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Chapter 1. 

Auxiliary material 

1.1. BANACH SPACES AND LINEAR OPERATORS 

A set X is called a linear or vector space over the field of real (complex) 
numbers if 

1) the addition operation is defined: to any elements x,y G X there 
corresponds a definite element χ + y G X called their sum; 

2) x + y = y + x; 

3) χ + (y + z) = (x+ y) + z; 

4) there exists a zero element OG A1 such that χ + 0 — x; 

5) for any χ E X there exists — χ G X such that χ + (—χ) — 0; 

6) the operation of multiplication by a number is defined: to any χ G 
X and any number λ G R (C) there corresponds a definite element 
Xx Ε X; 

7) Χ(μχ) = (Χμ)χ; 

8) 1 · χ = χ\ 

9) Χ(χ + y) = Xx + Xy, 

10) (λ + μ)χ = Χχ + μχ. 

The elements of a linear space will be called vectors or points. 
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Remark 1.1.1. It is easy to show that the zero and inverse elements 
are uniquely defined. 

A linear space X is called normed if to any χ G X a nonnegative number 
IMI* (the subscript will sometimes be omitted) called the norm of χ is 
assigned so that the following axioms are satisfied: 

!) IMI > 0; 

2) ||:r|| = 0 if and only if χ = 0; 

3) ||λχ|| = |λ| · IMI for any λ G R (C); 

4) ||a; + y|| < IMI + IMI for any x,y E X. 

To any real linear space X there corresponds a complex linear space X 
consisting of all possible formal sums ζ = χ + iy, where x, y G X and i is 
the imaginary unit. Clearly, X C X. Such an inclusion of X in the space X 
is called the complexification of the Banach space X. 

A sequence of vectors C X is called convergent to a vector 
χ Ε X, which is denoted as χ = l i m ^ o o II —> 0 as η —> oo. 

The set ST(xo) = {x G X | ||a; — a;o|| < r} is called open ball with radius 
r > 0 centered at the point xq G X. 

A set A C X is called bounded if 3K G R+ Va; G A IMI < κ · 
A point α G A' is called a limit (accumulation) point of a set A C X if 

Vs > 0 Se(a)C\A ^ 0. In other words, o is a limit point of the set A if there 
exists a sequence {in}™=1 C A convergent to a. The union of a set A and 
all its limit points is called the closure of this set. It is denoted by A. A set 
coinciding with its closure is called closed. A set A is called open if the set 
X \ A is closed. 

A set A is referred to as dense in a space X if A = X. 
A set £ C X is called a lineal (or linear manifold) if a: + y G C and 

Xx G C for any χ, y G C and any λ G Κ (C). A closed lineal C C X is called 
a linear subspace of the space X. 

Let C and M be lineáis in a space X and let £ Π M = {0}. The set of 
all possible vectors ζ of the form χ + y, where χ £ £ and y Ε M, will be 
referred to as the direct sum of these lineáis and will be denoted by £ + M. 
If £ and M are closed, their direct sum is denoted by £ Θ M.. 

A sequence {a;„}^L1 C X is called fundamental if Ve > 0 3Ν Vn > Ν 
Vp G Ν ||χη+ρ — a;n|| < ε. A linear space X is called complete if every 
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fundamental sequence in it converges. A complete linear normed space is 
called a Banach space 

The symbols I and O will denote the identity and "zero" operators, 
respectively, whose domains of definition are clear from the context. In 
other words, Ix = χ and Ox = 0. 

A mapping (operator) A : dom A ->• y of the subset dom A (the domain 
of definition of the operator A) of a linear normed space X to a linear normed 
space y is called continuous at a point xq G dom A if lim^-).,*, A(xn) = A(xo) 
for any sequence C dom A converging to xq. An operator A is called 
continuous if it is continuous at every point χ E dom A. 

An operator A is called bounded on the set dom A if 3C E K+ Va; 6 
dom A ||A(x)||y < (7||ζ||Λ\ If dom A = X, the operator is called bounded. 

