 7. Optimal control ..... 183
7.0. Introduction ..... 183
7.1. Strong solution of Cauchy problem for an equation with Hilbert-adjoint operators ..... 183
7.2. Problem of optimal control for an equation with relatively $\sigma$-bounded operator ..... 188
7.3. Problem of optimal control for equation with a relatively $p$-sectorial operator ..... 192
7.4. Barenblatt-Zheltov-Kochina equation ..... 194
7.5. System of ordinary differential equations ..... 195
7.6. Equation of the evolution of the free filtered-fluid surface ..... 197
Bibliography ..... 201
Index ..... 215

## Chapter 1.

## Auxiliary material

### 1.1. BANACH SPACES AND LINEAR OPERATORS

A set $\mathcal{X}$ is called a linear or vector space over the field of real (complex) numbers if

1) the addition operation is defined: to any elements $x, y \in \mathcal{X}$ there corresponds a definite element $x+y \in \mathcal{X}$ called their sum;
2) $x+y=y+x$;
3) $x+(y+z)=(x+y)+z$;
4) there exists a zero element $0 \in \mathcal{X}$ such that $x+0=x$;
5) for any $x \in \mathcal{X}$ there exists $-x \in \mathcal{X}$ such that $x+(-x)=0$;
6) the operation of multiplication by a number is defined: to any $x \in$ $\mathcal{X}$ and any number $\lambda \in \mathbb{R}(\mathbb{C})$ there corresponds a definite element $\lambda x \in \mathcal{X}$;
7) $\lambda(\mu x)=(\lambda \mu) x$;
8) $1 \cdot x=x$;
9) $\lambda(x+y)=\lambda x+\lambda y$;
10) $(\lambda+\mu) x=\lambda x+\mu x$.

The elements of a linear space will be called vectors or points.

Remark 1.1.1. It is easy to show that the zero and inverse elements are uniquely defined.

A linear space $\mathcal{X}$ is called normed if to any $x \in \mathcal{X}$ a nonnegative number $\|x\|_{\mathcal{X}}$ (the subscript will sometimes be omitted) called the norm of $x$ is assigned so that the following axioms are satisfied:

1) $\|x\| \geq 0$;
2) $\|x\|=0$ if and only if $x=0$;
3) $\|\lambda x\|=|\lambda| \cdot\|x\|$ for any $\lambda \in \mathbb{R}(\mathbb{C})$;
4) $\|x+y\| \leq\|x\|+\|y\|$ for any $x, y \in \mathcal{X}$.

To any real linear space $\mathcal{X}$ there corresponds a complex linear space $\tilde{\mathcal{X}}$ consisting of all possible formal sums $z=x+i y$, where $x, y \in \mathcal{X}$ and $i$ is the imaginary unit. Clearly, $\mathcal{X} \subset \tilde{\mathcal{X}}$. Such an inclusion of $\mathcal{X}$ in the space $\tilde{\mathcal{X}}$ is called the complexification of the Banach space $\mathcal{X}$.

A sequence of vectors $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathcal{X}$ is called convergent to a vector $x \in \mathcal{X}$, which is denoted as $x=\lim _{n \rightarrow \infty} x_{n}$, if $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$.

The set $S_{r}\left(x_{0}\right)=\left\{x \in \mathcal{X} \mid\left\|x-x_{0}\right\|<r\right\}$ is called open ball with radius $r>0$ centered at the point $x_{0} \in \mathcal{X}$.

A set $\mathcal{A} \subset \mathcal{X}$ is called bounded if $\exists K \in \mathbb{R}_{+} \quad \forall x \in \mathcal{A}\|x\| \leq K$.
A point $a \in \mathcal{X}$ is called a limit (accumulation) point of a set $\mathcal{A} \subset \mathcal{X}$ if $\forall \varepsilon>0 S_{\varepsilon}(a) \cap \mathcal{A} \neq \emptyset$. In other words, $a$ is a limit point of the set $\mathcal{A}$ if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}$ convergent to $a$. The union of a set $\mathcal{A}$ and all its limit points is called the closure of this set. It is denoted by $\overline{\mathcal{A}}$. A set coinciding with its closure is called closed. A set $\mathcal{A}$ is called open if the set $\mathcal{X} \backslash \mathcal{A}$ is closed.

A set $\mathcal{A}$ is referred to as dense in a space $\mathcal{X}$ if $\overline{\mathcal{A}}=\mathcal{X}$.
A set $\mathcal{L} \subset \mathcal{X}$ is called a lineal (or linear manifold) if $x+y \in \mathcal{L}$ and $\lambda x \in \mathcal{L}$ for any $x, y \in \mathcal{L}$ and any $\lambda \in \mathbb{R}(\mathbb{C})$. A closed lineal $\mathcal{L} \subset \mathcal{X}$ is called a linear subspace of the space $\mathcal{X}$.

Let $\mathcal{L}$ and $\mathcal{M}$ be lineals in a space $\mathcal{X}$ and let $\mathcal{L} \cap \mathcal{M}=\{0\}$. The set of all possible vectors $z$ of the form $x+y$, where $x \in \mathcal{L}$ and $y \in \mathcal{M}$, will be referred to as the direct sum of these lineals and will be denoted by $\mathcal{L}+\mathcal{M}$. If $\mathcal{L}$ and $\mathcal{M}$ are closed, their direct sum is denoted by $\mathcal{L} \oplus \mathcal{M}$.

A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathcal{X}$ is called fundamental if $\forall \varepsilon>0 \exists N \forall n>N$ $\forall p \in \mathbb{N}\left\|x_{n+p}-x_{n}\right\|<\varepsilon$. A linear space $\mathcal{X}$ is called complete if every
fundamental sequence in it converges. A complete linear normed space is called a Banach space

The symbols $I$ and $\mathbb{O}$ will denote the identity and "zero" operators, respectively, whose domains of definition are clear from the context. In other words, $I x=x$ and $\mathbb{O} x=0$.

A mapping (operator) $A: \operatorname{dom} A \rightarrow \mathcal{Y}$ of the subset $\operatorname{dom} A$ (the domain of definition of the operator $A$ ) of a linear normed space $\mathcal{X}$ to a linear normed space $\mathcal{Y}$ is called continuous at a point $x_{0} \in \operatorname{dom} A$ if $\lim _{n \rightarrow \infty} A\left(x_{n}\right)=A\left(x_{0}\right)$ for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \operatorname{dom} A$ converging to $x_{0}$. An operator $A$ is called continuous if it is continuous at every point $x \in \operatorname{dom} A$.

An operator $A$ is called bounded on the set dom $A$ if $\exists C \in \mathbb{R}_{+} \forall x \in$ $\operatorname{dom} A\|A(x)\|_{\mathcal{Y}} \leq C\|x\|_{\mathcal{X}}$. If $\operatorname{dom} A=\mathcal{X}$, the operator is called bounded.

The image of an operator $A$ is the set $\operatorname{im} A=\{y \in \mathcal{Y} \mid \exists x \in \operatorname{dom} A \quad y=$ $A(x)\}$, and its kernel is the set $\operatorname{ker} A=\{x \in \operatorname{dom} A \mid A(x)=0\}$.

An operator $A$ is called linear, if $\operatorname{dom} A$ is a lineal and $A(\lambda x+\mu y)=$ $\lambda A x+\mu A y$ for any $x, y \in \operatorname{dom} A$ and for any $\lambda, \mu \in \mathbb{R}(\mathbb{C})$. (Arguments of linear operators will be written without parentheses).

Theorem 1.1.1. Let an operator $A: \mathcal{X} \rightarrow \mathcal{Y}$, $\operatorname{dom} A=\mathcal{X}$, be linear. Then the following statements are equivalent: a) the operator $A$ is continuous at one point; b) the operator $A$ is continuous; c) the operator $A$ is bounded.

We shall denote by $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$ the linear normed space of linear continuous operators $A$ with $\operatorname{dom} A=\mathcal{X}$ if the addition of operators and their multiplication by a number are defined in a natural way: $(A+B) x=A x+B x$ and $(\lambda A) x=\lambda A x$ for all $A, B \in \mathcal{L}(\mathcal{X} ; \mathcal{Y}), x \in \mathcal{X}$, and $\lambda \in \mathbb{R}(\mathbb{C})$. The norm in $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$ is defined as follows:

$$
\begin{aligned}
&\|A\|_{\mathcal{L}(\mathcal{X} ; \mathcal{Y})}=\sup \left\{\|A x\|_{\mathcal{Y}} \mid x \in \mathcal{X},\|x\|_{\mathcal{X}} \leq 1\right\} \\
&=\sup \left\{\|A x\|_{\mathcal{Y}} \mid x \in \mathcal{X},\|x\|_{\mathcal{X}}=1\right\}=\sup \left\{\|A x\|_{\mathcal{Y}} /\|x\|_{\mathcal{X}} \mid x \in \mathcal{X} \backslash\{0\}\right\} \\
&=\inf \left\{C \in \mathbb{R}_{+} \mid \forall x \in \mathcal{X} \quad\|A x\|_{\mathcal{Y}} \leq C\|x\|_{\mathcal{X}}\right\} .
\end{aligned}
$$

If $\mathcal{Y}=\mathcal{X}$, the notation of the space of linear continuous operators will be abbreviated to $\mathcal{L}(\mathcal{X})$.

A sequence of operators $\left\{A_{n}\right\} \subset \mathcal{L}(\mathcal{X} ; \mathcal{Y})$ is called uniformly convergent to an operator $A \in \mathcal{L}(\mathcal{X} ; \mathcal{Y})$ if $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|_{\mathcal{L}(\mathcal{X} ; \mathcal{Y})}=0$. This sequence is strongly convergent to $A$ if $\forall x \in \mathcal{X} \lim _{n \rightarrow \infty}\left\|A_{n} x-A x\right\|_{y}=0$. Such a convergence is denoted as follows: $A=s-\lim _{n \rightarrow \infty} A_{n}$.

Theorem 1.1.2. Let $\mathcal{Y}$ be a Banach space. Then the space $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$ is a Banach space.

Theorem 1.1.3. Let $\mathcal{X}$ and $\mathcal{Y}$ be Banach spaces, for all $n \in \mathbb{N} A_{n} \in$ $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$, and for any $x \in \mathcal{X}$ the sequence $\left\{\left\|A_{n} x\right\|_{y}\right\}$ be bounded. Then the sequence $\left\{\left\|A_{n}\right\|_{\mathcal{L}(\mathcal{X} ; \mathcal{Y})}\right\}$ is bounded.

Theorem 1.1.4. Let $\mathcal{X}$ and $\mathcal{Y}$ be Banach spaces. A sequence $\left\{A_{n}\right\} \subset$ $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$ is strongly convergent to an operator $A \in \mathcal{L}(\mathcal{X} ; \mathcal{Y})$ if and only if the sequence $\left\{\left\|A_{n}\right\|_{\mathcal{L}(\mathcal{X} ; \mathcal{y})}\right\}$ is bounded and for every $x$ from a lineal dense in $\mathcal{X} \lim _{n \rightarrow \infty} A_{n} x=A x$.