The image of an operator A is the set im A = {y E y \ 3x E dom A y = 

A(x)}, and its kernel is the set ker A = {x G dom A \ A(x) — 0}. 
An operator A is called linear, if dom A is a lineal and A(Xx + ßy) — 

\Ax + μ Ay for any x,y E dom A and for any λ, μ Ε Κ (C). (Arguments of 
linear operators will be written without parentheses). 

Theorem 1.1.1. Let an operator A : X —• y, dom A — X, be linear. 

Then the following statements are equivalent: a) the operator A is contin-

uous at one point; b) the operator A is continuous; c) the operator A is 

bounded. 

We shall denote by C(X\ y ) the linear normed space of linear continuous 
operators A with dom A = X if the addition of operators and their multi-
plication by a number are defined in a natural way: (A + B)x = Ax + Bx 

and (XA)x = XAx for all A, Β E C(X',y), χ G X, and λ G R (C). The norm 
in L{X\y) is defined as follows: 

\\A\\c(x&) = sup{||Arb \ χ E Χ, ||χ||* < 1} 
- supdlAxb I ζ G Χ, ||*||* = 1} = 8up{||Ac||y/||a;||* | ¡c G Χ \ { 0 } } 

= inf {C G M+ \ Vx E X HArlIy < 

If = X, the notation of the space of linear continuous operators will be 
abbreviated to C(X). 

A sequence of operators {An} C C{X\y) is called uniformly convergent 

to an operator A E C{X; 3̂ ) if limn_+oo \\An — Α||£(λ·;3;) = 0. This sequence 
is strongly convergent to A if V* G X lim^oo ||Anx — Ax\\y = 0. Such a 
convergence is denoted as follows: A = s-lim^oo An. 
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Theorem 1.1.2. Let y be a Banach space. Then the space £(X-,y) is 
a Banach space. 

Theorem 1.1.3. Let X and y be Banach spaces, for all η G Ν An G 
C(X\and for any χ e X the sequence {||A„:E||;y} be bounded. Then the 
sequence is bounded. 

Theorem 1.1.4. Let X and y be Banach spaces. A sequence {An} C 
£(X; 3^) is strongly convergent to an operator A G C(X\ y) if and only if 
the sequence {||-4η||£(Λ·;^)} 1S bounded and for every χ from a lineal dense 
in X lirrijj^oo Anx = Ax. 

Let X and y be linear normed spaces. Let an operator A : dom A —> y, 
dom A C X, be injective. Then there exists an inverse operator A~l : 
dom A~l —> X, which bijectively maps dom A~l = im^4 onto dom A. The 
operator A~l is linear. An operator A is called continuously invertible if 
there exists an operator A~l 6 X). 

Theorem 1.1.5. The operator A~l exists and is bounded on im A if and 
only if there exists m G R+ such that for all χ G dom A ||Aa;||y > m||:r||;r· 

Theorem 1.1.6. Let X and y be Banach spaces, the operator A G 
C{X] y), and im^l = y and A is invertible. Then the operator A is contin-
uously invertible. 

Theorem 1.1.7. Let X be a Banach space, A G C{X), and ||A|| < 1. 
Then the operator I — A is continuously invertible and 

» ' ' - ^ ' ^ i H i W 

A linear operator A : dom A —>• is called closed if it follows from 
{xn} C dom A, limn^oo Xfi — and linin—Kx, Axn = y that χ G dom A 
and Ax = y. The set of closed operators A : dom A —• y with domains 
of definition dense in the space X will be denoted by Cl(X;y). The set of 
operators Cl{X\ X) will be denoted by Cl(X). 

Theorem 1.1.8. An operator A belongs to the space £(X;y) if and 
only if it is closed and defìned on the whole space. 
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Theorem 1.1.9. If an operator A is closed and invertible, then the 
operator A~1 is closed. 

Let us introduce a graph norm || · ||s = || • ||Λ· + • on the domain of 
definition dom A of a linear closed operator A. 

Theorem 1.1.10. If an operator A : dom A X, dom A C X, is linear 
and closed, then the normed space dom A is a Banach space with respect 
to the graph norm, and the operator A G £(dom A). 

Let X be a complex Banach space and let an operator A : dom A —X, 
dom A C X, be linear. A complex number Λ is called a regular point of the 
operator A if the operator XI — A is continuously invertible (there exists 
the operator (XI — G C(X)). The set of all regular points of the 
operator A is called the resolvent set of the operator and is denoted by p(A). 
If λ G p(A), then the operator R\(A) = (XI — A) - 1 is called the resolvent of 
the operator A. The spectrum of the operator A is the set σ(Α) = C \ p(A). 

Theorem 1.1.11. The resolvent set p(A) is open, and the spec-
trum σ(Α) is closed. 

Theorem 1.1.12. The spectrum of a continuous operator A lies in the 
c i r d e { A G C | | À | < | | A | | £ W } . 

A complex number λ is called an eigenvalue of an operator A if there 
exists a vector χ G dom A \ {0} such that Ax = Xx. Here, χ is called 
the eigenvector of the operator A corresponding to the eigenvalue λ. Every 
eigenvalue λ of the operator A is a point of its spectrum because the operator 
XI — A is not invertible in this case. 

Theorem 1.1.13. Let X be a Banach space and let A G C(X). Then 
there exists a fìnite limit 

m a ) - Ä «*·«&>-as »&> 
called the spectral radius of the operator A and rc(A) < ||>l||£(;r)· 

Theorem 1.1.14. Let X be a Banach space, an operator A G C(X), 
and |λ| > τσ(Α). Then X G ρ(Α). 

An operator function -Α(λ) : C —> C(X) is called analytic at a point Ao 
if it is expanded in some neighbourhood of the point λο into a power series 
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Α(λ) = Y ^ = 0 A k ( \ — \o)k convergent in this neighbourhood. Note that the 
notions of analyticity in the sense of the uniform and strong convergence of 
the series are equivalent. 

Theorem 1.1.15. R\(A) is an analytic function of λ at any point 

Remark 1.1.2. Let an operator A G C>{X) and |Λ| > νσ(Α). Then, 
based on Theorem 1.1.7, the following expansion can be readily obtained: 

Theorem 1.1.16. Let X be a Banach space and an operator A G C(X). 
Then σ(Α) φ 0. 

An operator A is called idempotent if A2 = A. Projector is an idempotent 
operator A G C.(X). On a space X there exists a projector A if and only if 
X — Xo ® X1, where A\xo = Ο, A\xi = I. 

The space £(/t;M(C)) is called adjoint to X and is denoted by X'. Its 
elements are called functionals. If to every element χ G A" an element χ G Χ" 
is assigned by the rule x ( f ) = f(x) V/ G X', then it is clear that X C X". 
A space X such that X — X" is called reflexive. 

A sequence {xn} C X is called weakly convergent to a: E X and this fact 
is denoted as χ = ω-ΐχπίη-^οο xn if limn-^oo f{xn) — f(x) for any functional 

1.2. T H E O R E M S O N INFINITESIMAL GENERATORS 

Let A" be a Banach space and let an operator A : dom A —> X, dom A C X, 
be linear and closed. Consider the Cauchy problem 

λ G p(A). 

k-0 

f ex'. 

z(0) = XQ, XQ G dom A 

for an operator-differential equation 

χ — Ax. 

The question of solvability of this problem on the semiaxis R+ = {0}UR+ 
(on the axis R) is equivalent to the problem of finding a semigroup (group) 
of operators generated by the operator A. 
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Definition 1.2.1. A semigroup of linear continuous operators is a map-
ping X- : R+ ->· C(X) such that XsX1 = Xs+t for all s, t G R+. 

A semigroup will be identified with the set { X 1 | t € R+}· 
A semigroup { X t \ t G R+} is called nondegenerate if X o = I and 

strongly continuous if for any t G R+ lim4_».tXs = Xt, lims_>o+-^s = A 
nondegenerate strongly continuous semigroup is called strongly continuous 
(Co)-semigroup (or a (Co)-continuous semigroup). 