Let $\mathcal{X}$ and $\mathcal{Y}$ be linear normed spaces. Let an operator $A: \operatorname{dom} A \rightarrow \mathcal{Y}$, $\operatorname{dom} A \subset \mathcal{X}$, be injective. Then there exists an inverse operator $A^{-1}$ : $\operatorname{dom} A^{-1} \rightarrow \mathcal{X}$, which bijectively maps $\operatorname{dom} A^{-1}=\operatorname{im} A$ onto $\operatorname{dom} A$. The operator $A^{-1}$ is linear. An operator $A$ is called continuously invertible if there exists an operator $A^{-1} \in \mathcal{L}(\mathcal{Y} ; \mathcal{X})$.

Theorem 1.1.5. The operator $A^{-1}$ exists and is bounded on $\operatorname{im} A$ if and only if there exists $m \in \mathbb{R}_{+}$such that for all $x \in \operatorname{dom} A\|A x\|_{\mathcal{Y}} \geq m\|x\|_{\mathcal{X}}$.

Theorem 1.1.6. Let $\mathcal{X}$ and $\mathcal{Y}$ be Banach spaces, the operator $A \in$ $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$, and $\operatorname{im} A=\mathcal{Y}$ and $A$ is invertible. Then the operator $A$ is continuously invertible.

Theorem 1.1.7. Let $\mathcal{X}$ be a Banach space, $A \in \mathcal{L}(\mathcal{X})$, and $\|A\|<1$. Then the operator $I-A$ is continuously invertible and

$$
\left\|(I-A)^{-1}\right\|_{\mathcal{L}(\mathcal{X})} \leq \frac{1}{1-\|A\|_{\mathcal{L}(\mathcal{X})}}
$$

A linear operator $A: \operatorname{dom} A \rightarrow \mathcal{Y}$ is called closed if it follows from $\left\{x_{n}\right\} \subset \operatorname{dom} A, \lim _{n \rightarrow \infty} x_{n}=x$, and $\lim _{n \rightarrow \infty} A x_{n}=y$ that $x \in \operatorname{dom} A$ and $A x=y$. The set of closed operators $A: \operatorname{dom} A \rightarrow \mathcal{Y}$ with domains of definition dense in the space $\mathcal{X}$ will be denoted by $\mathcal{C l}(\mathcal{X} ; \mathcal{Y})$. The set of operators $\mathcal{C l}(\mathcal{X} ; \mathcal{X})$ will be denoted by $\mathcal{C l}(\mathcal{X})$.

Theorem 1.1.8. An operator $A$ belongs to the space $\mathcal{L}(\mathcal{X} ; \mathcal{Y})$ if and only if it is closed and defined on the whole space.

Theorem 1.1.9. If an operator $A$ is closed and invertible, then the operator $A^{-1}$ is closed.

Let us introduce a graph norm $\|\cdot\|_{g}=\|\cdot\|_{\mathcal{X}}+\|A \cdot\|_{\mathcal{X}}$ on the domain of definition $\operatorname{dom} A$ of a linear closed operator $A$.

Theorem 1.1.10. If an operator $A: \operatorname{dom} A \rightarrow \mathcal{X}$, $\operatorname{dom} A \subset \mathcal{X}$, is linear and closed, then the normed space $\operatorname{dom} A$ is a Banach space with respect to the graph norm, and the operator $A \in \mathcal{L}(\operatorname{dom} A)$.

Let $\mathcal{X}$ be a complex Banach space and let an operator $A: \operatorname{dom} A \rightarrow \mathcal{X}$, $\operatorname{dom} A \subset \mathcal{X}$, be linear. A complex number $\lambda$ is called a regular point of the operator $A$ if the operator $\lambda I-A$ is continuously invertible (there exists the operator $\left.(\lambda I-A)^{-1} \in \mathcal{L}(\mathcal{X})\right)$. The set of all regular points of the operator $A$ is called the resolvent set of the operator and is denoted by $\rho(A)$. If $\lambda \in \rho(A)$, then the operator $R_{\lambda}(A)=(\lambda I-A)^{-1}$ is called the resolvent of the operator $A$. The spectrum of the operator $A$ is the set $\sigma(A)=\mathbb{C} \backslash \rho(A)$.

Theorem 1.1.11. The resolvent set $\rho(A)$ is open, and the spectrum $\sigma(A)$ is closed.

Theorem 1.1.12. The spectrum of a continuous operator $A$ lies in the circle $\left\{\lambda \in \mathbb{C}\left||\lambda| \leq\|A\|_{\mathcal{L}(\mathcal{X})}\right\}\right.$.

A complex number $\lambda$ is called an eigenvalue of an operator $A$ if there exists a vector $x \in \operatorname{dom} A \backslash\{0\}$ such that $A x=\lambda x$. Here, $x$ is called the eigenvector of the operator $A$ corresponding to the eigenvalue $\lambda$. Every eigenvalue $\lambda$ of the operator $A$ is a point of its spectrum because the operator $\lambda I-A$ is not invertible in this case.

Theorem 1.1.13. Let $\mathcal{X}$ be a Banach space and let $A \in \mathcal{L}(\mathcal{X})$. Then there exists a finite limit

$$
r_{\sigma}(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|_{\mathcal{L}(\mathcal{X})}^{1 / n}=\inf _{n \in \mathbb{N}}\left\|A^{n}\right\|_{\mathcal{L}(\mathcal{X})}^{1 / n}
$$

called the spectral radius of the operator $A$ and $r_{\sigma}(A) \leq\|A\|_{\mathcal{L}(\mathcal{X})}$.
Theorem 1.1.14. Let $\mathcal{X}$ be a Banach space, an operator $A \in \mathcal{L}(\mathcal{X})$, and $|\lambda|>r_{\sigma}(A)$. Then $\lambda \in \rho(A)$.

An operator function $A(\lambda): \mathbb{C} \rightarrow \mathcal{L}(\mathcal{X})$ is called analytic at a point $\lambda_{0}$ if it is expanded in some neighbourhood of the point $\lambda_{0}$ into a power series
$A(\lambda)=\sum_{k=0}^{\infty} A_{k}\left(\lambda-\lambda_{0}\right)^{k}$ convergent in this neighbourhood. Note that the notions of analyticity in the sense of the uniform and strong convergence of the series are equivalent.

Theorem 1.1.15. $R_{\lambda}(A)$ is an analytic function of $\lambda$ at any point $\lambda \in \rho(A)$.

Remark 1.1.2. Let an operator $A \in \mathcal{L}(\mathcal{X})$ and $|\lambda|>r_{\sigma}(A)$. Then, based on Theorem 1.1.7, the following expansion can be readily obtained:

$$
R_{\lambda}(A)=-\sum_{k=0}^{\infty} \frac{A^{k}}{\lambda^{k+1}} .
$$

Theorem 1.1.16. Let $\mathcal{X}$ be a Banach space and an operator $A \in \mathcal{L}(\mathcal{X})$. Then $\sigma(A) \neq \emptyset$.

An operator $A$ is called idempotent if $A^{2}=A$. Projector is an idempotent operator $A \in \mathcal{L}(\mathcal{X})$. On a space $\mathcal{X}$ there exists a projector $A$ if and only if $\mathcal{X}=\mathcal{X}^{0} \oplus \mathcal{X}^{1}$, where $\left.A\right|_{\mathcal{X}^{0}}=\mathbb{O},\left.A\right|_{\mathcal{X}^{1}}=I$.

The space $\mathcal{L}(\mathcal{X} ; \mathbb{R}(\mathbb{C}))$ is called adjoint to $\mathcal{X}$ and is denoted by $\mathcal{X}^{\prime}$. Its elements are called functionals. If to every element $x \in \mathcal{X}$ an element $\tilde{x} \in \mathcal{X}^{\prime \prime}$ is assigned by the rule $\tilde{x}(f)=f(x) \forall f \in \mathcal{X}^{\prime}$, then it is clear that $\mathcal{X} \subset \mathcal{X}^{\prime \prime}$. A space $\mathcal{X}$ such that $\mathcal{X}=\mathcal{X}^{\prime \prime}$ is called reflexive.

A sequence $\left\{x_{n}\right\} \subset \mathcal{X}$ is called weakly convergent to $x \in \mathcal{X}$ and this fact is denoted as $x=w-\lim _{n \rightarrow \infty} x_{n}$ if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for any functional $f \in \mathcal{X}^{\prime}$.

### 1.2. THEOREMS ON INFINITESIMAL GENERATORS

Let $\mathcal{X}$ be a Banach space and let an operator $A: \operatorname{dom} A \rightarrow \mathcal{X}, \operatorname{dom} A \subset \mathcal{X}$, be linear and closed. Consider the Cauchy problem

$$
x(0)=x_{0}, \quad x_{0} \in \operatorname{dom} A
$$

for an operator-differential equation

$$
\dot{x}=A x .
$$

The question of solvability of this problem on the semiaxis $\overline{\mathbb{R}}_{+}=\{0\} \cup \mathbb{R}_{+}$ (on the axis $\mathbb{R}$ ) is equivalent to the problem of finding a semigroup (group) of operators generated by the operator $A$.

Definition 1.2.1. A semigroup of linear continuous operators is a mapping $X \cdot: \overline{\mathbb{R}}_{+} \rightarrow \mathcal{L}(\mathcal{X})$ such that $X^{s} X^{t}=X^{s+t}$ for all $s, t \in \overline{\mathbb{R}}_{+}$.

A semigroup will be identified with the set $\left\{X^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$.
A semigroup $\left\{X^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$is called nondegenerate if $X^{0}=I$ and strongly continuous if for any $t \in \mathbb{R}_{+} \lim _{s \rightarrow t} X^{s}=X^{t}, \lim _{s \rightarrow 0+} X^{s}=X^{0}$. A nondegenerate strongly continuous semigroup is called strongly continuous ( $C_{0}$ )-semigroup (or a ( $C_{0}$ )-continuous semigroup).

Definition 1.2.2. An infinitesimal generator of a nondegenerate semigroup of operators $\left\{X^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$is the operator

$$
A x=\lim _{t \rightarrow 0+} \frac{X^{t} x-x}{t}
$$

defined only on these vectors $x$ for which the above limit exists. In this case the operator $A$ is said to generate the semigroup $\left\{X^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$.

Let us introduce the denotation $\mathbb{R}_{a,+}=\{c \in \mathbb{R} \mid c>a\}$.
Definition 1.2.3. An operator $A \in \mathcal{C l}(\mathcal{V})$ satisfying the conditions

$$
\exists a \in \mathbb{R} \quad \forall \mu \in \mathbb{R}_{a,+} \quad \mu \in \rho(A),
$$

$$
\exists K \in \mathbb{R}_{+} \quad \forall \mu \in \mathbb{R}_{a,+} \quad \forall n \in \mathbb{N} \quad\left\|\left(R_{\mu}(A)\right)^{n}\right\|_{\mathcal{L}(\mathcal{V})} \leq K /(\mu-a)^{n}
$$

will be called radial.
Theorem 1.2.1 [Hille-Yosida]. An operator $A$ is radial if and only if it generates a strongly continuous ( $C_{0}$ )-semigroup.

Definition 1.2.4. A group of linear continuous operators is a mapping $X^{\prime}: \mathbb{R} \rightarrow \mathcal{L}(\mathcal{X})$ such that $X^{s} X^{t}=X^{s+t}$ for all $s, t \in \mathbb{R}$.

A group will be identified with the set $\left\{X^{t} \mid t \in \mathbb{R}\right\}$.
A group $\left\{X^{t} \mid t \in \mathbb{R}\right\}$ is called nondegenerate if $X^{0}=I$ and strongly continuous if for any $t \in \mathbb{R} \lim _{s \rightarrow t} X^{s}=X^{t}$. A nondegenerate strongly continuous group is called a strongly continuous ( $C_{0}$ )-group (or ( $C_{0}$ )-continuous group).