Definition 1.2.2. An infinitesimal generator of a nondegenerate semi-
group of operators {X1 \ t G R+} is the operator 

t->o+ t 
defined only on these vectors χ for which the above limit exists. In this case 
the operator A is said to generate the semigroup {Xl | t G R+}. 

Let us introduce the denotation Ra^ = {c G R | c > a}. 

Definition 1.2.3. An operator A G Cl(V) satisfying the conditions 

3a G R V/i G Ra,+ μ G p{A), 

3K G R+ VMGla,+ Vn G Ν | | ( ^ ( ^ ) ) η | | £ ( ν ) < Κ/{μ - α)η 

will be called radial. 

Theorem 1.2.1 [Hille—Yosida]. An operator A is radial if and only if 
it generates a strongly continuous (Co)-semigroup. 

Definition 1.2.4. A group of linear continuous operators is a mapping 
X- : R C(X) such that XsX1 = Xs+t for all s,t G R 

A group will be identified with the set { X 4 | t G M}. 
A group {X1 I t G R} is called nondegenerate if Xo — I and strongly 

continuous if for any t e l lim^-^f Xs = Xt. A nondegenerate strongly con-
tinuous group is called a strongly continuous (Co)-group (or (Co)-continuous 
group). 

Definition 1.2.5. The infinitesimal generator of a nondegenerate group 
of operators { X 1 \ t G R} is the operator 

t-fO t 
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defined on those vectors χ for which the above limit exists. In this case it is 
said that the operator A generates the semigroup { X 1 \ t G R}. 

Let Ka = {c £ R I \c\ > a}. 

Definition 1.2.6. If an operator A G Cl(V) satisfies the conditions 

3a G R G Ra μ G ρ(Α), 

3Κ G R+ Ν/μ G Ra Vn G Ν | | (Λμ(^))η | |£ ( ν ) < Κ/( |μ| - a)n , 

it will be called biradial. 

Theorem 1.2.2. An operator A generates a strongly continuous group 
if and only if it is biradial. 

A group { X 4 I t G R} of operators is called analytic if it can be analyti-
cally continued to the whole complex plane in the variable t with retaining 
its group property. 

Theorem 1.2.3. The semigroup generated by an operator A G £•{%) 
can be continued to an analytic group. Conversely, the generator of an 
analytic group is a bounded operator A G C{X). 

A semigroup { X 1 \ t G R} of operators is called analytic if it can be 
analytically continued to a certain sector containing R+ in the variable t 
with retaining its semigroup property. 

Definition 1.2.7. An operator A G Cl(V) is called sectorial if it satisfies 
the conditions 

3a G R 30 G (π/2, π) 
SafiiA) = {μ G C I I arg (μ - α)| < θ, μ φ a} C ρ(Α), 
3Κ G R+ V ^ ^ t A ) \\ΙΙμ(Α)\\ε{ν)<Κ/\μ-α\. 

Remark 1.2.1. The term "sectorial operator" is taken from Clement, 
Heijmans, Angenent, van Duijn, de Pagter (1987), Henry (1981). 

Theorem 1.2.4 [Solomyak—Yosida]. An operator A is the generator of 
an analytic semigroup if and only if it is sectorial. 
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1.3. FUNCTIONAL SPACES 
AND DIFFERENTIAL OPERATORS 

A bounded domain il C f will be referred to as a domain of class Ck, 
k — 0 ,1 ,2 , . . . , oo, if 

(i) the boundary <9Ω of the domain Ω is a compact C^-manifold without 
border; 

(ii) there exist numbers α, β G M+ and an atlas {at \ i — 
1,2,... ,m}, where every map corresponds to a local coordinate system 
{Oil }, such that the domain boundary 

m 
an c Π ί ^ ΐ ' ^ ) I χ ι = Μ*4). Ι*Ί < α> 

and 

{(χί,ί*) I a¿(í¿) < x[ < ai{xi)+β, | i¿ | < a } c l 7 1 \ Ω; 
{(χ!,®*) I a¿(x¿) - β <x\< a¿(x¿), \xi\ < a} C Ω. 