Definition 1.2.5. The infinitesimal generator of a nondegenerate group of operators $\left\{X^{t} \mid t \in \mathbb{R}\right\}$ is the operator

$$
A x=\lim _{t \rightarrow 0} \frac{X^{t} x-x}{t}
$$

defined on those vectors $x$ for which the above limit exists. In this case it is said that the operator $A$ generates the semigroup $\left\{X^{t} \mid t \in \mathbb{R}\right\}$.

Let $\mathbb{R}_{a}=\{c \in \mathbb{R}| | c \mid>a\}$.
Definition 1.2.6. If an operator $A \in \mathcal{C l}(\mathcal{V})$ satisfies the conditions

$$
\begin{gathered}
\exists a \in \mathbb{R} \quad \forall \mu \in \mathbb{R}_{a} \quad \mu \in \rho(A), \\
\exists K \in \mathbb{R}_{+} \quad \forall \mu \in \mathbb{R}_{a} \quad \forall n \in \mathbb{N} \quad\left\|\left(R_{\mu}(A)\right)^{n}\right\|_{\mathcal{L}(\mathcal{V})} \leq K /(|\mu|-a)^{n},
\end{gathered}
$$

it will be called biradial.

Theorem 1.2.2. An operator $A$ generates a strongly continuous group if and only if it is biradial.

A group $\left\{X^{t} \mid t \in \mathbb{R}\right\}$ of operators is called analytic if it can be analytically continued to the whole complex plane in the variable $t$ with retaining its group property.

Theorem 1.2.3. The semigroup generated by an operator $A \in \mathcal{L}(\mathcal{X})$ can be continued to an analytic group. Conversely, the generator of an analytic group is a bounded operator $A \in \mathcal{L}(\mathcal{X})$.

A semigroup $\left\{X^{t} \mid t \in \mathbb{R}\right\}$ of operators is called analytic if it can be analytically continued to a certain sector containing $\mathbb{R}_{+}$in the variable $t$ with retaining its semigroup property.

Definition 1.2.7. An operator $A \in \mathcal{C l}(\mathcal{V})$ is called sectorial if it satisfies the conditions

$$
\begin{gathered}
\exists a \in \mathbb{R} \quad \exists \theta \in(\pi / 2, \pi) \\
S_{a, \theta}(A)=\{\mu \in \mathbb{C}| | \arg (\mu-a) \mid<\theta, \mu \neq a\} \subset \rho(A), \\
\exists K \in \mathbb{R}_{+} \quad \forall \mu \in S_{a, \theta}(A) \quad\left\|R_{\mu}(A)\right\|_{\mathcal{L}(\mathcal{V})} \leq K /|\mu-a| .
\end{gathered}
$$

Remark 1.2.1. The term "sectorial operator" is taken from Clement, Heijmans, Angenent, van Duijn, de Pagter (1987), Henry (1981).

Theorem 1.2.4 [Solomyak-Yosida]. An operator $A$ is the generator of an analytic semigroup if and only if it is sectorial.

### 1.3. FUNCTIONAL SPACES AND DIFFERENTIAL OPERATORS

A bounded domain $\Omega \subset \mathbb{R}^{n}$ will be referred to as a domain of class $C^{k}$, $k=0,1,2, \ldots, \infty$, if
(i) the boundary $\partial \Omega$ of the domain $\Omega$ is a compact $C^{k}$-manifold without border;
(ii) there exist numbers $\alpha, \beta \in \mathbb{R}_{+}$and an atlas $\left\{a_{i} \mid i=\right.$ $1,2, \ldots, m\}$, where every map corresponds to a local coordinate system $\left\{O_{i} \mid a_{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right\}$, such that the domain boundary

$$
\partial \Omega \subset \bigcap_{i=1}^{m}\left\{\left(x_{1}^{i}, \bar{x}^{i}\right)\left|x_{1}^{i}=a_{i}\left(\bar{x}^{i}\right),\left|\bar{x}^{i}\right|<\alpha\right\}\right.
$$

and

$$
\begin{aligned}
& \left\{\left(x_{1}^{i}, \bar{x}^{i}\right)\left|a_{i}\left(\bar{x}^{i}\right)<x_{1}^{i}<a_{i}\left(\bar{x}^{i}\right)+\beta,\left|\bar{x}^{i}\right|<\alpha\right\} \subset \mathbb{R}^{n} \backslash \bar{\Omega} ;\right. \\
& \left\{\left(x_{1}^{i}, \bar{x}^{i}\right)\left|a_{i}\left(\bar{x}^{i}\right)-\beta<x_{1}^{i}<a_{i}\left(\bar{x}^{i}\right),\left|\bar{x}^{i}\right|<\alpha\right\} \subset \Omega .\right.
\end{aligned}
$$

Here $\bar{x}^{i}=\left(x_{2}^{i}, x_{3}^{i}, \ldots, x_{n}^{i}\right)$.
Remark 1.3.1. Condition (ii) formalizes vague statements like "a domain $\Omega$ locally lies on one side of its boundary".

Let $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$ and

$$
\partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}},
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ and $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$.
Let us introduce the Sobolev spaces

$$
W_{p}^{l}=\left\{\partial^{\alpha} u \in L_{p}(\Omega)\left|\forall \alpha \in \mathbb{N}_{0}^{n},|\alpha|<l\right\},\right.
$$

where $l \in \mathbb{N}_{0}, 1 \leq p<\infty$.
The space $W_{p}^{l}$ is a Banach space with the norm

$$
\|u\|_{l, p}=\left(\sum_{|\alpha| \leq l} \int_{\Omega}\left|\partial^{\alpha} u\right|^{p} d x\right)^{1 / p}
$$

The space $W_{p}^{l}$ is reflexive for $1<p<\infty$. For $l>k$ the bounded set $\left\{u \in W_{p}^{l} \mid\|u\|_{l, p} \leq\right.$ const $\}$ is compact in $W_{p}^{k}$. If for $p=2$ the space $W_{p}^{l}$ is
equipped with a scalar product

$$
(u, v)_{l}=\int_{\Omega} \sum_{|\alpha| \leq l} \partial^{\alpha} u \partial^{\alpha} v d x
$$

it will be a Hilbert space. Let us denote $H^{l}=W_{2}^{l}$. In addition to these spaces, we will also need the Hölder spaces

$$
\begin{aligned}
& C^{l+\lambda}=C^{l+\lambda}(\Omega)=\left\{u \in C^{l}(\bar{\Omega}) \mid\right. \\
&\left.\|u\|_{l+\lambda}=\|u\|_{l}+\sum_{|\alpha|=l} \sup _{x, y \in \Omega, x \neq y} \frac{\left|\partial^{\alpha} u(x)-\partial^{\alpha} u(y)\right|}{|x-y|^{\lambda}}<\infty\right\},
\end{aligned}
$$

where $l \in \mathbb{N}_{0}, 0<\lambda<1$, and $\|\cdot\|_{l}$ designates the uniform norm in $C^{l}(\bar{\Omega})$

$$
\|u\|_{l}=\sum_{|\alpha| \leq l} \max _{x \in \bar{\Omega}}\left|\partial^{\alpha} u(x)\right| .
$$

The spaces $C^{l+\lambda}$ are Banach spaces with a norm $\|\cdot\|_{l+\lambda}$. When $l+\lambda>$ $k+\mu$, the bounded set $\left\{u \in C^{l+\lambda} \mid\|u\|_{l+\lambda} \leq\right.$ const $\}$ is compact in $C^{k+\mu}$.

The connection between Sobolev and Holder spaces is established by the Sobolev embedding theorems.
(TS1) If an integer $k, 0 \leq k<l$, is such that $0 \leq 1 / q=1 / p-(l-k) / n \leq$ 1 , then the embedding of $W_{p}^{l}$ in $W_{q}^{k}$ is continuous. If in addition $q^{\prime}<q$, then the embedding of $W_{p}^{l}$ in $W_{q^{\prime}}^{k}$ is compact.
(TS2) If an integer $k, 0 \leq k<l$, is such that $0<\lambda=l-n / p-k<1$, then the embedding of $W_{p}^{l}$ in $C^{k+\lambda}$ is compact.

Let us now consider differential operators. Henceforth we will consider that the domain $\Omega \subset \mathbb{R}^{n}$ is of the class $C^{\infty}$. A set $\left\{B_{j} \mid j=0,1, \ldots, k\right\}$ of differential operators defined on $\partial \Omega$,

$$
\begin{equation*}
B_{j}=\sum_{|\alpha| \leq m_{j}} b_{\alpha}^{j}(x) \partial^{\alpha}, \quad b_{\alpha}^{j} \in C^{\infty}(\partial \Omega) \tag{1.3.1}
\end{equation*}
$$

is called a normal system if $0 \leq m_{0}<m_{1}<\cdots<m_{k}$ and for every vector $\nu_{x}$, $x \in \partial \Omega$, normal to $\partial \Omega$ the following condition is satisfied

$$
\sum_{|\alpha|=m_{j}} b_{\alpha}^{j}(x) \nu_{x}^{\alpha} \neq 0, \quad j=0,1, \ldots, k
$$

Let $\left\{B_{j} \mid j=0,1, \ldots, k\right\}$ be a normal system and $m_{k}<l$. Let us introduce the spaces

$$
\begin{array}{ll}
W_{p,\left\{B_{j}\right\}}^{l}=\left\{u \in W_{p}^{l} \mid B_{j} u=0\right. & \text { on } \partial \Omega, j=0,1, \ldots, k\}, \\
C_{\left\{B_{j}\right\}}^{l+\lambda}=\left\{u \in C^{l+\lambda} \mid B_{j} u=0\right. & \text { on } \partial \Omega, j=0,1, \ldots, k\} ;
\end{array}
$$

$W_{p,\left\{B_{j}\right\}}^{l}$ and $C_{\left\{B_{j}\right\}}^{l+\lambda}$ are Banach subspaces of the spaces $W_{p}^{l}$ and $C^{l+\lambda}$, respectively.

The differential operator

$$
A=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) \partial^{\alpha}, \quad a_{\alpha} \in C^{\infty}(\bar{\Omega})
$$

satisfies the Petrovskii ellipticity condition if

$$
\sum_{|\alpha|=2 m} a_{\alpha}(x) \xi^{\alpha} \neq 0 \quad \forall \xi \in \mathbb{R}^{n} \backslash\{0\} \quad \forall x \in \bar{\Omega}
$$