Here χ1 = (x\, x\, · ·., xl
n). 

Remark 1.3.1. Condition (ii) formalizes vague statements like "a do-
main Ω locally lies on one side of its boundary". 

Let N0 = {0} U Ν and 

d\a\ 
da = 

dx^dx? ...dxg»' 

where a = (αι ,α2, . . . , a n ) G N¡} and |α| = 01 + 02 Η + an 

Let us introduce the Sobolev spaces 

Wl
p = {dau G LP(Q) I Va G PÇ, |a| < /}, 

where l G No, 1 < ρ < oo. 
The space Wj, is a Banach space with the norm 

u\\l,p = ( Σ J ^ u ? dx)1/P. 
M <1 

The space Wj, is reflexive for 1 < ρ < oo. For I > k the bounded set 
{u G Wj, I ||tt||j)P < const} is compact in Wjf. If for ρ = 2 the space is 



10 G. A. Sviridyuk and V. E. Fedorov 

equipped with a scalar product 

(u,v)i = ί Σ daudavdx, 
M<¿ 

it will be a Hilbert space. Let us denote Hl = W^. In addition to these 
spaces, we will also need the Holder spaces 

ci+\ = cl+x(ii) = e Cl(U) I 

\dQu(x) -dau(y)\ Ί 
Ν ι + λ = Ν ί + Σ s u p J — ι — ϋ Γ ^ < 0 ° ί > 

χφν μ-yIa j 

where I € No, 0 < λ < 1, and || · ||¿ designates the uniform norm in Οι(Ω) ||tt||i = max|9 a«(x)| . 
\a\<l 

The spaces ci+λ 
are Banach spaces with a norm || · ||;+λ· When I + Λ > 

k + μ, the bounded set {u G cl+\ ι \\u\\i+x < const} is compact in Ck+ß. 
The connection between Sobolev and Holder spaces is established by the 

Sobolev embedding theorems. 
(TS1) If an integer k, 0 < k < I, is such that 0 < 1/q = 1 /p-(l -k)/n< 

1, then the embedding of Wj, in Wg is continuous. If in addition q' < q, 
then the embedding of Wj, in W*5 is compact. 

(TS2) If an integer k, 0 < k < I, is such that 0 < Λ = I - n/p - k < 1, 
then the embedding of Wf, in Ck+X is compact. 

Let us now consider differential operators. Henceforth we will consider 
that the domain Ω C E" is of the class C°°. A set {Bj | j = 0 , 1 , . . . , k} of 
differential operators defined on <9Ω, 

B j = Σ v a e c ° ° ( d n ) , (1.3.1) 

is called a normal system if 0 < mo < mi < · · · < mjk and for every vector 
χ G dû, normal to <9Ω the following condition is satisfied 

Σ j = 0,1, . . . , fe. 
\a\=mj 
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Let { B j I j — 0 , 1 , . . . , k } be a normal system and m¡t < I. Let us 
introduce the spaces 

= e W¡,\BjU = 0 on dQ, j = 0,1,... ,k}, 

C{BJ} = e °l+X I Biu = 0 ondto, j = 0,1,...,k}·, 

Wp and are Banach subspaces of the spaces Wj, and Cl+X, respec-
tively. 

The differential operator 

A= Σ a Q e C ° ° ( n ) , 
|a|<2m 

satisfies the Petrovskii ellipticity condition if 

Σ αα(χ)ξα Φ 0 Ve 6 Rn \ {0} Vr 6 Ω. 
|α|=2 m 

A set {Bj I j = 0 , 1 , . . . , m — 1} of differential operators on <9Ω of the 
form (1.3.1) satisfies the complementary condition (Shapiro—Lopatinskii 
condition) with respect to an operator A if for any normal vector ux and 
any tangent vector ξχ at any point χ e dû the polynomials 

bj{x,ix + τνχ) = Σ να{χ)ίξχ + τ1/χ)αι 3 = 0 , 1 , . . . , m - 1, 
|a|=m;· 

in a variable τ are linearly independent modulo of the polynomial Π^Γο1 (T — 

where are the roots with positive imaginary part of the polynomial 

Σ ^(Χ)(ξ + τη)α 

\a\=2m 

in the variable r. Here the vectors ξ, η G Kn are linearly independent. 
Let k G No and let {Bj | j = 0 ,1 , . . . ,m — 1} be a normal system of 

differential operators, complementary with respect to a operator A satisfying 
the ellipticity condition. The operator A defined on the spaces W^™^ or 