A set $\left\{B_{j} \mid j=0,1, \ldots, m-1\right\}$ of differential operators on $\partial \Omega$ of the form (1.3.1) satisfies the complementary condition (Shapiro-Lopatinskii condition) with respect to an operator $A$ if for any normal vector $\nu_{x}$ and any tangent vector $\xi_{x}$ at any point $x \in \partial \Omega$ the polynomials

$$
b_{j}\left(x, \xi_{x}+\tau \nu_{x}\right)=\sum_{|\alpha|=m_{j}} b_{\alpha}^{j}(x)\left(\xi_{x}+\tau \nu_{x}\right)^{\alpha}, \quad j=0,1, \ldots, m-1
$$

in a variable $\tau$ are linearly independent modulo of the polynomial $\prod_{k=0}^{m-1}(\tau-$ $\tau_{k}^{+}$), where $\tau_{k}^{+}$are the roots with positive imaginary part of the polynomial

$$
\sum_{|\alpha|=2 m} a_{\alpha}(x)(\xi+\tau \eta)^{\alpha}
$$

in the variable $\tau$. Here the vectors $\xi, \eta \in \mathbb{R}^{n}$ are linearly independent.
Let $k \in \mathbb{N}_{0}$ and let $\left\{B_{j} \mid j=0,1, \ldots, m-1\right\}$ be a normal system of differential operators, complementary with respect to a operator $A$ satisfying the ellipticity condition. The operator $A$ defined on the spaces $W_{p,\left\{B_{j}\right\}}^{2 m+k}$ or $C_{\left\{B_{j}\right\}}^{2 m+\lambda}$ will be called an elliptic differential operator.

Let us summarize the main results on elliptic differential operators which will be useful for further treatment.
(1) An elliptic differential operator

$$
A: W_{p,\left\{B_{j}\right\}}^{2 m+k} \rightarrow W_{p}^{k}, \quad A: C_{\left\{B_{j}\right\}}^{2 m+k+\lambda} \rightarrow C^{k+\lambda}
$$

is a Noether operator and its index ind $A$ depends neither on $k \in \mathbb{N}_{0}$ nor on $p(1<p<\infty)$ and $\lambda(0<\lambda<1)$.

Remark 1.3.2. Henceforth, among the Noether operators we will single out the Fredholm operators, i. e., the Noether operators with zero index.
(2) The kernel ker $A$ depends neither on $k, p$ nor on $\lambda$ and the following embedding takes place:

$$
\operatorname{ker} A \subset\left\{u \in C^{l+\lambda} \mid B_{j} u=0 \quad \text { on } \partial \Omega, j=0,1, \ldots, m-1\right\}
$$

(3) The cokernel coker $A$ can be selected so that the embedding coker $A \subset$ $C^{\infty}(\bar{\Omega})$ takes place and in this case the cokernel depends neither on $p, k$ nor on $\lambda$.
(4) Either the resolvent set of an operator $A$ is empty or the spectrum $\sigma(A)$ consists of isolated points that are eigenvalues of finite multiplicity and is condensed only at infinity.
(5) The set of eigenfunctions and adjoint functions of an operator $A$ $\left\{\varphi_{k} \mid k \in \mathbb{N}\right\} \subset C^{\infty}(\bar{\Omega})$ forms a basis of the spaces $W_{p,\left\{B_{j}\right\}}^{l+2 m}, W_{p}^{l}, C_{\left\{B_{j}\right\}}^{l+2 m+\lambda}$, and $C^{l+\lambda}$ irrespective of $l=0,1, \ldots$ and of $p$ and $\lambda$.

Finally, let us define spaces of functions with values in a Banach space.
Let $\mathcal{X}$ be a Banach space. Consider the space $\tilde{W}_{q}^{l}([a, b] ; \mathcal{X}), l=$ $0,1,2, \ldots, 1<q<\infty$, consisting of functions $u:[a, b] \rightarrow \mathcal{X}$ continuously differentiable $l$ times with the norm

$$
\|u\|_{\tilde{W}_{q}^{\prime}[a, b]}=\|u\|_{l, q}=\left(\sum_{k=0}^{l} \int_{a}^{b}\left\|u^{(k)}(t)\right\|_{\mathcal{X}}^{q} d t\right)^{1 / q}
$$

By definition, the space $W_{q}^{l}(a, b ; \mathcal{X})$ is the completion of $\tilde{W}_{q}^{l}([a, b] ; \mathcal{X})$ in this norm and is called the Sobolev-Bochner space. The space $W_{q}^{0}(a, b ; \mathcal{X})$ is denoted by $L_{q}(a, b ; \mathcal{X})$ and is called the Lebesgue-Bochner space.

## Chapter 2.

## Relatively $p$-radial operators and degenerate strongly continuous semigroups of operators

### 2.0. INTRODUCTION

Let $\mathcal{U}$ and $\mathcal{F}$ be Banach spaces; operators $L \in \mathcal{L}(\mathcal{U} ; \mathcal{F})$ and $M \in \mathcal{C l}(\mathcal{U} ; \mathcal{F})$. Let us consider a Cauchy problem

$$
\begin{equation*}
u(0)=u_{0} \tag{2.0.1}
\end{equation*}
$$

for a linear Sobolev-type operator

$$
\begin{equation*}
L \dot{u}=M u \tag{2.0.2}
\end{equation*}
$$

Suppose that there exists an operator $L^{-1} \in \mathcal{L}(\mathcal{F} ; \mathcal{U})$, then problem (2.0.1), (2.0.2) is reduced to a couple of problems equivalent to it

$$
\begin{array}{ll}
\dot{u}=S u, & u(0)=u_{0} \\
\dot{f}=T f, & f(0)=f_{0}, \tag{2.0.4}
\end{array}
$$

where operators $S=L^{-1} M \in \mathcal{C l}(\mathcal{U}), T=M L^{-1} \in \mathcal{C l}(\mathcal{F})$; vectors $f=L u$, $f_{0}=L u_{0}$.

Problems (2.0.3), (2.0.4) with an accuracy of notation coincide with the problem

$$
\begin{equation*}
\dot{v}=A v, \quad v(0)=v_{0} \tag{2.0.5}
\end{equation*}
$$

where $A \in \mathcal{C l}(\mathcal{V}), \mathcal{V}$ is a Banach space and $v_{0} \in \operatorname{dom} A$. If an operator $A$ is radial, then, as follows from the Hille-Yosida theorem (Hille and Phillips, 1957; Yosida, 1965), the unique solution of problem (2.0.5) is $v(t)=V^{t} v_{0}$, where $\left\{V^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$is a strongly continuous ( $C_{0}$ )-semigroup of solving operators of equation (2.0.5).

It is easy to see that the operator $S$ of problem (2.0.3) is radial exactly when the operator $T$ is radial. Therefore, in this case a pair of operators ( $L, M$ ) generates a pair $\left(\left\{U^{t}\right\},\left\{F^{t}\right\}\right.$ ) of strongly continuous ( $C_{0}$ )-semigroups defined on the spaces $\mathcal{U}$ and $\mathcal{F}$ respectively. At the same time, the semigroup $\left\{U^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$consists of solving operators of equation (2.0.2), i. e. a unique solution $u=u(t)$ of problem (2.0.1), (2.0.2) for every $u_{0} \in \operatorname{dom} M$ has the form $u(t)=U^{t} u_{0}$.

The Hille-Yosida theorem establishes bijection between a set of radial operators and a set of strongly continuous ( $C_{0}$ )-semigroups. In this case, however, operators $S$ and $T$ are similar (i.e. $T=L S L^{-1}$ ), consequently semigroups $\left\{U^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$and $\left\{F^{t} \mid t \in \overline{\mathbb{R}}_{+}\right\}$are also similar (that is $F^{t}=$ $L U^{t} L^{-1}$ for every $t \in \overline{\mathbb{R}}_{+}$), therefore, there is no longer any bijection between the set of operator pairs $(L, M)$ and the set of pairs of random strongly continuous ( $C_{0}$ )-semigroups. The only bijection now is that between a set of pairs of similar operators ( $S, T$ ) and a set of pairs of similar strongly continuous $\left(C_{0}\right)$-semigroups ( $\left\{U^{t}\right\},\left\{F^{t}\right\}$ ).

The situation becomes more complicated when an operator $L$ is noninvertible, in particular, when its kernel ker $L \neq\{0\}$. Sviridyuk (1995) was one of the first to consider this case from the viewpoint of the theory of radial operators and strongly continuous semigroups. His results were later developed by Fedorov (1996, 2001). The results presented in this chapter were mostly obtained by Fedorov.

In Section 2.1, we introduce a $L$-resolvent set and a $L$-spectrum of an operator $M$ generalising the concepts of a resolvent set and of a spectrum of the operator $S$ (or $T$ ) when an operator $L$ is invertible; and study the properties of $L$-resolvents of the operator $M$ coinciding with the resolvents of the operators $S$ and $T$ for the case $L^{-1} \in \mathcal{L}(\mathcal{U} ; \mathcal{F})$. In addition, this section contains a detailed study of $M$ - adjoint vectors of the operator $L$ introduced by Vainberg and Trenogin (1969).

In Section 2.2 relatively $p$-radial operators are introduced and studied, in particular, if an operator $L$ is continuously invertible, an operator $S$ (or $T$ )
is radial then an operator $M$ is $(L, p)$-radial. For $p=0$ the reverse is also true.

In Section 2.3 the existence of degenerate strongly continuous semigroups of operators is proved generated by an ( $L, p$ )-radial operator $M$. The proof is based on the approximations of the Yosida-type. In Section 2.4 the same fact is proved by approximations of the Hille-Widder-Post-type. The result generalises the direct statement of the Hille-Yosida theorem.

In Section 2.5 conditions are discussed sufficient for splitting the space $\mathcal{U}=\mathcal{U}^{0} \oplus \mathcal{U}^{1}, \mathcal{F}=\mathcal{F}^{0} \oplus \mathcal{F}^{1}$ and for splitting the actions of operators $L: \mathcal{U}^{k} \rightarrow \mathcal{F}^{k}, M: \operatorname{dom} \cap \mathcal{U}^{k} \rightarrow \mathcal{F}^{k}, k=0,1$. In addition, here the conditions of existence of an operator $L_{1}^{-1} \in \mathcal{L}\left(\mathcal{F}^{1} ; \mathcal{U}^{1}\right)$ are considered.

In Section 2.6, infinitesimal generators of restrictions of degenerate strongly continuous semigroups and phase spaces of equation (2.0.2) are studied. The results of this section are used in Section 2.7 to prove the generalisation of the invertible statement of the Hille-Yosida theorem. In Section 2.8, all the obtained results are employed for studying degenerate strongly continuous groups generated by operators $L$ and $M$.

### 2.1. RELATIVE RESOLVENTS

Let $\mathcal{U}$ and $\mathcal{F}$ be Banach spaces, operator $L \in \mathcal{L}(\mathcal{U} ; \mathcal{F})$, and operator $M$ : $\operatorname{dom} M \subset \mathcal{U} \rightarrow \mathcal{F}$ be linear and closed.

Definition 2.1.1. Set

$$
\rho^{L}(M)=\left\{\mu \in \mathbb{C} \mid(\mu L-M)^{-1} \in \mathcal{L}(\mathcal{F} ; \mathcal{U})\right\}
$$

is called a resolvent set of an operator $M$ with respect to an operator $L$ (or, briefly, L-resolvent set of an operator $M$ ). The set $\sigma^{L}(M)=\mathbb{C} \backslash \rho^{L}(M)$ is called spectrum of an operator $M$ with respect to an operator $L$ (or, briefly, $L$-spectrum of an operator $M$ ).

Remark 2.1.1. When there exists an operator $L^{-1} \in \mathcal{L}(\mathcal{F} ; \mathcal{U}) L$ resolvent set and $L$-spectrum of the operator $M$ coincide with the resolvent set and the spectrum of the operator $L^{-1} M$ (or the operator $M L^{-1}$ ).

Remark 2.1.2. The $L$-resolvent set of the operator $M$ is always open, and, consequently, the $L$-spectrum of the operator $M$ is always closed.