C2™+k+x will be called an elliptic differential operator. 
Let us summarize the main results on elliptic differential operators which 

will be useful for further treatment. 
(1) An elliptic differential operator 

A : W2™+\ Wk, A : C*™+k+X Ck+X 
P.\aii p \αίϊ 
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is a Noether operator and its index ind-A depends neither on A; G No nor 
on ρ (1 < ρ < οο) and λ (0 < λ < 1). 

Remark 1.3.2. Henceforth, among the Noether operators we will single 
out the Fredholm operators, i.e., the Noether operators with zero index. 

(2) The kernel ker A depends neither on k, ρ nor on λ and the following 
embedding takes place: 

ker C { u £ Cl+X \ BjU = 0 on <9Ω, j = 0 , 1 , . . . ,m - 1}. 

(3) The cokernel cokerA can be selected so that the embedding cokerA C 
C°°(Q) takes place and in this case the cokernel depends neither on p, k nor 
on Λ. 

(4) Either the resolvent set of an operator A is empty or the spectrum 
σ(Α) consists of isolated points that are eigenvalues of finite multiplicity and 
is condensed only at infinity. 

(5) The set of eigenfunctions and adjoint functions of an operator A 
{ipk\keN} C C°°(ty forms a basis of the spaces Wl

p, C{+2™+\ 
and Cl+X irrespective of / = 0 ,1 , . . . and of ρ and λ. 

Finally, let us define spaces of functions with values in a Banach space. 
Let X be a Banach space. Consider the space W^([a, 6]; Λ"), I = 

0 , 1 , 2 , . . . , 1 < q < oo, consisting of functions u : [a, 6] —> X continuously 
differentiate I times with the norm 

Mwìm = N k , = ( Σ [b\\uW(t)rxdty/q. 
k=0 J a 

By definition, the space 6; X) is the completion of Wg([a, 6]; X) in this 
norm and is called the Sobolev—Bochner space. The space W¡j(a, b\X) is 
denoted by Lq(a,b;X) and is called the Lebesgue—Bochner space. 



Chapter 2. 

Relatively p-radial operators and 
degenerate strongly continuous 
semigroups of operators 

2.0. INTRODUCTION 

Let U and Τ be Banach spaces; operators L G C(U; Τ) and M E Cl{U\T). 
Let us consider a Cauchy problem 

ti(0) = UQ (2.0.1) 

for a linear Sobolev-type operator 

Lit = Mu (2.0.2) 

Suppose that there exists an operator L - 1 G C{T\U), then problem (2.0.1), 
(2.0.2) is reduced to a couple of problems equivalent to it 

ù = Su, u(0) = «oí (2-0.3) 

f = T f , f(0) = fo, (2.0.4) 

where operators S = L~lM G Cl(U), Τ = ML~l e Cl{F)\ vectors / = Lu, 
fo - Lu0. 
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Problems (2.0.3), (2.0.4) with an accuracy of notation coincide with the 
problem 

ν = Αν, v{0) = υ0, (2.0.5) 

where A G Cl(V), V is a Banach space and VQ G dom A. If an operator A is 
radial, then, as follows from the Hille—Yosida theorem (Hille and Phillips, 
1957; Yosida, 1965), the unique solution of problem (2.0.5) is v(t) = Vtvo, 
where {Vt \ t G K+} is a strongly continuous (Co)-semigroup of solving 
operators of equation (2.0.5). 

It is easy to see that the operator S of problem (2.0.3) is radial exactly 
when the operator Τ is radial. Therefore, in this case a pair of operators 
(L,M) generates a pair ({6^}, {i^4}) of strongly continuous (Co)-semigroups 
defined on the spaces U and Τ respectively. At the same time, the semigroup 
{Ul 11 e R+} consists of solving operators of equation (2.0.2), i.e. a unique 
solution u = u(t) of problem (2.0.1), (2.0.2) for every UQ G dom M has the 
form u(t) = UW 

The Hille—Yosida theorem establishes bijection between a set of radial 
operators and a set of strongly continuous (Co)-semigroups. In this case, 
however, operators S and Τ are similar (i.e. Τ = LSL~l), consequently 
semigroups {U1 \ t G R+} and {F1 \ t G M+} are also similar (that is Fl — 
L l ^ L - 1 for every t G R+), therefore, there is no longer any bijection between 
the set of operator pairs (L, M) and the set of pairs of random strongly 
continuous (Co)-semigroups. The only bijection now is that between a set 
of pairs of similar operators (S, Τ) and a set of pairs of similar strongly 
continuous (Co)-semigroups ({[/'}, {JPÉ}). 

The situation becomes more complicated when an operator L is non-
invertible, in particular, when its kernel kerL φ {0}. Sviridyuk (1995) was 
one of the first to consider this case from the viewpoint of the theory of 
radial operators and strongly continuous semigroups. His results were later 
developed by Fedorov (1996, 2001). The results presented in this chapter 
were mostly obtained by Fedorov. 

In Section 2.1, we introduce a L-resolvent set and a L-spectrum of an 
operator M generalising the concepts of a resolvent set and of a spectrum 
of the operator S (or T) when an operator L is invertible; and study the 
properties of L-resolvents of the operator M coinciding with the resolvents 
of the operators S and Τ for the case L - 1 G L{Ü\T). In addition, this 
section contains a detailed study of M- adjoint vectors of the operator L 
introduced by Vainberg and Trenogin (1969). 

In Section 2.2 relatively p-radial operators are introduced and studied, in 
particular, if an operator L is continuously invertible, an operator S (or Τ) 
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is radial then an operator M is (L,p)-radial. For ρ — 0 the reverse is also 
true. 

In Section 2.3 the existence of degenerate strongly continuous semigroups 
of operators is proved generated by an (L,p)-radial operator M. The proof 
is based on the approximations of the Yosida-type. In Section 2.4 the same 
fact is proved by approximations of the Hille—Widder—Post-type. The 
result generalises the direct statement of the Hille—Yosida theorem. 

In Section 2.5 conditions are discussed sufficient for splitting the space 
U = U° Θ Ul, Τ = Θ Τ1 and for splitting the actions of operators 
L : Uk J*, M : dom PMk Tk, k = 0,1. In addition, here the 
conditions of existence of an operator Ll are considered. 

In Section 2.6, infinitesimal generators of restrictions of degenerate 
strongly continuous semigroups and phase spaces of equation (2.0.2) are 
studied. The results of this section are used in Section 2.7 to prove the 
generalisation of the invertible statement of the Hille—Yosida theorem. In 
Section 2.8, all the obtained results are employed for studying degenerate 
strongly continuous groups generated by operators L and M. 

2.1. RELATIVE RESOLVENTS 

Let U and Τ be Banach spaces, operator L e C{U\T), and operator M : 
dom M CU -i Τ be linear and closed. 

Definition 2.1.1. Set 

pL{M) = {μ e C I (/iL - M)'1 E C{T-,U)} 

is called a resolvent set of an operator M with respect to an operator L (or, 
briefly, L-resolvent set of an operator M). The set aL(M) = C \ p L ( M ) is 
called spectrum of an operator M with respect to an operator L (or, briefly, 
L-spectrum of an operator M). 

Remark 2.1.1. When there exists an operator L~l G L{T\K) L-
resolvent set and L-spectrum of the operator M coincide with the resolvent 
set and the spectrum of the operator L _ 1 M (or the operator ML"1). 

Remark 2.1.2. The L-resolvent set of the operator M is always open, 
and, consequently, the L-spectrum of the operator M is always closed. 


